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Some Linear Programming Aspects of Combinatorics

V. Chvatal

Abstract

This is the text of a lecture given at the Conference on Algebraic

Aspects of Combinatorics at the University of Toronto in January 1975.

The lecture was expository, aimed at an audience with no previous
knowledge of linear programming.

1. Introduction: Two Examples

In 1928, Sperner [333 answered the following question

a family of distinct subsets of (1,2,...,n) such that

S,TEF 3 S#T ;

how large can IFI be? Sperner proved that

Let F be

(1-l)

(To see that this is the best possible result, consider all the subsets

S of {1,2,...,n] with Is( = Ln/2J l ) In 1966, Lube11 [28] gave a
very elegant proof of this result; slightly recast, Lubell's argument

goes as follows.

of Cl 29 9***> n3 ;

Let us denote by A the family of all 2n subsets

let us call a family

(1.1). With each family F
F feasible if it satisfies

(xS: SEA) defined by
, feasible or not, associate the vector

1 if S&F ,

-53
=

0 if SkF .

Thus obviously

I IF = c xs .
SEA

A foamily of sets TO,Tl,
. l l ,Tn with

(1.3)

9 = TO C TIC l - C T
n

= {1,2,...,n)



will be called a chain.

Sdl is included in IS

feasible if and only if

c
SEC

Xs L IL

The sum of all these n!

C ISl!(n- IS
SEA

or, equivalently,
7

Clearly, there are n! distinct chains, each

!(n - ISI)! of them. Furthermore, F is

for every chain C . w+)

inequalities (1.4) reads

I> !xs < n!-

c L
SEA

( 1

xs <l.-

I Ii
Since every xs is nonnegative and every

S% ( Ln$z:) xs ’ iti ( ,i, )

Thus (1.4) implies

c$ L (Lnj2J )

iii\) L (Lny2j) ' we have

which, by virtue of (l-3), is the desired result.

Our second example goes back to the thirties when Erdb's, Ko, and

Rado [Pj] answered the following question. Let F be a family of

k-element subsets of (1,2,...,n} such that

S,TeF 3 SnT ## ; (1-s)

how large can IFI be? Erd?js, Ko and Rado proved that (inthe

nontrivial case n 2 2k)

I F

(To see that

15(g) l

this is the best possible result, consider all the

k-element subsets S of {1,2,...,n) with 163 .) In 1972, Katona

[25] gave a very elegant proof of this result; slightly recast,

Katona's argument goes as follows. Let us denote by A the family

of all (E) subsets of P 2Y Y*-*Y n) having k elements; let us

2



call a family F feasible if it satisfies (1.5). For simplicity,

let us assume (unlike Katona) that k divides n and let us set

m = n/k . A family of pairwise  disjoint sets EA will
be called a partition.

Tl,T2,...,T
m

Clearly, there are exactly

(E)( Yk)( ?rk)  l  - -  (k) = f$

.

ordered partitions; every SEA is included in

m (n-k)!
, m-l

(k >.

of them. Furthermore, F is feasible if and only if

c xs < 1
SEP -

for every partition P .

L
The sum of all these inequalities reads

m (n-k)! c xS < n!

(k >
, m-l. S E A - (k!)m

or, equivalently,

i

t

t

c
SEA

which is the desired result.

In each of our two examples, the proof came out rather effort-
lessly. Was it just plain luck, one may wonder, or are we actually

onto something? The answer to this ill-posed question is ambiguous.

We were lucky indeed: proofs like that are not to be

combinatorial theorem. At the same time, however, we

something. We are onto the duality theorem of linear

found for every

are onto

programming.

2. The Duality Theorem of Linear Programming

In each of the two introductory examples, we have argued that a

-ertain set of linear inequalities (corresponding to the assumptions

-.f our theorem) implies another linear inequality (corresponding to

the desired conclusion). In general, we shall say that a set

3
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t

t
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L

gax <b
j=l i j j -  i (1 5 i < m)-

of linear inequalities implies an inequality

n
c C.X. < dj=l JJ-

(24

(2*2>

if, and only if,

(i) there is at least one solution of (2.1) and

(ii) every solution of (2.1) satisfies (2.2).

are nonnegative regls, we call the inequality

a linear combination of (2.1) with multipliers

Furthermore, an inequality
ylJy2,..~,y

m'

n
c a.x. < bj=l JJ-

is called a combination

the inequality 23 a x
i i

of (2.1) if, for some b*

<b*
with b* <b ,-

is a linear combination of (2.1).
Clearly, if (2.1) ha; at least one solution then it implies each

of its combinations.

