FIND ING THE MAXIMAL INC IDENCE MATR IX OF A LARGE GRAPH

by
M. Overton
A. Proskurowski

STAN-CS-75-509 SEPTEMBER I975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences STANFORD UN IVERS ITY

Michael Overton and Ändrzej Proskurowski
Computer Science Department Stanford University

Abstract

The paper deals with the computation of two canonical representations of a graph. A computer program is presented which searches for "the maximal incidence matrix" of a large connected graph without multiple edges or self-loops. The use of appropriate algorithms and data structures is discussed.

This research was supported in part by National Science Foundation grant DCR72-03752 A02 and by the Office of Naval Research contract NR 044-402. Reproduction in whole or in part is permitted for any purpose of the United States Government.

1. Introduction.

The notion of the maximal incidence matrix as a canonical representation of a graph was introduced in [1]. An algorithm to search for this matrix (a graph being given by--any of its incidence matrices) was presented there together with a computer program which performed the search.

In this paper we briefly review basic ideas of [1] and discuss another "maximal incidence matrix" of a graph. Our main concern is the application of the search algorithm to large graphs and an efficient use of computer memory when representing graphs and carrying on the search. A variety of arrays and linked lists will be employed in order to limit the amount of parameters passed along with the recursive subroutine calls. We have developed a computer program written in AIGOL W that maintains the data structures and performs the search. The program is presented and its functions are discussed.

2. Basic Notions.

In order to use concrete phrases when discussing the problem and the proposed solution, let us define our basic vocabulary.

A graph will mean two sets N (of nodes) and E (of edges), together with a function F (the incidence function) which ascribes an edge $a \in E$ to some unordered pair of nodes n_{1} and n_{2} '

$$
F\left(n_{1}, n_{2}\right)=F\left(n_{2}, n_{1}\right)=a
$$

We constrain the function F to be partially defined (in particular, not defined for $n_{1}=n_{2}$ thus excluding graphs with self-loops) and require that F is single-valued, i.e., graphs do not have multiple edges. Nodes n_{1} and n_{2} are said to be adjacent and the edge a is said to be incident to nodes n_{1} and n_{2}. The valence of a node n_{1} is the number of edges incident to it, and will be denoted valence $\left(n_{1}\right)$. A graph is connected if for every pair of nodes $u, v \in \mathbb{N}$ there exists a sequence of adjacent nodes $n_{i}(i=0, \ldots, k)$ such that $n_{0}=u$,
$n_{k}=v$ and $F\left(n_{i-1}, n_{i}\right)$ is defined for all $i=1, \ldots, k$. In the following we shall consider only connected graphs, for simplicity.

We shall label elements of the sets of nodes N and edges E by consecutive integers beginning with 1 . We shall represent a graph by listing entries of its incidence function which is a shorthand for its incidence matrix: a sparse binary matrix of $n=|\mathbb{N}|$ columns corresponding to the nodes and $e=|E|$ rows, each corresponding to an edge. The element $M(p, i)$ of the incidence matrix M equals 1 if the edge label-led p and node labelled i are incident, and 0 otherwise. We will denote edge labels p, q, r and node labels i, j , k . The p-th row of the matrix, corresponding to the edge labelled p, will be referred to as $M(p, *)$ and the i-th column, corresponding to the node labelled i , will be referred to as $M(*, i)$.

An important notion for our discussion is that of isomorphic graphs. Two graphs, $G_{1}=\left(N_{1}, E_{1}, F_{1}\right)$ and $G_{2}=\left(N_{2}, E_{2}, F_{2}\right)$, are said to be isomorphic if they may be represented by identical sets $N_{1}=N_{2}$ and $E_{1}=E_{2}$, and identical function $F_{1}=F_{2}$. With our assumption about labelling sets N and E, this means that the labels in one of the graphs may be permuted in a way transforming the incidence function into a form identical with the other. In terms of the incidence matrices this means exchanging columns and rows of one matrix so as to get a matrix identical with the other one.

Let us consider incidence matrices of a graph which have rows arranged lexicographically in descending order. Then, for a given graph, we can define an ordering relation on the class of row-ordered incidence matrices. For two unequal matrices M_{1} and M_{2} we say that M_{1} is row-greater than M_{2} if the first row of M_{1} that differs from the corresponding row of M_{2} is lexicographically greater. A matrix not less than any other matrix in this class will be called the row-maximal incidence matrix of the graph, or the "romim" for short.

The notion of romim was introduced in [I] under the name of "maximal incidence matrix" and its existence proved.

Considering columns of an incdence matrix as bit strings read top-to-bottom we may order them in descending lexicographic order. For a given graph let us define a relation column-greater than on the class of column ordered incidence matrices. A matrix not less (in the
sense of column-ordering) than any other matrix in the class will be called the column-maximal incidence matrix of the graph, or simply the "comim".

Fact 2.1. For a given graph there always exists a column-maximal incidence matrix defined as above.

Proof 2.1. Given a graph we can always fix the labelling of the edges and then order the columns of the incidence matrix lexicographically. Thus, for all possible labellings (permutations) of edges we obtain a set of corresponding column-ordered incidence matrices. Since the set is finite, we have an element that is not less than any other element of the set. This is the comim.

It must be pointed out that the two definitions describe two different quantities. We give an example of a graph and its romim and comim (Figure 2.1). By inspection, the matrices are not equal.
(a)

(b) Nodes: $\frac{1234567}{11}$
1 I
$\begin{array}{lll}1 & 1 \\ 1 & 1\end{array}$
11
$\begin{array}{lll}1 & 1 & \\ 1 & & 1\end{array}$

(c) | 1 | 4 | 2 | 3 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | | | | | |
| 1 | | 1 | | | | |
| 1 | | | 1 | | | |
| | 1 | | | | 1 | |
| | | | | | | |
| | 1 | | | | 1 | |
| | | 1 | | | | |
| | | 1 | 1 | | | 1 |

Figure 2.1. Example of a graph (a) with unequal romim (b) and comim (c).
3. The Search.

It is easy to describe a brute force method to find the maximal incidence matrix. By listing all possible labellings of nodes of a graph, lexicographically ordering the rows of the corresponding incidence matrices, and saving the "maximal matrix so far", the romim is obtained. Similarly, by listing all possible labellings of the edges and ordering the columns of the incidence matrices the comim is obtained. However, there often exist clear indications of which permutations should be considered as leading to the proper labelling. A depth-first search procedure to find the (row-) maximal incidence matrix was proposed in [2]. It labels nodes of the given graph and selects the best choices to be labelled tentatively leaving the other possibilities still to be examined. The search may be represented by a search tree where nodes of the tree correspond to the labels to be assigned. When the search arrives at a leaf of the tree (i.e., when all nodes of the graph are labelled), the incidence matrix "maximal so far" is compared with the result of the tentative labelling and -- if it is inferior -- replaced by the newly . found one.

The main role in the process of labelling nodes of a graph is played by the priority vector. It is a one dimensional array which for every unlabelled node gives an indication of its suitability to be labelled next. This indication is calculated from the incidence matrix based upon how a node is connected with the labelled nodes. To formalize this we introduce a notion of the priority vector for assignment of the

- label m. The element $\operatorname{PRIVEC}_{m}(i)$, where $2<\underline{m}<\underline{i}<n$, is a bit string which at every position $1 \leq j<m$ has 1 if the node i is adjacent to node j and 0 otherwise. Figure 3.1 gives an example of a graph (a) and the priority vectors (b) for consecutive instances of labelling the nodes.
(a)

(b) PRIVEC $_{m}$ (1)
(2) (3)
(4)
(5)
(6)

| $m=$ | 1 | 1 | 1 | 1 | 0 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | | 11 | 10 | 10 | 01 |
| 3 | | | 101 | 100 | 010 |
| 4 | | | | 1000 | 0101 |
| 5 | | | | | 01011 |

Figure 3.1. A graph and the priority vector corresponding to the
labelling $(1,2,3,4,5,6)$.

Let us define a labelling of the nodes of a graph to be privet-proper if any incidence matrix of the graph with nodes arranged by this labelling has nonincreasing priority vectors, i.e., for every i, j and m such that $2 \leq m \leq i \leq j _n$ we have $\operatorname{PRIVEC}_{m}(i) \geq \operatorname{PRIVEC}_{m}(j)$.

The importance of privet-proper labellings of nodes is stressed by Theorem 3.1 (stated and proved for the romim in [1]).

Theorem 3.1. For a given graph the labelling of the nodes that results in the maximal incidence matrix (romim or comim) is privet-proper. However a matrix with a privet-proper node labelling is not necessarily a maximal matrix.

It is worth noting that the property of the priority vector stated in Theorem 3.l holds true for both romim and comim. Let us state two lemmas that will simplify proof of the theorem. Lemma 3.2 expresses an intuitively obvious fact that we want "as many ones as possible" in the lefthand upper corner of the incidence matrix.

Lemma 3.2. For a given incidence matrix and a given column i define S_{i} to be the set of all rows with their first 1 in column i . Then, for the maximal incidence matrix, romim or comim, any row between the first row in S_{i} and the last row in S_{i} is also in S_{i}. We call the set $S_{\text {. }}$ simply a block i of rows in the maximal incidence matrix (note that block i may be empty).

Proof 3.2. Assume the contrary: that for a maximal matrix M_{1} there exist a column i and rows p, q, r with p < r < q , such that the first l's of rows p and q are in column i and the first 1 of row r is in column $k \neq i$.
(i) Suppose M_{1} is the romim. If k < i then a matrix with rows p and r swapped is row-greater than M_{1}, and if $k>i$ then a matrix with rows q and r swapped is row-greater than M_{1}, so M_{I} is not the romim.
(ii) Suppose M_{I} is the comim. If $k<i$ then swapping rows p and μ_{μ} (relabelling corresponding edges) and column ordering the matrix results in a matrix column greater than M_{1}. Similarly if $k>i$ then swapping rows q and r and column ordering leads to the contradiction. Cl

Actually it is obvious that this block structure of the incidence matrix holds for every row-ordered incidence matrix (see Figure 3.2).

Figure 3.2. A row-ordered incidence matrix of a graph displays the block structure.

The second lemma states the conservative property of the priority vector with respect to the assigned label.

Lemma 3.3. For a given incidence matrix and two nodes i and j (i<j) we have, for all $2 \leq \ell \leq m \leq i$,

$$
\text { PRIVEC }_{\ell}(i)>\text { PRIVEC }_{\ell}(j) \Rightarrow \operatorname{PRIVEC}_{m}(i)>\operatorname{PRIVEC}_{m}^{(j)}
$$

The proof is trivial and is left as an exercise for the reader.

Now we can prove Theorem 3.1 for both romim and comim.

