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Sone Linear Programm ng Aspects of Conbinatorics

V. Chvdtal

Abstract
This is the text of a lecture given at the Conference on Al gebraic
Aspects of Conbinatorics at the University of Toronto in January 1975.

The lecture was expository, ained at an audience with no previous
know edge of |inear programi ng.

1 Introduction: Two Exanples
I'n 1928, Sperner [33] answered the fol |l owi ng question Let E be
a famly of distinct subsets of {1,2,...,n} such that
S;TeF = S¢ET 3 (1.1)

how large can |F| be? Sperner proved that

7l < (Ln72_|) . (1.2)

(To see that this is the best possible result, consider all the subsets
S of {1,2,...,n} Wth |s|=|n/2; @ ) In 1966, Lubell[28] gave a
very elegant proof of this result; slightly recast, Iubell's argunent
goes as follows. Let us denote by A the fanily of all 2" subsets

of {1,2,...,n} 5 let us call a fanily F feasible if it satisfies
(1.1). Wth each famly F = feasible or not, associate the vector
(xS: SeA) defined by

1 i f Ser ,
S Xy =
0 if Bfr .
Thus obvi ously
A = Z x, .
Sep 8 (1.3)

I s i H
4 family of sets TosTy5 [ | with

g = To © Ty .- CTn = {L,2,...,n)}



will be called a chain. (Qearly, there are n! distinct chains, each
SeA is included in |s|t(n - |s|)t of them Furthermore, F is
feasible if and only if

2 x, <1 for every chain C. (1.1)
SEC
The sum of all these n! inequalities (1.4) reads

2 |s|t(n - lsi)'.xs < n!
SeA

or, equivalently,
2 +XS < 1 .
SeA
()
Since every x, is nonnegative and ever n n )
Yy Xg g y (lsl < TIVERS have

S%A(Ln§2J> s S?A ( lrslll ) &

Thus (1.4) inplies

n
2% < (Ln/EJ )
which, by virtue of (1.3), is the desired result.
Qur second exanpl e goes back to the thirties when Erdss, Ko, and
Rado [15] answered the followi ng question. Let F be a famly of
k-el ement subsets of {1,2,...,n} such that

S;TeF =» SNT # ¢ ; (1.5)

how | arge can |F| be? ErdSs, Ko and Rado proved that (in. the
nontrivial case n > 2k)

n-1
fl< (33)
(To see that this is the best possible result, consider all the
k-el ement subsets S of {1,2,...,n} with 1eS .) In 1972, Katona
[25] gave a very elegant proof of this result; slightly recast,

Katona's argument goes as follows. Let us denote by A the famly
of all () subsets of f{1,2,...,n) having k elements; let us



call a famly F feasible if it satisfies (15). For sinmplicity,
l et us assune (unlike Katona) that k divides n and |let us set

m=n/k . A fan?'l.y of pairwise disjoint sets T 0T e ey e n Wil
be called a partition. (early, there are exactly

(n)( n-k)(n—é?k) (k) n'
k . e a

k k k (k!)m
ordered partitions; every sgea is included in

" gn-k)!I
(x)™
of them Furthermore, F is feasible if and only if

2z ¥, < 1 for every partition p .
Sep

The sum of all these inequalities reads

o (n-k)! S x. < n!
k)™ seA T (ke

)m
or, equivalently,

S ox, < 1/n _ n-1

sea 0 T m\k k-1
which is the desired result.

In each of our two exanmples, the proof cane out rather effort-
lessly. Was it just plain luck, one may wonder, or are we actually
onto sonething? The answer to this ill-posed question is ambiguous.
Ve were lucky indeed: proofs like that are not to be found for every
conbinatorial theorem At the sane tine, however, we are onto
sonething. W are onto the duality theoremof Iinear or 0gr ani ng.

2. The Dual ity Theorem of Linear Programmi ng

In each of the two introductory exanples, we have argued that a
~ertain set of linear inequalities (corresponding to the assunptions
~f our theorem) inplies another linear inequality (corresponding to

the desired conclusion). |n general, we shall say that a set
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i (I<i<m (2.1)

=~ (2.2)

if, and only if,
(i) there is at |east one solution of (2.1) and

(ii) every solution of (2.1) satisfies (2.2).