THE DUALITY THEOREM (first version). If (2.1) implies (2.2) then

(2.2) is a combination of (2.X).

form.

Customarily, the duality theorem is stated in a slightly different

This form arises in the studY of linear programming problems

(or LP problems for short) such as

n
maximize c C.X.

j=l JJ
subject to the constraints

n
c a..x < b
j=l lJj- i (1 ,< i <m) (2 3)

x. B-0
J- (15 j <n) .- J



With (2.3) one associates another LP problem, called the dual of

(2.3)  :

m
minimize c b.y

i=l li
subject to the constraints

i:,, >c
i=l i ji- j (1 < j 5 n)-

1
Yi 2 O (l<i<m) .- -

J
A solution to the constraints in (2.3), resp. (2.4), is called a

feasible solution of (2.3), resp. (2.4). A feasible solution which

maximizes cc x
j 3

, resp. minimizes Cb.y
1i , is called an optimal

feasible solution of (2.3), resp. (2.4). Note that for every feasible

of (2.3) and for every feasible solution
* * *

Yl'Y2Y "'YY, of (24, we have

*cc.x. 5 C a
j JJ i,j

ij j i L C biYr .x*y*
i

THE DUALITY THEOREM (second version). If (2.3) has an optimal
feasible solution x~,x~,...,x~ then (2.4) has an optimal

i
L

1
1

(2.4)

feasible solution yT,yg, . . ..y. and

j=l 'jxY

5 . = .

It is easy to see that the first version implies the second.

Indeed, let x~,x~,...,x*
n be an optimal feasible solution of (2.3);

set d* = c c x*
3 j

. Then the inequalities

n
c a..x < b
j=l lJj- i (1 < i Cm)- _

-x. <o
; J- (1 5 j < n)-

L imply the inequality



L

1
t

By the first version of the duality theorem, there are nonnegative

reals YTY YZJ-Y 36
l *-YYm+n such that

m
C y*a

*

i=l
iij-Ymtj = cj (1 <j <n)- -

and

Thx1s1 Y;YYg, � l *,Y* is a feasible solution of (2.4)m with

5 b.y:
i=l IL1

L .

BY (2.5), the last inequality

is an optimaif

must hold with sign of equality and

easible
To deduce the f'

solution of (2.4).

xrst version from the second, let us assume that

(2.1) implies (2.2) and let us consider the following LP problem:

n
maximize

g y:b ,< d*
i=l xi

.

n
subject to c a..(uj=l XJ j -";i) 5 b.

1 (15 i <m)

u. >o,
J-

v > o
3 - (1 5 j <n) .

For every real x . , we may write
J x = u -v

j jj with ujyvj > o .

Therefore our problem has an optimum feasible solution I,$, V*

(1 < j <n) ; in fact, c c (u*-v*) < d
j

jj j- . By the second version

of the duality theoran? there are nonnegative reals

with

yl,y2,...,y
m



2
i=l

aijYi 2 'j 9

5 (-a
i=l

ij)Yi ,> -'. f
3

E b.y. = ;; c (u*-v*) .
i=l l1 j=l j j 3

Hence (2.2) is a combination of (2.1).

Finally, we shall restate the duality theorem in yet another form.

The set (2.1) of linear inequalities is called inconsistent if

there are nonnegative reals yi (1 < i< m) such thata -

:b.y <O .
i=l li

Trivially, an inconsistent set (2.1) is unsolvable; again, the converse
is given by the duality theorem.

THE DUALITY THEOREM (third version). The set (2.1) is unsolvable if

and only if it is inconsistent.

This version follows easily from the first version. Indeed,
i

assume that (2.1) is unsolvable and let k be the largest subscript

i

such that the set

n
La <b
j=l

ijxj - i (l<i<k)

is solvable. The set of all the solutions of (2.6) is a closed convex,

and possibly unbounded, subset of Rn ; the assignment

(xpp � l �9 Xn> t, lT a .⌧.

kJ J

maps this set onto a closed interval I with



z<b
- k * ZbI l

Hence there is some d with d >b
k such that (2.6) implies

h
j=l

-a$xj ,< -d .

