
FIND ING THE MAXIMAL INCIDENCE MATRIX
OF A LARGE GRAPH

M. Overton
A. Proskurowski

STAN-C S-75-509
SEPTEMBER 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

-_- -

C

i

i

L
t

i

L

L

Finding the Maximal Incidence Matrix of a Large Graph

. .
Michael Overton and Andrzej Proskurowski

Computer Science Department
s Stanford University

Abstract

The paper deals with the computation of two canonical representations

of a graph. A computer program is presented which searches for "the

maximal incidence matrix" of a large connected graph without multiple
--_

edges or self-loops. The use of appropriate algorithms and data

structures is discussed.

This research was supported in part by National Science Foundation grant
DCR72-03752A02and by the Office of Naval Research contract NR 044-402.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

1

-

L

!

i

L
t

L

L

1. Introduction.

The notion of the maximal incidence matrix as a canonical represen-

tation of a graph was introduced in [l]. An algorithm to search for

this matrix (a graph being given by--any of its incidence matrices) was

presented there together with a computer program which performed the

search.

In this paper we briefly review basic ideas of [1] and discuss

another "maximal incidence matrix" of a graph. Our main concern is the

application of the search algorithm to large graphs and an efficient use

of computer memory when representing graphs and carrying on the search.

A variety of arrays and linked lists will be employed in order to limit

the amount of parameters passed along with the recursive subroutine calls.

We have developed a computer program written in ALGOL W that maintains

the data structures and performs the search. The program is presented

and its functions are discussed.

2. Basic Notions.

In order to use concrete phrases when discussing the problem and

the proposed solution, let us define our basic vocabulary.

A graph will mean two sets N (of nodes) and E (of edges),

together with a function F (the incidence function) which ascribes

an edge aeE to some unordered pair of nodes
nl and n2'

Fbp-9 = F(n2,nl) = a .

We constrain the function F to be partially defined (in particular,

not defined for n
1 = n2 thus excluding graphs with self-loops) and

require that F is single-valued, i.e., graphs do not have multiple

edges. Nodes nl and n2 are said to be adjacent and the edge a is

said to be incident to nodes n
1 and n

2 . The valence of a node nl

is the number of edges incident to it, and will be denoted valence(nl) .

A graph is connected if for every pair of nodes u,veN there exists a

sequence of adjacent nodes n
i

(i = O,...,k) such that n
0 =u,

I-

i.

L
L
L
Ii

L

L

nk = v ad F(niwl,ni) is defined for all i = l,...,k . In the

following we shall consider only connected graphs, for simplicity.

We shall label elements of the sets of nodes N and edges E by

consecutive integers beginning with 1 . We shall represent a graph by

listing entries of its incidence function which is a shorthand for its

incidence matrix: a sparse binary matrix of n = INI columns

corresponding to the nodes and e = IEI rows, each corresponding to

an edge. The element M(p,i) of the incidence matrix M equals 1

if the edge label-led p and node labelled i are incident, and 0

otherwise. We will denote edge labels p, q, r and node labels i, j , k .

The p-th row of the matrix, corresponding to the edge labelled p , will

be referred to as M(p,*) and the i-th column, corresponding to the

node labelled i , will be referred to as M(*,i) .

An important notion for our discussion is that of isomorphic graphs.

Two graphs, Gl = (Nl,El,Fl) and G2 = (N2,E2,F2) , are said to be

isomorphic if they may be represented by identical sets
Nl

= N2 and

El = E2 9 and identical function Fl = F
2 . With our assumption about

labelling sets N and E , this means that the labels in one of the

graphs may be permuted in a way transforming the incidence function into

a form identical with the other. In terms of the incidence matrices

this means exchanging columns and rows of one matrix so as to get a

matrix identical with the other one.

Let us consider incidence matrices of a graph which have rows

arranged lexicographically in descending order. Then, for a given

graph, we can define an ordering relation on the class of row-ordered
a

incidence matrices. For two unequal matrices Ml and M2 we say that

Ml is row-greater than M2 if the first row of Ml that differs from

the corresponding row of M2 is lexicographically greater. A matrix

not less than any other matrix in this class will be called the

row-maximal incidence matrix of the graph, or the "romim" for short.

The notion of romim was introduced in [l] under the name of

"maximal incidence matrix" and its existence proved.

Considering columns of an incdence matrix as bit strings read

top-to-bottom we may order them in descending lexicographic order.

For a given graph let us define a relation column-greater than on the

class of column ordered incidence matrices. A matrix not less (in the

i
3

sense of column-ordering) than any other matrix in the class will be

called the column-maximal incidence matrix of the graph, or simply the

"c01llj.m~~.

Fact 2.1. For a given graph there always exists a column-maximal
. .

incidence matrix defined as above.

Proof 2.1. Given a graph we can always fix the labelling of the edges

and then order the columns of the incidence matrix lexicographically.

Thus, for all possible labellings (permutations) of edges we obtain a

set of corresponding column-ordered incidence matrices. Since the set

is finite, we have an element that is not less than any other element

of the set. This is the comim. 0

It must be pointed out that the two definitions describe two

different quantities. We give an example of a graph and its romim

and comim (Figure 2.1). By inspection, the matrices are not equal.

I

4

(>a

I
i

1
1
L

6

3

Nodes: = -34567
1 1
11
1 1
1 1
1 1

1 1
1 1

(c) 14 2 3 5 6 7
1 1
1 1
1 1
1 1

1 1
1 1
1 1

Figure 2.1. Example of a graph (a) with unequal romim (b)
and comim (c).

3. The Search.

It is easy to describe a brute force method to find the maximal

incidence matrix. By listing all possible labellings of nodes of a

graph, lexicographically ordering the rows of the corresponding incidence

matrices, and saving the "maximalmatrix so far", the romim is obtained.

Similarly, by listing all possible labellings of the edges and ordering

the columns of the incidence matrices the comim is obtained. However,

there often exist clear indications of which permutations should be

considered as leading to the proper labelling. A depth-first search

procedure to find the (row-) maximal incidence matrix was proposed in [2].

It labels nodes of the given graph and selects the best choices to be

labelled tentatively leaving the other possibilities still to be examined.

The search may be represented by a search tree where nodes of the tree

correspond to the labels to be assigned. When the search arrives at a

leaf of the tree=(i.e., when all nodes of the graph are labelled), the

incidence matrix "maximal so far" is compared with the result of the

tentative labelling and -- if it is inferior -- replaced by the newly

. found one.

The main role in the process of labelling nodes of a graph is played

by the priority vector. It is a one dimensional array which for every

unlabelled node gives an indication of its suitability to be labelled

next. This indication is calculated from the incidence matrix based

upon how a node is connected with the labelled nodes. To formalize

this we introduce a notion of the priority vector for assignment of the

- label m . The element PRIVECm(i) , where 2 <m < i < n , is a bit- - -
string which at every position 1 < j <m has 1 if the node i is-
adjacent to node j and 0 otherwise. Figure 3.1 gives an example of

a graph (a) and the priority vectors (b) for consecutive instances of

labelling the nodes.

I

L

i

L

1

L

-=.

(2) (3)

m=2 1 1 1
3

1 0
11

4
10 10 01
101

5
100 010

6 1000 0101
01011

Figure 3.1. A graph and the priority vector corresponding to the
labelling (1,2,3,4,5,6) .