When Y9>¥ps -5y, are nonnegative reals, we call the inequality

2 ( 5 n
2 v.a.. Jx. < >
g1 \io1 383 )75 S 2 VaPs

a linear conbination of (2.1) with nultipliers
Furthermore, an inequality

Y1s¥ps o v es¥,

n
2 ax. <b

j=1 7

is called a conbination of (2.1) if, for some b* with b* <b

the inequality Z a x <v* {5 4 linear combination of (2.1).

e

Cearly, if (2.1) ha; at | east one solution then it inplies each

of its conbinations.

THE DUALITY THEOREM (first version). If (2.1) inplies (2.2) then
(2.2) is a conbination of (2.X).

Customarily, the duality theoremis stated in a slightly different
form  This formarises in the study of l|inear programmng problens
(or Lp problens for short) such as

. . n
maximze 2 c.x. subject to the constraints
J=1
n
4% el (L<i < { (2.3)

Xy 20 (1<j <n) J



Wth (2.3) one associates another LP problem called the dual of
(2.3):

m
mnimze 2 b'i\“/i subject to the constraints
i=
2
L. > ¢ i (2.4)
i=1 -7 (1<i<n
y; 20 (L <i<m)

A solution to the constraints in (2.3), resp. (2.4), is called a
feasible solution of (2.3), resp. (2.4). A feasible solution which

maximzes  cc 555+ Tesp. mnimzes Ebiyi, is called an optinal

feasible solution of (2.3), resp. (2.4). Note that for every feasible

soluti X * i i
olution X3y e e s X of (2.3)and for every feasible solution

* ¥ *
Y12¥ps ++-5¥,  of (2.4), we have
* * % x
Z}C.?](.JS E aijxjy_. < Z biyi ) (2.5)
Jd i,J] |
THE DUALI TY THEOREM (second version). If (2.3) has an optinal
feasible solution x’l‘,xg,...,x;l‘ then (2.4) has an optinal
feasi bl e solution y’l‘,y;, o ,,y; and
n m
T oex: = 2 by
j=1 i=1 7

It is easy to see that the first version inplies the second.

I ndeed, et Xl:xg;---;x:: be an optimal feasible solution of (2.3);

*
set d =2 CJ.XS.e . Then the inequalities

n

2 a,.x < b i

51 1373 = (15I_§m)
¥y 50 (1<j<n

inmply the inequality
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By the first version of the duality theorem there are nonnegative

* %
reals Y12 Yoo ij*ml-n such that

m

E *ca- s = ¥ = cC. 3

R EREAY J (1<3s<n)
and

m

-, *

2 y.h,< d*

i=l L 11—

Thus yf,yg;.02§t*mis a feasible solution of (2.4) .ih

* n *
> by. < 2 ec.x.
i=l 11 - j:l J J

BY (2.5), the last inequality yyst hold with sign of equality and

* x . . .
Yl;yg;-n,y:; I'S an optimal feasible solution of (2.4).

To deduce the first version fromthe second, |et us assunme that
(2.1) inplies (2.2) and let us consider the followi ng rp problem

n
mximze 2 e, (u. -v
j=1 J(J J')

n
subject to 2 a..(u -y ) < b.
j=1 3 3~

For every real X we may wite x = U.~v. With d.v >0
J J J 3 i :

Therefore our problem has an optinum feasible solution 'u§, v
J
(1 <j <m)sinfact, 2 c (uf- ),<_\d . By the second version

Jdd J

of the duality theorem, there are nonnegative reals
) leYE,-..,xm

with



Y 2 c ]
i= 173 J
>
(-a,.)y. > -c. ,
1=y 177 J
m n
* %
b biyi = 22 ¢c.(u,-v.)
i=1 j=1 d 3 J

Hence (2.2) is a conbination of (2.1).
Finally, we shall restate the duality theorem in yet another form
The set (2.1) of linear inequalities is called inconsistent if
there are nonnegative reals v, (1< 115 n such that

m
2 ¥ = O I<is<n)

m
Z b.y. < O
i=1

Trivially, an inconsistent set (2.1) is unsolvable; again, tnhe converse
is given by the duality theorem

THE DUALITY THEOREM (third version). The set (2.1) is unsolvable if
and only if it is inconsistent.