By the first version of the duality theorem, there are nonnegative

reals yi (l<i<k) suchthat-

k-l
Ca
i=l

ijYi = 'akj O<j <n> I- -

k-l
c b.y. < -d .
i--l IL'-

Setting yk = 1 (and yi = 0 for i > k ) we conclude that (2.1) is

inconsistent.

Particular cases of the duality theorem may be traced back to

i
Gordan [23] and Farkas [16]. The notion of a dual LP problem was

1

t

.

c

*
I
1

I

<introduced by John von Neumann in conversations with George B. Dantzig

in October 1947; it appears implicitly in his working paper [36].

Gale, Kuhn and Tucker [lp] formulated, and proved, an explicit version

of the duality theorem (our "second version"). Our "third version"

comes from Kuhn I: 271. For a wealth of information on the subject, the

reader is referred to Dantzig's book [p].

The duality theorem is a very natural principle, pervading a

large area of mathematics. For instance, the necessary and sufficient

conditions for solvability of systems of linear equations are just a

very special case of the duality theorem. Averaging arguments,

counting of pairs in two different ways, and "Lubell's method"

illustrated in Section 1, are rudimentary applications

of the duality theorem. Like M. Jourdain who, for more than forty

years, had been talking prose without any idea of it, we may often

be unaware that our arguments rest, in fact, on the duality theorem.

8



3. Linear Programming as a Methodological Tool

Linear programming problems may come up in various guises.

Sometimes their constraints are only implicit in the problem

formulation and it may take considerable effort to uncover them.

However, once we recognize the linear programming nature of a

problem, we gain a valuable guiding principle: the duality

theorem. The following case story of a geometrical problem with

an underlying LP structure will illustrate the point.

We shall consider the infinite square grid in the ordinary

plane; by definition, each cell in this grid has eight neighbors.

A coloring of the cells red and blue will be called feasible if

(i) there is at least one blue cell,

( >ii every blue cell has at least six blue neighbors.

L

I

1

L

Trivially, coloring all the cells blue we obtain a feasible

coloring. A nontrivial feasible coloring, constructed by Fejes T&h

[ 181, is shown in Figure 1. (The cells marked by crosses are red,

- the unmarked ones are blue.) In this coloring, "four out of every

fifteen" cells are red. Introducing the notion of density (as in

[17], pp. 161-162) , one can make the last statement more precise.

To do so, begin with an arbitrary cell; let its Cartesian coordinates

be a,b . For every nonnegative integer k , define S to be the

set of all those (2k+l)2

k

cells with coordinates i, j that satisfy

I Ii-a 5 k ) lj-bl < k .-

L If X is a set of cells then the lower and the upper limit of the

sequence

1 Ixns,l b-q lxnsiI
I
I I I

1 > l ** ☺

sO I Isl

b
do not depend on our choice of a and b . These two limits are

called the lower and the wer density of X ; if they coincide then

their common value is called the density of X . The set of the red

cells in Figure lhas density 4/15 ; Fejes T&h conjectured that the

red upper density of a feasible coloring never exceeds 4115 l

9





i
1.

Familiarizing ourselves with feasible colorings, we find that

they cannot contain various clusters of red cells. For instance, if

we begin with three red cells in a row (as in Figure 2) then the

feasibility constraint (ii) forces us to paint the entire plane red,

thereby violating the constraint (i).

I
R R R

I

Figure 2

Similarly, we find that no red cell may have more than three red

neighbors. In fact, the red cells with exactly three red neighbors

come in two by two quadruples flanked by layers of blue cells as

in Figure 3. (The cells marked by a questionmark may be red or blue.)

t

L

I J-

R R B

R R B
.

B B B

B B B
1 .

B

Figure 3



If r (resp. b ) is the red upper (resp. blue lower) density of

some feasible coloring then trivially

r+b =l .

