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INTRODUCTION

The fc¢llowing problem was raised by H.- J. Stoss [ 3 ]
in connec tion with certain questions related to the
complexity of Booclean func Lions . An acyclic directed graph
G 1s said to have property ?(m,n) if for any set X of m
vertices of G, there 1s a directed path of length n in G which
does not intersect X. Lot f(m,n) denote the minimum number of
edges a grapn wi th property (m,n) can have. The problem is
to estimate f{m,n).

For the remalnder of the paper, we shall restrict

curselves to e coase v o= on s

. We shell prove
B — < S . N
(1) cyn log /L Tog 1 < f(n,n) < con log n
(where c],cg,,.., vwill hereafter denote suitable positive

constants). In fact, ithe graph we construct in order to
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establish the upper bound on f(n,n) in (1) will have just

cqn vertices. 1In this case the upper bound in (1)is
essentially best possible since it will also bé shown that for
¢, ‘sufficiently large, every graph on Chn vertices having

property (?(n,n) must have at least cgn log n edges.

‘A PRELIMINARY LEMMA

In order to establish the upper bound in (1)
we Iirst need the following result.
Lemma. For all ® > O there exists ¢ = c¢(B) such that for
all t sufficiently large, there exists a bipartite graph
B = B(6;t) with vertex sets A and A’ so that:
(1) 1Al = [a7] = t3
(i1) B has at most c(6)t edges;
(1i1) 1f xC a, x» C a7 with |x| > Bt, [X'] > bt
then (X,X’) = [{x,x’}:xeX,x’eX’) contains an edge
of B.
Proof: We uce a simple probabilistic argument to show the
existence of B. TForm a bipartite graph B on the vertex
sets A and A’ with [A] = |A’] = t by selecting for each
aeA a random subset B(a) C A’ of cardinality d = d(5)
(to be specified later). (call B "bad" if there exists
xC a, x» C A%, with [X] > bt, |X'| > 8t, so that (X,X’)
contains no edge of B. For fixed X and X’, the probability

that B is bad because of these two subsets is at most

((12§)£>i;/<§>6t < (1%5%%§>d6t.



Hence, the total probabiliiy that B is bad is at most

C N/ (1800370 ois g A0
(s) (R <2 =)

A simple comnutation shows that if d is chosen suit

blv
~—J

large, for example, so that

d

»~ db
(1-07) < 1/4,

then for t sufficiently large this
probability is less than 1, and so, a graph B = B(®;t)
S

must exist which satisfies the requirements of the lemma. [

CONSTRUCTION OF G

The next step in the proof of (1) is the construction

of the directed graph G. pgp large n, G = G(n) will have as

its vertex set the set V = {O,l,...,2n~l}. If v and m are

Positive integers, then D (m) will denote the set

(v, v+l, . .., v+m-1)1 MNV. Similarly, D:(m) will denote the

set (v,v-1,...,v-m+1}) N V. In general, €15 €0+ 0., WIll

denote suitably chosen fixed positive constants to be specified

later. 'The edge set E of G is formed as follows:

(1) For veV, the pairs (v,x), xeD, 1 (4n), are in E;

(ii) For each t with n/2 < 2t< 2™ and each i as specified

t
below, a copy of B(e32 ) is formed between the

?
o t t
eLS L= o —
vertex s tA D .ot(27) and A’ = D(m+i)-2t(2 )y
n- .
Odm<?2 » Where 1 = 1,2,...,10 (or if i cannot
assume the value 10 because (,m+lO)2t > 2%, ren it

ranges from 1 to En-t-m)w All edges are directed from

X to y with x <.
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An elementary calculation Shows that

- n
[E] < cena.

THE UPPER BOUND

Theorem 1. For a suitable e > 0, G(n) has property
P(e-Qn,s-En) for all sufficiently large n.

Proof: The theorem will be proved by a sequence of
claims. First we show that G(n) shares with the graphs
B(est) the following property.

Claim 1. If m > 2n and X C Dx(m),X’(: Dx+ﬁK ) satisfy
[X | > eom, (x| > eom, then [X,X’] = [(X,X,>$X€X,X'GX']

contains an edge of G(n).

Proof o Claim: Tet 2° < m/2 < 2t+l. Thus, m/4 < 2Yso

at most five of the intervals Dr.gt(Qt) intersect D, (m)
Since [X]| >

and at most five of them intersect D,  (m). em

then some Dr,gt(gt) and Drr.gt(gt) have

(3) IPppt(2) MX] 2epm/5, D, i (2%) N X7 | > 8 1/5

But we must have [r’-1 < 10 5o that by the construction of

. : AT
G(n) there is a copy of B(e;32") between Dr-Qt(Et) and

D.., .gt(éb)- Thus, if€2//5>> € and m > 27 then the property
of B(gl52t) guaranteed by the Lemms implies that [X,X’]
contains an edge of G(n) provided that t is sufficiently
large (which is guaranteed Dy choosing nh large enough),

This proves the claim. [Jj]



Next,, let us chooo an arbitrary fixed set X

. . ; n
of vertices with |X| < g-2°. The vertices in X will be
referred to as ¢he marked verticeg of G; the remai ni ng

vertices of G will be called the unmarked vertices of g.