This version follows easily fromthe first version. |ndeed,
assune that (2.1) is unsolvable and let k be the largest subscript
such that the set

n
é;g 83 5% _<b, (1 <i<k) (2.6)

is solvable. The set of all the solutions of (2.6) is a closed convex

and possibly unbounded, subset of R ; the assignment

(Xl’XE’ ceX ) b 2 “k3%5

maps this set onto a closed interval | with



z < b = zfI

Hence there is sonme d with d > by such that (2.6) inplies

n
2 (-a

j=1 SIS

By the first version of the duality theorem there are nonnegative
real s Y (1 <i<k) such that

k-1
a,.y. = -a . (L<j <n) ,
5o1 071 k3
k-1
2 b.y. < -d
i=1 tt T

Setting v = 1 (and v; = 0 for i >k ) we conclude that (2.1) is
i nconsi stent.

Particul ar cases of the duality theorem may be traced back to
Gordan [23] and Farkas [16]. The notion of a dual LP probl em was
<introduced by John von Neumann in conversations with George B. Dantzig
in Cctober 1947; it appears inplicitly in his working paper [36].
Gale, Kuhn and Tucker [19] fornul ated, and proved, an explicit version
of the duality theorem (our "second version"). Qur "third version"
cones from Kuhn [27]. For a wealth of information on the subject, the
reader is referred to Dantzig's book [9].

The duality theoremis a very natural principle, pervading a
large area of mathematics. For instance the necessary and sufficient
conditions for solvability of systens of |inear equations are just a
very special case of the duality theorem  Averaging argunents,
counting of pairs in tw different ways, and "Lubell's method"
illustrated in Section 1, are rudinentary applications
of the duality theorem Like M Jourdain who, for nore than forty
years, had been talking prose wthout any idea of it, we may often
be unaware that our arguments rest, in fact, on the duality theorem
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3. Linear Progranming as a Methodol ogi cal Tool

Li near programming problens nmay come up in various guises
Soretimes their constraints are only inplicit in the problem
formulation and it may take considerable effort to uncover them
However, once we recognize the |inear progranmng nature of a
problem we gain a valuable guiding principle: the duality

theorem The fol |l owing case story of a geonetrical problemwith
an underlying LP structure will illustrate the point

VW shal|l consider the infinite square grid in the ordinary

plane; by definition, each cell in this grid has eight neighbors.
A coloring of the cells red and blue will be called feasible if

() there is at least one blue cell,
(ii) every blue cell has at least six blue neighbors.

Trivially, coloring all the cells blue we obtain a feasible
coloring. A nontrivial feasible coloring, constructed by Fejes Tdth
[18], is shown in Figure 1. (The cells marked by crosses are red,

. the unmarked ones are blue.) In this coloring, "four out of every

fifteen" cells are red. Introducing the notion of density (as in

[ 17], pp- 161-162), one can neke the |ast statenent nore precise

To do so, begin with an arbitrary cell; let its Cartesian coordinates
be a,b . For every nonnegative integer k , define Sk to be the

set of all those (2k+1)2 cells with coordinates i, j that satisfy

li-a] < k , |3-b] <_k

If Xis a set of cells then the lower and the upper limt of the
sequence

[xns,| lxns, | [xns, |

S . J
5, 5, |

)
5|

do not depend on our choice of a and b . These two linits are
called the lower and the upper density of X ; if they coincide then
their conmmon value is called the density of X . The set of the red

cells in Figure I has density 4/15; Fejes Téth conjectured that the
red upper density of a feasible coloring never exceeds L/15 .
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Fam liarizing ourselves with feasible colorings, we find that
they cannot contain various clusters of red cells. For instance, if
we begin with three red cells in arow(as in Figure 2) then the
feasibility constraint (ii) forces us to paint the entire plane red,

thereby violating the constraint (i).

Figure 2

Simlarly, we find that no red cell may have nore than three red
neighbors. In fact, the red cells with exactly three red neighbors
come in two by two quadruples flanked by layers of blue cells as
in Figure 3. (The cells nmarked by a questionmark nmay be red or blue.)

Figure 3
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If r (resp. b ) is the red upper (resp. blue | ower) density of
sone feasible coloring then trivially

b =1 .