Given a positive e , we may choose an arbitrarily large nxn square
with at least (r-e)n2 red cells. Let N be the number of

(unordered) pairs of neighboring cells colored by different colors

and coming from our square. Since each red cell has at least five

blue neighbors, we have

N > 5(r-s)n2-k(n+l)  , (3-l)

the negative term discounting the blue cells that fall just outside

of our square. Since each blue cell has at most two red neighbors,

we have

N 5 2(b+e)n2 . (3.2)

Since E may be chosen arbitrarily small and n may be chosen

arbitrarily large, we conclude that

i

t

5r 5 2b .

Thus we are led to the following LP problem:

(3-3)

maximize r subject to the constraints

r>O > b>o

r+b =l
(3.4)

, 5r -2b < 0-

Trivially, the solution to this problem is 2/7 and so every feasible

coloring has density at most 2/7 ; unfortunately, 2/T is just a

tiny bit bigger than 4/15 . Nevertheless, we may hope that the LP

problem (3.4) is, in fact, a poor model of the geometrical problem.

To begin with, we may try to prove that there is no feasible coloring

with red upper density 2/T . For this purpose, let us investigate

the properties of such a hypothetical coloring.

12



,
i

Since r = 217 and b = 5/7 satisfy (3.3) with the sign of

equality, it appears that the bounds (3.1) and (3.2) must be, in some

sense, tight. Pursuing this line further we find arbitrarily large

squares (100x100 will do nicely) where every red cell has exactly

three red neighbors and every blue cell has exactly two red neighbors.

Close to the middle of such a square, we shall find the configuration

of Figure 3. Next, each of the four cells marked by a questionmark

must actually be red (otherwise we would have a blue cell with seven

blue neighbors). That is, each of these cells must come from another

red quadruple. The blue layers surrounding these quadruples will

create blue cells with eight blue neighbors: a contradiction.

The crucial point in our argument was that in the vicinity of

each red quadruple, there must be either a red cell with fewer than

three red neighbors or a blue cell with more than six blue neighbors.

Now that we have established the existence of such defects, we may

try to estimate their frequency. For this purpose, we define the

order of a red (resp. blue) cell to be the number of its red (resp.

-' blue) neighbors. In a big nxn square with at least (r-e)n2

red cells, let rin2 (resp. bin2 ) be the number of red (resp. blue)

cells of order i . A careful analysis of the above argument leads

to the conclusion that, with only a negligible error,

4r0+ 2rl+ 2b7+ 4b8 F-3 l

(The proof of this inequality is not instant; for details, the reader

is referred to [T].) In addition, the constraints of (3.4) find their

natural counterparts in terms of the new variables. Thus we are led

to a new LP problem:

i
1
1
! -

13



maximize r +r +ro 1 2 +r 3 subject to

r. + rl + r2 + r3 + b6 + b7 + b8 = 1 ,

8r0 + 7r, + 6r, + 5r3 - 2b6 - b7 = 0 ,

-4r, - 2rl + r3 - 2b -
7

4b8 ,< 0 ,

r09rlJr2Jr3Jb6Jb7,b8 2 0 .

Multiplying the first constrain$ by four, the second by two, the

third by one, and summing up the lot, we arrive at the inequality

16r0 + 16r, + 16r2 + 15r3<4 l

Hence ro+rl+r2+r
3

5 4/15 which is the desired result.

4. The Importance of Being Discrete
c

Reviewing the two examples of Section 1, we find that in the

L

proofs, no use has been made of the fact that our variables xs
were

integral. Unfortunately, we cannot expect to. get away with that every

time we solve a combinatorial problem by LP techniques. Consider, for

instance, the problem of finding the largest size of a stable

(independent) set of vertices in the graph G = (V,E) of Figure 4 .
(A set of vertices is called stable if no two of them are joined by an

edge-)

8 1

I
2

3
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c

i
1

In the straightforward LP formulation of this problem, we have to

maM.mize C x.
i=l '

subject to the constraints

7

Xi >o- for every vertex i ,

xi+x' < 1J-
for every edge ij

and

x. =
3 integer for every vertex i . (44

Disregarding the integrality constraint (&*2), we may obtain a

solution of (4.1) such that

8
xx.=4 .
i=l l

However, it is not difficult to see that the size of the largest

stable set in G is only three. Conclusion: in the present
context, the integrality constraint (4.2) must be taken into account.