7

Let us define a labelling of the nodes of a graph to be privet-proper

if any incidence matrix of the graph with nodes arranged by this labelling

has nonincreasing priority vectors, i.e., for every i, j and m such

that 2 <m < i < j < n we have PRIVECm(i) 2 PRIVECm(j) l
- - - -

The importance of privet-proper labellings of nodes is stressed

by Theorem 3.1 (stated and proved for'the romim in [l]).

Theorem 3.1. For a given graph the labelling of the nodes that

results in the maximal incidence matrix (romim or comim) is privet-proper.

However a matrix with a privet-proper node labelling is not necessarily

a maximal matrix.

It is worth noting that the property of the priority vector stated

in Theorem 3 .l holds true for both romim and comim. Let us state two

lemmas that will simplify proof of the theorem. Lemma 3.2 expresses an

intuitively obvious fact that we want "as many ones as possible" in the

lefthand upper corner of the incidence matrix.

Lemma 3.2. For a given incidence matrix and a given

'i to be the set of all rows with their first 1 in

for the maximal incidence matrix, romim or comim, any

first row in Si and the last row in S
i

is also in

column i define

column i l Then,

row between the

si l We call the

set S. simply a block i of rows in the maximal incidence matrix

(note that block i may be empty).
e

Proof 3.2. Assume the contrary: that for a maximal matrix Ml there

exist a column i and rows p, q, r with p < r < q , such that the

first l's of rows p and q are in column i and the first 1 of

row r is in column k f i .

(i) Suppose Ml is the romim. If k < i then a matrix with rows

p and r swapped is row-greater than Ml , and if k > i then

a matrix with rows q and r swapped is row-greater than Ml ,

so
Ml

is not the romim.

8

L
1

(ii) Suppose Ml is the comim. If k < i then swapping rows p and ,7'
(relabelling corresponding edges) and column ordering the matrix

results in a matrix column greater than Ml . Similarly if k >i
then swapping rows q and r and column ordering leads to the

contradiction. Cl . .

Actually it is obvious that this block structure of the incidence

matrix holds for every row-ordered incidence matrix (see Figure 3.2).

1 1
block 1

1 1

1 1

1 1-.-.- m m - - - -
1 1

block 2
1 1

- - - - - a -
l l block 3

- - - - a - - block 4 is empty
1 1 block 5

---a - - -
1 1 block 6

c

Figure 3.2. A row-ordered incidence matrix of a graph displays
the block structure.

. The second lemma states the conservative property of the priority

vector with respect to the assigned label.

Lemma 3.3. For a given incidence matrix and two nodes

(i < 3)
i and j

we have, for all 2 5 .t 5 m 5 i ,

PfWE(+) > PRIVE(ZL(j) 3 PRIVECm(i) > PRIVEC (j) .m

The proof is trivial and is left as an exercise for the reader.
13

9

Now we can prove Theorem 3.1 for both romim and comim.

Proof 3.1. Assume the contrary: the given maximal incidence matrix

Ml does not have a privet-proper node-labelling. Thus there exist

m < i < j- such that PRIVECm(i) < PRIVECm(j) . According to Lemma 3.3

this implies

PRIVECi(i) < PRIVECi(j)
. .

which means that there is a position k < i such that the k-th bit in

PRIVECi(i) equals 0 and the k-th bit in PRIVECi(j) equals 1 , with

the first k-l bits in the same in both PRIVECi(i) and PRIVECi(j) .

Thus in block k of Ml (Lemma 3.2) all rows have 0 5 in column i

and there is a row p in the block with a 1 in column j . We will

now prove that Ml may be rearranged in different ways leading to

matrices M2 and M
3' each greater than Ml , in the sense of row-

and column-ordering, respectively. This will contradict our assumption

that Ml is a maximal incidence matrix.

(i) Suppose Ml is the romim. Then swapping columns i and j

(relabelling corresponding nodes), and ordering rows within

blocks l,..., k-l we obtain a matrix with the blocks l,...,k-1

identical with those of Ml . In the block k , however, row p

is greater than it was before, and no other row in this block

has been changed. Thus, ordering block k we get a matrix M2

that is row-greater than Ml .

(ii) Suppose Ml is the comim. Consider blocks l,...,k-1 ; because

e of the definition of k there cannot be a row with a 1 in

column i without another row in the same block with a 1 in

column j , and vice versa. In each block if there is a row p

_ with a 1 in column i. and a row q with a 1 in column j ,

such that p < q , then interchange rows p and q (relabel

the corresponding edges). There must be at least one such block

or else the columns would not be in order. Then the new column j

is greater than column i of I'+ the new column i is less

than column i of Ml and all other columns are unchanged. Thus,

ordering the columns lexicographically, we obtain a matrix M
3

greater than Ml . This completes the proof. Cl

10

L

L

1
L
t

L

.

We can now recall

works.

At any stage m ,

assignment of label m

from [2] how the algorithm for finding the romim

the priority vector gives the indications for the

. These indications may appear in two forms;
-.

(1) There is exactly one node pretending to the label m since it

uniquely has the highest value of the corresponding element of

the priority vector;

(2) There are several nodes for which the corresponding elements of

the priority vector have the highest value. These nodes are

called equal pretenders.

The situation of (l)is clear and implies assigning label m to the

pretender, thus increasing the number of labelled nodes. Calculating

the priority vector for the rest of the unlabelled nodes again and

again gives the situation (1) or (2) and eventually results in the

incidence matrix, maximal for the original labelling 1,2,...,m-1 .

In the situation (2) there are more pretenders that have to be

tried as node m . Successively one by one all of the equal pretenders

are assigned the label m .and, after proceeding as in situation (l),

a matrix maximal for every labelling is calculated. The greatest of

these matrices is stored as the incidence matrix maximal for labelling

1,2,...,m-1 . The maximal matrix of the graph is identical with the

solution of the problem of finding for the matrix maximal for m = 1

(no nodes labelled).
4

The algorithm is based on two recursive procedures, CHOOSE and

PRETEND. Procedure CHOOSE computes the priority vector and makes the

r-ight choice for the next label if there is only one pretender; if there

a&e several it calls PRETEND. Procedure PRETEND ma.des various tentative

choices for the next label, calling CHOOSE for each. The process is

initiated by examining the valences of the nodes and calling CHOOSE

with each node of highest valence as the initial choice. It is clear
that for both romim and comim the node labelled first must be a node

of highest valence.

We must correct here the algorithm of [2] which applies a valence

check in situation (2) to narrow down the number of pretenders. In the

example of the graph in Figure 2.1 this would result in M2 rather than

Ml y in spite of the fact that Ml is row-greater than M2 . Our present

algorithm omits this check.

However, the valence check employed--in the algorithm is useful for

determining the comim, making the search for the comim more efficient

than the search for the romim. This is elaborated in the next section.

4. Pruning the Search Tree for the Comim.

It is attractive to search for the comim rather than the romim because

of the following theorem:

Theorem 4.1. Let=. Ml be the comim for some graph with nodes numbered

1 Y l **t no Then for all i < j :

PRIVECi(i) = PRIVECi(j) 3 valence(i) 2 valence(j) .