Gven a positive ¢, we my choose an arbitrarily large nxn square
with at |east (r-:-:)n2 red cells. Let N be the nunber of
(unordered) pairs of neighboring cells colored by different colors

and coming from our square. Since each red cell has at |east five
bl ue nei ghbors, we have

N > 5(r-e)n - b(n+1) , (3.1)
the negative term discounting the blue cells that fall just outside

of our square. Since each blue cell has at nost two red neighbors,
we have

N < 2(bre)n® . (3.2)

Since ¢ may be chosen arbitrarily small and n nay be chosen
arbitrarily large, we conclude that

50 < 2b . (3.3)
Thus we are led to the following LP problem
maximze r subject to the constraints )
r>0 , b >0
? (3.4)
™b = 1
5r -2b < O
- .J

Trivially, the solution to this problemis 2/7 and so every feasible
coloring has density at nost 2/7 ; unfortunately, 2/7 is just a
tiny bit bigger than 4/15. Neverthel ess, we may hope that the Lp
problem (3.4) is, in fact, a poor nodel of the geonetrical problem

To begin with, we may try to prove that there is no feasible coloring
with red upper density 2/7 . For this purpose, let us investigate
the properties of such a hypothetical coloring

12



Since r = 2/7 and b = 5/7 satisfy (3.3) with the sign of
equality, it appears that the bounds (3.1) and (3.2) nust be, in sone
sense, tight. Pursuing this line further we find arbitrarily large
squares (100x 100 wi Il do nicely) where every red cell has exactly
three red neighbors and every blue cell has exactly two red neighbors.
Cose to the mddle of such a square, we shall find the configuration
of Figure 3. Next, each of the four cells marked by a questionmark
must actually be red (otherwi se we would have a blue cell with seven
bl ue neighbors). That is, each of these cells nust come from anot her
red quadruple. The blue layers surrounding these quadruples wll
create blue cells with eight blue neighbors: a contradiction.

The crucial point in our argument was that in the vicinity of
each red quadruple, there nust be either ared cell with fewer than
three red neighbors or a blue cell with nore than six blue neighbors.
Now that we have established the existence of such defects, we may
try to estimate their frequency. For this purpose, we define the
order of a red (resp. blue) cell to be the nunber of its red (resp.

- blue) neighbors. In a big nxn square with at |east (r-e)n2

red cells, let rin2 (resp. bin2 ) be the nunber of red (resp. blue)
cells of order i . A careful analysis of the above argunment |eads
to the conclusion that, with only a negligible error,

bro+ 2r;+ 2p + Wby > r

7 3

(The proof of this inequality is not instant; for details, the reader
is referred to [7].) In addition, the constraints of (3.4)find their
natural counterparts in terns of the new variables. Thus we are |ed

to a new LP problem

13
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meximze r +yr rr 3 subject to

ro+rl+r2+r5+b6+b7+b8=1,
8r - b =
0+ 7r, + 6r2 + 513 - 2p, - 7 = 0
r
-hro - 2r; + 73 - 2b7 - l;b8 < o0

rO’rl’TE’rﬁ’b6’b7’b8 2 0

Miltiplying the first constraing by four, the second by two, the
third by one, and summing up the lot, we arrive at the inequality

16r, + 1l6r, + lér, + 1or, < b

Hence TotTytro+r, < B/15 which is the desired result.

4. The Inportance of Being Discrete

Reviewi ng the two exanples of Section 1, we find that in the
proofs, no use has been made of the fact that our variables X

instance, the problem of finding the largest size of a stable
(i ndependent) set of vertices in the graph G = (V,E) of Figure 4

(A set of vertices is called stable if no two of themare joined by an

edge.)
8 1
7 \ 2
6 Q 3
b Y
Figure L
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integral. Unfortunately, we cannot expect to get away with that every

tine we solve a conbinatorial problemby LP techniques. Consider, for



In the straightforward LP fornulation of this problem we have to

8
maximize 2o X._ subject to the constraints
i=l 7
X 20 for every vertex i |, (k.1)
xi+xj <3 for every edge ij
and
X. = integer for every vertex i . (k.2)