Proof 3.1. Assume the contrary: the given maximal incidence matrix M_{1} does not have a privet-proper node-labelling. Thus there exist $m \leq i<j$ such that $\operatorname{PRIVEC}_{m}(i)<\operatorname{PRIVEC}_{m}(j)$. According to Lemma 3.3 this implies

$$
\operatorname{PRIVEC}_{i}(i)<\operatorname{PRIVEC}_{i}(j)
$$

which means that there is a position k < i such that the k-th bit in $\operatorname{PRIVEC}_{i}(i)$ equals 0 and the k-th bit in $\operatorname{PRIVEC}_{i}(j)$ equals 1 , with the first $k-l$ bits in the same in both $\operatorname{PRIVEC}_{i}(i)$ and $\operatorname{PRIVEC}_{i}(j)$. Thus in block k of M_{l} (Lemma 3.2) all rows have 0 's in column i and there is a row p in the block with a 1 in column j. We will now prove that M_{1} may be rearranged in different ways leading to matrices M_{2} and M_{3}, each greater than M_{1}, in the sense of rowand column-ordering, respectively. This will contradict our assumption that M_{l} is a maximal incidence matrix.
(i) Suppose M_{1} is the romim. Then swapping columns i and j (relabelling corresponding nodes), and ordering rows within blocks l,...,k-l we obtain a matrix with the blocks l,...,k-1 identical with those of M_{1}. In the block k, however, row p is greater than it was before, and no other row in this block has been changed. Thus, ordering block k we get a matrix M_{2} that is row-greater than M_{1}.
(ii) Suppose M_{l} is the comim. Consider blocks l,...,k-l ; because - of the definition of k there cannot be a row with a l in column i without another row in the same block with a 1 in column j, and vice versa. In each block if there is a row p with a 1 in column i and a row q with a 1 in column j, such that $p<q$, then interchange rows p and q (relabel the corresponding edges). There must be at least one such block or else the columns would not be in order. Then the new column j is greater than column i of M_{\perp}, the new column i is less than column i of M_{1} and all other columns are unchanged. Thus, ordering the columns lexicographically, we obtain a matrix M_{3} greater than M_{1}. This completes the proof. Cl

We can now recall from [2] how the algorithm for finding the romim works.

At any stage m, the priority vector gives the indications for the assignment of label m. These indications may appear in two forms;
(1) There is exactly one node pretending to the label m since it uniquely has the highest value of the corresponding element of the priority vector;
(2) There are several nodes for which the corresponding elements of the priority vector have the highest value. These nodes are called equal pretenders.

The situation of (l)is clear and implies assigning label m to the pretender, thus increasing the number of labelled nodes. Calculating the priority vector for the rest of the unlabelled nodes again and again gives the situation (1) or (2) and eventually results in the incidence matrix, maximal for the original labelling $1,2, \ldots, m-1$.

In the situation (2) there are more pretenders that have to be tried as node m. Successively one by one all of the equal pretenders are assigned the label m and, after proceeding as in situation (l), a matrix maximal for every labelling is calculated. The greatest of these matrices is stored as the incidence matrix maximal for labelling 1,2,...,m-1 . The maximal matrix of the graph is identical with the solution of the problem of finding for the matrix maximal for $m=1$ (no nodes labelled).

The algorithm is based on two recursive procedures, CHOOSE and PRETEND. Procedure CHOOSE computes the priority vector and makes the right choice for the next label if there is only one pretender; if there are several it calls PRETEND. Procedure PRETEND mades various tentative choices for the next label, calling CHOOSE for each. The process is initiated by examining the valences of the nodes and calling CHOOSE with each node of highest valence as the initial choice. It is clear that for both romim and comim the node labelled first must be a node of highest valence.

We must correct here the algorithm of [2] which applies a valence check in situation (2) to narrow down the number of pretenders. In the example of the graph in Figure 2.1 this would result in M_{2} rather than M_{1}, in spite of the fact that M_{1} is row-greater than M_{2}. Our present algorithm omits this check.

However, the valence check employed--in the algorithm is useful for determining the comim, making the search for the comim more efficient than the search for the romim. This is elaborated in the next section.

4. Pruning the Search Tree for the Comim.

It is attractive to search for the comim rather than the romim because of the following theorem:

Theorem 4.1. Let=. M_{1} be the comim for some graph with nodes numbered 1, , n. Then for all $i<j$:

$$
\operatorname{PRIVEC}_{i}(i)=\operatorname{PRIVEC}_{i}(j) \Rightarrow \operatorname{valence}(i) \geq \operatorname{valence}(j) .
$$

. Thus if on the i-th decision level two nodes are equal pretenders but have different valences, the node with the higher valence should be chosen.

Proof. Assume the contrary, that is, there exist $i<j$ such that $\operatorname{PRIVEC}_{i}(i)=\operatorname{PRIVEC}_{i}(j)$ and valence(i) < valence(j) . Consider blocks $1, \ldots, i-1$ of M_{l} (cf. Lemma 3.2); because the priority vectors are - equal there cannot be a row with a 1 in column i without a row in the same block with a 1 in column j, and vice versa. Relabel the edges in the following way. Interchange the pairs of rows, in the blocks 1, . . .,i-l , which have l's in columns i and j , and also move the remaining rows with a l in column j up following block i-l . The new column j is greater than the column i of M_{1}, because valence(j) > valence(i) . Columns l,...,i-l remain unchanged, so after ordering the columns we obtain M_{2} column-greater than M_{1}, which is a contradiction.

Theorem 3.1 showed that the same search tree leading to privet-proper labellings of nodes can be used for both the romim and the comim. Theorem 4.1 shows that the comim search tree can be significantly pruned by considering the valences when encountering equal pretenders.

When arriving at a leaf of the search tree we have a privet-proper node labelling and have built up an incidence matrix of the graph with this node label-line; It remains to label the edges. In the case of the romim search it is clear that ordering the rows of the matrix results in the row-maximal incidence matrix for this node labelling. It turns out that for the comim search as well, ordering the rows of the matrix results in the column-maximal matrix for the labellings. This result is stated in Theorem 4.2.

Theorem 4.2. Let a graph with a privet-proper labelling of nodes be given by an incidence matrix. Then ordering the rows of the matrix results in the column-maximal matrix for the labelling.

To prove this theorem, consider the row-ordered matrix. Lemma 4.3 shows that such a matrix has a column block structure analogous to the row block structure described in Section 3. Furthermore, Lemma 4.4 shows that such a matrix is column-ordered. The final step will be to prove that no other permutation of the rows gives a matrix which is column-greater than the row-ordered matrix.

Lemma 4.3. A row-ordered incidence matrix of a graph with a privet-proper labelling of the nodes has the following two properties:
(A) For every row in the matrix, $a \quad 0$ in between two 1 's has a 1 above it in the same column.
(B) The highest 1 in any column is not lower than the highest 1 in any succeeding column.

Proof 4.3.

(A) Assume that row p has a 0 in column k and I 's in columns i and j, where $i<k<j$, and that there is no 1 in column k prior to row p . As the given matrix is row ordered, rows with a

1 in column k must have the other 1 in column $\ell>i$ (see Figure 4.1). But this implies that $\operatorname{PRIVEC}_{k}(j)>\operatorname{PRIVEC}_{k}(k)$, which is not possible since the labelling is privet-proper.

Figure 4.1
(B) Suppose the highest 1 in column i is in row p and the highest 1 in column j is in a higher row q, with $i<j$ and $p>q$. Let the other 1 of row q be in column k. If $k<i$ then we havof β situation which contradicts (A) (see Figure 4.2), and if \gg i then rows p and q are out of order, which is not possibl

Figure 4.2

Lemma 4.4. A row-ordered incidence matrix of a graph with a privet-proper labelling of the nodes is column-ordered.

Proof 4.4. Recall from Section 2 that we are concerned only with connected graphs without multiple edges.

We will show that every two columns of the matrix are in order. Consider the highest l 's in columns i and j with i < j . By

Lemma 4.3B the highest 1 in column i is not lower than the highest I in column j . We claim that it is in fact higher, except for the case $i=1, j=2$. Suppose the contrary -- then columns i and j have their highest 1 's in the same row, say row p . Suppose further $i<j-1$. Then there is a column k ($i<k<j)$ with a 0 in row p, so by Lemma 4.3 A there must be a 1 in column k higher than row p -- however this violates Lemma 4.3B since the highest 1 in column i is in row p . Otherwise $i=j-1$, but then nodes $1, \ldots .$. i-l are not connected to nodes i,. ...n. This can be seen by considering Figure 4.3, where submatrix M_{I} must be all 0 's since the rows are ordered, and submatrix M_{2} must be all 0 's because of Lemma $4.3 B$ and the fact that the 1% in row p are the highest in columns i and j. Thus the assumption that the graph is connected is violated.

Figure 4.3
. Inthecase $i=1, j=2$ the first column must have I's in the first two rows and the second column must have a 0 in the second row since the graph has no parallel edges and the first node chosen must be a node of greatest valence. Thus column 1 is greater than column 2 (except in the trivial case of a graph consisting of only one edge).

Now let us prove Theorem 4.2.

Proof 4.2. By Lemma 4.3 any row-ordered incidence matrix M_{1} of a graph with a privet-proper labelling of the nodes is column-ordered. Thus it is sufficient to show that no other permutation of the rows gives a matrix M_{2} which is column greater.

Suppose the contrary. Let column k be the first column differing in M_{1} and M_{2}, and let the first element of column k differing in M_{1} and M_{2} be in row p. Since M_{2} is column greater than M_{1}, clearly $M_{1}(p, k)=0$ and $M_{2}(p, k)=1$. Because column k differs in M_{1} and M_{2} only by a permutation of elements p, \ldots, e, there exists $q>p$ such that $M_{1}(q, k)=1$. Therefore row p of M_{1} has a 1 to the left of column k, say in column $i<k$, since the matrix is row-ordered. As column i is the same in both matrices we have $M_{2}(p, i)=M_{1}(p, i)=1$. The other 1 in row p of M_{1} must lie to the right of column k, say in column $j>k$; otherwise, if $j<k$, then $M_{2}(p, j)=M_{1}(p, j)=1$ and there would be three 1 's in row p - of M_{2}. Thus we have $M_{2}(p, *)>M_{1}(p, *)$. Hence there exists $r<p$ such that $M_{2}(p, *)=M_{1}(r, *)$ (with the I 's in columns i and k), since M_{1} and M_{2} differ only by a permutation of rows and M_{1} is row-ordered (see Figure 4.4).

Figure 4.4

But then $M_{2}(r, *)=M_{1}(r, *)$ and we have two identical rows in M_{2}, which contradicts the assumption that the graph has no multiple edges. This completes the proof of Theorem 4.2.

We have now shown that the comim is a row-ordered matrix with a privet-proper node labelling. The example of Figure 2.1 shows that if M_{1} and M_{2} are two row-ordered matrices with privet-proper labellings it is possible for M_{1} to be row greater than M_{2} and M_{2} column greater than M_{I}. However because of Theorem 4.I we can (confine our attention to row-ordered matrices with privet-proper labellings and with

```
[PRIVEC
```

At first sight it might seem that if M_{1} and M_{2} are two such matrices then M_{1} is row greater than M_{2} if and only if M_{1} is column greater than M_{2}. However this is not the case and Figure 4.5 gives a counterexample.

Figure 4.5. Two incidence matrices of a graph (a). Matrix (b) is column greater

$$
\text { than }(c) \text {, but }(c) \text { is row greater than }(b) \text {. }
$$

5. Data Structures.

A data structure for the search of the maximal incidence matrix of small graphs by means of this algorithm was proposed and used in [2]. The incidence matrix of a graph with n nodes and e edges was represented by e words. If edge i was incident to nodes j and k, then the i-th word was a bit string with l's only in positions j and k. Thus one row of the incidence matrix was stored in one word of computer memory. Such a representation facilitated manipulating the matrix by logical operations on the bit strings. However, the number of nodes in the graph was limited by the number of bits in the computer word. In the data structure proposed here the number of nodes is limited only by the computer integer range and the size of computer memory.