. Thus if on the i-th decision level two nodes are equal pretenders but

have different valences, the node with the higher valence should be

chosen.

P r o o f . Assume the contrary, that is, there exist i < j such that

PRIVECi(i) = PRIVECi(j) and valence(i) < valence(j) . Consider blocks

1 Y "'Y i-l of Ml (cf. Lemma 3.2); because the priority vectors are

- equal there cannot be a row with a 1 in column i without a row in

the same block with a 1 in column j , and vice versa. Relabel the

edges in the following way. Interchange the pairs of rows, in the

blocks 1,i-1 , which have l's in columns i and j , and also

move the remaining rows with a 1 in column j up following block i-l l

The new column j is greater than the column i of Ml , because

valence(j) > valence(i) . Columns l,...,i-1 remain unchanged, so after

ordering the columns we obtain
M2

column-greater than
Ml y

which is a

contradiction. 13

12

-

-

Theorem 3.1 showed that the same search tree leading to privet-proper

labellings of nodes can be used for both the romim and the comim.

Theorem 4.1 shows that the comim search tree can be significantly pruned

by considering the valences when encountering equal pretenders.

When arriving at a leaf of the search tree we have a privet-proper

node labelling and have built up an incidence matrix of the graph with

this node label-line;. It remains to label the edges. In the case of

the romim search it is clear that ordering the rows of the matrix

results in the row-maxhal incidence matrix for this node labelling.

It turns out that for the comim search as well, ordering the rows of

the matrix results in the column-maximal matrix for the labellings.

This result is stated in Theorem 4.2.

Theorem 4.2. Let a graph with a privet-proper labelling of nodes be

given by an inczdence matrix. Then ordering the rows of the matrix

results in the column-maximal matrix for the labelling.

To prove this theorem, consider the row-ordered matrix. Lemma 4.3
shows that such a matrix has a column block structure analogous to the

row block structure described in Section 3. Furthermore, Lemma 4.4

shows that such a matrix is column-ordered. The final step will be

to prove that no other permutation of the rows gives a matrix which

is column-greater than the row-ordered matrix.

Lemma 4.3.e A row-ordered incidence matrix of a graph with a privet-proper

labelling of the nodes has the following two properties:

(A) For every row in the matrix, a 0 in between two l's has a 1

above it in the same column.

(i) The highest 1 in any column is not lower than the highest 1 in

any succeeding column..

Proof 4.3.

(A) Assume that row p has a 0 in column k and l's in columns

i and j , where i<k<j, and that there is no 1 in column k
prior to row p . As thee given matrix is row ordered, rows with a

13

1 in column k must have the other 1 in column R > i (see

Figure 4.1). But this implies that PRIVECk(j) > PRIVECk(k) ,

which is not possible since the labelling is privet-proper.

Figure 4.1

(B) Suppose the highest 1 in column i is in row p and the

highest 1 in column j is in a higher row q , with i < j

and p > q . Let the other 1 of row q be in column k .

If k < i then we have a situation which contradicts (A) (see

Figure 4.2), and if k > i then rows p and q are out of order,

which is not possible. c3

k i j00.r: 0cl 1 0 1
P 1

Figure 4.2

Lemma 4.4. A row-ordered incidence matrix of a graph with a privet-proper

labelling of the nodes is column-ordered.

Proof 4.4. Recall from Section 2 that we are concerned only with

connected graphs without multiple edges.

We will show that every two columns of the matrix are in order.

Consider the highest l's in columns i and j with i < j . By

14

!

i

L
L
t

Lemma 4.3B the highest 1 in column i is not lower than the highest

1 in column j . We claim that it is in fact higher, except for the

case i=l, j =2. Suppose the contrary -- then columns i and j

have their highest l's in the same row, say row p . Suppose further

i<j-1. Then there is a column k (i < k < j) with a 0 in row p ,

so by Lemma 4.3A there must be a 1 in column k higher than row p

-- however this violates Lemma 4.3B since the highest 1 in column i

is in row p . Otherwise i = j-l , but then nodes l,...,i-1 are not
connected to nodes i,n . This can be seen by considering Figure 4.3,

where submatrix Ml must be all 0 *s since the rows are ordered, and

submatrix M2 must be all 0 3 because of Lemma 4.3B and the fact that

the 1% in row p are the highest in columns i and j. Thus the
assumption that the graph is connected is violated.

-.

c Figure 4.3

. Inthecase i=l, j = 2 the first column must have l's in the

first two rows and the second column must have a 0 in the second row

since the graph has no parallel edges and the first node chosen must be

a node of greatest valence. Thus column 1 is greater than column 2

(except in the trivial case of a graph consisting of only one edge). a

15

Now let us prove Theorem 4.2.

Proof 4.2. By Lemma 4.3 any row-ordered incidence matrix Ml of a

graph with a privet-proper labelling of the nodes is column-ordered.

Thus it is sufficient to show that no other permutation of the rows

gives a matrix M2 which is column greater.

Suppose the contrary. Let column k be the first column differing

in M1 and M2 , and let the first element of column k differing in

Ml and M2 be in row p . Since M2 is column greater than Ml ,

clearly Ml(p,k) = 0 and M2(p,k) = 1 . Because column k differs in

Ml and M2 only by a permutation of elements p,...,e , there exists

q > p such that Ml(q,k) = 1 . Therefore row p of Ml has a 1 to

the left of column k , say in column i < k , since the matrix is

row-ordered. As column i is the same in both matrices we have

M2(p,i) = Ml(p,i) =i 1 l The other 1 in row p of Ml must lie to

the right of column k , say in column j > k ; otherwise, if j < k ,

then M2(p,j) = Ml(p,j) = 1 and there would be three l's in row p

. of M2 . Thus we have M2(p,*) > Ml(p,*) . Hence there exists r <p

such that M2(p,*) = Ml(r,*) (with the l's in columns i and k),

since Ml and M2 differ only by a permutation of rows and Ml is

row-ordered (see Figure 4.4).

Ml M2

i k j i k

r 1 1

P r r1 0 1 1 1

q 1

Figure 4.4

16

.

L

L

l-

L
i

But then M2(r,*) = Ml(r,*) and we have two identical rows in M2 ,

which contradicts the assumption that the graph has no multiple edges.

This completes the proof of Theorem 4.2. D

We have now shown that the corn-& is a row-ordered matrix with a

privet-proper node labelling. The example of Figure 2.1 shows that if

Ml and M2 are two row-ordered matrices with privet-proper labellings

it is possible for Ml to be row greater than M
2 and M2 column

greater than Ml . However because of Theorem 4.1we can (confine our

attention to row-ordered matrices with privet-proper labellings and with

[PNYECi(i) = PRIVECi(j) and i < j] =$ valence(i) 2 valence(j) .

At first sight it might seem that if Ml and M2-. are two such matrices

then Ml is row greater than M2
than M2 .

if and only if Ml is column greater

However this is not the case and Figure 4.5 gives a

counterexample.

17

l-l

L-l I-

I - l l-i

rli-lrl

T
V

IA

\

18

50 Data Structures.

A data structure for the search of the maximal incidence matrix of

small graphs by means of this algorithm was proposed and used in [2].