1
Disregarding the integrality constraint (4.2), we may obtain a
solution of (4.1) such that

However, it is not difficult to see that the size of the |argest

stable set in Gis only three. conclusion: in the present
context, the integrality constraint (4.2) nust be taken into account.
" In the field of discrete mathematics, we deal with discrete
L vari abl es; whenever their discreteness is relevant, it must find its
way into our argunents. |t often does so via the pigeon-hole
principle: if mnt1l objects are distributed anong n boxes then
L sone box contains at |east mtl objects. pescribi ng this principle
. in LP terms, we denote the number of objects in box 4 by x. ;
t. . i?
. since the boxes are unlabelled, We Ny assune that
E xl_>_x22.,.2xn
; Now, |et us
mnimze X, subject to the constraints \
Xy =X, > 0
x2 i x5 > 0 >
(4.3)
Xn-l - xn 20

15



and the constraint

X, = integer (L <i<n)

The linear combination of (L.3) with nultipliers

n-I n-2 2 1 1

m ’'n ’ >’n’n’n
reads

X, >m+ s

1 < n ° (h’-h‘)
At this monent, let the discreteness come into the play: g X

Is an integer satisfying (4.4) then, in fact, X, > whl .

Proving, as we have just done, the pigeon-hole principle by
LP techniques may be rem niscent of the use of a sledge-hammer to
crack the proverbial walnut. W have done so, however,
to illustrate a point. The point is that the integrality
constraint, together with our |inear constraints, may inply
inequalities which are not inplied by the [inear constraints alone.
This inportant idea seems to have appeared for the first time in the
work of Dantzig, Fulkerson and Johnson [10]. |ater it was
devel oped by Gomory [201,[21],[22] into an algorithmfor solving LP
problens in integers. Gomory's al gorithm provides a systematic way
of generating the new "implied" constraints (commonly called
cutting planes) until the integrality constraint becomes superfluous.

(For an excellent coverage of the ILP techniques, the reader is

referred to [30].)
W shall use the idea of inplied constraints to formulate a

t heorem which, in the context of integer Lp problens, parallels the
duality theorem To begin with, |et

n
E)l 8 < by (1<i<m) (4.5)

be a set of inequalities whose solution set is nonempty and bounded.
W shall say that (4.5) inplies sone inequality

16



oo (k.6)
over the integers if every integer solution of (4.5) satisfies (4.6).
For instance, the inequalities (4.1) imply

8

j}=:l X, <3 (1.7)
over the integers. \Wen .5 is a set of linear inequalities, gych

as (4.5), we define the elenentary closure
set of all the inequalities

% m
2 MNa.. Jx, < d
j=1 ( i=1 11 Jd T

e(S) of Sto be the

such that

. /M .
(1) KPKQ,-.' Gl are nonnegative reals,

(ii) each Ekia.lj is an integer,

(iii) d is at least the integer part L};}x,b,_] of 20 M.b. .
1 1 11
For instance, the inequality

5
L ox, <2
j=1 J

bel ongs to the elenmentary closure of (4.1); indeed, the inequality

5
x, < 2
j=L 9 T

to e(S) then S inplies this inequality over the integers

However,
the converse is not true:

for exanple, it can be shown that the
inequal ity (4.7) does nibel ong to the elementary closure of (4.1).

Ve shal | define eO(S) = S and, for every positive integer k ,

f(s) = esued! (9))
The set

U ei(s)
i=0

17



wll be called the closure of S . Again, it is easy to see that

every inequality belonging to the closure of Sis, in fact, inplied
by S over the integers. This tine, as asserted by our next theorem
the converse is true. The theorem may be deduced from the finiteness
of Gomory's algorithm a direct proof is given in [5]. (For a thorough
analysis of the relationship between Gomory's "fundamental cuts" and
our inplied constraints, the reader is referred to [32].)

THEOREM Let S be a set of linear inequalities whose solution is
nonempty and bounded. If sone linear inequality is inplied by S over
the integers then this inequality belongs to the closure of S

For exanple, if Sis the set (4.1) then (4.7) belongs to eg(s)
To see this, consider the inequalites

X, tXg < 1,

IA
|

2

7" 8
X+ X+ X+ X+ X, < 2

Al'l of them belong to el(S) ; taking their linear conbination with
mul tipliers

/3, 1/3, 1/3, 1/3, 2/3, 1/3 , 2/3

we- obt ai n

Zince the integer part of 11/3is 3, we see that the inplied constraint

4.7) i ndeed belongs to 62<S) :

18



The concept of elenentary closure is notivated by the work of
Edmonds [12] on the interplay of |inear progranmng and matching theory.
Wen G = (V,E) is a graph, we associate a variable x. wth each
edge JeE ; a set of edges with a common endpoint is called a

star. Let S denote the set of inequalities

x5 > 0 for every edge jeE ,
(+.8)

Z x, <1 for every star T .