In the present implementation the incidence matrix INCMAT is stored in an ex2 integer array (twice the storage of the old representation). If edge i is incident to nodes j and k then the i-th row is an unordered pair of integers j and k.

During the search it is necessary to order the rows of INCMAT. The ordering is achieved by introducing an integer vector NEXTEDGE which transforms INCMAT into a linked list. This vector is dimensioned from 0 to e with $\operatorname{NEXTEDGE}(i)=i+1$ initially, except $\operatorname{NEXTEDGE(e)}=-1$. As nodes are labelled, the edges incident to them are "pulled up to the top of the list". The pointer LASTLABELLED points to the last such edge pulled up; initially LASTLABELLED is set to zero. More precisely, when procedure CHOOSE is entered, with say node p chosen to be the next

- labelled node, procedure PULLUP is called, which scans down the linked list (INCMAT, NEXTEDGE) starting from LASTLABELLED, and upon encountering an edge incident to p , deletes the edge from the list, inserts it following the edge at LASTLABELLED, and updates LASTWELLED. The two nodes incident to the edge are interchanged if necessary so that p is in the first column, the other node is examined, and the priority vector PRIVEC is modified accordingly.

When a leaf of the search tree is reached the new candidate for the maximal matrix must be calculated from the linked list representing the incidence matrix. This means that the rows of the incidence matrix must be lexicographically sorted. The entries in the first column of INCMAT
are in order determined by the label permutation found. The second column, however, requires sorting of entries within blocks (cf. Lemma 3.2) to obtain an ordered matrix. Now the new matrix may be compared with MAXMAT, the maximal matrix found so far. This testing -- in the sense of row ordering -- is an easy task for the chosen data structure. It suffices simply to compare the two-element rows of the new matrix with those of MAXMAT one at a time. The test in the sense of column-ordering is not as obvious, and will be described in Section 6.

The priority vector PRIVEC does not have to be stored in a way described in Section 3, with the number of bits in each element equal to the number of nodes labelled so far. Instead it is stored here in an integer array called PRIVEC, whose entries are node numbers and which is broken into a number of logical blocks. (Now we are talking about blocks in PRIVEC, not the ones defined in Lemma 3.2.) At any stage of the labelling process all nodes within a block have equal priority, and nodes within one block have higher priority than nodes within another block further down the vector. There may be a block of nodes that have not been assigned any priority yet -- the last part of the PRIVEC may contain only zeros. This . block is referred to as the empty block. In the priority vector described in Section 3, when a node p is labelled one more bit is added to every element of the vector: 1 to those elements corresponding to nodes adjacent to p and 0 to all other elements. In the data structure described here, when a node p is labelled, any node adjacent to p is either added to the empty block if it is not already in PRIVEC or marked in PRIVEC if it is already there. Such nodes are found by procedure PULLUP, . described earlier. After all nodes adjacent to p have been found, procedure SHUFFLE is called. This procedure scans PRIVEC and shuffles the entries within each block so that the elements marked by the action of PULIUP are moved to the top of the block and the unmarked elements are moved to the bottom. If these two sets of elements are both nonempty the block is then split into two blocks, since the marked elements have higher priority than the unmarked elements. After all blocks have been shuffled, the empty block is checked for the presence of any new elements. If some were added by the pull up operation, a new block is created to accommodate them and the remaining zero elements become the new empty block.

In order to avoid searching the entire vector PRIVEC every time an edge incident to p is pulled up, a new vector CROSSREF is introduced. This is the cross reference to PRIVEC: at any time, if $\operatorname{PRIVEC}(i)=j>0$ then CROSSREF(j) $=i$.

The description of the PRIVEC biocks is stored in a list of records, pointed to by BIOCKIIST. Each record contains an integer field BIOCKPTR and a link NEXTBIOCK. The BIOCKPIR fields are integers pointing to the first element of each of the blocks in PRIVEC. The integer BIOCKPTR (BLOCKLIST) points to the first element in the highest priority block of PRIVEC; this element is not necessarily the first element of PRIVEC as will be explained shortly. The pointer EMPIYBIOCK points to the last record in the list. The integer BLOCKPIR (EMPIYBLOCK) points to the first zero element of PRIVEC, unless every node has been entered in PRIVEC in which case the pointer will have value $n+1$.

Initially BLOCKLIST is set to point to a list of two blocks, the first containing a node of maximum valence and the second the empty block. At any stage in the search the pointer BLOCKLIST points to a list of at least two records. The initial data structures for a certain incidence matrix are shown in Figure 5.1.

After initialization, procedure CHOOSE is called. The node with the highest priority is considered to be labelled and procedures PULLUP and SHUFFLE are called to perform the actions described earlier. The resulting data structures are illustrated in Figure 5.2.

At this point the block containing the labelled node is deleted from the block list. (In fact the deletion is done in between PULIUP and SHUFFLE since it is a bit simpler to do so, but this makes no difference.) Now another node must be labelled so the first block of the modified block list is examined. If it contains only one element, CHOOSE is called. If'it contains more than one element there are several pretenders to the label, so PRETEND is called. Then PRETEND will call CHOOSE several times, each time with the first block split into two blocks, one containing a, single chosen pretender and the other containing the remaining pretenders. In the comim search the valence check may reduce the number of calls to CHOOSE (see Section 6).

Figure 5.1. Example of initial structure.

Figure 5.2. In first call of CHOOSE, after PULLUP and SHUFFLE.

Because of the recursive nature of the search, the crucial question that one must ask here is: how much must be kept on the stack? The answer is that when CHOOSE is calling itself or calling PRETEND only three words must be passed (as value parameters): FIRSTBIOCK, EMPIYBLOCK, and LASTLABELLED; when PRETEND is calling CHOOSE (i.e., at a branch in the search tree), only a copy of the block list structure must be passed in addition. At no time is it necessary to have more than one instance of INCMAT, NEXTEDGE, PRIVEC or CROSSREF. This is very important, since these arrays may be large and the search tree deep. It is not necessary to keep a copy of INCMAT or NEXTEDGE because any changes made to the linkedlistonly reorder the edges or reverse the pair of nodes incident to an edge, producing an incidence matrix as valid as the original one. It is not necessary to keep a copy of PRIVEC or CROSSREF because the only changes made to PRIVEC take the form either of shuffling elements within a block, or of adding elements to the empty block. Note that splitting a block does not affect PRIVEC but only inserts a new record in the block list. Since elements within one block have equal priority the shuffling does not destroy the priority information. Any elements added to the empty block of PRIVEC at a lower level may be deleted on return by saving a pointer to the empty block before the call; corresponding new CROSSREF entries may be deleted at the same time. An actual new copy of the block list structure need be made only when PRETEND calls CHOOSE, since this is the only point where the search tree branches.

The example of Figures 5.1 and 5.2 is continued in Figures 5.3 and 5.4, illustrating the situation after PRETEND has been called by CHOOSE, 'and after CHOOSE has been called again.

:Figure 5.3. In first call of PRETEND, just before next call of ${ }^{\prime}$ CHOOSE.

Figure 5.4. In second call of CHOOSE, just before next call of CHOOSE.
6. Differences in Implementation of the Search for the Romim and the Comin.

The previous sections showed that the same basic search tree can be used for both the romim and the comim, and furthermore that the search tree for the comim can be significantly pruned by making use of the node valences. The pruning is done by considering the valences of the pretender: at the beginning of procedure PRETEND. The maximum valence of the pretenders is found, and CHOOSE is called only for the pretenders with this valence. The valences of all the nodes were computed at the beginning of the program and stored in the array VALVEC.

The data structures described in Section 5 are particularly well suited for the romim search. With a slight modification they may also be used in the search for the comim. At a leaf of the search tree the new matrix found must be compared with the maximal matrix so far. In the romim case the maximal matrix so far is stored in MAXMAT, an array with the same format as INCMAT, and as explained in Section 5 it is then very easy to do the necessary row comparison. However the column comparison for the comim search would be very inefficient using this structure. A solution is to translate the row-ordered incidence matrix found into an array of n linked lists, each corresponding to a column and listing the rows with a 1 in this column. Then with the maximal matrix so far stored in a similar array of linked lists MAXMATCOL, the column comparison of the two matrices simply requires a series of scans down the lists. The matrix comparison, together with a replacement of the maximal matrix so far if necessary, is done by one of two versions

- of procedure UPDATE -- one for the romim and one for the comim.

Advantages of the comim search are demonstrated by the running times of an ALGOL W program which implements the search and data structures described. One of the parameters to the program is a logical variable whose value specifies whether to calculate the romim or the canim. The "records and references" dynamic storage feature of ALGOL W is used for the lists BLOCKLIST and MAXMATCOL. Integer arrays are used for all the other list structures since they do not change size dynamically. The program, listed in Appendix A, was run for several graphs on an IBM 370/168. The results are summarized in Table 6.1. The computer printouts and an explanation of the choice of graphs are given in Appendix B.

		ROMIM			COMIM	
GRAPH	NODES	EDGES	TIME	LEAVES	TIME	LEAVES
1	6	9	.01	8	.01	4
2	7	7	.02	24	.01	4
3	17	22	.12	24	.02	2
4	18	24	.12	24	.03	2
5	19	29	.34	144	.10	16
6	22	30	2.13	576	.03	1
7	23	31	3.10	1152	.04	2
8	24	32	7.03	3456	.06	6
9	50	78	>600		.81	48

[^0]We see from the results that the comim search is substantially faster than the romim search. However the data structures in the prograr were designed primarily for the romim search. We could expect significant improvements in the performance of the comim search if more suitable data structures were used. A particularly attractive idea is to compare the maximal matrix so far with the new incidence matrix found as it is built up, and thus have the possibility of abandoning unuseful labellings early. This could be done if more of the priority information was kept. The idea of abandoning labellings early might also be applicable to the romim search, for example if the edges were labelled first instead of the nodes.

Highly symmetric graphs (graphs with many automorphisms) will require search trees with a large number of redundant leaves corresponding to automorphic permutations of nodes. A way to eliminate some of these leaves by keeping track of automorphic permutations as the search progresses is discussed in [3].

Acknowledgment.

We are grateful to Prof. D. E. Knuth for his constructive criticism and encouragement.

References.
[1] Proskurowski, Andrzej, "The Maximal Incidence Matrix of a Graph," Technical Report No. 70, December 1973, Royal Institute of Technology, Stockholm.
[2] Proskurowski, Andrzej, "Search for the Unique Incidence Matrix of a Graph," BIT 2 (14),1974.
[3] Proskurowski, Andrzej, "Graph Symmetries in the Search for the Maximal Incidence Matrix," Technical Report No. 75, April 1974, Royal Institute of Technology, Stockholm.