The incidence matrix of a graph with n nodes and e edges was represented
-.

by e words. If edge i was incident to nodes j and k , then the

i-th word was a bit string with l's only in positions j and k . Thus

one row of the incidence matrix was stored in one word of computer memory.

Such a representation facilitated manipulating the matrix by logical

operations on the bit strings. However, the number of nodes in the graph

L

was limited by the number of bits in the computer word. In the data

structure proposed here the number of nodes is limited only by the

computer integer range and the size of computer memory.

In the present implementation the incidence matrix INCMAT is stored

in an ex2 in,teger array (twice the storage of the old representation).

If edge i is incident to nodes j and k then the i-th row is an

unordered pair of integers j and k .

i

i

L

During the search it is necessary to order the rows of INCMAT. The

ordering is achieved by introducing an integer vector NEXTEDGE which

transforms INCMAT into a linked list. This vector is dimensioned from

0 to e with NEXTEDGE = i+l initially, except NEXTEDGE = -1 .

As nodes are labelled, the edges incident to them are "pulled up to the

top of the list". The pointer LASTLABELLED points to the last such edge

\

L
pulled up; initially LASTLABELLED is set to zero. More precisely, when

procedure CHOOSE is entered, with say node p chosen to be the next

* labelled node, procedure PIJLLUP is called, which scans down the linked

list (INCMAT, NEXTEDGE) starting from LASTLABELLED, and upon encountering

an edge incident to p , deletes the edge from the list, inserts it following

the edge at LASTLABELLED, and updates LASTWELLED. The two nodes incident.
to the edge are interchanged if necessary so that p is in the first

column, the other node is examined, and the priority vector PRIVEC is

modified accordingly.

When a leaf of the search tree is reached the new candidate for the

maximal matrix must be calculated from the linked list representing the

incidence matrix. This means that the rows of the incidence matrix must

be lexicographically sorted. The entries in the first column of INCMAT

19

are in order determined by the label permutation found. The second

column, however, requires sorting of entries within blocks (cf. Lemma 3.2)

to obtain an ordered matrix. Now the new matrix may be compared with

MAXMAT, the maximal matrix found so far. This testing -- in the sense of

row ordering -- is an easy task for the chosen data structure. It suffices

simply to compare the two-element rows of the new matrix with those of

MAXMAT one at a time. The test in the sense of column-ordering is not

as obvious, and will be described in Section 6.

The priority vector PRIVEC does not have to be stored in a way

described in Section 3, with the number of bits in each element equal to

the number of nodes labelled so far. Instead it is stored here in an

integer array called PRIVEC, whose entries are node numbers and which is

broken into a number of logical blocks. (Now we are talking about blocks

in PRIVEC, not the ones defined in Lemma 3.2.) At any stage of the labelling

process all nodes within a block have equal priority, and nodes within one
--

block have higher priority than nodes within another block further down the

vector. There may be a block of nodes that have not been assigned any

priority yet -- the last part of the PRIVEC may contain only zeros. This

. block is referred to as the empty block. In the priority vector described

in Section 3, when a node p is labelled one more bit is added to every

element of the vector: 1 to those elements corresponding to nodes

adjacent to p and 0 to all other elements. In the data structure

described here, when a node p is labelled, any node adjacent to p is

either added to the empty block if it is not already in PRIVEC or marked

in PRIVEC if it is already there. Such nodes are found by procedure PULLUP,

. described earlier. After all nodes adjacent to p have been found,

procedure SHUFFLE is called. This procedure scans PRIVFX and shuffles

the entries within each block so that the elements marked by the action

of-PULLUP are moved to the top of the block and the unmarked elements

are moved to the bottom. If these two sets of elements are both nonempty

the block is then split into two blocks, since the marked elements have

higher priority than the unmarked elements. After all blocks have been

shuffled, the empty block is checked for the presence of any new elements.

If some were added by the pull up operation, a new block is created to

accommodate them and the remaining zero elements become the new empty block.

20

-_-

I
i

L
L
L
L

In order to avoid searching the entire vector PRTVEC every time an

edge incident to p is pulled up, a new vector CRGXREF is introduced.

This is the cross reference to PRIVEC: at any time, if PRIvEC(i) = j \ 0

then CROSSREF(j) = i .

The description of the PRIVEC blocks is stored in a list of records,

pointed to by BLOCKLIST. Each record contains an int*eger field BLOCKFYk

and a link NEXTBLOCK. The BLOCKPTR fields are integers pointing to the

first element of each of the blocks in PRIVEC. The integer BLOCKPIR

(BLOCKLIST) points to the first element in the highest priority block

of PRIVEC; this element is not necessarily the first element of pRIvEC

as will be explained shortly. The pointer EMPTYBLOCK points to the last

record in the list. The integer BLOCKPTR (EMPTYBLOCK) points to the

first zero element of PRIVEC, unless every node has been entered in

PRIVEC in which case the pointer will have value n+l .-=.
Initially BLOCKLIST is set to point to a list of two blocks, the

first containing a node of maximum valence and the second the empty

block. At any stage in the search the pointer BLOCKLIST points to a

list of at least two records. The initial data structures for a certain

incidence matrix are shown in Figure 5.1.

After initialization, procedure CHOOSE is called. The node with

the highest priority is considered to be labelled and procedures WLLUP

and SMTFFLE are called to perform the actions described earlier. The
resulting data structures are illustrated in Figure 5.2.

At this point the block containing the labelled node is deleted from

the block list. (In fact the deletion is done in between PULLUP and

SHUFFLE since it is a bit simpler to do so, but this makes no difference.)

Now another node must be labelled so the first block of the modified

block list is examined. If it contains only one element, CHOOSE is called..
If'it contains more than one element there are several pretenders to the

label, so PRETEND is called. Then PRETEND will call CHOOSE several times,

each time with the first block split into two blocks, one containing a,

single chosen pretender and the other containing the remaining pretenders.

In the comim search the valence check may reduce the number of calls to

CHOOSE (see Section 6).

21

Graph

1 2

6! 3

5 4 -*

INCMAT UEXTEDGE LASTLABELLED

1

2

3L
4

5
6

7
8

9
-1

f---n---- 0
c l

CROSSREF PRIVEC BLOCKLIST EMPTY-BLOCK

/

0

0

10

~

0

0

0
u

0

Figure 5.1. Example of initial structure.

22

L-

I

L
L
t

i

INCMAT NEXTEDGE

- - -

/

CROSSREF PRIVEC

3

4.
1 '

:

5 N
0

2

LASTLABELLED

El7/
//

/’//

BLOCKLIST EMPrYBLOCK

Figure 5.2. In first call of CHOOSE, after HJLLUP and

SHUFFLE.

23

Because of the recursive nature of the search, the crucial question

that one must ask here is: how much must be kept on the stack? The

answer is that when CHOOSE is calling itself or calling PRETEND only

three words must be passed (as value parameters): FIRSTBLOCK, EMPTYBLOCK,

and LASTLABELLED; when PRETEND is calling CHOOSE (i.e., at a branch in

the search tree), only a copy of the block list structure must be passed

in addition. At no time is it necessary to have more than one instance

of INCMAT, NEXTEDGE, PRIVEC or CROSSREF. This is very important, since

these arrays may be large and the search tree deep. It is not necessary

to keep a copy of INCMAT or NEXTEDGE because any changes made to the

linkedlistonly reorder the edges or reverse the pair of nodes incident

to an edge, producing an incidence matrix as valid as the original one.