Cearly, a zero-one vector (x.: jeE) satisfies Sif and only if it
Is the characteristic vector of sonme matching in G . In particular,
if mis the size of the largest matching in G then the inequality
2 XJ' <m (4.9)
JjeE
is inplied over the integers by S . Hence, by the above theorem
(4.9) belongs to the closure of S. In this case, however, 3 nuch
stronger statenent can be nmade. |Indeed, it follows at once from
Berge's generalization [3] of Tutte's perfect matching theorem [35]
that (49)is a linear conbination of inequalities fromthe elenentary
closure of S. This fact has been pointed out and generalized by
Edmonds who proved that the closure of S consists of conbinations
of e(9)

One may interpret Edmonds' theorem by saying that in matching
problens, the integrality constraint is inportant (it cannot be dropped)
but not all that inportant (unlike (4.2), it may be done away with in
just one '*generation" of cutting planes). This interpretation |eads to
ranking all the integer LP problems according to the "importance" of
their integrality constraint. Mre precisely, when S s a set of
l'inear constraints, we define the rank of S to be the smallest k
such that the closure of S consists of combinations of ek(s) :

Let us see how this notion of rank applies to the probl em of
finding the largest size a(Q@ of a stable set in a graph G= (V,E ;
“his problemis sonmetines called the vertex packing problem s shall
wite V = {l,2,...,n} ; Wth each vertex | | we shall associate a

19



vari abl e xj . Clearly, a zero-one vector (X.: jev) satisfies the

J
(%

constraints
0 < x4 <1 for every vertex |
(4.10)

Xi+xj <1 for every edge ij

if and only if it is the characteristic vector of sone stable set

in G. The rank of (4.10) is zero if and only if Gis bipartite.
It is not difficult to find graphs for which (4.10) has arbitrarily
high rank. 1Indeed, if Gis a conplete graph with n vertices then
(4.10) has rank 1+ Llogg(n—E)_] . (The upper bound is not difficult
to establish; the |ower one follows fram Lemma 7.1 of [ 5].) However,
the vertex packing problemis trivial for complete graphs and so (4.10)
does not seemto be a well-chosen constraint set. Furthernore, the
matching problem for G is the vertex packing problem for the

l'i ne-graph of G; however, the constraints (4.8) for G do not
reduce into (4.10) for the line graph of G. For these reasons,

the stronger set of constraints

0<xy <1 for every vertex j ,
(4.11)

2, x, <1 for every clique C

jeC
may be preferred to (4.10). Since (4.10) and (4.11) have the sane set
of integer solutions, the rank of (4.11) does not exceed that of (4.10);
in some cases, it is considerably smaller. For instance, if Gis
conplete then the rank of (4.11) is zero. Mre generally, (4.11) has
rank zero if and only if Gis perfect. (This is Theorem 3.1 of [£].
An alternative proof, due to Fulkerson, may be found in [34].) It is
not entirely trivial to find graphs with high rank of (4.11) but they
do exist.

THEOREM. For arbitrarily large n, there are graphs with n vertices
such that the rank of (4.11) is greater than c log n .

20



For a proof, the reader is referred to [5]. The theorem puts
vertex packing problens in a sharp contrast wth patching probl ens:
while the latter have rank of nmost one, there is no upper bound on

the rank of the former. |In the next section, we shall allude to a
t heorem whi ch suggests that the vertex packing problens are very

hard to sol ve.

