
ON COMPUTING THE TRANS IT IVE CLOSURE OF A RELATION

bY

James Eve

STAN-C S-75-508
SEPTEMBER I975 , 4

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STANFOR D UN IVER S ITY

On Computing the Transitive Closure of a Relation

James Eve

Abstract

An algorithm is presented for computing the transitive closure of

an arbitrary relation which is based upon a variant of Tarjan's algorithm

[4] for finding the strongly connected components of a directed graph.

This variant leads to a more compact statement of Tarjan's algorithm.

If V is the number of vertices in the directed graph representing

the relation than the worst case behavior of the proposed algorithm

involves o(v7) operations. In this respect it is inferior to existing

algorithms [1,2] which require O($/log V) and
log* 7

O(V loi3 v>

operations respectively. The best case behavior involves only ~~~>
operations.

This research was sup-ported in part by Natjonal Science Foundation grant
SrL:R7243752AO2 and by the Office of Naval Research contract JYR 044-402.
Keproduction in whole or in' part is permitted for any purpose of the
L;gited States Government.

1

1. Introduction.

L.

1
i

.

The origin of this transitive closure algorithm is in a paper by

Knuth [3] in which he defined certainsets, of interest in parsing

context free languages, in terms of the transitive closure of relations.

One class of sets and the method suggested by Knuth for computing it

are germane and will be reviewed briefly.

Let

X --(x1x2 . ..X2Ycx

denote a production of some context free grammar in which the nonterminals,

Xi, l_<isn, derive the null string. Then X is said to left depend

upon Y , denoted XIY . The class of sets to be computed is
--.

first(A) = (aeVT lAe+a) for all A eVN

where
vN

and V
T

as usual denote the non-terminal and terminal symbols

. of the grammar, + and ++ appended to a relation denote respectively

the transitive and reflexive transitive closures of the relation.

A necessary condition for top down deterministic parsing is that

left recursion may not occur so that X1+X is precluded for all X

in VN . This implies that the directed graph representing the left

dependency relation has no closed paths and, as a consequence, a

convenient partial ordering of the vertices of the graph exists which

a can be exploited in computing the required sets.

If A left depends upon Al,...,Am then the latter are immediate

descendents of A in the left dependency graph and from the definition

in terms of left dependency

m
first(A) = U first(Ai) .

i=l

Given a partial ordering of the vertices in which descender&s

AZ' -Am always precede the ancestor, this identity may be used to

compute the class of sets during a single left to right scan through

the sequence of vertices in the-partial ordering. A recursive procedure

2

FIRST(V) can be constructed which traverses in postorder a spanning

tree, rooted at vertex V , of that subgraph of the directed graph

accessible from V . Such a procedure would visit vertices in the

subgraph in an appropriate sequence and as each vertex corresponding

to a nonterminal symbol is visited the corresponding set can be

computed. It merely remains to ensure that each subgraph is treated.

The process is efficient in the sense that each vertex of the graph

is visited once only and each arc is inspected once only.

If left recursion was not forbidden then AI+B and B a+ A could

occur implying At+A and, thereby, closed paths in the left dependency

graph; however AI+B and B P+A imply that first(A) = first(B)

which reflects the equivalence relation induced on the vertices of the

graph by strong connectivity. If all vertices in such an equivalence

class are mapped-onto a single representative vertex then the resulting

directed graph is free of closed paths and can again be explored by

Knuth's efficient "topological sorting" algorithm.

The discussion above need not be restricted to the left dependency

relation, similar comments may be made with respect to any relation.

Algorithms for computing the transitive closure of relations based upon

these observations have been used by the author for several years; in

many cases the advantages accruing from inspecting each arc and vertex

once while computing the transitive closure offset inefficiencies in the

somewhat crude methods used to locate multiple vertex strongly connected

components. Tarjan's elegant algorithm for finding the strongly connected

- components of a graph makes this approach a great deal more attractive.

For graphs with close to V or Ti!

O(5) operations.

arcs the computation involves

Worst case behavior involving 3O(V) operations

would arise for the graph with 12 V(V-1) arcs but with no closed paths.

The following section describes a variant of Tarjan's algorithm and

outlines a tedious proof of its correctness. Section 3 deals with its
use in computing the transitive closure of a relation.