Appendix A

The Program.

```
wument
& IV I JG lhe maximal inliulnce malkIx OF a large graph
    MICHAEL UVLRTJN aNL ANUNEEJ PRUSKUROWSKI
        CLMPUTEK SCIENCE UEPAKIMENT
            STAINFLRU UNIVERدITY
                        julr 1s!コ
LEGIV
HF JC[DIJKE klapferslange (INTEuLk Akkay INCMAI, MAxMAT(*;*):
    IvTEGER ARfay permuTalIuN(*): INTEGer valle NUOES.EugES:
    LJGICAL VALUE RONIM: INTEUEK kESULI LEAVESI:
    clymeini takes the inciveivec maikix incmat of a graph ano ketugris the
```



```
    cumiment leaves is set Tl the numbek of leaves in the search tree:
        BEGIN
        INTEGEk Akray next euge(C::EuUlSI:
            COMMENT IHESE rOINTEKS TKANSTURM INCMAT INTO A LINKEU LISI:
            m\EGEk lasilaucllel:
                CCMMENT PCIMIs TU LASI tUGE "rJlLEO JP" BY NUDE LAdCLLivu;
            INTEGER ARKAY PRIVEC.CNUSSKEt,VALVEC(1::.vUOLS);
                CUMMENT PKIVEC IS THE PNIOKIIY VECTOR. CROSomEt THE CKOSS
                RFFEREiNCe TU PRIVEL, &Nu VALVLC THE VECTOR UF VALENCLS:
            &ECORC BLECK(INTEGEK BLLCKPTK; кEFERENCE(BlOCK) NEXTBLJCK);
            KEFEKENLE(BLUCK) BLULKLISI,EMPTYBLJCK:
            CCMMENI BLCCKLISI PLIINTS IU THE LIST OF BL|NKS UF PKIVEC.
            EMPTYBLGCK PUINIS IL JHE LASI ELEMENT LF THE LIST:
            RECCRO INGELCE(INTEUEK EUGEINU: REFERENCE(INCEJGEI NEXTJNE):
            REFERENCE(INCEUGE) AKaAY MAXMATCUL(1::NLLES);
                CUMMENT FEALS OF THE L IST KEPKESENTATIUN OF MAXMAT -
                USED ONLY IN THE LLMIM SEAKCH:
            prccedure criccse (kereklivce(bluck) value blocklist,emptyblock:
            INTEGEK value lasilabclaevj:
                COMMENT LAdLL THE LNLY ELEMEINT OF IHE rIRST 8LOCk IN BLOCKLIST.
            reargange tre INCIlenle matkix aind mOOIFy privec accjedivgly
            By Callifu pulllp.and shlffle:
                    BEGIN
                    Prugeulor pullup (imitgen value (hosen):
                        CLNMENT SCAM LCWN INCLUENGE MATRIX STARTING FRUM
                    LASTlabelleu. uruin eivluuivtering an eoge livCideint to Nuve
                    CHLSEN, PRCCEEL |U "Pull uP" THE EOGE ru lastlabelleu.
                    AFItek lCExING at Jhe uTher NODt Of THE EuGe, muulfy privec
                    ACGLRUINGLY:
                    EEGIN
                    |NTEGEK P.fkEV.PKIVECLAST:
                            PREV:=lASILABELLEU: }\mu:=NEXTEUGE(lastlabelleo)
                            FRIVECLAST:= ULULKPTR(EMPTYBLOCK): CUMALIVT POINTS TO
                            THE firST <lku elemeNT OF privec:
                    WHILE Pa=-1 JU
                                    bEGIN INTEGER FUUNU,X:
                                    FCUNU: = IF IINCMAT(P, 1)=CHUSEN THEN L ELSE If
                                    INCMAT(P,<) = CHOSEN THEN < ELSE U:
                                    It fl:UNU7=0 fMEN
```

ocbliv
LNJEutn TEMP:
LUMMENI PUT CHUSEN NOLE IN FIRST CULUMN:
IF FUUND $=2$ THEN
OEGIN INCMAT(P, $21:=I N C M A T I P, 1):$
INCMAT(P,I):=CHUSEN: ENO:
CUMMENT MOUIFY PRI VEC:
$x:=I$ ivCMAT $(P, 2):$
IFCKUSSKEF $(x)=?$ ThEN CUMMENTNOTI N
PKIVEL SO ADU IT:
UEGIN
KRIVEC(PKIVECLAST): $=x$:
CROSSNEF(X):=PRIVECLAST:
r'RIVECLAST: =PRIVECLAST+1;
END
llSE Cummentalreauy I N Privec S O m A R KIT:
PRIVEC(CKUSSREF (X)):=-PHIVEC(CROSSREF(X)J:
LOMMEIV PULL EUGE HiGHEK UP iV LIST:
IF PKE $\vee_{\rightarrow}=$ LASTLABELLED THEN
BEGIN
TE:AP: =NEXTEUGE (LASTLABELLED):
NEXTEDGE(LASTLAUELLEDI: $=P$:
NEXTEOGE(PKEV): =NEXTEUGL(P);
NEXTEUGE (P): = TEMP:
LASTLABELLED: =P:
$r:=$ =NEXTEDGE (PREV):
END
elstcumment p u l l u p nut nlcessafy:
DEGIN
LASTLABELLEU: $=P R E V:=P$;
$F:=N E X T E U G E(P):$
LNU:
END
tlSE CuMMENICHUSENN O TFOUND INEDGE:
BEGI.V
FKEV: =P: P: =NEXTEDGE (P) :
civi
ENL:
CCMMENJIf AIVYNEW ELEMENTSH A V E BEENADUEU TUPRIVEC
IfENCRLATE A NEwBLIJCKFURT HEM ;
It PRIVELLAST>BLUCKPTR(EMPTYBLOCK)THEN
EMFTYELCCK: = NLXTBLOCK (EMPTYBLOCK): =
BLCLK(rKIVECLASI.NULL):
END PULLUP:
procetulke Shufr A likefekence (block) valuép): - LEMMENT SCAN UUWN LIST UF BLOCK POINTERJ. FOR ANY BLOCK Ccntaininc negat ive elements. S HUFFLEThebluck Splittivg I I I.rTO TwL BLUCKS. THE FIRST CUNTAININGTHENEGATIV E ELEMENTSA N dthe slcuivu Ihe positive - alsu reset the negarive elemenis ru pusitive: while NEXTBLUCK(P).っ=N U L LUU
tegininteuth A gundek: Cummentaftekshufflin git e dLUCK EL EMLNJS. BUKUER WILLBE J HEINUEX JFTHEFIRST
acnNegative themenl:
BUKUEK: = し LULKPTK(P):
FUK I: = GLUCKPTK(r) UNTIL BLUCKPTR(NEXTALUZK (P)) - 1
D CIFPKIVEC(1)<UTHENCOMMENTMUVEMAKKKcJ
NUUE UPTUNEGATIV thalfo FBLCCK:
GEUIN IF 17= BORDER THEN

```
        DLGIN INTEGER TEMP:
        I LMP:=PRIVEC(I):
        PRIVLL(I):=PKIVE(|GORUER):
        PrIVEL(BURDER):= - 「EMP:
        CRUSSKEF(PR(VEC(I)):=I:
        CKUSSKLF(PKIVEC(BOROLR)):=BORDER:
        tNU
        ELSE PKIVEG(i):=-PRIVEC(I):
        BCKUER: = BUKUER+1:
        ENL:
    COMMENT If BUTH THE POSITI VE ANU NEGATI VE HALVES
    OF THE BLUCK ARE NUNEMPTY THEN SPLIT THE BLUCK:
    IF (BCKDER->=BLOCKP IR\P)) AND (BOKDEKT=OLUCKPTR (
    NEXTBLOCK(P) 1) THEN NEXTBLOCK(P):=BLULK(BORDER,
    NEXTBLUCK(P));
    F:=NEXTBLCCK(P):
    ENU SHCfFLE:
Integen newnlces：
NEWNUULS：＝BLOLKPTR（EMPI Y甘LUCK）：COMMENT POINTEK TU FIRST LERU ENIKY IN PKIVEC TO BE USED FUK RESTORING：
```



``` PRIVEC（BLGCKPIKIBLUCKLISTI））：
PULLUP（PRIVECIBLUCKPJR（BLDCKLIST））！：
CUMMENT NUh THE FIKST BLUCK HAS BEEN UEALTWITHSOD E L E T E 1T：BLOCKLIST：＝NEXTBLULK（BLUCKLIST）：
If NEXTBLUCK（BLGLKLIゝJ）\(=\) NULL THEN COMmENT THERE ARE STILL unlabellec nuces：
BEGIN INTEGER PKEIENOERS：
SHUFFLE（blUCKLISTI：
CCMMENT HKIVEC HAS NUW BEEN UPDATEU AS REQUIRED BY The labelling of the nuve．if the fikst block of The mudifieu privec contains uivly one eleiaent then LABEL it by CALLIing choose－otherwise there art SEVERAL PKEI ENULKS：
FRETENUEKS：＝BLOCKHJK（NEXTBLOCK（BLUCKLIST））－BLOCKPTZ BLUCKLISJJ：
IF PRETENLERS＝LTHENCHOOSEIBLOCKLIST，EYPTYBLOCK． LASTLABELLEU）ELSL PRETEND（BLCCKLIST．EMPTYBLOCK， LASTLASELLEU．PKETCNUERSI：
CCMMENI IT IS NUT NECESSAKY TO PASS A NEW COPY JF THE BLOCK LIST：
ENC
else ccmment all Nuues h a \(V\) e be e n labelleu su calculate The Inciuenct matk IX ruund and update maxmat if necessary：
IF RCMIM THEN UPUATE＿KUMIM ELSE UPDATE＿CUMIM：
CCMMENT KESTUKE PRIVEC ANO CKUSSREF WHICH HAVE BEEN mOUIFIEC BY bearch un uteper levils．uelete the new nlues from privec anu uele te the Currespundi ng EATRIES IA CRCSSKEF：
WHILE（NEWNOUESS＝IVUUES）AND（PRIVEC（NEWNUDES）\(=0\) ）DO
EEGIN
CRCSSREF（PRIVEC（NEWNODES）J：\(=0\) ：
PRIVEC（NE WNUUES）：\(=0\) ；
NEWIVUOES：\(=\) NEWINUOLS +1 ；
ENO：
IF TRACE THEN WKITE（＂EXIT CHUOSE＂）：
ENC ChOOSE：
```


INTEGta Valle lasiladele Eu.rac TENJERSI:
CCNNENT asJIUN ivexl LAbLL TU EACH JF THE pKetenutrs IV TURV By
CFEATIIVG A iven olulk Luivalinivg The ChLSEN element vivly and
CALLING LIRUSE:
BEul.v
feterence(bluck) pkuleduke copy (refertince(bluck) valut p:
REFEREIVLE(BLUCK) kESULT O):
CCMAENI CUPY IHE LIST PUINTED TO BY P , RETURN A POINTEK
IU 11 as THE rkUCEUUKE vALUE. AND SET G TU POINI TO THE
Last element lo Tie lisi:
If $P=$ NuLL THLIV
otGIN u: = MULL: ivull EiNU
ELSE IF NEXIbLLCK(P) = NULL THEN

ELSE ELULK(BLLCKPTK\&P), LUPY(NEXTBLUCK(P), D) 1:
kertktnle(blulk) meau. TAll: Cumment puinters Iu new instances
EF BLLCKLIST ANL EMPTYBLUCK:
[NTEGLK ARRAY blGCKPKEI (I: : PRETENDERS):
INTEGER MAX, KEPI:

" JRETENULKS"):
CCNMEAI LCFY 1HE FIKSI BLUCK OF BLCCKLIST (CONTAIVING THE
PkertindekjJ Tu olulkPkets:
FUK I:=1 UNJ 14 PKÉJENUEKS DO BLOCKPKETS(I):=PRIVEC(BLOCKPTRI
BLECKLLSTJti-1):
CUMMENT INTKLUUCE a NEW BLUCK FOR THE CHUSEN NOUE:
NEXTBLLCK (BLLLKLIST): = OLLCK (BLUCKPTR(BLUCKLIST)+1, NEXTBLUCKI
BLOCKL(SJ)J;
CCAMENI 1 UR THE COMIM UNLYFINDT H ESTRICT SET OF PRETENUEKS
rotrt NEXT Labtl bY uUirSIDERINGT H EVALENCES:
I F TrimimTHEN
DEGIN INTEGEK V :
CCMMENJflindithemax valenceuf t H epretenders - kept
1SThenumbek uf reketenderswiththé M A X VALENCE:;
MAX: =KEPI:=C:
rC̈K 1 : = AUNTILPKETENDERSDO
ULGIN
$V:=V A L V E L(P K I V E C(B L O C K P T R(B L U C K L I S I)+I-1)):$,
If $V>M_{A X}$ Trtiv BEGIN MAX: $=V$; KEPT: $=1$: ENU
LLDE IF $V=$ MAX THEN KEPT: =KEPT $+i$;
ENL:
If TKACE THEN wKIte("VALENCE CHECK:",KEPT.
" PREIENOEK(S) TU BE CONSIUERED"):
END:
IF KC̈MIMUN(VALVEC゙(BLOCKPRETS(L))=MAX)T HEN
ClmMenr C A L LHUUst PASoING T H EFIRSTPRETENDER - I T
1SNELESSAKY7 - u PASS A NEWC C P YCFT H EBLUCKLIST
becialse uf the teniali V E ASSIGNment unlesjiror
The C(MIMJCNLY uNe pketevoer has. Them a XVALEvCE:......
It-TKCMIMANL(KEPT=L)THEN
CHUUSE (BLUCKL ISI. EAPTYOLUCK. LASTLABELLED)
ELSE
BEGIN
rとAL: = LCPY(olucklist.T AIL):
ChuUSt(heau. TAIL. LASTLABELLED):
END:

```
Fun chluStiv:=c lNIIL porteni)EPS dC
    If KLMIM UK (VALVEC(BLULKPREIS(CHCSFN))=MAX) THEN
        Etulir liNItGEK i: lugical FOuNO:
        1:=1: fUUNU:=FALSE:
        CCNMENT rKEVIDUS CALLS TO CHOUSE MAY HAVE EHANGEO THT
                        Okuth ur rHl clemeNTS IN ThE FiRSI BLUCK uF pRIvEl
        SC II IS NELESSAKY 「i] SEARCF FOR [HE uHOSEN NUDE:
        hHILE \negFUUNU UU IF PKIVEC(BLLCKPTR(BLUCKLIST)+I)=
                        BLOCKPKEJSICHOSEN) THEN
                OEGIN LUMMEINI "INTERCHANGE CHOSEN NOUE WITH THE
                pktviuuSly lruseN NOUE IN THL FIRST pOSITIUN Of
                THE ULuCK:
                PRIVELIBLUCKPTR(BLCCKLISTI+II:=PRIVEC(BLOCKPTRI
                BLUCKLISTJJ:
                PRIVEC(BLUCKPTN(BLDCKLIST)1:= BLUCKPRETS(CH.JSEN.):
                CKUSSKEF(PKIVEL(BLOCKPTK(BLOCKLIJJ)+I)):=
                    BLUCKPTK\BLOCK&(STJ+I;
                CKUدSKEF(BLUCKPRETS(CHCSEN)):=
                    BLGCKPTK(BLUCKLIST):
                FCUND:= I kUt:
                ENU
            ELSE 1:=1+1;
        lcrment call chuUje pasS ING THE pretender - It
                        IS NECE>>ARY TU pASS a NEN ClPY Or THE block list
        GELAUSE OF IHE TENTATIVE ASSIGNMENT UNLESS IFOK
        .THE CUMIMI UNLY UNF PRFTENIFR HAS THF MAX VAIFNRF:
        IF ~RCMIM ANU (KLPI =1) THEN
        CHOUSE(ULUCKLIST,EMPTYBLOCK.LASTLABELLEDI
        ELSt
```

 OLGIN
 hEAU: =CUPY(BLOCKLIST,TAIL):
 chuUse(heau. Tarl. Lastlabelleu):
 cNC:
 ENU:
 If TRACE THEN wKITc("EXII PRETEND"):
 ENU PheTEND:
 ProCeDukturua Tt_RCMIM:
 CUMMENICGMPAREIHEINLIDENLEM ATRIX OBTAINEDBY N E W LABELLING TU
 THEMAXINAL MATRI X FCUNUSU + A R(MAXMAT)ANDREPLACET H ELATTER
 I F NECESSARY:
 CEMNENT ThISI SFLK THE ROMIM OIVLY:
 BEGIN
 clmant because uf the altion o f pullup. The first column
 OF INCMAT IS AKKAIVGEU IN THE UESIRED (LINKEU) URDER NITH
 THE LABEL PERMUTAI I ON UIVEN BY CRCSSkEF:
 Clnment in This proceuukt the term "bluck" Is useot o mean
 A JELTILNO kINLMATWITHALLELEMENTS UF THE FIRST CULUMN
 LUUAL. anc Tht Relat iun "Maxmat>new matrix" I S used tumean
 MAXMAT IS BETIERTHANIHENEWM A T R I X ;
 IATEGEFARRAYKELAUELLEO(1: : MAXVAL):
 CLMMENT KELABELLEU IS USEU FUR SURTING THE SECOND COLUMN OF
 IrE CURRENT BLULK UF IINGMAT JEING EXAMINED:
 INTEGEA [,J.JU.K: LOMMENT I POINTSTO INCMAT. JANDJ OTJ
 maximat aivo k tu rlladelleo:
 INTEGEK ELI 1 , LUMP:
 CGMmentelil 1 3the elementint hefirstculuminjf the
 CUKKENT ULULK UF IMKMAT BEING EXAMINEU:
 CENMENT CGMP IS SET POSITIVEI F MAXMAT>NEWM AT R IX
 anu negative if ma XMat<inew matrix:
    ```
PRUCEULKE SUKI:
    LLNMENT SLLKJ KELABELLEL FRUM I HO K IN ASCENOIVG IRDER BY
    STKAIGHJ INSEKIILN SUKT.
        FUn L:=2 UINTILK UU *
            GEGIN INTEGEK KEY.I:
            1:=L-1:
            KEY:=RELABELLEU(&):
            WHILE (I > O) ANU (KEY < RELABELLEU(I)) OJ
                BEGIN
                kcLAoELLEU(I+1):=kELABELLEU(I):
                1:=1-1:
                        tivL:
            <ELA OELLEU(I+1):=ktY:
                ENC:
PKUCLUCKE COMPAKL:
    ClmmeNT CumPAKE THE PAKI uF THE INCIDENCE MATRIX IN
        relabllqel tuutther with The firgs culumN ELEMENt
        ckUSSKEt(ELTL) wi th IHE CORRESPONOING BLUCK OF MAXMAT.
        GUMP IS SET HUSITIVE IF MAXMAT IS BIGGER AVD VEGAT IVE
        IF MAXMAT IS SMALLEK:
            tcGiN
            hHILE \CLMH=U) ANG (J<JO+K| CO
                                    BEGIN
                                    CLMP:=-((MAXMAT(J.1)-CRCSSREF(ELTI)) * NUDES *
                                    MAXMAT(J.2)-RELABELLED(J-JU+1)):
                                    CLMMENI WATCHH JUT FUR UVEKFLUW FUK LARGE GRAPHS:
                                    \jmath:=\jmath+1:
                                    ENU:
                            IF CCMP7=U THEN LLIMMENT SET J TO FIRST ENTKY IN MAXMAT
                        UIFFERENT FLUM THIAT IN THE NEW MATRIX:
                        J:=J-1:
            EIVU CCMPAKE:
LUGICAL FIRSTSAME:
CLMP:=C:
I:=NEXItLGE(U):
JC:=&:K:=U:
WHILE (I\neg=-1) ANU (CUMP <= J) DO CCMMENT CONTINUE UNLESS
    IT IS ESTABLISHED THAT MAXIMAT > NEW MATRIX:
        BEGIN
        FIRSTSAME:= TKUE:
        J:=Ju:=Ju+K: K:=U:
        ELTL:= INCMAT(I,1):
        WHILE FIKSISAME UUI COMMENT CCPY SECOND
            GUL UMIN LFF A BLULK OF INCMAT TO RELABELLEU:
                        BLGIN
                        K:=K+1:
                RELABELLEU(N):=CRUSSREF(INCMAT(1,2)):
                    CLMMLNT LUNTINUE TILL FIPST LLEMENJ JF COPIED
                LUGE LHANGES:
                        FIKSTSAME: = (IVEXTEOGE(I)~=-\) ANU
                        (\NCMAT(NEXTEDCUE(I),I)= ELTL):
                            I:=NEXIEUGE(I);
                            ENL:
            SUKT:
            IF CCMP=U THLN GUMPARE;
            IF LLMP}<U THLN CUMMENT NEW MATRIX> MAXMAT SO REPLACE
                    THE LATTEK:
```

```
            FLK m:=J UNTIL JOtK-1 DJ
            BLGIN
                        MaxMAT(M,&):=CROSSKEF(ELTI):
                        MAXMAT(M,\angle):=RELABELLEU(M-JU+1):
                    ENU:
        tND:
    If leartkace Imen
        BtGIN
        wkITl("leat uf StakCh tree - lagel permutation is:"):
        FCK I:=1 UNTIL NUUES DU
            BEGliv it I KtM lL = 1 THEN IUCONTRUL(2):
            WRIIECN(PRIVEC(I)):
            LNU:
        ENO:
    I fCCMP<L THEN
    BEGIN CUMMENT UPUATE PERMUTATICN:
    run I:= L UNIIL NuUES DU PERMUTATIDN(II:=PRIVEC(II:
    It TKACL THEN WRITE("mAXMAT UPOATEU"):
    LINU
    elSe it Ikact theiv wkite("maxiatat not upuated"):
    IF. TRACE THEN wRITE(" "):
    LtavgS:=lEAVES+1:
    ENU UHLATE_KLMIM:
PRUCEDURE UPLATE_CUMIM:
    CUMMENT COMPARE THE INGIUENGE MATKIX OBTAINEL BY NEW LABELLING TU
    THE (CCMIM) mAXIMAL MAJKIX ruUNU SO FAR (STURED IN MAXMATCOL)
    ANO \tilde{E}ElACE tHE lattek if NeleSSAxy;
        BEǴN
        COMMENT becaust uF THE altIUN of pullup. ThE first columN
        UH &NCMAT IS ARKANGEN LN THE DESIRED (LINKED) JRDER WITH
        Tre label pekmutai iun given by CROSSker:
        COMMENI IN THIS PRULEUUKE THE TERM "BLUCK" IS USEU TO MEAN
        A SELTICN OF INLMAT WIIH ALL ELEMEATS CF THE FIRST COLUMN
        egual, anu the kLlatIUN "MAXMAT>NEW MATRIX" IS uSEO TU mEAN
        maxMat is bettek than ihe new mairix:
        INTEGEK ARRAY fELABELLLLI(1::MAXVAL):
        Gummeivt relabelleu is ustu fur Surting the secund columN ut
        IrE ClKKENI BLULK OF INCMAT BEING EXAMINED;
        IATEGER 1.JO,K: LCMMENI I,JJ POINT TO INCMAT.
        aNU K TU RElabelled:
    INTEGEK ELTL,KELI,LASTLGMPARED,COMP:
    COMmENI ELI& IS THE elemENT IN THE FIRST COLumN uF THE
        CUKRENT BLUCK UF INLHAT BEING EXAMINEU. AND RELI IS ITS
        kelabelleu value. lastcompareo is the last culjMN of THE
        MATRIX CLMPAKEU SU FAK:
            CCNMENT LLMP IS SET PUS &T IVE IF MAXMAI\NEW MATRIX
        ANU NEGATIVE If MAXMAT<INEW MATRIX:
            REFERENCE(INCEDGL) aRRAY INCMATCUL.COLTAILII::NUUESI;
        CCMMENT INCMATCUL IS rUN THE HEADS UF THE ITEMPURARY)
        list repkesentatiun uf lincmar anu cultail is fok the talls:
            Procedlike SCkt:
        CCMMEAT SCRT RELABELLED FRUM 1 TO K IN ASCEINDING ORDER BY
        STRAIGHT INSERTIGN SOKI:
            FUK L:=2 UNTIL K UU
                    UEGIN INTEGEK KÉY. I;
                    I:=L-1;
                    kEY:=ktladtllev(l);
                    WHILE |I > O) ANU (KEY < RELABELLEO(I)) DO
```

