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Abstract

An algorithmis presented for conputing the transitive closure of
an arbitrary relation which is based upon a variant of Tarjan's al gorithm
[4] for finding the strongly connected conponents of a directed graph.
This variant leads to a nore conpact statement of Tarjan's al gorithm

If Vis the number of vertices in the directed graph representing
the relation than the worst case behavior of the proposed al gorithm
3
)

involves O(V operations. In this respect it is inferior to existing

: : : log, 7
algorithms [1,2] which require 0(v5/1og V) and QV log V)
operations respectively. The best case behavior involves only O(V2)
oper ations.
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reproduction in whole or in" part is permtted for any purpose of the
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1. [ ntroduction.

The origin of this transitive closure algorithmis in a paper by
Knuth [3] in which he defined certain sets, of interest in parsing
context free languages, in terms of the transitive closure of relations
ne class of sets and the nethod suggested by Knuth for conputing it
are germane and will be reviewed briefly

Let

X —leX2 . ..XQYOt

denote a production of some context free grammar in which the nontermnals

X; 5 1<i<n, derive the null string. Then X is said to left depend

upon Y , denoted x2Y . The class of sets to be conputed is

first(A) = {aeVTIA/z+a} for all A evy

wher e Vi and \ﬁ. as usual denote the non-termnal and termnal synbols
of the grammar, + and * appended to a relation denote respectively
the transitive and reflexive transitive closures of the relation

A necessary condition for top down determnistic parsing is that
| eft recursion may not occur so that X£xis precluded for all X
in VN . This inplies that the directed graph representing the |eft
dependency relation has no closed paths and, as a consequence, a
conveni ent partial ordering of the vertices of the graph exists which
can be exploited in conputing the required sets
) If Aleft depends upon A_l,...,Am then the latter are immediate
descendents of A in the |eft dependency graph and fromthe definition

in terms of left dependency

m
first(A) = U first(a,)
i=1 :
Gven a partial ordering of the vertices in which descendents
Ay oeesh al ways precede the ancestor, this identity may be used to
conpute the class of sets during a single left to right scan through

the sequence of vertices in the-partial ordering. A recursive procedure
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FIRST(V) can be constructed which traverses in postorder a spanning
tree, rooted at vertex V , of that subgraph of the directed graph
accessible fromV . Such a procedure would visit vertices in the
subgraph in an appropriate sequence and as each vertex corresponding
to a nontermnal symbol is visited the corresponding set can be
conputed. It nerely renmmins to ensure that each subgraph i S treated.
The process is efficient in the sense that each vertex of the graph
is visited once only and each arc is inspected once only.

If left recursion was not forbidden then A¢ B and B ¢ acoul d
occur inplying Af a4 and, thereby, closed paths in the left dependency
graph; however A Band B a inply that first(A) = first(B)
which reflects the equival ence relation induced on the vertices of the
graph by strong connectivity. [f all vertices in such an equival ence
class are mapped-onto a single representative vertex then the resulting
directed graph is free of closed paths and can again be explored by
Knuth's efficient "topol ogical sorting" algorithm

The di scussion above need not be restricted to the left dependency
relation, simlar comments nmay be made with respect to any relation.

Al gorithms for conputing the transitive closure of relations based upon

t hese observations have been used by the author for several years; in

many cases the advantages accruing frominspecting each arc and vertex
once while conputing the transitive closure offset inefficiencies in the
sonewhat crude methods used to |ocate multiple vertex strongly connected
conponents. Tarjan's el egant algorithm for finding the strongly connected

- conponents of a graph makes this approach a great deal nore attractive.

For graphs with close to V or v° arcs the conput ation involves

o(v_g) operations. Wrst case behavior involving qu) operations

woul d arise for the graph with % V(V-1) arcs but with no closed paths.
The follow ng section describes a variant of Tarjan's al gorithm and

outlines a tedious proof of its correctness. Section % deals withits

use in conputing the transitive closure of a relation.