L

3

2. An Alternative Formulation of Tarjan's Algorithm.

Tarjan's algorithm involves traversing a spanning tree (or forest)

of a directed graph, accumulating the vertices visited on a stack, and
-.

periodically it emits sets of vertices corresponding to strongly

connected components from the stack. The traversal is postorder resulting

in the strongly connected components being emitted in the desired

sequence, i.e., if strongly connected components A and B are connected

by one or more arcs from A to B then B will be emitted before A l

Thus Tarjan's algorithm includes the required topological sort. It does

not however maintain a list of the strongly connected components

defining the ordered sequence.

IL

L

Assuming that such a list is required for a graph of n vertices

then, since a vertex is never simultaneously on the stack and in the--
list, both the stack and the list can be represented in an n element

array. This conceptually undesirable mixing of data structures permits

an extremely convenient encoding of necessary status information. It

.will suffice in the subsequent application if each strongly connected

component is represented in the list of strongly connected components

by a single vertex; however, for each vertex of the directed graph it

must remain possible to locate its representative in the list of strongly

connected components.

.
During execution of the algorithm each vertex passes from one to

the next of three states.

State 1. The vertex has not yet been placed on the stack.

State 2. The vertex is present on the stack as part of some as yet

incompletely determined strongly connected component.

State-3. The vertex has been removed from the stack and is represented

by a vertex in the list of strongly connected components.

As part of the process of finding vertices belonging to the same

strongly connected component, that vertex of the component which arrived

on the stack first is eventually identified and is used to represent all

--ertices of the component in the list. This identification is achieved

'jy maintaining an index for each-vertex in state 2; INDEX(v) will

will designate some vertex on the stack which belongs to the same

strongly connected component as v and which arrived on the stack no

later than v . By the time that all vertices of a strongly connected

component have been visited only that vertex of the component which. .
arrived on the stack first will have an index value which designates

itself on the stack.

Clearly all vertices in State 2 will have index values designating

vertices in the stack; when vertices are removed from the stack the

corresponding index values can be changed to indicate the position of

their representative in the list. By adopting the convention that

~Wv> = 0 if v is a State 1 vertex, the array INDEX encodes all

state information and eventually defines the mapping of vertices onto

representatives in the list of strongly connected components.

For each vertex v of the directed graph a set, SONS(v) , is

assumed to exist such that weSONS precisely when the directed

graph contains an arc from v to w . The topological sorting of

the strongly connected components of directed graphs specified in this

way is achieved by the procedure TOPOLOGICALSORT in Figure 1. Elements

n,n-l,... of the array VERTICES represent the stack; elements 1,2,...

are used to build the list of

To facilitate proof that

identified by this procedure,

adopted.

strongly connected components.

strongly connected components are correctly

the following notational conveniences are

-1. x + y denotes the existence of an arc from vertex x to vertex y .

2. x < y denotes that vertex x immediately precedes y on the stack.

3.. INDEX(y) used as an operand with < is to be interpreted as a

reference to the vertex on the stack designated by IM>EX(y) ,

i.e., to VERTICES(INDEX(y)) l Likewise INDEX(y) h y is understood

to mean that INDEX(y) does not designate itself on the stack.

4. yescc(x) denotes that y belongs to the same strongly connected

component as x .

5

t

L

~TOPoLoGICALSORT;

s a stackindex, listindex, i;

w m VERTICES, IlVDEX(l::n);

~ORDERVFJRTICES(

be&& w w;
-.

INDEX(x) + stackindex

E w dONS(x) do-
c- stackindex -1; VERTICES(stackindex) +- x;

*g INDEX(w) = 0 -ORDERvERTICES(

g INDEX(w) > INDEX(x) e INDEX(x) + IHDEX(w);

comment if the preceding test is satisfied then w is on the

stack and INDEX(w) designates a vertex which arrived on the

stack earlier than that indicated by INDEX(x). As this earlier
vertex belongs to the same strongly connected component as x,

INDEX(x) is updated to designate this earlier vertex;

end; .

s the implicit assignment TREATED(x) -c-true occurs here;
gx = VEKUCES(INDEX(x)) t&en-

wx is the vertex of a strongly connected component which

arrived on the stack first. Pop the vertices of the component
from the stack updating the index of each to indicate the next

list position until x itself is popped then insert x in the next

list position;

listindex +- listindex+l;