In the field of discrete mathematics, we deal with discrete

variables; whenever their discreteness is relevant, it must find its

way into our arguments. It often does so via the pigeon-hole

principle: if mn+l objects are distributed among n boxes then

some box contains at least m+l objects. Describing this principle
in LP terms, we denote the number of objects in box

since the boxes are unlabelled, we may assume that

⌧1  2 ⌧2 2 l . l 2 ⌧;
.

Now, let us

minimize x
1 subject to the constraints

x1 - x2 2 0

x2 - x3 L O
. . .

Xn-lwxn 2 O

x +x +...+x
1 2 n = mn+1

i by x i ;

(4.3)



i

c

i

and the constraint

x. =
1 integer

The linear combination of

n-l n-2
y-3 7) l  * �

reads

1
xl>rn+, .

(l<i<n) .- -

(4.3) with multipliers

2 1 1
';';'n

(44

Atthis moment, let the discreteness come into the play: if x
is an integer satisfying (4.4) then, in fact,

1
x1 > m+l.

Proving, as we have just done, the pigeon-hole principle by

LP techniques may be reminiscent of the use of a sledge-hammer to

crack the proverbial walnut. We have done so, however,

to illustrate a point. The point is that the integrality
constraint, together with our linear constraints, may imply

inequalities which are not implied by the linear constraints alone.

This important idea seems to have appeared for the first time in the

work of Dantzig, Fulkerson and Johnson [lo]. Later it was
developed by Gomory [20],[21],[22]  into an algorithm for solving LP

problems in integers. Gomory's algorithm provides a systematic way

of generating the new Ympliedtf constraints (commonly called

cutting planes) until the integrality constraint becomes superfluous.

(For an excellent coverage of the ILP techniques, the reader is
referred to [SO]*)

We shall use the idea of implied constraints to formulate a

theorem which, in the context of integer LP problems, parallels the

duality theorem. To begin with, let

gax <b
j=l

i j j -  j. (l_<i_<m) (4.5)

be a set of inequalities whose solution set is nonempty and bounded.

We shall say that (4.5) implies some inequality

16



c

1

1

i!
j=l 'jxj 5 d (44

over the integers if every integer solution of (4.5) satisfies (4.6).

(4.7)

over the integers. When S is a set of linear inequalities, such
as (4.5), we define the elementary closure e(S) of S to be the
set of all the inequalities

-il ( il hi"ij)"j 5 d

such that

( 1i 5J2’ � l l ,h, are nonnegative reals,

( >ii each c h.a
i ij is an integer,

(iii) d is at least the integer part LChibij of c Xibi .

For instance, the inequality
5
2x <2
j--l j -

belongs to the elementary closure of (4.1); indeed, the inequality
F

5x ig
j=l j

is a linear combination of (4.1). Clearly, if an inequality belongs
to e(S) then S implies this inequality over the integers

the converse is not true:
. However,

for example, it can be shown that the

inequality (4-7) does not belong to the elementary closure of (4.1).

We shall define e'(S) = S and, for every positive integer k ,

ekw = e(SlJe
k-l
w .

The set

Urn ei(S)
i=O

17



will be called the closure of S . Again, it is easy to see that

every inequality belonging to the closure of S is, in fact, implied

by S over the integers. This time, as asserted by our next theorem,

the converse is true. The theorem may be deduced from the finiteness

of Gomory's algorithm; a direct proof is given in [5]. (For a thorough

analysis of the relationship between Gomory's "fundamental  cutsff and

our implied constraints, the reader is referred to [32].)

THEOREM. Let S be a set of linear inequalities whose solution is

nonempty and bounded. If some linear inequality is implied by S over

the integers then this inequality belongs to the closure of S.

For example, if S is the set (4.1) then (4.7) belongs to e2(S) l

To see this, consider the inequalites

x +x1 -f/l .,

x2 + x3 5 1 J

x 1+ x2+ x3+ x4+ x5 5 2 .

1All of them belong to e (S) ; taking their linear combination with

multipliers

l/3 > l/3 7 113 t 113 ., 213 9 113 j 213

we-obtain
8
G x.
j=l J

<
11
3 l

3nce the integer part of Xl./3 is 3 ,<I we see that the implied constraint

4.7) indeed belongs to e2(S) .