2. An Alternative Fornulation of Tarjan's A gorithm

Tarjan's al gorithm involves traversing a spanning tree (or forest)
of a directed graph, accunulating the vertices visited on a stack, and
periodically it emts sets of verticeé'corresponding to strongly
connected conponents from the stack. The traversal is postorder resulting
in the strongly connected conmponents being emtted in the desired
sequence, i.e., if strongly connected conponents A and B are connected
by one or nore arcs fromA to Bthen Bwill be emtted before A.
Thus Tarjan's al gorithm includes the required topological sort. It does
not however maintain a list of the strongly connected conponents
defining the ordered sequence.

Assuming that such a list is required for a graph of n vertices
then, since a vertex is never sinultaneously on the stack and in the
list, both the stack and the list can be represented in an n el enent
array. This conceptual |y undesirable mxing of data structures permts
an extrenely convenient encoding of necessary status information. It

-will suffice in the subsequent application if each strongly connected

component is represented in the list of strongly connected conponents
by a single vertex; however, for each vertex of the directed graph it
must remain possible to locate its representative in the list of strongly
connected conponents.
During execution of the algorithmeach vertex passes fromone to
the next of three states.

State 1. The vertex has not yet been placed on the stack.

State 2. The vertex is present on the stack as part of sone as yet
inconpl etely determined strongly connected conponent.

State 3. The vertex has been removed fromthe stack and i s represented
by a vertex in the list of strongly connected conponents

As part of the process of finding vertices belonging to the sanme
strongly connected conponent, that vertex of the conponent which arrived
on the stack first is eventually identified and is used to represent al
—ertices of the conponent in the list. This identification is achieved
5y maintaining an index for each-vertex in state 2; | NDEX(v) will
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wi || designate some vertex on the stack which belongs to the sane
strongly connected conponent as v and which arrived on the stack no
later than v . By the tinme that all vertices of a strongly connected
conponent have been visited only that vertex of the conponent which
arrived on the stack first will have an index val ue which designates
itself on the stack.

Cearly all vertices in State 2 will have index val ues designating
vertices in the stack; when vertices are renoved fromthe stack the
correspondi ng i ndex val ues can be changed to indicate the position of
their representative in the list. By adopting the convention that
INDEX(v) = 0 if vis a State 1 vertex, the array | NDEX encodes all
state information and eventually defines the mapping of vertices onto
representatives in the list of strongly connected conponents

For each vertex v of the directed graph a set, SONS(v) , is
assumed to exist such that wesSoNs(v) precisely when the directed
graph contains an arc fromv to w . The topol ogical sorting of
the strongly connected conponents of directed graphs specified in this
way is achieved by the procedure TOPOLOGICALSORT in Figure 1. Elenents
nn-1,... of the array VERTICES represent the stack; elenments 1,2,...
are used to build the [ist of strongly connected conponents

To facilitate proof that strongly connected conponents are correctly
identified by this procedure, the follow ng notational conveniences are
adopt ed.

-1. X -y denotes the existence of an arc fromvertex x to vertex y .

2. X <y denotes that vertex x immediately precedes y on the stack.

5.. INDEX(y) used as an operand with < is to be interpreted as a
reference to the vertex on the stack designated by INDEX(y) ,
i.e., to VERTICES(INDEX(y)).Li kewi se INDEX(y) # y is understood
to mean that |NDEX(y) does not designate itself on the stack

L. yesce(x) denotes that y belongs to the same strongly connected
conponent as x .



Procedure TOPOLOGICALSORT;
begin integer stackindex, listindex, i;

integer array VERTICES, INDEX(1::n);
Procedure ORDERVERTICES(integer value X);

Egg’j‘_g integer W,
INDEX(x) « stackindex - stackindex -1; VERTICES(stackindex) < X;
for w eSONS(x) do
begin if INDEX(w) = O then ORDERVERTICES(w);
if INDEX(wW) > INDEX(x) then INDEX(x) - INDEX(w);
comment if the preceding test is satisfied then wis on the
stack and | NDEX(w) designates a vertex which arrived on the
stack earlier than that indicated by INDEX(x). Aq this earlier
vertex belongs to the same strongly connected conponent as x,
I NDEX(X) is updated to designate this earlier vertex;
end;
comnent the inplicit assignment TREATED( x)c_m occurs here:
if x = VERTICES(INDEX(x)) then
begin x is the vertex of a strongly connected conmponent which
arrived on the stack first. pop the vertices of the conponent
fromthe stack updating the index of each to indicate the next

list position until x itself is popped then insert x in the next

l'ist position;

listindex « listindex+ 1;

repeat w ~ VERTICES(stackindex); | NDEX(W) « |istindex;
st acki ndex « stackindex+ 1;

until w=x;
VERTICES(listindex) < X
end;