```
                    *とGIN
                    kcLaOtLLEU(1+1):=kELABELLEU(I):
                    1:=1-1:
                    tivU:
                        ktlaeElLeu(i+1):=kty;
                        EINL:
Prgcelloke Inainskeli:
    CLMMENT EXPAINL IHE LIST UF INCMATCCL CORRESPUNUING TJ
    CUlumiv KELl;
        FCK L:=1 LNJIL N DU
            CULIA|L(KELI):=NEXTUIVL(COLTAIL(RELI)):=
                MNCECGE{Ji+l-1.NULL!:
Pkucellrl Tkafosktlabtqleu:
    CLNMENT EXHANL IHE LISTS CORRESPONOING TO THE CJLUMNS
    Specifiev IN kelAoelled;
        FUK L:=1 UIVIIL K UU
            CClIAIL(KtLAOCLLEU(L)):=
            ivexTliNt (lul]aIL(KlLABELLED(L))):=
            INCELLE(JC+L-1,NULL):
PkCCEUUKE COMrAKE:
    CLMNEAT CCMPAKE CULUMINS LASTCOMPAREU+L THROUGH RELI JF
    The Thu lisi sihulunes INCMATCOL ANU MAXMATCOL.
    LCMP IS SET HUSI|IVE IF MAXMATCUL IS BIGGEK THAN
    livLiAA TCUL, l.t. MA XMAIDINEN MATRIX, ANL NEGATIVE IF
    II IS JMALLEK:
            BcGIN
                    RefeRtivle(INLEuGtd P1,P2:
                    INTEEER U :
                    LUUICAL ENUCOLUMIN:
                    6:=LASTCLMPAKEU:
                    NH|LE (CLMP=U) ANU (U<RELL) LO
                        BEGIN
                        *:=u+1;
                            rL:=MAXMATCUL(b):
                            *<:=NEXTGNE(INCMATCOL(O)1):
                        EINLCLLUMN:=raLSE;
                        wHILE (GUMP=U) AND TENDCOLUMN DO
                        bEGIV
                                If PL=NULL THEN
                                    BEGIN
                                    IF PC=NULL THEN ENOCOLUMV:=TRUE
                                    LLSE CUMP:=-1
                                    END
                                    clse 1: 22=NULL THEN COMP:=1
                                    ELJt
                                    OEGIN
                                    LUMP:=EDGENC(P2)-EDGENU(P1):
                                    P1:=NEXTCNE(H1); H2:=NEXTONE(P2):
                                    ENU:
                                    LNU:
                        tNU:
                    LASTCCMPAKED:=KELI:
                    END CUMPAKL:
LUGICAL FIKJISAME:
CLMP:=U:
LASTCCNPAREC:=C:
```

I: =NEXTELGE(1):
JC: = L ; K: = U
FUK L: = A UIVTILivLues UU anCMATCOL(L):=CCLTAILIL):= INCENEE(O,NULL): CUMMEWTUJMMYRECOR 3 :
WHILE ($1 \rightarrow-1$) ANL (GUMP $\leqslant=$ O) OU CCMMENT CONT INUE UNLESS
II 15 ESTAEL ISHEL HAT MAXMAT $>$ NEWM AT R IX ;
BEGIN
FIKSISAME: = IKUE:
JO: = JO +K: K: $=0$;
ELTL: =INCMAT(I,L):
KEL1: = CKUSSKEF(ELTII;
WHILE rIKSJSAME UU CUMMENT CLPY SECOND columir uf a olulk of Incmat to relabelled: BとGIN
K: =K+1:
KELABELLEU(K):=CROSSREF(INCMAT(I,2)):
CUMMENTCUNJINUETILLF I R S TELEMENT UF COPIEU
ELGE C HANGES:
r IKSTSAME: $=($ ivEXTEDGE(I)r=-1)AND
(INC:MAT(NEXTEUGE(I), 1) = ELTI):
1: = NEXTEUGE(I):
ENU:
TKANSKEL 1:
if CCMr=0 THEN CUMrARE:
\therefore IF ClMPく=0 THEN
BEGIN
SLKT:
TRANSKELAOELL EI):
END;
ENU:
I fleaftract then
BEGIN
nkiter "llaf lif stakCh tree - Label permutation is:"):
FOK $1:=1$ UNTILNOUESD 0
BEGIIVI FIKLM1 $2=1$ THEN IUCONTROL(2):
wRIIECiv(PRIVEC(I)):
ENO:
END:
I F centro then
BEGIN CUMMENI UPUATE PERMUTATION:
FUR I:=1 UNTIL NULES DU PERMUTATION(I):=PRIVEC(I):
CCAMENT UPUATE MAXMATCOL:
FOK $1:=1$ UNTIL NUULS UU
MaXMATCLe(I):=NEXIONE(INCMATCOL(I)):
CUMMEIVT UKUP LUMMY RECORU:
IF TRACE THEN WRITE("IAAXMAT UPDAIED"):
ENB
ELSE IF TRACE THEN wRI TE("MAXMAT NCT UPDATEU"):
IF TRACE TrEN WRITE(" "):
LEAVES: =LEAVES+1:
EAC UPCATE_CLMIM:
PROCEDUKE TKANSLATE_MAXMAT;
CCMMENT TRANSLATE The (LOMIM) L IST REPRESENTAT IUN maxmatccl I nto tht akkay maxmat:
FCR I:= 1 UNTIL NCLES LU
BEGIN
KEFEKLNCE(INLELGE) P:
P:=MAXMATCOL (I):
WHILE $P_{7}=$ NULL UU

```
HEGIN
If MaxMalituugivu(P),1)=NUNES +1 THEN
    MaxMAl(tulutvi(P), il:= I
    ElSt maxMAT(EUGENU(P),21:=1;
P:=NEX | Live (P):
ENU:
```

 ENU:
    ```
pkiceouke phint (kefekenle(blulk) value boe: integer value l):
    CIMMME INT PN&AT ULI ITIE LATA STKJCTURE CONIENTS [F UEBJG IS SET;
    IF Jtsuc Theiv
        BEOIN
        nkIĨ("blUCK LI\I IS:"):
        wHILE,Gन=NULL LC
                        BEGIN
                        wkITELN(uluCkPIk(u)J:
                        E:=NEXI OLCCK(BI:
                        LNU:
        WRITEI"EMPTYOLUCK IS:"1:
        Ir EMHTYOLULK=NULL ItIEN wKITEON("NULL ") ELSE
        WKITELN(bLUCKrTh(E)):
        WKITE("PKIVEL IS:"):
        FUK I:=1 UNTIL NUNLS DU wRITEON(PRIVEC(I)):
        wkITE("CNOSSKEF IS:"):
        FCR 1:=& UNTIL NUUES UU wRITECN(CRCSSREF(I)):
        wrilt("NEXIELGLS:"):
        FLK I:=U UNTIL EUGES UU WKITEON(NEXTEUGE\III:
        WKlJE|"LASILAbELLEU=",LJ:
        W|!E(" "):
        ENu:
```

 INTEGFK NAXVAL: CLMmitivt maxImum VALENCE OF A VUUE:
 CUMMENT LIVITIALILL UATA SJKUCTURES:

IF GKIMIM THEN FUR $1:=i$ UNTIL NUUES DU MAXMATCULIIJ:=NJLL:
LEAVES: = O:
COMMENT LSE NEXTELGE TU MAKE INCMAT A LINKEU LIST:
flur I: = U UNTIL tDGtゝ-1 uU NEXTEDGE(I):=I+1:
NEXTEDGと(cuets): $=-1$:
LASTLABELLEL: =0;
FUK I:=1 UNTIL NULES UU PRIVEC(I):=CROSSREF(I):=VALVEC(I):=C:
LUMMENT CALClLATE VALENCES UF NOUES:
MAXVAL: = $:$
FOR I:=1 UNTIL ELEES UO RUK $J:=1$ UNTIL 2 DO
Bculiv
VALVEC(INCMAT(1,J)):=VALVEC(INCMAT(I,J))+1:
Ir VALVEC(INCMAT $(1, J))>$ MAXVAL THEN MAXVAL: =VALVECl
INLMAT(I,J)):
EAL:
CJMMENT INITAALIZE BLUCK LIST TO A LIST OF TWC BLUCKS, THE FIRST
CONIAINING A NULE wIrH The mdurest valence aivo rat SECOND trye
EMPTY BLCCK:

CUNMENT ChOLSE FCK THE FIRST LABCLLED NODE EACH UF THE NUUES WITH
THE HIGHESI VALEACE IN TUKN:
FOR I:= 1 UNIIL NCCLS UL IF VALVECII = MAXVAL THEN
BtuIN
アK(VEL11):=1:
ChCSJKヒト1): =
ChuUSE (BlUCKlist, EmpTYBluCK, LASTLABELLEO):

CCNMENT KESI LKE LRUSSKEF: CRUSSREF(I):=0:
ENU:
if ohenin tren translat e_maxmat;
FNO KLAFPERSLANGL:

```
INTEGER NCDES,tuGES,lEAVES:
INTEGER ARRAY INCMAT,MAXMAT(1::LUU,1::2):
INTEUER ARRAY PERMUTAT ICNIL:: LUOI:
LOGICAL DEBUG.IKACE,LEAFTRACE.RUMIM:
INTFIELDSILF:=3;
LEAFTKACE:=FALSE;
IKACE:=FALSE;
UEGUG:=FALSE;
KEAU(NUUES,EDGES,RCMIM):
WHILE NUUESDE UO
    BEGIN
    IOCONTRUL(3):
    IF KCMIM THEN WRITE\"* * RUMIM * *") ELSE WRITE(*** CJMIM * *");
    WKITE("NUMOLR LF NLULS =" NNUUES." NUMBER.GF EDGES =",
        EDGES):
    FOF I:=L UNTIL EUGES UO FUK J:=1 UNTIL 2 DO READON(INGYAT(I,J)):
    WRITE("INCIUEINCE MATKIX 1S:"):
    FQR I:= UNT IL ELGES UU WRITE(INCMAT(I,1),INCMATII,2)I:
    KLAPPERSLANGE (INCMAI, MAXMAI. PEKMUTATION, NUOES , EOGES, RUMIM,LEAVESI:
    WRITE("MAXIMAL MATKIX IS:"):
    FOK I:=1 UNTIL cDGES UU WRITE(MAXMAT(I,1),MAXMAT(I,2)):
    WRITE!"LABEL PERMUTAIIUN IS :"):
    FOR I:=L UNTIL NLUES CO
            BEGIN IF I REM 12 = 1 IHEN IOCONTROL(2):
            WRITELN(PERMUTATILIN(IJ):
            END:
    WRITE{"NUMBEK OF LEAVES IN SEAKCH TREE = "LEAVES):
    READ(NOUES,EUGES,RCMIM);
    ENO:
END.
```


Appendix B

Sample Runs.