18



The concept of elementary closure is motivated by the work of

Edmonds [12] on the interplay of linear programming and matching theory.

When G = (V,E) is a graph, we associate a variable x
3

with each

edge jeE ; a set of edges with a common endpoint is called a

star. Let S denote the set of inequalities

xj LO for every edge jeE ,

(44
c x.51
jn: '

for every star T .

Clearly, a zero-one vector (x.: jcE) satisfies S if and only if it
J

is the characteristic vector of some matching in G . In particular,

if m is the size of the largest matching in G then the inequality

c is implied over the integers by S . Hence, by the above theorem,

(4.9) belongs to the closure of S. In this case, however, a much
L

L

t

.

stronger statement can be made. Indeed, it follows at once from

Berge's generalization [3] of Tutte's perfect matching theorem [35]

that (4.9) is a linear combination of inequalities from the elementary

closure of S . This fact has been pointed out and generalized by

Edmonds who proved that the closure of S consists of combinations

of e(S) .

One may interpret Edmonds? theorem by saying that in matching

problems, the integrality constraint is important (it cannot be dropped)
,

but not all that important (unlike (4.2), it may be done away with in

just one '*generation" of cutting planes). This interpretation leads to

ranking all the integer LP problems according to the Ympor~ance'f of

their integrality constraint. More precisely, when S is a set of

linear constraints, we define the rank of S to be the smallest k

such that the closure of S consists of combinations of ek(S) .

Let us see how this notion of rank applies to the problem of

Yinding the largest size a(G) of a stable set in a graph G = (V,E) ;

.';his problem is sometimes called the vertex packing problem. We shall

write V = {1,2,-..,n) ; with each vertex j , we shall associate a

19
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i

1
i

iL

i

variable x
3

. Clearly, a zero-one vector (x.: jt-T)
2

satisfies the

constraints

o_<xj-<l for every vertex j

>

(4.10)

xi+xj L1
for every edge ij

if and only if it is the characteristic vector of some stable set

in G . The rank of (4.10) is zero if and only if G is bipartite.

It is not difficult to find graphs for which (4.10) has arbitrarily

high rank. Indeed, if G i.8 a complete graph with n vertices then

(4.10) has rank l+ Llog2(n-2)J . (The upper bound is not difficult

to establish; the lower one follows fran Lemma 7.1 of [ 51.) However,

the vertex packing problem is trivial for caraplete graphs and so (4.10)

does not seem to be a well-chosen constraint set. Furthermore, the

matching problem for G is the vertex packing problem for the

line-graph of G ; however, the constraints (4.8) for G do not

reduce into (4.10) for the line graph of G . For these reasons,

the stronger set of constraints

O_<Xj<l for every vertex j ,

>

(4.11)

c
xj <'jd -

for every clique C

may be preferred to (4.10). Since (4.10) and (4.11) have the same set

of integer solutions ) the rank of (4.11) does not exceed that of (4.10);

in some cases, it is considerably smaller. For instance, if G is

complete then the rank of (4.11) is zero. More generally, (4.11) has

rank zero if and only if G is perfect. (This is Theorem 3.1 of [6].

An alternative proof, due to Fulkerson, may be found in [34].) It is

not entirely trivial to find graphs with high rank of (4.11) but they

do exist.

THEOREM. For arbitrarily large n , there are graphs with n vertices

such that the rank of (4.11) is greater than c log n .
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For a proof, the reader is referred to [5].

vertex packing problems in a sharp contrast with

while the latter have rank of most one, there is

the rank of the former. In the next section, we

The theorem puts

matching problems:

no upper bound on

shall allude to a

theorem which suggests that the vertex packing problems are very

hard to solve.

5* Good Algorithms and Good Characterizations

Finally, we turn our attention tomeasuring the difficulty of

solving combinatorial problems. In this context, a problem consists

of an input together with a "yes or no" question. For example,

L

Input: a graph G and an integer k .