. end:

NN

listindex ~ 0; stackindex « nl; fOr i w1 yntil n 4o INDEX(i) « O3
e o VoW ) lanad ?

for i « 1 until n do if INDEX(i) = O then ORDERVERTICES ( 1)’
end:_

v

Figure 1
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A maj or obstacle to understanding this algorithmi and indeed Tarjan's
original version appears to be that certain variables recording the current
status of the conputation are never referenced and so do not appear

explicitly in encodings of the algorithm  For purposes of proof it is
convenient to insert them Conceptually there exists within the
procedure TOPOLOG CALSORT a Bool ean array TREATED, TREATED(x) is assumed
to be initialized to false for each vertex x . An inplicit assignnent

Lara v N W V]

TREATED( X) « true

Fa e Vv

inmmedi ately follows the for statement of the procedure CRDERVERTICES

in Figure 1.
The proof that strongly connected conponents are correctly identified
depends upon the follow ng properties of the procedure ORDERVERTICES in

Figure 1.

1. For any vertex x , inmediately after TREATED(x) is assigned the
value true , if INDEX(x) designates x then x will be renoved
from the stack at that tine.

AV

As a consequence of the postorder traversal any true descendent vy
(in the spanning tree) of a vertex X on the stack will arrive on
the stack after x ; when TREATED(X) is assigned the value +true
then TREATED(Y) = true . A true ancestor y (in the spanni ngNM
tree) of a vertex x on the stack will precede x on the stack;
when TREATED(x) is assigned the val ue tlﬂi’— TREATED(y) Wil
be fal se .

NSNS

5. For each vertex x , when x is placed on the stack, |NDEX(x) s
initialized to designate x jtself; subsequent assignments to
"I NDEX(X) preserve INDEX(x) < x

Lenmma 1. When TREATED(x) is assigned the value true , if INDEX(x)
designates vertex z then for all y for which z <"y,
(1) v e sce(x),
(i) if TREATED(Y) = true then there exists no arc y - rin
the directed graph such that =» < zand x < y .




Proof . Assertion (i) is proved by induction on the hypothesis that it
holds for all vertices v for which TREATED(v) = true .
Consi der the processing of vertex x . The conditional call on

ORDERVERTICES ensured that any son of" X s either on the stack or
represented in the list of strongly connected conponents prior to its
inspection with a view to updating INDEX(X) . Since TREATED(X) is
about to be assigned the valuetrue | jt npust be shown that INDEX(x)
Is left with a value consistent with the assertions.

Case 1. No assignnment changing the initial value of INDEX(x) is nade.
This case arises if x has no sons or only sons which are either
represented in the [ist of strongly connected conponents or sons such
as w , which are on the stack, but for which INDEX(x) < | NDEX(w)

[f x is the last vertex on the stack then the assertions are
vacuous.

If x is not the last vertex on the stack then there exists

w, €80NS(x) for which

(a) x W

. F .
(b) INDEX(WI) < w;, since wl has not been renoved from the stack,

(c) TREATED(Wl) = true so that the inductive hypothesis applies to W

(a) and (b) inply that INDEX(wl) < x » bubt since no assignment to
| NDEX(x) occurs, INDEX(wl) must designate x . Consequently the

i nductive hypothesis applied to W establishes that, for all y
satisfying x < Y » yesce(x) ; assertion (i) thenis true in this

case.

The follow ng cases cover the three distinct situations in which a
new val ue, INDEX(w) , is assigned to INDEX(x) after its initialization;
such assignments are conditional upon | NDEX(w) < | NDEX(x) where
we SONS(x) . In that this newvalue is potentially the value z in the
assertions of the lemma, it will be shown that in each case

(1) X escc(t) where t is the vertex designated by |NDEX(wW) |,
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(2) any vertex y on the stack which follows t and precedes x
which is not covered by the inductive hypothesis belongs to the
same strongly connected conponent as t . TREATED(y) is true
for x <y so the inductive hypothesis applies to such y T

(1) and (2) suffice to conplete the proof of assertion (i) of the

| emma.

