FIND ING THE MAXIMAL INC IDENCE MATR IX
OF A LARGE GRAPH

by

M. Overton
A. Proskurowski

STAN-CS-75-509
SEPTEMBER 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

—

Finding the Maxinmal Incidence Matrix of a Large Gaph

M chael Overton and Ahdrzej Proskur owsKki
Comput er Sci ence Depart nent
Stanford University

Abstract

The paper deals with the conputation of two canonical representations

of a graph. A conputer programis presented which searches for "the
maxi mal incidence matrix" of a large connected graph wthout multiple

edges or self-l»-t)ops. The use of appropriate algorithms and data
structures is discussed.

This research was supported in part by National Science Foundation grant
DCR72-03752 A02 and by the Office of Naval Research contract NR obk-Lo2.
Reproduction in whole or in part is permtted for any purpose of the
United States Covernnent.

1. [ntroduction.

The notion of the maximal incidence matrix as a canonical represen-
tation of a graph was introduced in [1]. An algorithmto search for
this matrix (a graph being given by--any of its incidence matrices) was
presented there together with a conputer program which performed the
sear ch.

In this paper we briefly review basic ideas of [1] and discuss
another "maximal incidence matrix" of a graph. Qur main concern is the
application of the search algorithmto large graphs and an efficient use
of conputer nemory when representing graphs and carrying on the search.
A variety of arrays and linked lists will be enployed in order to limt
the amount of paraneters passed along with the recursive subroutine calls.
W have devel oped a conputer programwitten in ALcGorL. Wthat naintains
the data structures and perfornms the search. The programis presented
and its functions are discussed.

2. Basi ¢ Noti ons.

In order to use concrete phrases when discussing the problem and
the proposed solution, let us define our basic vocabul ary.

A graph will nean two sets N (of nodes) and E (of edges),
together with a function F (the incidence function) whi ch ascribes
an edge acE to sone unordered pair of nodes n

1 and n,.

F(nl,ne) = F(ng,nl) = a

W constrain the function F to be partially defined (in particular,
not defined for N, =n, thus excluding graphs with self-loops) and
require that F is single-valued, i.e., graphs do not have multiple
edges. Nodes n, and n, are said to be adjacent and the edge a is

1 2
said to be incident to nodes ny and n, . The val ence of a node ny
IS the nunber of edges incident to it, and will be denoted va.lence(nl) :
A graph is connected if for every pair of nodes u,veN there exists a

sequence of adjacent nodes n. (i = 0,...,k) such that N, =u,

n = v and F(ni_l,ni) is defined for all i =1,...,k. In the
following we shall consider only connected graphs, for sinplicity.

W shall label elements of the sets of nodes N and edges E by
consecutive integers beginning with 1 . '\ shall represent a graph by
listing entries of its incidence function which is a shorthand for its
incidence matrix: a sparse binary matrix of n = |§| colums
corresponding to the nodes and e = |E| rows, each corresponding to
an edge. The element M(p,i) of the incidence matrix M equals 1
if the edge label-led p and node labelled i are incident, and 0
otherwise. W will denote edge labels p, q, r and node labels i, j , k.
The p-th row of the matrix, corresponding to the edge labelled p , Wl
be referred to as M(p,*) and the i-th colum, corresponding to the
node labelled i , will be referred to as m(%,1i) .

An inportant notion for our discussion is that of isonorphic graphs.
Two graphs, Gy = (Nl,El,Fl) and G, = (NE,EQ,FQ) , are said to be
isomorphic if they may be represented by identical sets N, = N, and
E, = E,, and identical function Fy = F2 . Wth our assunption about
| abel ling sets N and E | this neans that the labels in one of the
graphs may be pernuted in a way transformng the incidence function into
a formidentical with the other. |n terns of the incidence matrices
this means exchanging colums and rows of one matrix so as to get a
matrix identical with the other one.

Let us consider incidence matrices of a graph which have rows

arranged |exicographically in descending order. Then, for a given
graph, we can define an ordering relation on the class of rowordered
incidence matrices. For two unequal matrices My and M, We say t hat
My is rowgreater than M, if the first row of My that differs from
t he correspondi ng row of M, is lexicographically greater. A matrix
not |ess than any other matrix in this class will be called the
row naxi nal incidence matrix of the graph, or the "romim" for short.
The notion of romim was introduced in [1] under the name of
"maxi mal incidence matrix" and its existence proved.
Consi dering colums of an incdence matrix as bit strings read
top-to-bottom we may order them in descending |exicographic order.
For a given graph let us define a relation colum-greater than on the

class of column ordered incidence matrices. A matrix not less (in the

sense of colum-ordering) than any other matrix in the class will be
called the col um-naximal incidence matrix of the graph, or sinply the

"comim'".