5. Good Algorithnms and Good Characterizations

Finally, we turn our attention toneasuring the difficulty of
solving conbinatorial problems. |In this context, a problem consists
of an input together with a "yes or no" question. For exanple,

| nput: a graph G and an integer k .
(5.1)

Question: is a(G) >k ?
is a problem Customarily, the size of the input is neasured, roughly
speaking, by the nunber of tinmes we nust hit the keys of our typewiter in
order to describe the input. For instance, a graph Gwth n
vertices may be described by a binary sequence of |ength at nost n° ;
simlarly, the ordinary decimal expansion of a positive integer k
has 1+ LloglO k] digits. It has becone a common practice to
consider a problem solved if there is an efficient algorithm for
solving it. In particular, Ednonds [13] pioneered the distinction
between "finite" and "better-than-finite" algorithms; he proposed to
call an algorithmgood if there is a polynomal p such that, given
any input of size m, the algorithmternmnates within p(m steps.
For instance, Edmonds' algorithm [13] for solving the problem

| nput: a graph G and an integer k .
Question: is there a matching of size k ¢

is good: indeed, if G has n vertices then the algorithm terninates
within (XnA) steps. On the other hand, no good al gorithm for solving
"he problem (5.1) is known.

Another inportant concept, also introduced by Ednonds [11] is that
of a good characterization. |f we nmanage to find, by accident or

21



r-

e ™~

perseverance, a stable set S in G such that |s| > k then we know
that the answer to the question in (5.1) is "yes". More inportantly,
we can use the set S to convince others, in o(ng) steps, that the
answer is "yes". |ndeed, therc iS a pood algorithm for solving the
probl em

| nput : a graph G= (V,E) , a subset S of V and an
integer k .
Question: is S a stable set of size greater than k ?

This fact makes us say that (5.1) has a good characterization. The
di fference between good algorithms and good characterizations reflects

the contrast between the difficulty of-finding a solution to a problem
and the ease of checking that a proposed solution to a problemis correct.

It may be worthwhile to point out that there is no known good
characterization of the problem

| nput : a graph G and an integer k . } (5.2)

Question: is a(G) < k ?

Indeed, if the answer to this question turns out to be affirmative,
we have no easy way of convincing others that this is so. |n other
words, no efficient way of proving (not to mention finding the proof)
that «(G) < k is known.

How does linear programmng fit in this franework? .begin with,
no good al gorithmfor the problem

| nput : a set S of linear inequalities.
, _ (5.2)
Question: is S solvable?
is known. Indeed, the sinplex method (with its standard criteria for

colum selection), although extrenely useful and efficient in practice,
takes super-polynonial time on certain artificially constructed exanples
[26],(37]. Neverthel ess, (5.3) does have a good characterization. That
is rather obvious: in order to prove that S is solvable, it suffices
to exhibit sone solution tos. Then it does not take long to verify
that the nunbers we pulled out of a hat do indeed constitute a sol ution
to s . (To be a little nore honest, we should admt that there is a
slight catch here. For exanple, one mght proudly present
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X = 3.14159 26535 89793 23846 26433 83279 50288

in order to prove that the inequalities
2Xx - 7 <0
-8x +25 < 0

are solvable. That would be not only silly, it would also be quite
inefficient. Fortunately, whenever S is solvable, at |east one of
its solutions can be described by a number of digits which does not
exceed a certain polynomal in the size of the input.) Less trivially,
the, "opposite" of (5.3), that is, the problem

| nput : a set S of linear inequalities.
Question: is S unsolvable?

has a good characterization. This fact is just a corollary-to the
duality theorem Indeed, S is unsolvable if and only if it is

i nconsi stent; the inconsistency of S may be proved sinply by
exhibiting the appropriate nultipliers of reasonably small size.

‘Let us summarize: (5.3) has a good characterization, its opposite
has a good characterization and yet we don't know any good al gorithm
for solving (5.3). This seems to be a rather rare phenonenon; the
only other instance known to the author is the problem

| nput : a positive integer n . }

Question: is n conposite? (5.14)

Trivially, this problemhas a good characterization; a good characteri-
zation of its opposite (is n a prime?), based on the Lucas-Lehner
heuristic, has been developed by Pratt [31]. Thus we have good characteri-
zations for both (5.4)and its opposite and yet we don't know any good
algorithm for solving (5.4). However, there is a reasonabl e chance that
such an-algorithm exists. Quite recently, Mller [29] proved the follcwing:
iIf the Extended Riemann Hypothesis is correct, then there is a good
algorithm for testing primality.