Let us call an unmarked vertex yeV bad if

for some m > 1 either at least egm vertices in D, (m)

*
are marked or at least €M vertices 1n Dy(m)aremarked.

Otherwise, an unmarked vertex of G is called good.

Cleim 2. There are at nost gaeﬁ- bad verti ces.

Proof of Claim: TIet ¥y denote the least unmarked vertex
> 1, at least

of G (if 1t exists) for which for some my

EgMy vertices in Dyl(ml) are marked. In general, if

v, O MR o .. .,m_ have been defineq, let Y ; be the
+

kK -1 (if it

exists) for which for some M 2 1 at | east .
83mk+l vertices

least unmarked vertex of G following Ve + m

in D‘
Y41
it no longer can be applie so that, sa

g p... d, s Y: yl, ”. @&.

(mk+1) are marked. We continue this process until

N *
and ml"-°5ms have been defined. Similarly, let ¥y denote

the greatest unmarked vertex (if it exists) for which for

* * . ) * *
some my > 1, at least €3y vertices in p«(m;) are marked,

J
* 1 * %

*
etc. In this way, we define yl,---;yﬁ* and m m
8 12 e Mgk

It follows from the preceding construction and

e e . t
the definition of a bad vertex that all bad vertices are

contained in the set
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k=1

o%*
\ * %
v=J Dyk(mk) ukg Dy (my)

Ik

Thus, there are at most

- N
M ,,mk +g/ mk
kzl k:l

bad vertices, However, by our construction there are at

least (53/é)M marked vertices in Y. gipa, by bypothesis there

‘are at most g.2" marked vertices in V then we have
/
(es/g)M < e-2P,

M < (28/53)2n < gy2f,

which proves the claim. |

For an unmarked vertex x, let P“(m) denote the

set of all unmarked vertices in D,(m) which can be reached

from x by directed paths which contain only unmarked

vertices,
Claim 3. If x is a good vertex and IDX(m)f = m then
(4) [P (m) | > egm

Proof of Claim: 1If m < U4n then since x is good, at least

(1_83)m vertices in Dx(m) are unmarked and x has edges

directly to all of them. Suppose m > 4N.  Tet m’ denote

[m/2]. Since [D,(m’")| - m’ then by induction

[P (m”) | > €sm’.  Since x is good then



at MOSt e m vertices in D, (m) @r€ marked. Hence, at nost
eqM vertices in Dx+m, m)C D (m are marked. gince

m’ > 2n and €5 2€5 then there are edges from P (m") tO
at least (l-g,)m’ vertices in Dy e (m’). BUt At o

eqn < 3ggm’ vertices in Dxm, (m*) are marked.  Hence,

P.(m") must have edges to at |east (1-82-353),,1, unmar ked

vertices in p__,(m’). Since 1‘82—353 >3e5 then

[Py (m) ] >3esm’ > eom.

5
The claim now follows by induction, [7]

In exactly the same way it follows that if P;(m)
denotes the set of all unmarked vertices in D (m which are

connected to the unnmarked vertex x by a directed path

containing only unmarked vertices, and x is a good vertex

and !D;(m)[ = m then-

(24-') ,P;(m)[ > 85m.

Claim 4. Let x -and x’ be good vertices with x < x’. Then
x’eP, (1),

Proof : If x’-x < 4n then the claimis inmediate since by
construction there is an edge fromx to x’. ASSUNE

x'-x > 4n.  Let y = [(x+x’)/27and let m=y - x+ 1.
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Consider the intervals D, (m) and D s (m). Either they are

adjacent or they have the single element y in common.

Since x and x’ are good then by (4) ana (4’ )

M.

(5) Pe(m)] > egm, [P, (m)] > e,

Since eg > ey then by Claim 1, there is an edge in G from

a vertex of PX(m) to a vertex of P;,(m). Thus, there is
a directed path from x to X’ containing no marked vertices
and the claim is proved. [}
The proof of the theorem is now immediate. By
Claim 2 there are at least (1—54-5)2n good vertices in G.
By Claim 4 we can form a directed path which contains only
- unmarked vertices and which contains all the good vertices

(since x’ can always bc chosen to be the next good vertex

r—

following X). Since l-ga*g > g then the theorem follows

r—-

(where it is easily seen how the appropriate values Of €k

L and ¢, can be chosen). i}
THE LOWER BOUND

.The following result will establish the lower bound in (1).
Theorem 2. Let H be an acyclic directed graph with at
’ most c7n log n/log log nh edges where n is a large fixed
; integer. Then there is a set of at most n vertices of H
which hits every directed path of length n.
Proof: Let us denote the vertex set of H by V = (1,2,...,v].
We may assume that H has at least cg n log n/log log n edges.