Question: is a(G) >k 3
(5-l)

I

1

L
I

is a problem. Customarily, the size of the input is measured, roughly

speaking, by the number of times we must hit the keys of our typewriter in

order to describe the input. For instance, a graph G with n

vertices may be described by a binary sequence of length at most n2 ;

similarly, the ordinary decimal expansion of a positive integer k

has l+ Lloglo kJ digits. It has become a common practice to

consider a problem solved if there is an efficient algorithm for

solving it. In particular, Edmonds [13] pioneered the distinction

between "finite" and "better-than-finite" algorithms; he proposed to

call an algorithm good if there is a polynomial p such that, given

any input of size m , the algorithm terminates within p(m) steps.

For instance, Edmonds' algorithm [13] for solving the problem

Input: a graph G and an integer k .

Question: is there a matching of size k ?

is good: indeed, if G has n vertices then the algorithm terminates

within 4O(n ) steps. On the other hand, no good algorithm for solving

"he problem (5.1) is known.

Another important concept, also introduced by Edmonds [Ill is that

of a good characterization. If we manage to find, by accident or

21



perseverance, a stable set S in G such that ISI > k then we know

that the answer to the question in (5.1) is "yes". More importantly,

wo can use the set S to convince others, in o(n') steps, that the

answer is "yes". Indeed, there is il. good algorUAm lbr- no:Lv-in{<  iJttl

problem

Input: a graph G = (V,E) , a subset S of V and an

integer k .

Question: is S a stable set of size greater than k ?

This fact makes us say that (5.1) has a good characterization. The

difference between good algorithms and good characterizations reflects

the contrast between the difficulty of-finding a solution to a problem

and the ease of checking that a proposed solution to a problem is correct.

It may be worthwhile to point out that there is no known good

characterization of the problem

L Input: a graph G and an integer k .

Question: is a(G) < k ? >
(5-2)

-

Indeed, if the answer to this question turns out to be affirmative,

we have no easy way of convincing others that this is so. In other

words, no efficient way of proving (not to mention finding the proof)

that a(G) < k is known.-
I

IL
How does linear programming fit in this framework? TO begin with,

no good algorithm for the problem

i

1

1

1

i

I

Input: a set S of linear inequalities.

Question: is S solvable?
(5.3)

is known. Indeed, the simplex method (with its standard criteria for

column selection), although extremely useful and efficient in practice,

takes super-polynomial time on certain artificially constructed examples

[26],[37]. Nevertheless, (5.3) does have a good characterization. That

is rather obvious: in order to prove that S is solvable, it suffices

to exhibit some solution to S . Then it does not take long to verify

that the numbers we pulled out of a hat do indeed constitute a solution

i to s . (To be a little more honest, we should admit that there is a

. slight catch here. For example, one might proudly present

1 22



x = 3 A159 26535 89793 23846 26433 83279 50288

in order to prove that the inequalities

2x - 7 ,<o

-8x + 25 < o

are solvable. That would be not only silly, it would also be quite

inefficient. Fortunately, whenever S is solvable, at least one of

its solutions can be described by a number of digits which does not

exceed a certain polynomial in the size of the input.) Less trivially,

the, "opposite" of (5.3),, that is, the problem

Input: a set S of linear inequalities.

Question: is S unsolvable?

L

has a good characterization. This fact is just a corollary-to the

duality theorem. Indeed, S is unsolvable if and only if it is

inconsistent; the inconsistency of S may be proved simply by

exhibiting the appropriate multipliers of reasonably small size.

'Let us summarize: (5.3) has a good characterization, its opposite

has a good characterization and yet we don't know any good algorithm

for solving (5.3). This seems to be a rather rare phenomenon; the

L
i

.

only other instance known to the author is the problem

Input: a positive integer n .

Question: is n composite? 1
(5.4)

Trivially, this problem has a good characterization; a good characteri-

zation of its opposite (is n a prime?), based on the Lucas-Lehmer

heuristic, has been developed by Pratt [31]. Thus we have good characteri-

zations for both (5.4) and its opposite and yet we don% know any good

algorithm for solving (5.4). However, there is a reasonable chance that

such an-algorithm exists. Quite recently, Miller [29] proved the folls>ring:
if the Extended Riemann Hypothesis is correct, then there is a good

algorithm for testing primality.

