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INTRODUC'!'IOS

I The 3CU.c;wing ~~roLl.em was raisi?d by :I.- J. Stoss [ 3 ]

in cor,nec Lion 3;.Ii;h izr+.atn qwstions rel-afted to the
I complexity of Boo7-r:;,r) fui-:~: ;,ri_ons . An acyclic directcld graph

.G is said to have property k3@,n) if for any set X of m

vertices of G, thsre i:; a directed path of length n In G which

L_ doe< not intersect X, I,?t f(r;i,n) denote the minimum number of

edges a grapl2 YJ t?: property gJ(rn,n) can have. The problem is

to estims,te f
I

i
L

t

i
constants). .Pn fY?C ii, 3~ graph we construct in order to
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. establish the upper bound on f(n,n) in (1) will have just

c 3n vertices. In this case the upper bound in (I) is

t

essentially bc-st possible since it will also be shosvn that for

c4 'sufficiently large, every gra,ph on c:
4n vertices having;

property p(n,n) must have at least c5n log ~1 edges.

,A PRELIMINARY LEMMA

In order to establish the upper bound in (1)

we first need the following result.

Lemma. For all 6 > 0 there exists c = c(6) such that for

all t sufficiently large, there exists a bipartite graph

B= B(6;t) with vertex sets A and A’ so that:

(i) /Al = /A'] = t;

(ii) B has at most c(6)t edges;

(iii) If' xc A, X'L A' with 1x1 > 6t, IX'/ > Et-

then (X,X') = [(xJ'):xeX,~'eX'l  contains an edge

of B.

L
Proof: We use a simple probabilistic  argument to show the

existence of B. Form a bipartite graph B on the vertex

sets A and A' with IAl = /A'/ = t by selecting for each

aeA a random subset g(a)s A' of cardinality d = d(6)

(to be specified later). Call a "bad" if there exists

Xc, A, X' c A', with 1x1 > 6t, IX'/ > 6t, so tha,t (X,X')-

contains no edge Qf B. For fixed X a.nd Xl, the probability

that E is bad because of these two subsets is at most
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Hence, the total probabiliijti: that B is bad i-s at most

large, for example, so that

(1.~6~ )d6 < J-/4-,

then for t sufficiently large this

probability is less than 1, and so, a graph B = B(Fj=t)
3

L
must exist which satisfies the requjrements of the lemma, m

CONSTRUCTION OF ,G.

L.

1

I

The next step in the proof of (1) is the construction

of the directed graph G. For large n, G = G(n) will have as

its vertex set the set V = [0,1,...,2n-l]. If v and m are

positive integers, then D,(m) will denote the set

c v, v-+1, . . ..v+m-1) n v. Similarly, D:(m) will denote the

set [v,v-1 ,...,v-mt-1) n V. In general, +E~,..., will

denote suitably chosen fixed positive constants to be specified

later. * The edge set E of G is formed as follows:

(i) For XV, the pairs (v,x), xeDv+l(4n), are in E;

t(ii) For each 1; with n/2 < 2 < Zn and each i as specified
-

below, a copy of B(E~ t;2 ) is formed between the

vertex sets A = D
m.2t ( >2t and A' = D

0 ( m < 2r5
(m+i) .2t(2t)y

where i = 1,2 ,...,lO (or if i cannot

assume the va3ue 10 because (m+10)2t > 2n, Chen it

ranges from 1 Zo 2n-t-m), All edges are directed from

x to y w?th x < y.



An elementary calculation shows that

/El < cp2”. .

THE UPPER BOUND

Theorem 1. For a suitable

Q(E.2n,Eo~~)

E > 0, G(n) has property

for all sufficiently large n.

Proof: The theorem will be proved by a sequence of

claims. First we show that G(n) shares with the graphs

,B(E;t) the

Claim 1. If

1x1 2 9-b

contaj.ns an

'ollowing property,

m 2 2n and XC D,(m), x’C

X'l 2 F2m, then [X,X'] = (

edge of G(n).

D m , satisfyx+m ( 1

(x,x’ ) XEX, X’FX’ 3
L

L-

I
i

Proof Of Claim: Let 2t < m/2 < 2t+1.- Thus, m/4 < 2t SO

at most five of the intervals Dr 2t
. (gt) intersect D,(m)

and at most five of them intersect Dx+m(m). Since 1x1 >

then some Dr,*t('
t

> and Drl.2t(et) have
- 9-J.l

(3) IDrQt(2t) nxl 2 E2m/59 lDrt.2t(2t) n X'l > E m/5
-2 l

But we must have/r'-4 5 10 so that by the construction of

G(n) there 2s a COPY Of B(E~J~~) between D
L r.2t(2t) and

Drf .2t(2L)* Thus, if &z/5> El and m > 2t
t

then the property

lof B(E1,2 ) guaranteed by the Lemma implies that [X,X']

contains an edge of G(n) provided that t is sufficiently

large (which is guaranteed by choosing n large enough).