Concurrently with finding good algorithnms for various conbinatorial
probl ems, Ednmonds [14],[4%],[13] conjectured the nonexistence of good
algorithms for other combinatorial problens. (These include the traveling
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sal esman problem testing graph isonorphismand finding, in a family of
triples, the largest subfamly of pairwise disjoint triples.) A few
years ago, Cook [8] proved a remarkabl e theorem whose inmmediate corollary
goes as follows: if there is a good algorithmfor (5.1) then there is a
good algorithm for ®very problem that has a pood characterization. e
conclusion of his corollary is stunningly strong. To appreciate its
strength, we may recall that there are problems with a finite characteri-
zation but without a finite algorithm (|n other words, there are
recursively enumerable sets which are not recursive. The proof may be
found in [2], Chapter 4.) By analogy, one may be tenpted to conjecture
that the sane statenent holds with "finite" replaced by "good". |f thisg
is the case then, by Cook's theorem there is no good algorithmfor (5.1).
(At this point, a word of warning mey be in order: eyen though Cook's
theorem may be interpreted as evidence that there is no good al gorithm
for (5.1), it by no nmeans constitutes a proof of the nonexistence of such

an algorithm  Edmonds® original conjecture to that effect still remains
open. In passing, we may also point out that there is nothing exclusive
about (5.1)in Cook's theorem it may be replaced by many other "dirficuls"
combinatorial problens, such as "Is G hamiltonian?". For an inpressive
list of such problenms, see [1] or [2k].)

Anot her corollary to Cook's theorem states the followng: jf there
is a good characterization for (5.2) then there is a good characterization
for every probl em whose "opposite" has a good characterization. This
concl usion, although not quite as strong as the previous one, may be still
found hard to accept; in the rest of this section, we shall speculate
about the assunption. In the spirit of integer linear progranming, we
shal | propose a system of inference rules which are strong enough to prove
a(Q < k whenever true. Let G = (V,E) be a graphwith V = {1,2,...,n} .
Wth each vertex i of G, we shall associate a variable X; ,With
the graph itself, we shall associate the system of inequalities

0 <x, <1 for every vertex i
xi+xj <1 for every edge ij

A systemof linear inequalities (in the X, 's)will be called an
ILP proof of a(c) < k if
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(i)  each of these inequalities belongs either to (5.5) or to
the elementary closure of previous inequalities in the

sequence,
n

(ii) the last inequality reads in <k.
i=1

For exanple, if G is as in Figure 4, then

~
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X, + X, + X +X}++x < D
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+ +
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S
(@+]
IA

xl+x851

X, + X + x +xh+x +x6+x +x8<5

1 2 3 5 7
is an ILP proof of a(G) <3 . In this case, it can be shown that every
ILP proof of a(G) < > takes at |east twelve lines. In general, vhen G
is a graph with a(G =k  we shall nean by the conplexity ¢(Q of &
the smallest nunber of inequalities in an ILP proof of a(@ <k . This
notion of complexity is somewhat related to that of rank introduced in
the last section.

I ndeed, an ILP proof may be arranged into an n-ary tree (rather than
a line& sequence) of inequalities gach jnequality being in the el ementary
closure of its imediate descendants. tpe depth of this tree is at most
the rank of (5.5) plus one. Conclusion: it t{he rank of (5.5 i's r then
1
c(G< Z n'
i=0
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This bound may be far from best possible. For instance, if G is
conplete then r = 1+ Llogg(n-l)J wher eas

c(Q < (3)+ (n-2) . (5.6)
From (5.6), we easily conclude the following: if the rank of (4.11)
is s then
n stl i
c(6) < ((3)+ (n-2)) Z n* . (5.7)

Unfortunately, s may grow beyond every bound and so 5.7) does not.

provi de a pol ynom al upper bound on c(g) .

CONJECTURE. For every polynomal p there is a graph G with n
vertices such that ¢(Q > p(n) .

This conjecture is somewhat related to the conjecture that there is
no good characterization for (5.2); the differences between the two go
as follows.

1 It is conceivable that the above conjecture is true and yet
there is a good characterization for (5.2). (Necessarily, such a
characterization would have to use nore powerful inference rules than
those based on our cutting planes.)

2. It is conceivable that the above conjecture is false and yet
the shortest I|LP proofs of a(G < k do not provide a good characteri-
zation for (5.2). (Necessarily, these shortest I|LP proofs would have
to involve excessively large coefficients.)
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