The examples given below are not intended to serve the purpose of a systematic analysis of the program's performance. However they illustrate the difference in efficiency of the romim and comim searches. An attempt at a more systematic analysis of the basic search algorithm, by means of "random graphs", is given in [1]

Maximal incidence matrices were computed for several graphs.
Graph 1 is the example used throughout Section 5 (see Figure 5.1 (a)); a trace of the program flow is shown for this example only. Graph 2 was mentioned in Section 2 as having unequal romim and comim (see Figure 2.1). Graph 3 represents the structure of an electrical filter, which indicates a-possible application. Graphs 6, 7 and 8 are subgraphs of Graph 9, which is the largest graph we have tested and has arbitrarily chosen edges.

The results of the computer runs follow.

* * RUMIM * *

NUMDEK OF NUDES $=C$ INCIDENCE MAIRIX IS:

```
NLMDEK LF LuGtS = %
```

3	0
1	2
1	3
1	6
2	3
2	3
3	4
4	3
5	0

ENTER CHUOSt NITH CHCSEN NCLE $=3$ entek pretend with 4 pretenders ENTER CHULSE WITH CHCSEN NUUL $=t$ ENTER LHUUSE WITH CHCSEN NUUL $=1$
ENTER CHUUSL WITH CHOSEN NUUL $=2$
ENTEK CHCLSE WITH CHDSEN NCOE $=4$ ENTEN CHUOSE WITH CHOSEN NUDE $=5$
leaf lf seahch tree - Label fernutaticn is:
$\begin{array}{llllll}3 & 0 & 1 & 2 & 4 & 3\end{array}$
maximat urgaleo

```
ExIT CHOJSE
EXIT CHIOSE
EXIT CHUUSE
EXIT ChOUSE
EXIT CHOUSE
ENTER CHOOSL WITH CHOSEN NLUE = &
ENTEK pretend wITH 2 PkETlivderS
ENTER CHUOSE WITH ChOSEN NLOE = 6
ENTER GHUUSE WITH CHOISEN NUUL = 2
ENTEK LHOUSE WITH CHCSEN NLLE = 4
ENTER CHLUSE WITH CHOSEN NUUE = s
leaf of search trei - label fekmutaticn 1S:
    3 L % 6 2 % 4
MAXMAT UPUATED
```

EXIT CHOJSt
EXII ChUUSE
EXIT ChOOSE
EXIT CHUOSE
ENTEKCHOUSE W ITH CHCSEh MLLE $=<$
LNTER CHIOSE IITH CHOSEN NUOUt $=6$
ENTERCHUCSENITHCHCSE hNLUL $=4$
ENTER CHOOSE WI TH CHOSEN NOUE $=5$
Leaf of seakcht ree - label permujatiunis:
$\begin{array}{llllll}3 & 1 & 2 & 6 & 4 & 3\end{array}$
MAXMAT NUT UPDATEO
EXI T GhuUSt
EXITCHOOSE
EXIT CHOUSE
EXIT CHOOSE
i X IT PRETEND
EXIT CHDUSE
enter chocse with chesen nuide $=2$
LNTER CHOUSE WI THCHCSENNOLE $=1$
ENTEK ChuUSE WITH ChUSEN NUUE $=t$
LNTER CHCOCSE WITH CHCSEN ACDE $=4$

```
LMTER CH.JUSE WITH CHOSEN NUNE = 5
Lrat lF StARCH TQFE - LABLL rermuTAIILN IS:
    3< 1 U 4 ,
.MAXMAT NJT UPDATEL
ExIT CH|JSE
ExIf CHOJSE
ExIT CHOOSE
ExIT CHouje
EXII CHOUSE
ENTER CHEUSE WITH CHOSEN NNULL = 4
LNTER PGEIEND WITH 3 FRLTEIVUEKS
cNTE{ GHULSL NITH CHCSEN NuiJE = L
¿MTER PK&TEN: WITH ? HREJtNDEKS
ENIER GAUGSt NITH CHCSEA NLUL = 0
LNTER CHCLISE NITH CHUSHN NUULE = L
LNIER CHULSE WITH CHOSEN NULL = j
LEAF OF SEAKCH TREE - LAOEL rEKMLTATIUN ID:
    3 4 1 % 0 2 %
MAXMAT NUT UPIJATED
ExIT ChuOSE
EXIT (HOUSE
EXIT CHUOSE
ENTER CHLUSE WITH CHOSEN NELE = <
civTEN CHUUSE WITH CHOSEN NUJE = ©
LMTER CHOUSE NITH ChOSEN NuDE = j
Llaf uf Slaricif Tfee - LAotl penmltatiluN 1j:
    3 4
MAXMAT IVIT UPJATFO
ExIT (1HOJSE
EXIT CillijSE
Ex[T unGGSE
ExIT Pretend
ExIT CHUJSE
ENTER CHUUSE WITH CHOSEN NUDE = t
ENTLR CHOJOSE NITH CHOSEN NDUL = 1
LMTEK CHJUSE WITH CHOSEN NJDLE = 2
cNTER GHGUSE WITH CHCSEN NULL = 2
leaf ut SEARCH IRFF - LAdLl PekmuTatIuN IS:
    3 4 6 6 1 2 2 5
MAXMAT INUT UPDATEU
EXIT CriJuSE
ExIT CHuOSE
EXIT chOOSE
EXIT CHUUSE
ENTER CHULSL WITH CHOSEN NuNL = 2
ENTEK CHCCSE WITH CHCSEA NCDL = i
ENTER CHCUSE NITH CHLISEN NUUE = t
enter chuUSE wITH CHCSEN NLLL = 5
ltaf ur StakCH TKEE - LABLL rekmlTAIILN is:
    j 4 < 2 l l
MAXMAT NOT UPDATED
ExIf ChOUSE
EXIT CHOUSE
ExII CHGOSE
EXIT CHTIJSE
```

```
Ex It pireteinu
EXIT CHIJUSE
Ex[1 PRlTENI)
EXIT ChUUSE
MAXIMAL MATRIX IS:
    1 2
    1 3
    14
    1 5
    < 3
    4
    30
    % 0
LABEL PERMUTATION IS:
    3 1 6 2 4 4
NUMOER JF LEAVES IN SEARCH IKEE= = 8
DUO.0S SECUNOS IN EXECUTICIN
```

```
* * C\capMTM * *
NUMRER NE NODFS = 6 NUNRER CF EDGES = 7
INCIDFNCE MATRIX IS:
    36
    1 7
    l 3
    1 K
    2 3
    2 5
    4 4
    4 5
    5 6
ENTER CHOOSF WITH CHITSEN NODE = ?
ENTER PRFTFNO WITH & PRETFNDERS
VALENCF CHECK: 3 IJRFTENDERISI 1O RF CONSIDERFD
ENTER CHOOSF WTTH CHITSEN NODF = 6
ENTER CHOCSE WITH CHITSEN NODF = 1
ENTER CHCOSE WTTH CHISEN NDDE = 2
ENTER CHOOSE WITH CHITSEN NODE = 4
ENTER CHOOSE WITH CHOSEN NODE = 5
LEAF CF SFARCH TRFF - LABFL PERMUTATION IS:
    3 6 l l 2 % 4 5
MAXMAT UPDATED
FXIT CHOOSE
EXIT CHOOSF
EXIT CHONSE
EXIT r.HOISE
EXIT r,HOOSE
ENTER CHONSE WTTH CHOSFN NONE = 1
ENTER PPFTENN WITH ?? PRFTENOERS
VALENCE CHFCK: 2 PRETENDERISI TO BE CONSIOERFO
ENTEP CHONSF WITH CHITSEN NODE = 6
ENTFR CHOחSE WITH CHITSEN NCDE = 2
FNTER CHOOSE WITH CHOSEN NCDE = 4
ENTFR CHOOSF WITH CHITSEN NODE = 5
LEAF OF SFARCH TPEE -- LABEL FERMUTATION IS:
    3 1 6 2 % 4 5
MAXMAT IJPNATFO
EXIT CHONS:
FXIT CHOOSE
EXIT CHONSE
EXIT RHONSE
ENTER CHח\capৎE WITH CHOSEN NODE = 2
ENTER CHOOSE WITH CHOSFN NODF = 6
ENTFP CHOOSE WITH CHOSEN NODE = 4
FNTER CHOOSE WITH CHOSEN NODE = 5
LEAF OF SFARCH TRFE - LAREL FFRNUTATION IS:
    3 1 1 2 % 6
MAXMAT NDT UPDATED
EXIT ChNOSE
EXIT CHONSE
EXIT CHODSE
EXIT CHONSE
FXIT ORETENO
EXIT CHOOSE
ENTFR CHOOSE WITH CHISEN NGDE = 2
EN& R CHOOSE WITH CHOSEN NODE :` l
    E
```

```
ENTER CHONSF WITH CHOSEN NODE = 6
ENTED CHONSE WITH CHUSFN NODF = 4
FNTEP CHOOSF WITH CHOSEN NODE = 5
LEAF NF SEARCH TREE - LAREL PFQMUTATION IS:
    3 2 1 G 4 4 5
MAXMAT NOT UPNATEN
FXIT CHONSE
FXTT CHOOSE
EXTT CHONSE
FXIT CHOOSE
EXIT CHOOSF
EXI T PRFTEND
EXIT CHCOCF
MAXINAL MATRIX IS:
    1 ?
    2
    14
    1 5
    2 3
    2 4
    3 6
    4 4
    5 6
LARFL PERMUTATITNIS:
    3 1 6 6 2 4
NUMBER OF LFAVESI NSEARCHTREE= 4
000.02 SECONDS INFXECUTION
```



```
    * * CUMIM * *
    NVMABEK UF NODES = 7 NuNEEK it tLGLS = 7
    lNCIUENCE MAT&IX S:
        1 2
        L
        1 ?
        2
        2
        34
MAXIMAL MAIRIX IS:
        L
        1 3
        14
        1}
        2 
    3 4
LABEL PERMUIATION IS:
1 < < 3 % 4 % 5 % 0 l
Vumber of LeAVES IN SEARCh t.seE = 4
OUU.01 SECONDS IN EXECUTILN
```