Ew c VERTICES(stackindex); INDEX(w) +- listindex;

stackindex c stackindex+l;

until w = x;

VERTG(listindex) + x

s;

. end;-

listindex + 0; stackindex c- n+l; for i +l=nsINDEX(i)-0;
ORDERVERTICES (i) ;

end:

Figure 1

A major obstacle to understanding this algorithm' and indeed Tarjan's

original version appears to be that certain variables recording the current

status of the computation are never referenced and so do not appear

explicitly in encodings of the algorithm. For purposes of proof it is

convenient to insert them. Conceptually there exists within the

procedure TOPOLOGICALSORT a Boolean array TREATED; TREATED(x) is assumed

to be initialized to false for each vertex x . An implicit assignment

TREATED(x) +- true

immediately follows the for statement of the procedure ORDERVERTICES-
in Figure 1.

The proof that strongly connected components are correctly identified

depends upon the following properties of the procedure ORDERVERTICES in

Figure 1. --

1. For any vertex x , immediately after TREATED(x) is assigned the

value true , if INDEX(x) designates x then x will be removed

from thzack at that time.

9L. As a consequence of the postorder traversal any true descendent y

(in the spanning tree) of a vertex x on the stack will arrive on

the stack after x ; when TREATED(x) is assigned the value $?ue-
then TREATED(y) = = . A true ancestor y (in the spanning

tree) of a vertex x on the stack will precede x on the stack;

when TREATED(x) is assigned the value true , TREATED(y) will
a --

,- -

be false .

3. For each vertex x , when x is placed on the stack ,, INDEX(x)
initialized to designate x. itself; subsequent assignments to

'INDEX(x) preserve INDEX(x) <' x .

is

Lemma 1. When TREATED(x) is assigned the value true , if INDEX

designates vertex z then for all y for which z F,

W Y E scc(x> J

(ii) if TREATED(y) = e then there exists no arc y --) r in

the directed graph such that r <' z and x <* y .

i

I
L

i

L

Proof. Assertion (i) is proved by induction on the hypothesis that it

holds for all vertices v fax which TREATED(v) = true .

Consider the processing of vertex x . The cozonal call on

ORDERVERTICES ensured that ",ny son of" x is either on the stack or

represented in the list of stror,gl.y connected components prior to its

inspection with a view to updating INDEX(x) . Since TREATED(x) is

about to be assigned the value true , it must be shown that IJ!JDEX(x)

is left with a value consistent with the assertions.

Case 1. No assignment changing the initial value of INDEX(x) is made.

This case arises if x has no sons or only sons which are either

represented in the list of strongly connected components or sons such

as w t which are on the stack, but for which Il!JDEX(x) <* INDEX(w) .

If x is thelast vertex on the stack then the assertions are

vacuous.

If x is not the last vertex on the stack then there exists

. wl cSONS(x) for which

(>a x < 'W
1. j

(b) INDJ%(w.$ if wl , since w1 has not been removed from the stack,

(c) TREATm(w1) = true so that the inductive hypothesis applies to wl .

(a) and (b) imply that IL!$Dfix(wl) <* x 9 but since no assignment to

INDEX(x) occurs, IHDEX(w1) must designate x . Consequently the

inductive hypothesis applied to wl establishes that, for all y

satisfying x 2 y j YESCC(X) ; assertion (i) then is true in this

case.

The following cases cover the three distinct situations in which a

new value, INDm(w) j is assigned to INnm(x) after its initialization;

such assignments are conditional upon INDEX(w) -? INDEX(x) where

w E SONS(x) . In that this new value is potentially the value z in the

assertions of the lemma, it will be shown that in each case

(1) x r:scc(t) where t is the vertex designated by INDEX(w) j

L

.

(2) any vertex y on the stack which follows t and precedes x

which is not covered by the inductive hypothesis belongs to the

same strongly connected component as t . TREATED(y) is true

for x <y so the inductive hypothesis applies to such y .

(1) and (2) suffice to complete the proof of assertion (i) of the

lemma.

Case 2. weSONS and x <' w .

Since only descendents of x in the spanning tree follow x on

the stack, TREATED(w) is e and the inductive hypothesis applied

to w together with INDEX(w) -? INDEX(x) <* x -? w establish that

x E see(t) . The inductive hypothesis for w suffices to demonstrate

that any y sati@ying t < y and y < x also satisfies yescc(t) .