It is not necessary to keep a copy of PRIVEC or CROSSREF because the only

changes made to PRIVEC take the form either of shuffling elements within

a block, or of adding elements to the empty block. Note that splitting--.
a block does not affect PRIVEC but only inserts a new record in the block

list. Since elements within one block have equal priority the shuffling

does not destroy the priority information. Any elements added to the

empty block of PRIVEC at a lower level may be deleted on return by saving

a pointer to the empty block before the call; corresponding new CROSSREF

entries may be deleted at the same time. An actual new copy of the block

list structure need be made only when PRETEND calls CHOOSE, since this is

the only point where the search tree branches.

The example of Figures 5.1 and 5.2 is continued in Figures 5.3 and

5.4, illustrating the situation after PRETEND has been called by CHOOSE,

'and after CHOOSE has been called again.

24

c

r

i

L
I

INCMAT
NEXTEDGE

‘3 6~~~~--- 1

/
/

/
/

/
/

CROSSREF PRIVEC
BLOCKLIST EMPJJYBLOCK

IFigure 5.3. In first call of PRETEND, just before next call

of' CHOOSE.

.

25

INCMAT NEXTEDGE LASTIABELLED

-. /

/

/

/

/

/

/

CROSSREF
--.

PRIVEC BLOCKLIST
passed to CHOOSE

/cl9

EMPTYBLOCK
passed to CHOOSE

-I -- I -- -. H 1. ’ ! 7 6 1

‘i 1 BLOCKLIST EMPTYBLOCK
'I I saved by PRETEND saved by PRETEND

Figure 5.4. In second call of CHOOSE, just before next call

of CHOOSE.

26

-

/

L

i

i

L
I
L

6. Differences in Implementation of the Search for the Romim and the C:;i:i11..-..

The previous sections showed that the same basic search tree can be

used for both the romim and the comim, and furthermore that the search

tree for the comim can be significantly pruned by making use of the node

valences. The pruning is done by considering the valences of the pretend??-7

at the beginning of procedure PRETEND. The maximum valence of the

pretenders is found, and CHOOSE is called only for the pretenders with

this valence. The valences of all the nodes were computed at the

beginning of the program and stored in the array VALVEC.

The data structures described in Section 5 are particularly well

suited for the romim search. With a slight modification they may also

be used in the search for the comim. At a leaf of the search tree the

new matrix found must be compared with the maximal matrix so far. In

the romim case the maximal matrix so far is stored in MAXMAT, an array

with the same format as INCMAT, and as explained in Section 5 it is then

very easy to do the necessary row comparison. However the column

comparison for the comim search would be very inefficient using this

structure. A solution is to translate the row-ordered incidence matrix

found into an array of n linked lists, each corresponding to a column

and listing the rows with a 1 in this column. Then with the maximal

matrix so far stored in a similar array of linked lists MAXMATCOL, the

column comparison of the two matrices simply requires a series of scans

down the lists. The matrix comparison, together with a replacement of

the maximal matrix so far if necessary, is done by one of two versions
e

of procedure UPDATE -- one for the romim and one for the comim.

Advantages of the comirn search are demonstrated by the running times

of an ALCOL W program which implements the search and data structures

described. One of the parameters to the program is a logical variable

whose value specifies whether to calculate the romim or the canim. The

"records and references" dynamic storage feature of ALGOL W is used for

the lists BLOCKLIST and MAXMATCOL. Integer arrays are used for all the

other list structures since they do not change size dynamically. The

program, listed in Appendix A, was run for several graphs on an IBM 370/l%.

The results are summarized in Table 6.1. The computer printouts and an

explanation of the choice of graphs are given in Appendix B.

27

GRAPH NODES EDGES

6 9

7 7

17 22

18 24

19 29
22 30

23 31

24 32

50 78

ROMIM

TIME LEAVES

.Ol -

.02

.12

.12

034
2.13

3.10

7.03

> 600

8

24

24

ii?+

144

576
1152

3456

COMIM

TIMJ3 LEAVES

.Ol 4

.Ol 4

.02 2

003 2

010 16

003 1

.04 2

.06 6

.81 48

Table 6.1. Summary of the results of sample runs.

Time is shown in seconds.

28

L

L
L

We see from the results that the comim search is substantially

faster than the romim search. However the data structures in the prog-r?.r-

were designed primarily for the romim search. We could expect significant

improvements in the performance of the comim search if more suitable data

structures were used. A particularly attractive idea is to compare tht:-

maximal matrix so far with the new incidence matrix found as it is built

up, and thus have the possibility of abandoning unusef'ul labellings

early. This could be done if more of the priority information was kept.

The idea of abandoning labellings early might also be applicable to the

romim search, for example if the edges were labelled first instead of

the nodes.

Highly symmetric graphs (graphs with many automorphisms) will require

search trees with a large number of redundant leaves corresponding to

automorphic permutations of nodes.-=. A way to eliminate some of these

leaves by keeping track of automorphic permutations as the search

progresses is discussed in [3].

Acknowledgment.

We are grateful to Prof. D. E. Knuth for his constructive criticism

and encouragement.

i
References.

L

c

m
Dl

Pi

El

Proskurowski, Andrzej, "The Maximal Incidence Matrix of a Graph,"

Technical Report No. 70, December 1973, Royal Institute of

Technology, Stockholm.

Proskurowski, Andrzej, "Search for the Unique Incidence Matrix of

a Graph," BIT 2 (lb), 1974.

Proskurowski, Andrzej, "Graph Symmetries in the Search for the

Maximal Incidence Matrix," Technical Report No. 75, April 1974,
Royal Institute of Technology, Stockholm.

29

. .

Appendix A

The Program.

30

i

L

L

L

31

AlVTtut.~ TEi4P;
cilMrltru1 WJ CticlSEN NUdk Iti Flr(ST COLUMfv;
IE F;uW=L THEN

oEGIN DW..MAJ~P,Ll:=AWMATt i’vi.1;
INCMAT3P.L):=CWSEN; liN3;

LiMMthJ MOdlFY Piil VtC:
x :=IiICMAT 4 p.2) ;
AF LKUSS~~EF (Xl=3 TtiEN CciMMENT ;\101 I N
Pnlvtt 50 A01) lJ;

d E G I Fu a.
rRIVkC(PkiVHXAST) :=A(;
C2ilSS KEF ix J :=PRIVECLASJ;
iKI VECLAST :=PKl VtCCAs i-+1;
rND

LLSE CUMMENJ ALHtAUv I N YRIVEC S O M A R K 11;
Pki VrC(CkdSSREf (Xl) := - P H I VtC(CtiOSS&Eti IK 1 J;
dJrlMtrd PcrcL EC&E hiGHtk UP iV LIST;
If PKi: d-= LASJCABtCLED T H E N

t+EGI N
TE:rtt’ :=NtXJt~Gt(LASJlA5ELCED);
~~EXTEDGE(LuSJLA~tLCED):rY;
rutXTt~GE(P~EVV:=lJEXTtL)(;t(P 1;
ktXTEUl;t IP) :=JthP;
cASJLABELLEl):=P;