NUMRFR CF MODES $=17$ NUNBFR EFEDGFS $=2$?
INCIDENCE MATRIXTS:
$\begin{array}{ll}1 & 3 \\ 3 & 2 \\ 3 & 4\end{array}$
2
$\begin{array}{rr}3 & 5 \\ 4 & 6 \\ 5 & 6 \\ 5 & 7 \\ 6 & 8 \\ 7 & 9 \\ 7 & 0 \\ 8 & 10 \\ 9 & 10 \\ 9 & 11\end{array}$

$10 \quad 12$
1113
$12 \quad 14$
1314
1315
$14 \quad 16$
$15 \quad 16$
$15 \quad 17$
$11 \quad 12$
MAXIMALMATRIXIS:
12
$1 \quad 4$
5
27
36
$6 \quad 8$
70
$8 \quad 10$
910
911
$10 \quad 12$
111 ?
1113
1214
1314
1315
1416
1516
$15 \quad 17$
LABEL PERMUTATINN IS:
$\begin{array}{llllllllllll}3 & 5 & 4 & 2 & 1 & 6 & 7 & 8 & 9 & 10 & 11 & 12\end{array}$
$13 \quad 14 \quad 15 \quad 16 \quad 17$
numbfr of lfavesi nsfapch tree $=24$
000.12 SECONOSIN EXFCUTITN

```
    * * ごJMIM * *
    Vumiser Jr NODES = 17 mumote uF cliots = <l
    liviluenveg matrix IS:
        1 د
            < 3
            3 4
            3
                0
            5 0
            b 7
            7 %
            7 9
            y Lu
            y 11
            1) }1
            1i 1,
            14 14
            1) 14
            13 1%
            14 L6
            15 10
            1% 1/
            11 1< -
MAXIMAL MATRIX IS:
            l<
            1
            1}
            < 0
            l
                t
            0
            y
            8 10
                iJ
                11
                    10 12
                            1% 1<
                            11 15
                            i< 14
                            13 14
                            13 1%
                            14 10
                            1) }1
    15 L7
laugl permutatiun is:
    3
    1) 14 15 10 17
NUM|EE it LtAVES IN SEAREF TKEE= C
OUU.U& SECUNDS IN EXECUTICN
```

```
* * pרッ!M * *
NUMRFR C= NODES = 15 NIINFEDPEFDCES = 24
INCICFNTE MATRIX IS:
    l ?
    1 1)
    1 1?
    7
    3 4
    3 15
    4 5
    4 15
    5}
    6
    7 Q
    7 16
    8 ?
    9 10
    10 11
    10 1?
    11 12
    12 13
    12 13
    13 14
    14 15
    18 17
    17 16
    16 s
NAXINAI MATRIX IS:
    1 ?
    1 3
    l 4
    1 5
    1 6
    2 
    44
    27
    3 0
    5
    7 11
    8 12
    9 13
    10 14
    11 13
    11 15
    12 14
    12 16
    13 15
    14 16
    15 17
    16 18
    17 1^
I ARFL DFRM!ITATITNN IS:
```



```
    16 15 7 % 4 6 6 5
NIMMRFP IF LEAVES IN SEARTH TRFF=:?4
000.12 SFCONDS IN FXXEUTTION
```



```
    INCJMNG% Matalx ls:
```



```
mAx limal matmix IS:
        L
        l
        L
        L
        b
        7 1i
        u 1<
        1.j 14
        1% 1%
    11 1j
    1< 14
    12 10
    1.3 15
    14 10
    15 17
    10 13
    11 10
label pervuiati!jn is:
```



```
JvO.Jj SLCONOS IN EXECUTILN
```



```
    15 17
    16 19
IABEL. PFPMUTATION IS:
```



```
    15 16 19 13 1% & 14 17
NIJMRER OF LFAVFS IN SFARCH TRFF =144
```

000.34 SCCONOS IN FXFCIJTIAN


```
Nuagen le tugt > = <>
```



```
    L )
    L
    + ',
    i; 1
    3 10
    3 11
    + L_
    ,
        1.
    ` 1;
    ,}
    , Lu
L" 11
11 1-
i
i; 1+
i) LO
1.) 1/
1% L%
1) 1;
1% ,
M^INul Mallolx l!:
& -
L
L ?
C
c
4
111
O 1,
i, 1,
j L'+
* i%
j
1.) 11
LJ 1%
1< 1,
13 1+
1) 10
1. L,
c) L
```

$$
\begin{aligned}
& \begin{array}{ll}
\text { i? } & 17 \\
\text { 1\% } & 17
\end{array} \\
& \text { Labigl 戶ramutatlin ls: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { U.J.1) atulias IN ExECOTILN }
\end{aligned}
$$

```
* # prompt * *
```



```
Yir!ilNNE MAT=IX IS:
    1
    3
    2 5
    ()}
    4}
    14
    1
    9 10
    10 11
    11 12
    12 13
    1? 14
        7 14
        ? 
    14 15
    15 16
    1t 1?
    10 1?
        2 11
        3 15
        4 18
        4 19
    10 20
    20}7
    NAXTNAI MATPIX IS:
        l?
        1 2
        1/4
        1 6
        17
        1 R
        2.
        ? 4
        3 9
        3 10
        3 11
        12
        4 9
        5 o
        5 10
        r. 13
        6}1
        7 10
        B 15
        8 16
        9 17
        10 19
        11 19
        12 15
        14 70
```

```
    16 }2
    16 il
    17 21
    19 22
IARFL PFRMIITATION IS:
    Mrcccccccccc
NIMMRFD OF LEAVES IN CEARCH..TREE =576
0J2.13 SECDNDS IN EXFCUTION
```

```
* * COMIM * *
NUMBER IF NODES = 22 NUMBER O= ENGES = 30
INCIDINCE MATRIX IS:
    1}
    3 4
    4 5
    3 5
    3
    6 7
    4 7
    1
    1 8
    8 9
    9 10
    10 11
    11 12
    12 13
    13 14
    7 14
    2 5
    3 14
    14 15
    15 16
    10 17
    10 17
    3 11
    3 15
    4 18
    4 19
    19 20
    20 21
    72
MAXIMAL MATRIXIS:
    1 2
    l 3
    14
    1}
    1}
    1}
    1 8
    2 3
    29
    2 10
    2 11
    2 12
    34
    49
    5 6
    5 1)
    5 13
    6}1
    7 15
    7 16
    8 10
    9 17
1) 18
11 19
13 15
14 20
```

```
            16 20
                    16 21
                    17 21
    19 22
LABEL PERMUTATION IS :
    3
    13
NUMBERUFLEAVESINS E A R C HTREE=1
0U0.0.3 SECONDS IN EXECUTIGN
```

```
いい!14*
```


$$
\begin{aligned}
& \begin{array}{ll}
14 & 12 \\
i 4 & 2 i
\end{array} \\
& 10<1 \\
& \begin{array}{ll}
10 & L 2 \\
11 & L 2
\end{array} \\
& <j<j \\
& \text { LABLL PRKMUIATICN IS: } \\
& \begin{array}{llllllllllll}
3 & 3 & + & L & 14 & 13 & 0 & 11 & 1 & 7 & 19 & 18 \\
13 & 10 & 2 & 10 & 8 & <3 & \ll & 40 & 11 & y & 21 &
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { JUS.LU SLCUNOS IN FEXECUTICN }
\end{aligned}
$$

NUMBEF OF NODES $=23$		AUMBER OF EDCES
INCICENCE MATRIX IS:		
1	2	
7	3	
3	4	
4	5	
3	5	
3	6	
6	1	
4	7	
1	4	
1	8	
a	9	
c	10	
10	11	
11	12	
12	13	
13	14	
7	14	
2	5	
3	14	
14	15	
15	16	
16	17	
10	17.	
$?$	11	
7	15	
4	18	
4	19	
19	20	
30	21	
7	22	
7	33	
MAXIMALMATRIX IS:		
12		
1	3	
1	4	
1	c	
1	6	
1	7	
1	8	
7	3	
2	¢	
2	10	
2	11	
$\begin{array}{r}2 \\ 3 \\ \hline\end{array}$	13	
	4	
4	9	
5	6	
5	10	
5	13	
6	14	
7	15	
7	16	
8	10	
9	17	
10	18	
10	19	
11	2)	

 1315
 14 21
 1621
 \(16 \quad 22\)
 \(17 \quad 27\)
 \(20 \quad 33\)
 I $\triangle B E L$ PERMUTATION IS :
$\begin{array}{rrrrrrrrrrr}3 & 4 & 5 & 2 & 14 & 15 & 11 & 6 & 1 & 7 & 19 \\ 12 & 10 & 12 & 10 & 8 & 27\end{array}$
NUMPFO $12 \quad 10 \quad 8 \quad 2 ? \quad 73 \quad 20 \quad 17 \quad 9 \quad 21$
300.04 SECRNDS IN EXECUTION

```
* * rernTM * **
VIMGFR OF NOOTS = ?4 NINAFR CF FIOGFS = ??
INCIDEFICF MATEIX IS:
    1 2
    2 3
    34
    4 5
    3
    3
    6
    14
    18
    % %
    P lu
    10 11
    11 1%
    12 13
    13 14
    7 14
    2 5
    3}1
    14 15
    15 10
    lf 17
    1J 17
        3 11
        3 15
        4 1%
        4 10
    19 20
    20 ?1
        7 3
        7 23
        7 24
NAXINAI MATRIX IS:
    l?
    1 3
    1 4
    1 5
    1 6
    1 %
    ? 3
    7 4
    9
    3 10
    3 11
    3 12
    4 %
    50
    5 10
    5 13
    6}1
    7 10
    8 15
    8 16
    9 17
10 10
10 19
```

```
    10 ?0
    11 ?1
    13 15
    14 ? 
    16 22
    16 23
    17 23
    21 24
    IABFL OFRNITATITN IS:
        3
```



```
    007.0? SERONOS IN EXECIITION
```

```
* * CRNTN * *
NUNRER CF NRDES = 24
NUMBER OF EDGES = 32
INCIDENGE MATKIX IS:
    1 2
    2 3
    3 4
    4 5
    3. 5
    3}
    e}
    4
    1 4
    1 8
    8 3
    S 10
    10}1
    11 12
    12 13
    13 14
    7 14
    7 5
    3 14
    14 15
    15 16
    16. 17
    10 17
        2 11
        2 15
        4 18
    4 19
    19 2c
    70 31
    7 27
    7 33
    7 34
MAXINAL MATPIX IS:
    1 ?
    1 3
    14
    15
    1 t
    17
    8
    2 3
    2 9
    2 10
    2 11
    2 12
    3 4
    4
    5 6
    5 10
    5 13
    \epsilon 14
    7 15
    7 16
    8 10
    G 17
    10 18
    10 19
```

```
    1C ec
    1 1 2 1
    13 15
    14 27
    16 22
    16 23
    17 23
    21 24
I \triangleEFL FFFNUTATION IS : }
    13 10 1% 12 2 14
```


OOC.CE SECONDS IN EXECUTION

[^0]: Table 6.1. Summary of the results of sample runs. Time is shown in seconds.