Case 3. WESONS where w <+ x and INDEX(w) # w .

INDEX(w) # w implies that TREATED(w) = true . For x to follow w

.in the stack when TRIMTED is true there must exist in the spanning

tree some vertex v with distinct z ul and u2 j and paths such that

(>
*

a v-(u -+w1 j where TREATED(s) -= true for any vertex s in the

path u1 2 w j

04
-E

v -‘u2 -+x j where TREATED(s)

path u2 5 x .

= z for any vertex s in the

The inductive hypothesis applies to ul ; INDEX(u1) X* v since u
remains on the stack and so WESCC(V) implying that * 1

w + v is a path

in the directed graph. Combining this with (b) above and the fact that

w&Ok(x) , we have

(1
* *

c w-+v-+u2 -,x +w

so that x E see(w) . But the inductive hypothesis applies to w so

w E see(t) . Hence x~:scc(t) .

Only vertices in the path u2 -) x can satisfy both of the conditions,

that they precede x on the stack and were not present on the stack when

TREATED(w) was assigned the value true- . These vertices are therefore

9

not known to be members of the same strongly connected component as t

by virtue of the inductive hypothesis applied to w ; they clearly do

belong to see(t) by virtue of (c) and wescc(t) .

i

i

i

Case 4. w GONS(x) where w <+ x &d INDEX(w) = w .

W must be an ancestor of x in the spanning tree. (w <?- x precludes

it being a descendent and as seen in Case 2, INDEX(w) = w rules out the

only other possibility.)
+

Thus w -+x and w eSONS(x) implies XESCC(W) . In this case
w = t so x E see(t) . As a consequence of the postorder traversal any

vertices on the stack between t and x lie on the path t f x and so

also belong to see(t) .

Assertion (ii) follows from observing that if any vertex y has

several sons =.wi9 -l<ilm, when TREATED(y) becomes

INDEX(y) d* INDEX(wi) for 1 < i <m .

true j

Assume that an arc y + r exists such that r <' z and x -? y l

. When TREATED(y) becomes true since r ESONS(~) then INDEX(y) <* r +.- ,

NOW x <* y implies

either

(1) that x = y in which case INDEX(x)

TREATED(x) is assigned true since

we have z <* r -- a contradiction,

or

-c* r j but then when

INDEX(x) designates z

(2)
X is an ancestor of y in the spanning tree, i.e.,

X = u -+u +...-+u12 n = y is a path in the spanning tree.

Since by the same observation, for 1 < j < n-l ,- -
INDEX(uj) <* INDEX(u

j+l) hw en TREATED is assigned true ;

it is clear that the same contradiction will arise. Cl
L

Theorem 1. The procedure ORDERVERTICES correctly identifies strongly

connected components of an arbitrary directed graph.

Proof. If INDEX(x) designates x when TREATED(x) is assigned true

then the theorem follows from lemma 1 since TREATED(y) = e for aTy

satisfying x 4* y . 0

10

3. Computing the Transitive Closure of a Relation.

Let R be a given relation and RPLUS be a two dimensional array

initialized so that all elements have the value false ;

be assigned the value e if and only if i R+j

RPLUS(i,j) is to

. It is assumed

that R is specified by sets

SONS(i) = (j 1 iRj) .

If ORDERVERTICES in Figure 1 is replaced by the procedure CLOSURE

Figure 2 then invoking TOPOLOGICALSORT will achieve this objective.

CLOSURE is merely an elaboration of ORDERVERTICES. While processing

w E SONS(x) ., RPLUS(x,w) is assigned true . Subsequently two

possibilities arise,

either --_

0 w is on the stack and so WE see(x) in which case no

assignment is made to RPLUS at this time

or

1
(2) W is represented in the list of strongly connected components

and the assignment

RPLUS(x,*) t- RPLUS(x,*) or RPLUS(w,*)
NY

is necessary. RPLUS(z,+) denotes row z of RPLUS; for

convenience availability of bitwise Boolean operations on

Boolean vectors is assumed.

Finally, whenever a vertex w , in the same strongly connected component

as the representative vertex x j is removed from the stack the assignment

RPWS(x,*) + RPLUS(x,*) or- RpLus(w,*)

is executed.