Concurrently with finding good algorithms for various combinatorial

problems, Edmonds [14],[4],[13] conjectured the nonexistence of good

algorithms for other combinatorial problems. (These include the traveling
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salesman problem, testing graph isomorphism and finding, in a fattily of

triples, the largest subfamily of pairwise  disjoint triples.) A few

years ago, Cook [S] proved a remarkable theorem whose immediate corollary

goes as follows: if there is a good algorithm for (5J) then there is a

good algorithm for every problem that has a good characterization.T h e

conclusion of his corollary is stunningly strong. To appreciate its
strength, we may recall that there are problems with a finite characteri-

zation but without a finite algorithm. (In other words, there are
recursively enumerable sets which are not recursive. The proof may be
found in [2], Chapter 4.) By analogy, one may be tempted to conjecture

that the same statement holds with "fi$te" replaced by "good". If this
is the case then, by Cook's theorem, there is no good algorithm for (5.1).

(At this point, a word of warning may be in order: even though Cook's
theorem may be interpreted as evidence that there is no good algorithm

for (5.1), it by no means constitutes a proof of the nonexistence of such

an algorithm. Edmonds'  original conjecture to that effect still remains

open. In passing, we may also point out that there is nothing exclusive

about (5.1) in Cook's theorem: it may be replaced by many other 'rdifficult"
. combinatorial problems, such as "Is G hamiltonian?"

. l For an impressive

list of such problems, see [1] or [24].)

Another corollary to Cook's theorem states the following: if thereL

t

is a good characterization for (5.2) then there is a good characterization

for every problem whose "opposite" has a good characterization. This

conclusion, although not quite as strong as the previous one, may be still

found hard to accept; in the rest of this section, we shall speculate

about the assumption. In the spirit of integer linear programming, we

shall propose a system of inference rules which are strong enough to prove

a(G) < k whenever true.- Let G = (V,E) b

With each vertex i of G

e a graphwith V = {1,2,...,nj .

, we shall associate a variable x l withi'
the graph itself, we shall associate the system of inequalities

I O<Xi<l

xi+xj <’-
for every vertex i

for every edge ij .
>

A system of linear inequalities (in the xi 's) will be called an

ILP proof of a(G) < k if

(5.5)



L

1

1

1
!
L

L

( >i each of these inequalities belongs either to (5.5) or to

the elementary closure of previous inequalities in the

sequence,

(ii) the last inequality reads E xi < k .
i=l -

For example, if G is as in Figure 4, then

x1 + x2 5 1

x2 f x3 5 1

x3 + x4 5 1

x fx4 85”

x1 + 93 5 1

x1 + x2 + x3 + x4 + x5 + X6 + x7 + xg 5 3

is an ILP proof of a(G) ,< 3 . In this case, it can be shown that every

ILP proof of a(G) 5 3 takes at least twelve lines. In general, when G

is a graph with a(G) = k , we shall mean by the complexity c(G) of G
the smallest number of inequalities in an ILP proof of a(G) 5 k .

This
notion of complexity is somewhat related to that of rank introduced in

the last section.

Indeed, an ILP proof may be arranged into an n-ary tree (rather than

a line& sequence) of inequalities , each inequality being in the elementary
closure of its immediate descendants. The depth of this tree is at most
the rank of (5.5) plus one. Conclusion: if the rank of (5.5) is r then

H-1
c(G)< Cni .-

i=O
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This bound may be far from best possible. For instance, if G is

complete then r = l+ Llog2(n-l)j whereas

c(G) < (g)+ (n-2) . (54

From (5.6) , we easily conclude the following: if the rank of (4.11)

is s then

c(G) < ((z)+ (n-2)) 'il ni .
i==O

Unfortunately, s may grow beyond every bound and so

provide a polynomial upper bound on c(G) .

CONJIETURE. For every polynomial p there is a grap:

vertices such that c(G) > p(n) l

(5.7)

5.7) does not.

h G with n

i
This conjecture is somewhat related to the conjecture that there is

no good characterization for (5.2); the differences between the two go

as follows.i
L
1

1. It is conceivable that the above conjecture is true and yet

there is a good characterization for (5.2). (Necessarily, such a

characterization would have to use more powerful inference rules than

those based on our cutting planes.)

2. It is conceivable that the above conjecture is false and yet

the shortest ILP proofs of a(G) < k do not provide a good characteri-

zation for (5.2). (Necessarily, -these shortest ILP proofs would have

to involve excessively large coefficients.)
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