Case 2. weSONS(x) and X < w

Since only descendents Of X in the spanning tree follow x on
the stack, TREATED(W) is true and the inductive hypothesis applied
to w together with I NDEX(W) <" | NDEX(x) Sx < w establish that
X e sce(t) . The inductive hypothesis for w suffices to denmonstrate
that any y satisfying t <y and y < x also satisfies yesce(t) .

Case 7. weSONS(x) where w < x and | NDEX(W) # w .
INDEX(W) #w inplies that TREATED(wW) = true . For x to follow w

.in the stack when TREATED(w) i S true there nust exist in the spanning

eV

tree sone vertex v with distinct sons uy and u, » and paths such that

*
(a) v - uy »w, where TREATED(s)= true for any vertex s in the

*
path u, - w,

1

*
(b) v - u, - x, where TREATED(s) = false for any vertex s in the

pat h ueix.

The inductive hypothesis applies to u., ; INDEX(ul) < v since uy
remains on the stack and so wesce(v) inplying that w3 vis a path
in the directed graph. Conbining this with (b) above and the fact that

w&k(x) , we have

* *
(c) WSV Uy X oW

so that X e scc(w) . But the inductive hypothesis applies to w so
w e sce(t) . Hence xesce(t) .

Only vertices in the path u, » X can satisfy both of the conditions,
that they precede X on the stack and were not present on the stack when
TREATEI(W) was assigned the value true . These vertices are therefore



not known to be nenbers of the same strongly connected conponent as t
by virtue of the inductive hypothesis applied to w; they clearly do
belong to scc(t) by virtue of (c) and wesce(t) .

Case L. w cSONS(x) where w < x and | NDEX(W) =w.

w must be an ancestor of x in the spanning tree. (w < x precl udes
it being a descendent and as seen in Case 2, |NDEX(w) = w rules out the
only other possibility.)

Thus w5 x and w e SONS(x) inplies xesce(w) . |In this case
w=1t so x ¢ sce(t) . As a consequence of the postorder traversal any
vertices on the stack between t and x lie on the path t Lx and so
also belong to sce(t) .

Assertion (ii) follows from observing that if any vertex y has
several sons w, , 1<i<m, when TREATED(y) becones true ,
| NDEX(y) < TEX (w,) for 1 <i <m .
Assume that an arc y - r exists such that r < z and x < y .
Wien TREATED(y) becomes true since r esSoNS(y) then | NDEX(y) < r .
Nowx <y inplies -
ei t her

(1) that x =y in which case INDEX(x) < , but then when
TREATED(x) is assigned true since |NDEX(x) designates z
we have z < r -- a contradi ction,

(2) x is an ancestor of y in the spanning tree, i.e.,
X = up 2Uy = ... o>u =yisapathin the spanning tree.
Since by the sane observation, for 1 <j <n-Il ,
INDEX(uJ.) < INDEX(uj+l) when TREATED(u.) i S assigned true ;
it is clear that the same contradiction wll arise. O

Theorem 1. The procedure ORDERVERTI CES correctly identifies strongly
connected conponents of an arbitrary directed graph.

Proof . If I NDEX(x) designates x when TREATED(x) is assigned true
then the theorem follows from Lemma 1 since TREATED(y) = true for all y
satisfying x < y . O

10
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3. Conputing the Transitive Cosure of a Relation.

Let R be a given relation and RPLUS be a two di mensional array
initialized so that all elements have the value false ; RPLUS(i,j) is to
be assigned the value true if and only if i R+j . It is assunmed

AN

that Ris specified by sets
SONS(i) = (j | irj3} .
|f ORDERVERTICES in Figure 1 is replaced by the procedure CIOSURE
Figure 2 then invoking TOPOLOGICALSORT Wi || achieve this objective.
CIOSURE is nerely an elaboration of ORDERVERTICES. While processing

we SONS(x) , RPLUS(x,w) i S assigned true . Subsequently two
possibilities arise,

ei t her
(1) wis on the stack and so v sce(x) in which case no
assignnent is made to RPLUS at this time

or
(2) w is represented in the list of strongly connected conponents
and the assignnent
RPLUS(x,*) < RPLUS(x,*) or, RPLUS (w, *)
I's necessary. RPLUS(z,*) denotes row z of RPLUS; for
conveni ence availability of bitwise Bool ean operations on
Bool ean vectors is assuned.
Finally, whenever a vertex w, in the same strongly connected conponent

as the representative vertex x , is renoved fromthe stack the assignnent
RPLUS(x,*) « RPLUS(x,*) or RPLUS(w, %)

is executed.