We may also assume that all edges are of the form (i,J) with



re—--

r— r—

| <j. For an edge e = (i,]) of H, let length (e) be

defined to be J-i. partition the edges of H into classes

Cos Cps v v oC, wher e
C, = (et log log n length(e) < p*(k+l) log log n,

and r

[log v/410g | 0og n].

Since H has at 1least cg N log n/log log n edges
' 1/2
then it follows that v > cyn / and r > cyq log n/log log n.
Hence some class €, with 0 < a <r has at nost ¢y M el ement s,
Let us delete all vertices in Hincident to any of the edges
inC,. Furthernore, we also delete those vertices x ¢V

which satisfy

0 < x-m.2%2 10g 10g n ) 2 1og log n) . ,ka log log n

for some integer m> 0. This |atter step renoves at nost

(22 |ogzlog m ;)V = o(n)

vertices, since v < 2c,nlog n/loglog n. Hence we

have deleted at most ¢ . n vertices altogether. However
any directed path remaining has at nost

(2(4a+2) log log n _ ,ka log log
>4(a+I) Tog Tog n E)V = o(n)
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edges, since we cannot go m e than 2(#&+2) log log n _
steps without using an edge whose length exceeds o4a log log n,
and the length of such an edge actually exceeds o%(a+l) log log n
This proves the theorem. [§§

By using a different partition of the edges of H,

’
namely, into the classes C ,...,C’, where
r

(k+1)

’ C, 5k
1 a4
3 < lengtn(e) < 2 13 )

Ck = {6:2
for a suitable constant ¢35 we can establish the following
result.

Theorem 3. 1If ¢yy is sufficiently large then any graph G
on cqyn vertices having property {(n,n) must have at least
clSn log n edges.

The graphs G(n) used in Theorem 1 show that the
result in Theorem 3 is best possible to within constant
factors.

SOME RELATED QUESTIONS

We now consider several problems for ordinary
(undirected) graphs. Let Fo(n,n) (resp., F (n,n)) denote
the smallest integer for which there is a graph with F_(n,n)
(resp., F,(n,n)) edges so that with the deletion of any n of its
vertices there still remains a connected component of n
edges (resp., vertices). Ve shall prove by probabilistic methods
that

(6) Fo (n, n) < cqen, F

. (n, n) < ¢;n.

v

The method we use is the same as that in the

“work of Erdss and Rényi [1], [2]. It turns out that almost

! ¢
all graphs have the desired property.

ola log log r
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Theorem 4. For every e > O there is a ¢ = c(g) so that
(( 2+e)n)\
all but © 2 graphs G with (2+eg)n vertiges and cn
en /)
edges have the property that after the omission of any n
of its vertices, a connected component of at least n vertices
remains.
Proof: It suffices to show that if n vertices are omitted
and the remaining n(l+e) vertices are split into two
classes S; and S, with !Sl[ > en, [S,] > en, then there
is at least one edge joining a vertex of 51 to a vertex
of S,.
Consider a random graph G on (2+e)n Vvertices

and cn edges (where c will be specified later). rppere are

€2+e)n

o ) ways that n vertices of G can be deleted. The

remaining n(l+e) points can then be split into two sets

S, and S, in at most on(l+e) ways. Thus, the total number

of splittings is atmost

((2+§)n)2n(l+g) <2(2+e)n2n(l+e) < 23(l+e)n'

Between Sl and 32 there are at least eﬁepotential edges.

The probability that none of these edges actually occurs

J TR VRV S v

en
. . C
in G is less than (1 -~ T§Igﬁ7) . Thus, if ¢ is chosen so
that

(7) 23“*8)“(1- c ) 50



as n - o then we easily sec Lhat almost all graphs cannot

be split in such a way.

Since
' en2 ~( gc )
- c 2+e
1 z?_—l-g n - €
then for ¢ large enough, e.g., ¢ > l8(e+e_l),
- (=% )n
e 2+g < e"3(l+€)n

‘and (7) holds. This proves the theorem. [J§

The other half of (6) 1s proved in a similar
way. It would be interesting to determine the best possible
value of c¢ but this does not seem to be too easy.

We mention here the undirected analogue of (1). Let
g(n,n) denote the smallest integer for which there is an
undirected graph of g(n,n) edges so that if we omit any n
of its vertices then there always remains a path of length n.

We believe

5_(.%1&1_,00,

as n - « and hope to return to this question in finite time,

A related question 1s the following: (Consider
random graphs on n vertices and Cnedges. 15 it true that
for large C almost all of these graphs have a path of length
n(l-¢)? It is known [ 4] that almost all graphs on n vertices

.
and (§‘+ €) n log n edges are Hamiltonian.
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It is possible to introduce another parameter

into these questions. T7Tet Fv(t;n,n) denote the smallest

integer for which there is a graph with t vertices and
F,(tsn,n) edges having the property that if any n vertices
are deleted there stil] remeins a connected component with
at least n vertices. If t/n - ¢ > 2 then Fv(t;n,n)/n - A(c)

where A(c) > as ¢ 2 2. (The behavior of F, (tsn,n)/n is

similar). We could also omit edges instead of vertices

.but leave the formulation of these questions to the reader.
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