--.
k :=dEXTtDGtAi’Rtv);
END

tLSt CLii\llME;\(T P U L L U P NllT NtCtSSAfiY:
taEGlN
AASJLA5ELCEi):=P~tV:=C,;
P :=NtXTEtiGk(P);
LNI, ;

tNU
tcSt CJIYMLIUI Cd&EN N O T FOUhO IN EDGE;

t3tGi‘v
vrctIv: =Y; P :=NEXJEOGE(P);
tw

tWL ;
CCpMtlrtl 1k AluY Evtk ~cEI~ENTS H A V E &EN ADI)EU Tij PRIVEC

lhtti CRtATE A r\tw BlljCK FilR T H E M ;
I t Pki vEcLA~J>~A~CKPTR(E~~PTY~L~CK~ T H E N

ElrtFTY bLCC&: = ~\~~XJ~~OCK(EE~~~TY~LOCK);=
13AikKltdiVtCcASl qi\IULL);

ENL) PULLW;

-PiiCCtUCKE SHUf-i- A L 1 ktFtKtNCt (BLOCK 1 VALUi P 1;
- cl;Mdilrtur SAN bUuuN LI$J irF 5LUCK POIWTER3. kOK A N Y B L O C K
‘CChJAlhlhL NtGAT IVt tLtMkrJJS, S H U F F L E Tht t3LdCK SPCI TTlYG
I r AaJT0 Twb t%bCkSir Tbit kIRSJ CONTAINIhG TtiE NEGAT I V E
ELkMtNJS A N D lbiii SLCCIIYU 1i-k vOSITAvE - ALSU RESEJ THt
NEGPJIVt ELtMthis TU PUbAJIVt;
whILL NEXTtiLuCk(P Jq= N U L L Ud

tiEcrlN INTtbth A ,tW~DE~; CUMMENT AF;IEk SHUFCL I N G I H E
dLtiCK tA trltN1 S, bmUER idILL B E J H E I Wt X 36 ThE F IRS7
hChhEGAVIVE tLttitNl ;
titihl) Eli :=bLbLK~TkIY,;

Wh I:= ~LuLKYJMY) u14Tic BL~iKfT~(NEXT5LOSK(P)) - 1
D C If PkfVECIlJ<u J’tiL;J C O M M E N T MclVf MAiiKcd

I\(bdt UP TO i\rl;GATl V t HALF O F ~LGCK;
~LGAN AF 1-= B0RdER JHEN

32

tst-ciN INTtrGt3 TFPIIP;
1 tMY:= DKIVEC~I~;
PKivtc41) :=PHI Vtk 4 13(3Rt,tk);

f’KIvtc(tWHl)EK~:= - FtrYfP;
LRusS~tf(r~lvEC(I)):=I;
CKWSsnti(PklVEC(BUKUtK) J:=5OKDtR;
tNU

EASt YKIVEG(i):=-PRIVfC(LJ;
BtihUfiK: =tilJWtR+l;

tNb;
COfidENT it 6tiTt1 THt POSiTf VE ANU Nti;ATI Vt dALVES

OF THt tiimUi,K AKt 1\3NEdPTY JhEN SPLIT THt isLUCK;
If it3CKotc;c ~=BAOC6P 1R1 Y) 1 AdvD (5OHDEK~=dLUCKPTK (

NkXTBLOLK0’J JJ ThtN NEXTBAOCK(Y~:=t)A3iK~$URQER,
I\rtxT0cbCr((?)l;

F : =NfiXJbLCLKt 6');

END SHW;FAt;

L.

L-

i-

NEw~u~tS:=~AOCkYTRIEMYI ~ti&dZK) ; COMMENT POINTEh JO
FIRST LtRO thlKY iN Yl\iv,fC Tf.l &if- UStu FUh RESTORING;

IF TkACt THEN kHlTt I”cNTER CHOOSE w ITh CHilSEN N31)E =“,
?RI~ti(BL~CKYCKI&L~CKLiST) 1);

PULLUY(PHIV~C(~AUCKY~~(5~~CK~~STJJJ;
CUdMEIVT NLlk THt CltisT tsCuCK HAS 6EtN UEALT r~1Tt.i SO D E L E T E

IT; 5AGCKAIST:=NtXT6LUch(BLUCKLIST);
IF l’JEXWALlCK(4dAUC&AisTJ q=NULL THEN COMMENT THERE ARE STILL
UhCAtiELCtC hUtitS;

L
dtL;il\i iI\;TtGtR WtltNDERS;
SHUFFLt(bWCK~1SJr;

t

CCCUMiiNT vhIJtc HuS NOti 5EfiN UPDATE0 AS RtWIRED BY
THt CAbtAAIiUG 4% THt NWE. fF JHt FIKST 5LilCK OF
Th& MtJLl1Fii3.i YRlVtC CUNJAINS ONLY OlVE EAtdENT T-1fiN
LAtikL AT fJV CAAL~AG CtiOOSti - OTHEdwISE THtRE A2t
SkVEKAL YkET ENUth:,;

FHEltNckKs :=~,CO~KI(T~~N~JXT~LOCK(~ACICKLIST~~-~LOCK?T~~
BCUCKLISCJ :

IF PPETtiuL;tRS = 1 T H E N CHOOSE(8LOC~AIST. t’WTYBCOCK,
LGTLkbtutul ECst PriErt(lun(t-,Lr;cF(liST,El~~TY~LacK,
AASTAAbtALLtjrPhtTcf\iut~SS)

CCIYMtNl 17 15 WJ iLECtSSAKY TO PASS A NE& COfY 3F THfi
t3AOCK LIST;

klul;
_ ELSE CCHMtW ALA NutitS H A V E B E E N cABEcCEl, SO CAACULATE
. Ttiti INCWENCt MAJk AX tlrcrNO ANU UPOAJE M4XMAT IF NECESSARY:

IF GCMI!’ THElb UPUACE-K~MII~ ElSt WOATE,WMIM;
CGMMWT)ctSTutit YKlvtL; AluD (;KuSSrlEf iuH~C;ti HAVt BEEN

MUL)lW&:I; BY StAA(;H ON utEPtti 1EVti.S. ufiLETE THE NEti
NLOES FROM YHIVtC ANU dtLf it THE CORRESPoNDI NG
LhTKlES Ih (;RGSShtF;

WtlAAt (NE&NOUE%=WUtSI AND (PRiVEC(~EwNuDfSJ~=O) DO
tXClN
CPCSSHtF[QKlV~L(NtwNODES) J: =O;
PHIVEC(NE~~WU~SJ :=ci:
NEWtuuES :=NtwNUDts+l:
tNOi I

IF TRA(;t TbEN hKITti”tXii- GHUOSE”) ;
ENC ChGGSt i

33

CChMtlvi I-U& THt COMAM ClNLY FIND T H E SJRACJ SET 3F PRETENoEk5
JO ikt rvtxi Lut3tC t)Y ~u1rSItliR1Nb T H E VALEWES;

I F -rtCPYiH JHtN
atGiN irU7tGEk J;
CCMMtNl f-Ai\L; THt hrrX VALENCt i)k T H E PkETEN3EHS - KtPT