This proves the claim. m
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Next,, let us c~cu)::~! an arbitrary fixed set X

of vertices with 1x1 2 s& The vertices in X will be

referred to as the ma.rl;e< vertices of G; the remaining

vertices of G will be called the unmarked vertices of G.

Let US call an unmarked vertex YE:V bad if

for some m 2 1 either at least e3rn vertices in D,(m)

are marked or at least s3m vertices in D;(m) are marked.

Otherwise, an unmarked vertex of G is called good.

Clc..im 2. There are at most ~~~~ bad vertices.

Proof of Claim; Let yl denote the least unmarked vertex

of G (if' it exists) for which for some ml > 1, at least

E3ml vertices in D
y1

(ml) are marked. In general, if

yly l ,yk and mly . . ..mk have been defined, let y

least unmarked vertex of G following yk + mk
k+l be the

- 1 (if it
exists) for which for some mk+l ) 1 at least

vertices
in D

yk+l (%+l )
&3%+1

are marked. We continue this process until

it no longer can be aspplied, so that, say,
y

and ml,.
☺_☺ l l l ,Ys

l l , ms have been defined. Similarly, let y; denote

the greatest unmarked vertex (if it exists) for which for

some rn; 2 1, at least E m*3 1 vertices in D:x-(~:) are marked,
etc. In this wa.y, we define yt,...,y",

t'3
It follows from the preceding

the definition of a bad vertex that all

contained in the set

and ml,
-x-

. . ., mS-E.

construction and

bad vertices are
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D+, (m;)yk

.
Thus,. there are at most

M

S

c
= I-I TIT
k=l

bad vertices. However, by our construction there are at
1

least (E
3/

2)M marked vertices in Y. Since by hypothesis there
L 'are at most ~.2~ marked vertices in V then we have

L ( /)s3 2 M < ~*2~,

i

i M I (2&~~)2~ < ~~~~~

which proves the claim. m

L
!

For an unmarked vertex x, let P (m) denote the
X

set of all unmarked vertices in D,(m) whGa.n be reached

from x by directed paths which contain only unmarked

vertices.

.

L
Claim 3* If X is a good vertex and ID,(m)/ z m then

IPx(m) I > y-n

Proof of Claim: If m ( 4n then since x is good, a.t least
(1-s3)m vertices in D,(m) are unmarked and x has edges

directly to all of them. Suppose m > 4n. Let m' denote
[m/2]. Since IOx( = ml then by induction

IP,(m') I > y-n'. Since x is good then
l
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at most E m Vertices in Dx(m) are marked,
3 Hence, at most

E
3
m vertices in D

x+m'
m' -2 2&d &5 2 &2

(m')c D,(m) are marked. .Since

then there are edges from P,(m') to

at least (l-&2)m' vertices in Dx,,,(rn~). But at most
e3m < 3s3m' vertices in D

x+m' (m') are marked. Hence,

P,(m') must have edges to at least (1-s2-3s3)m' unmarked

vertices in Dx+m,(mp)~ Since P-E
2-3~~ > 3~~ then

The claim now follows by induction, a
.

In exactly the same way it follows that if P:(m)

denotes the set of all unmarked vertices in D:(m) which are

connected to the unmarked vertex x by a directed path

L

,

L

1

containing only unmarked vertices, and x is a good vertex

= m, then-

L
Cla.im 4. Let x -and x' be good vertices with x < x'. Then
x%Px(2").

Proof : If x'-x 5 4n then the claim is immediate since by

construction there is an edge from x to x'. Assume

x'-x > 4n. Let y = [(x+x7/2] and let m = y - x+ 1 u
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Consider the interva.ls D,(m) a.nd D$ (m). Either they are

adjacent or they have the single element y in common.

Since x and x' are good then by (4) and ('I' ) w
.

(5) IP,(mH > k$b /(&)I > s5m.

Since e5 > e2 then by Claim 1, there is an edge in G from

a vertex of P,(m) to a vertex of P++,(m). Thus, there is

a. directed path from x to x' containing no marked vertices

and the claim is proved. w _

The proof of the theorem is now immediate. By

Claim 2 there are at least (l-~~-e)2~ good vertices in G.

By Claim &we can form a directed path whrich contains only

unrnazked vertices and which contains all the good vertices

( since x' can a.lways be chosen to be the next good vertex
4

following x). Since l-e4- s > e then the theorem follows

(where it iS easily seen how the appropriate Values Of &k

and ck can be chosen). m

THE LOWER BOUND

*The following result will establish the lower bound in (1).

Theorem 2. Let H be an acyc1i.c directed graph with at

most c
7
n log n/log log n edges where n is a large fixed

integer. Then there is a set of at most n vertices of H

which hits every directed path of length n.

Proof: Let us denote the vertex set of H by V = (1,2,...,v).

We may assume ;that H has at least c8 n log n/log log n edges.