11



procedure CLOSURE(integer value x);
begin :’Lnteger W
I NDEX(x) « stackindex « stackindex -1, VERTICES(stackindex) « X;
for w e SONS(x) do-
= RPLUS(x,w) + true; iiINDﬁﬁ((w) = 0 then CLOSURE(W);
if INDEX(w) < stackindex then RPLUS(x,*) « RPLUS(x,*) Of RPLUS(w, *)
else if | NDEX(W) > | NDEX(X) then INDEX(x) « | NDEX(W);
end el e
if x = VERTICES(INDEX(x)) then
begin listindex ~ listindex+ 1;
repeat w + VERTI CES(stackindex); |NDEX(w) « listindex;
RPLUS (x, %) « RPLUS(x,*) or RPLUS(w,*);
stacki ndex « stackindex+ 1;
bl W X;

VERTICES (1istindex) « X;

end;
end;
Figure 2
Theorem 2. If x 1y is a path in the directed graph representing

relation R then the procedure CLOSURE | eaves RprUS(x,y) = true for
any x in the list of strongly connected conponents.

Proof . For any vertex v on the stack maintained by the procedure
CLOSURE, when all nenbers of SONS(v) have been exami ned then by
construction RPLUS(v,t) = true |ff

ei t her (1) t e SONS(v)
or (2) wesons(v) and RPLUS(w,t) = true and wjf scc(v)

Since aecSONS(b) inplies bRa , apart from the constraint that w¢sce(v)
this is sinply the usual recursive definition of B . Tt follows from

12



this and the work of Xnuth cited that if v- w . . . =U s apath

in the directed graph corresponding to R, in which, for 1 <] <n,

u, / sce(v) then RPLUS(V,uJ) is true

If v, « see(x) for 1<k < mthen by construction

m
RPIUS(x,%) = V RPLUS(v,,*)
k=1

fromwhich it follows that if x & y is an arbitrary path in the directed
graph corresponding to R then RPILUS(x,y) = true . O

In conputing the transitive closure of R, each arc and each vertex
of the directed graph corresponding to R are visited once; for each
strongly connected conponent of k vertices, k-1 Bool ean vector
operations are performed each involving V elements. One Bool ean vector
operation is needed for each arc connecting distinct strongly connected
conponents.  One Bool ean assignnent is made for each arc.

If there are t strongly connected conponents each with nore than
one vertex and these account for VS of the total of V vertices; if
in addition ES of the total of E arcs connect vertices in the set v,
then the number of operations needed is bounded by

kl(E-ES)V + KE + k5(VS 1)V KV o+ k5

for some constants ki, 1<i<s.

Wrst case behavior occurs when the vertices can be placed in a
-sequence in which each nenber is connected by an arc to its successors
and itself, then ES =V, =t =0 and E = % v(w1l) . Best case '
behavi or occurs when E = V-1 and E = ! =t =0 or when E = ES= s
vy =V and t =1 . The nunber of operations needed therefore ranges
bet ween O(VE) and o(v5).

This algorithm has brevity as one recommendation (conpared with the
algorithms in [1,2] which inprove on the worst case behavior). |t offers
occasi onal conveni ences when conpared to nmethods involving incidence
matrix representations of R . For exanple, Knuth's sets first(A) are

relations on v_xV, rather than WNU%JX WNU%Q. It is easy to

N"T
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vase advantage of this wilth the present algertius.  Manmy coming? eon

of fer Boolean vector operations for moderately larse n g 4 primic Lve
operation, thus in nany practical situations the effective behavior is
nore like V) to o(vz) oper ati ons.
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