15 JHt kumt)tk U6 kkETtNUE&S dLJh JHt M A X V A L E N C E : ;
MAX :=KtYI:=C;
tick 1 : = A b,T IL Phtf WDERS DO

btb1EL
ac V :=VALVtC~P~IVEC~tlLOC#PJR~Bl.3CK.L1SLJ+I1-1J~; ,

Ak V,MtiX Tntfv dEGIi4 r#AX:=V; KEPl:=I; ENi)
LL3t It- V=iqAk TbiEN KEYT:=KEPl tii

thL;

.

ifi KLMIM Uri (VALvtZ(BLClCKPRETS(I) l=MAX 1 T H E N
CCMMthr C A L L CtlUC,st YASsiN\(G T H E FlKS’l PRiitriWEK - I T

AS AtCtSiAHY 7 - u P&S A Ntti C C P Y CF T H E &UiK LISl
d&ALSt UF 7-Ht JtNIAl-A V E ASSIGNMEkT crNLkSS itiUR

. I:ht GCMAF) ChlY urYt PHtTEdUEK HALThE M A X VAlEWXi _ ,,
I t - lkChlM kr\rL lktPT=A, T H E N
Ck~USE~kiLuCnLlsir tl4UTYbC~i~,LASTLA~ELLtD)

LLSt
f3w
t--tAL: =CCPY (dLL)ChL IST rT A I L 1;
Ct-wuSt(ht~tir TAiL.LASTLA&iLLELI~;
b&O ;

34

L

L
L

PdC~CEDuht uLi,A Jt,RCMAM;
COMt4ENi CGMPAC(t Iht ANLI4.kNi.t M A JHIX C)BTAINElj 8Y N E W LABELLING Ti)
ttit MAXi OVAL 1’4AldI X FCUfuti SU k A R (MAXMAT) AMU HkPCACE T H E LAJJtHe I F NECtSijARY;
CCMt’ENJ ThAS I S FLk Tht HOMAM CldLf:

6 EG id

i
i

.

CCiWEhUT dtCAuSi= clF Tnfi ALTIIIN O F YULLUP, Ttit FIRST COLUMN
OF IhCMAJ IS AkhAfuLCit-U II\ rtlt dfSit4Ei3 (LiNKEdI ;I&DEil d1Tt-i

. Tkt LAbi-iL ~‘LHMUTAT Ic)iu b1Vkl\l BY CRC’SSKtF;
CLPMEAC IA THAS PKilituUkC I-rdE TERM “HCUCK” IS UStO T O rultAN

A bti.iI~rJ O k IWMuT ti1 Tn ALc ELEMEhrTS Ul- THt f IRS?’ CilLClMN
t&AL, PNC Tilt HkLA7IUN “iY1AXMAT>Ntti M A T R I X ” I S USED TU r”tEAiu
MAXMAT IS dETltri THAN 1tiE NtW M A T R I X ;

IhTEG;EF Pl314cIY kECAbELctti(1 : :I+‘lAXVAC);
CC;bIMEIUf CitLAtitLLtd A3 clbtO FCIR SORTING rHE SECUNO COLilhN i.lf
Ikt CUhHENl t)luCK UF IhMAJ 3EIKG tXAWNE0;

mftaii 1rJ1Jii.K; CUMMtNT I POINTS l-0 iNCMAT, .J AND J O Td
MkXi\tAl ti4rYi.l K lu ikuik+tLLEU;

IkTtGEk tc I Ar~ueW ;
COMMtNl tL’l.1 1 3 Tki~< tLtMtNT IN T H E FIHST CdLdYk 3F T H E

CUKKtNT t)LiiCr; OF LwMAl t3tING EXAMlNtL);
Cck’MthT CCMP 13 StT 9’ilSAIiVE I F MAXMAT>Ntw M A T R I X

I

35

f
c
t

m
D

i;
U

4
rl

-z *.
2 m s x v

z
c

m

-c
%

rr
l

4
t

c

.
.

. .
n F c 3 1 CJ r - 2 D v
,

tfw;
I f CCM3<I; THtN

PHOCtWKt SCnJ;

,

m
r

2
D

D
v
,

c
.

cl
c
l
-l

i

i

t

L
L
L
i

L

I :=wmuth J;
JC:=A; tt:=u;
t-lib-4 L : = A ulur1c rwutb L)u rNCM4TCQL(C) :=CtiLTAtL(l):=

IhCiLtiGtlolNUCC~; L.mM trrT r)JMflY ti E C O R 3 ;
WHlAE (A-=:- A) Afw lcuMP <= 3) uU iiHMt/vT CLiNr Ikk IINLESS

11 1 5 tST/rtrCIShtl; ThuT wAXdAT > NEW M A T R I X ;
8liGAlu
f ikSTSAMt;=kuE;
Jo: s JO+K; K:=:c);
tcT1 :=1tucMATiI,A~;
K(tAA:= CkbSSlitf~tCrAJ;
htlliwt kAk51SAMt 3d.i CUMHENT CLPY StCClILI)

~OCliMlu ui A dcUCn Of INLMAT TU RtcAdELCLD;
titcllrV *r
n :=u+ 1;
kL~utiEC~tD(k d :=CROSSREH II\(CMAT(Id));
CUMMtiLT Cti~\ilLNuE 1IAL F I R S T ELHWNT df COPlEll

EL4G;t c hANb;,I= s;
thSTSAPlt ~=tititXTEilGE(11-z-l 1 A N D

lIrJC:4AT(NfXT~L)I;t(I~rI) = tLT1);
1 :=fvtXTtUbE(11;
irluid;

TRANShtA A;
if CCMk=u THtN GUhpAHE;

--IF CCMP<=O rtitrJ
tjtc; iN
SjCtsT;
T HA&S RkLAutcC E l) :
E N D ;

CNU ;
I f LkAFTkACt THE:N

8kGI h
nKlTk("LtAb UF stAhCH I-REE - LABEL P E R M U T A T I O N I S : “) :
FOk I :=A UtuT~ A NUutS D O

utGIlu I F 1 wrM 1 2 = 1 THfN IOCONTROL(&
whir tCruwHIVtC(iI 1;
ENU;

true;
I F CCPk<Q ilithi

f3k:c;XN CuMNthri UPtiuTt QERMUTATIUti;
tiuci L :=l wfIL IudbtS Dd YEAMUTATION~f~:=PRIVECO;
CCCMkNT UYbATt MAXrlAKOL;
iut4 1 :=A Ur\cTAL iYdLltS r)u

MAXpAl-CCLI 1) :=NtXIONE(INCMAlCUl(11 1;
CuWltitii UkUY EMMY RECORU;

IF IRACk Thkrq wt4~itt:"~lAXMAT UYDATECP~;
IZNIJ

ELSt IF 1RAllt Ttrkiv niRI TE("YAXMAT NCT dQDATtD’*);
If iRACE Tt-EN kt4ICt(" “b;
LkAVtS:=AtAVtS+A;
EhC dPCATE,CcMAM;

PROCEDUk t TtiANSCA Tt:,MA XMAT ;
CCPPFNT TdAhSLAT t Tht kUMIM) L IS1 KEPHESEruTAr I4
MAXMATCCA I NTlj THt AHhAY FJIAXMAT;

FCR I :=A UhTIL OlucL4ts LU
BEGIN
KEktKtluCt(INcEti;k) 9;
Y :=MAXMAlCOA t I) ;
WHiLt P-= b&CL uo

L
39

40

tmw!tM &ES1 LKt CAUSsttt~;
ENi&

CWSStt EP(I I: =3:

LF -IJCPflr TbtN TRPhSCAT t,MAXMAT;
FiJi, K(Af+t&SLANGti

41

Appendix B

Sample Runs.