11

I

w CLosuRE(~ e, x) ;

bainw;

INDEX(x) + stackindex + stackindex -1; VERTICES(stackindex) + x;

~wESONS(X) do-

= RPLUS(x,w) + tz; ifIMGX(w) = 0 t~cLOSURE(w);

g INDEX(w) < sbdd.ndex s RPLUS(x,*) + RPLUS(x,*) or RPLUS(w,*)-
% g INDEX(w) > INDEX(x) s INDEX(x) + INDEX(w);

end;

i&=VERTICES(INDEX(x)) $en-

begin listindex + listindex+ 1;

-W + VERTICES(stackindex); INDEX(w) + listindex;

RPLus(x,*) + RPLus(x,*) or- RPLus(w,*);

stackindex + stackindex+l;

mun w--'= x;

VERTICES(listindex) + x;

end;-
el&

Figure 2

Theorem 2.m If xf y is a path in the directed graph representing

relation R then the procedure CTx)SURE leaves RPLUS(x,y) = % for

any x in the list of strongly connected components.

Proof. For any vertex v on the stack maintained by the procedure

CLOSURE, when all members of SONS(v) have been examined then by

construction RJ?LUS(v,t) = true iff

either (1) t E SONS(v)

or (2) weSONS and RPLUS(w,t) = = and wk see

Since a&SONS(b) implies bRa j apart from the constraint that

this is simply the usual recursive definition of R+ . It follows

(>v .

wpl see(v)

from

12

i

I

L

this and the work of Knuth cited that if v-, ul 3 . . . --) u is a path
in the directed graph corresponding to R j in which, fern 1 < j < n ,- -
uCj / see(v) then RPLUS(v,u) is true .

Tf' vk c see(x) for 1 < k < m then by construction- - -.
m

RPLUS(x,*) = v RJ?LUS(vk,*)
k=l

from which it follows that if x +3 y is an arbitrary path in the directed

graph corresponding to R then RPLUS(x,y) = e . a

In computing the transitive closure of R , each arc and each vertex

of the directed graph corresponding to R are visited once; for each

strongly connected component of k vertices, k-l Boolean vector

operations are performed each involving V elements. One Boolean vector

operation is needed for each arc connecting distinct strongly connected

components. One Boolean assignment is made for each arc.

If there are t strongly connected components each with more than

. one vertex and these account for V
S

of the total of V vertices; if

in addition E
S

of the total of E arcs connect vertices in the set Vs

then the number of operations needed is bounded by

kl(E-Es)V + k2E + k3(Vs -t)V+ k4V+ k
5

for some constants ki j l_<iL5.

Worst case behavior occurs when the vertices can be placed in a

-sequence in which each member is connected by an arc to its successors

and itself, then E
S
= vs = t = 0 and E = ; v(v+1) . Best case

behavior occurs when E = V-l and E = V 5 t = 0 or when E = E = V' ,

vs ;V and t
S S S

=l. The number of operations needed therefore ranges

between O(3) and O(V3) .

This algorithm has brevity as one recommendation (compared with the

algorithms in [1,2] which improve on the worst case behavior). It offers

occasional conveniences when compared to methods involving incidence

matrix representations of R . For example, Knuth's sets first(A) are

relations on
'N "T rather than (V,uV,> x (VNUVT) . It is easy to

13

C&L$ a&~~anta~e cd this lij.$l: tl::J py-tSp:~l :),,: Y \‘I. t’ i....*L . _ * . *... . ?!:3.71.). :,?.:s$;: :‘ :*::

offer Boolean vector operations for moderate.Ly large tl a:; d prirni< ivtt
operation, thus in many practical situations the effective behavior is

more like O(V) to O(V2) operations.

References

I11] Ve Lo Ar-tazarov, E. A. Dinic, M. A. Kronrod and I. A. Faradzev,

"On economical construction of the transitive closure of a

directed graph," Soviet Math. Dokl. 11 (1970), 1209.

[2] M. E. Furman, "Ap-plication of a method of fast multiplication of

matrices in-the problem of finding the transitive closure of a

graph," Soviet Math. Dokl. 11 (1970), 1252.

1

i

[3] D. E. Xinuth, "Top-Down Syntax Analysis," Acta Informatica 1 (1971) 9
799

[4] R. Tarjan, "Depth-first search and linear graph algorithms,r' SIAMJ.
Corn-put. 1 (1972), 146.

.

14