We may also assume that all edges are of the form (i,j) with

I

l
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i < j. For an edge e = (i,,i) of H, let length (e) be

defined to be J-i. Partition the edges of H into classes

cg' c1J . . ..C. where
.

ck= .(e .21ck log log n < length(e) < 24(k+1)  log log ">

and r = [log v/4 log log n].

Since H has at h?aSt c8 n log n/log log n edges

then it follows that v 2 c9 nl/2 and r 2 cl0 log n/log log n.
Hence some class Ca with 0 2 al < r has at most cl1 n elements,

Let us delete all vertices in H incident to any of the edges

in Ca. Furthermore, we also delete those vertices x c V

which satisfy

c

-i .
i

I
L

0 < x-mm2 ZCa log log n
(1-Q 2 10: log n) ( ,4a log log n

for some integer m 2 0. This latter step removes at most .

t

( 2
22 log log n _ )1 v = o(n)

vertices, since v 2 2 c7 n log n/log log n. Hence we

have deleted a.t most c12 n vertices axtogether. However,
any directed path remaining has at most

L

i (2(4a+2) log log n _ ,4a log log

24(a+l) log log n 7
V= Oh-q
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edge::, Since we camot go w ~(3 t;ha.n  2 (1+a-+2) log log n _ 24a. log log Y

steps without using an edge whose length exceeds 24a log log n.
*and the length of such an edge actually exceeds 2 4(a.;-I) log 10; n

.
This proves the theorem. m

By using u different partition of the edges of H,

namely, into the classes C& . . ., c;, where

?
ck = (e:2c13k 5 length(e) < 2 3

'for a suitable constant c13’ we can establish the following

result.

L-.

I
i-

t

Theorem 3. If cl4 is sufficiently large then any graph G

on c14n vertices having property P(n,n) must have at least

ncl5 log n edges.

The graphs G(n) used in Theorem 1 show that the

result in Theorem 3 is best possible to within constant
factors.

c
SOME RELATED QUESTIONS +

c
We now consider several problems for ordinary

(undirected) graphs. Let F,(n,n) (resp., F,(n,n)) denote

the smallest integer for which there is a graph with F,(n,n)

(resp., F,(n,n)) edges so tha.t with the deletion of any n of its

vertices there still remains a connected component of n

edges (resp., vertices). We shall prove by probabilistic methods

that

(6) Fe (n, n) < C16n9 Fv(n, n) < C17ne

The method‘we use is the same as that in the

-work of Erdcs and Renyi [l], /27. It turns out that almost

all graphs have the desired property.
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Theorem 4. For every E > 0 I;here is a c = c(e) so that

all but o graphs G with (2+s)n vertices and cn

edges have the property that after the omission of any n

of its vertices, a connected component of at least n vertices

remains.

Proof: It suffices to show that if n vertices are omitted

and the remaining n(l+&) vertices are split into two .

classes Sl and S2 with IS,/ > En, IS21 >_ En, then there

is at least one edge joining a vertex of S1 to a vertex

of s2.

Consider a random graph G on (2+e)n vertices

and cn edges (where c will be specified later). There are
.

ways that n vertices of G can be del,eted. The

remaining n&l.+&) points can then be split into two sets

Sl and S2 in at most 2 n(l+E) ways . Thus, the total number

of splittings is at most

L I ( )(2+.5)n pu+& >
n

< 2(2+dnp(l+s)  < 23(l+e)n .

Between Sl and S2 2there are at least En potential edges.

The probability that none of thes

in G is less than

D
L that

$(l+E)n
.

2

)

En

+O
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.

as n --+m then we easily set:, Lhat almost all graphs cannot

be split in such a way.
.

Since

then for c large enough, e.g., c > 18(s+s-l),

e-(&”< ,-3(l+E)n

'and (7) holds. This proves the theorem. 111

The other half of (6) is proved in a similar
way. It would be interesting to determine the best possible

value of c but this does not seem to be too easy.

We mention here the undirected analogue of (1). Let

L g(n,n) denote the smallest integer for which there is an

f
1

L

undirected graph of g(n,n) edges so that if we omit any n

of its vertices then there always remains a path of length n.

We believe .

L go+m gln,n)+o
n ' n log n

L
as n -+ 00 and hope to return to this question in finite time.

A related question is the following: Consider
L random graphs on n vertices and Cn edges. Is it true that

for large C almost all of these graphs have a path of length

n(l-a)? It is known [ 41 that almost all graphs on n vertices

1and (F + E) n log n edges a.re Hamiltonian.
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It is possible to introduce another parameter

into these yuestionsb Let Fv(t;n,n) denote the smallest

integer for which there is a graph with t vertices and

Fv(t;n,n) edges having the property that if any n vertices

are deleted there still remains a connected component with

at least n vertices. If t/n -+ c > 2 then Fv(t;n,n)/n  + A(c)

where A(c) -h as c +2. (The behavior of F,(t;n,n)/n is

similar). We could also omit edges instead of vertices

.but leave the formulation of these questions to the reader.
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