The examples given below are not intended to serve the purpose of-.
a systematic analysis of the program's performance. However they

illustrate the difference in efficiency of the romim and comim searches.

An attempt at a more systematic analysis of the basic search algorithm,

by means of "random graphs", is given in [1]

Maximal incidence matrices were computed for several graphs.

Graph 1 is the example used throughout Section 5 (see Figure 5.1 (a));

a trace of the program flow is shown for this example only. Graph 2

was mentioned in Section 2 as having unequal romim and comim (see

Figure 2.1). Graph 3 represents the structure of an electrical filter,

which indicates a-possible application. Graphs 6, 7 and 8 are subgraphs

of Graph 9, which is the largest graph we have tested and has arbitrarily

chosen edges.

The results of the computer runs follow.

6 3

i- EXlT CHi)JSt

t

L

EruTEH CHOiJSk W I T H C H C S E h hcllt = L
imiNTEd Ct-tflilSt JITH CHOSLN ruurjt = C
khJL.A CHiJCSt dITH C H C S E h hLlSt = 4
:tNTtd CHi303SE tirf TH CHC’SEN NUJt = 5
‘LtAF UF SLuKCH T R E E - LAMtL PtwuTATIbN I S :

3 I 2 6 4 3
MAXMQT iJUT UPDATE0

t

i
L

L

kXI T CriLluSt
tXlT C H O O S E
iXIT Ct-iOuSt
tXIT CHOOStk
ix 1.r P&ET EIID
iX1T Ct-t3cl2Jt
kl\TEli i;tiGi;SE idITH CHCSEN 1Ltitit = 2
cfvTtK CHdOSk Wt I-H CHCSE-h hOi3t = 1

tlvlfK Crbu3L WITti ChLiSEN ruljat = e
CtvTtiH CHCiSE vJITH CliCSEh hCOt = 4

L 43

44

i

i

L

4s

s! 4
m

XJ

m X Y -4 .7

r-
n

X Y 4 .? -I 3 4 r-n

3 2c.n
i-n L 3

m
m

in

z 3 0 m I1

2 3 3 n

0 m
7
! C

m
m II

5 m io
it

tt
tt

tt
II

r
w

f’
6

N
4 I) 0 m

L

Fx IT CH~nSE -.
F X T T f.Mrlf)SE
EXTT CHOCISE
FXIT CHmxE
EXTT CHfKlSF
FX I T PRFTFNO
E X I T fHClVF
YAXIWN ‘WTRTX TS:

1
1 7’
1 4
1 5
2 3
2 4
3 6
4 4 --.
5 6

LARFL PERWJTATIPQ 1s :
3 1 6 2 4 5

NOMOER r)F LFAVES I N SEARCU TREE = 4

L-

L
L

L

0 0 0 . 0 2 S E C O N D S Tl\i FXECUTION

1 4
1 5
7 6
2 7
3 4

UAXT”rAl MATRTX I S : -.

1 2
1 3
1 4
1 5
2 3
4 6P

OOO.P2 SFCPNOS I N EXECIJT ICN

48

l_
_

 _
_
_
._

--
.

 _
.-

 .
.-

.
 -
-
-
-
-
.
x

k v, . .
w . .

II 4 x II

* * t?lgprryl * i:
NUMRFQ ?F ?IflC)EC = 17 rVUFi3FQ cc Er)GFS = 22
TNCTCEf’ICE YATQ 1 Y T S:

1 3
3 ?
3 4 2

3 5
4 6
5 c, 3 5 7 9 Ill 13 15

1*
17

5 7 a.

6 R
7 P
7 9
8 10
9 13 q
9 11 4 6 8 1 0 12 14 16

10 12
11 13
12 I4
13 14
13 15
14 16
15 16
15 17

--’1 1 12
MAXIMaL MATR\IX I S :

1 2
1 7
1 4
1 5
2 A
2 7
3 6
6 8
7 8
7 9
0 to
9 LO
9 11

10 12
e 11 12

11 13
12 14
13 14

- 13 15 \
: 14 16

15 10
15 17

LABCC PFR’JUTATlW TS :
3 5 4 2 1 b 7 8 9 10 11 12

13 14 15 Lb lf
lVUMf?FR OF LFAVES I N SFAPCH TREE = 2 4

0 0 0 . 1 2 SFCQbIDC I N E X F C U T T3Y

50

.

L

13

7 rt 1 u 3 ,n n

4
II

r- Y

54

r-
-

-
r-

 -
-

r
-

56

. .

-=.

b

58

.
.

1

.+
I

)I
r

.
.

t; n II w 0

16 20
16 21
17 21
19 22

CA13EC PERMlJ‘TATlQlV IS :
3 4 5 2 14 15 11 6 A 7 19 18

13 16 12 1$ c3 22 2 0 17 9 21
MJMRER ifF LEAVES TN S E A R C H TREE = 1.

OdO.O.3 SECONDS IN EXECUI’fGN

i-
I
I

L
L
i 61

7 . .
“
’

?
.

.
.

‘t,

h
k
”

-
3

1
3
3
4
3
?
6
4
1
1
a
5

1C
11
12
13

7
2
3

1 4
15
16
10

1a
7

4
4

19
30

7
7

2
3
4
5
5
6
?
7
4
8
9

1 Q
11
12
13
14
14

5
14
15
16
17
l-7
11
15
18
19
20
21
22
33

PAXIFAAL M A T R I X I S :
1
1
1
1
1
1
1
7
2
3
2
2
3

4
5
c;

;
6
7
7
8
9

10
10
1 1

2
3
4
E

6
7
8
3
$

IO
11
13

4
9
6

1 0
13
14
15
16
10
17
lt!
1 9
2 3

64

<
-4

66

i

L
L
t
i
L

L

2
3
4
5
5
6
7
7
4
e
3

13
11
12
13
1 4
14

5
14
15
16
17
17 --,
I1
1=
G
19
2c
31
27
33
34

1
1
1
1
1
1
1
3
3
3
3
2
3
4
5
5
5
6
7
7
F1
9

10
IO

68

1c TC
11 71
13 15
14 23
16 22
16 33
17 33
21 24

1 AeFL FFFWTATTON 1s :
3 4 5 2 14 1513 I.116 12 1

10
7 19

0 22
10

MH’MF 23
2:

Of LEAVFS 20
IN

17
SEARCh

9 21
TREE = (j

COC.Cfi SECONDS IN FXECtrtIOh;'

i
1
L
i

/
t

4 0

!

i

L
L e

1
L

L

L

L
1
1.
1.
1
J.
I
1
1
t
7#-
3
2
2
2
3
3
3
3
4
4
5

. 48
7
7
7

8
f3

??
8
r)
9

10
11
12
12
12
I?

71

:
,
-