Fact 2.1. For a given graph there always exists a col um-naxi mal
i ncidence matrix defined as above. |

Proof 2. 1. Gven a graph we can always fix the labelling of the edges
and then order the colums of the incidence matrix |exicographically.
Thus, for all possible labellings (pernutations) of edges we obtain a
set of corresponding colum-ordered incidence matrices. Since the set
is finite, we have an element that is not |ess than any other elenent
of the set. This is the comm O

It must be pointed out that the two definitions describe two
different quantities. W give an exanple of a graph and its romim
and comim (Figure 2.1). By inspection, the matrices are not equal.

—

Figure 2. 1.

234567 () 1423567

1 TT

1 1 1 1

1 1 1 1

11 1
11 1 1
1 1 11

Exanpl e of a graph (a) with unequal romim (b)
and comim (C).

5. The Search.

It is easy to describe a brute force method to find the maxinma
incidence matrix. By listing all possible labellings of nodes of a
graph, lexicographically ordering the rows of the corresponding incidence
matrices, and saving the "maximal matrix SO far", the romim i s obtained.
Simlarly, by listing all possible labellings of the edges and ordering
the colums of the incidence matrices the comim i S obtained. However
there often exist clear indications of which pernutations should be
considered as leading to the proper labelling. A depth-first search
procedure to find the (row) maxinal incidence matrix was proposed in [2].
It labels nodes of the given graph and selects the best choices to be
labelled tentatively leaving the other possibilities still to be exam ned.
The search may be represented by a search tree where nodes of the tree
correspond to the labels to be assigned. Wen the search arrives at a
| eaf of the tree (i.e., when all nodes of the graph are labelled), the
incidence matrix "maximal so far" is conpared with the result of the
tentative labelling and -- if it is inferior -- replaced by the newy

found one.

The main role in the process of labelling nodes of a graph is played
by the priority vector. It is a one dinmensional array which for every
unlabelled node gives an indication of its suitability to be labelled
next. This indication is calculated from the incidence matrix based
upon how a node is connected with the labelled nodes. To formalize

this we introduce a notion of the priority vector for assignment of the
| abel m. The el ement PRIVH%Ji) , Where 2 <m<i <n, is a bit
string which at every position 1 <j <mhas 1 if the node i is
adjacent to node j and O otherwise. Figure 3.1 gives an exanple of
a graph (a) and the priority vectors (b) for consecutive instances of

| abel Iing the nodes.

r— rr—— rm r—

®) ERIVE(1) (2 () ()

101

AN\ W

Figure 3.1 A graph and the priority vector corresponding to the

| abel ling (1,2,3,4,5,6) .

1

(5)

100
1000

(6)

0

01
010
0101
01011

Let us define a labelling of the nodes of a graph to be _privet-proper

if any incidence matrix of the graph with nodes arranged by this |abelling
has nonincreasing priority vectors, i.e., for every i, j and m such
that 2 <m< i <j < n we have PRIVECm(i) > PRIVEC (J).

The inportance of privet-proper labellings of nodes is stressed
by Theorem 3.1 (stated and proved for the rommin [1]).

Theorem 3.1. For a given graph the labelling of the nodes that
results in the maximal incidence matrix (rommor comn is privet-proper.
However a matrix with a privet-proper node labelling is not necessarily

a maxi mal matrix.

It is worth noting that the property of the priority vector stated
in Theorem > .1 holds true for both romimand comim Let us state two
lemmas that will simplify proof of the theorem Lemma 3.2 expresses an
intuitively obvious fact that we want "as many ones as possible" in the
lefthand upper corner of the incidence matrix.

Lemma 3.2. For a given incidence matrix and a given colum i define
s; to be the set of all rows with their first 1 in colum i . Then,
for the maximal incidence matrix, romimor conim any row between the
first rowin 85 and the last row in Si is alsoin 8, - Ve call the
set S.1 simply a block i of rows in the maximal incidence matrix

(note that block i may be enpty).

Proof 3.2. Assume the contrary: that for a maxinmal matrix M) there
exist acolumi and rows p, q, rwith p <r < g, such that the
first 1's of rows p and q are in colum i and the first 1 of
row r is in colum k #i

(i) Suppose My istheromim If k <i then a matrix with rows
p and r swapped is rowgreater than M and if k > i then
a mtrix with rons q and r swapped is rowgreater than M

S0 Ml is not the romm

l L

(ii) Suppose M, is the comim. If k < i then swapping rows p and ,

1
(relabelling corresponding edges) and columm ordering the matrix

results in a matrix colum greater than M. Sinilarly if k >i
then swapping rows ¢ and r and colum ordering |eads to the
contradiction. C

Actually it is obvious that this block structure of the incidence
matrix holds for every rowordered incidence matrix (see Figure 3.2).

11
11 bl ock 1
1 1
1 1
~ mm- - - -
1 1 bl ock 2
1 1
_____ a -
1 bl ock %
- - - -a- - block 4 is enpty
1 1 bl ock 5
11 bl ock &

Figure 3.2. A rowordered incidence matrix of a graph displays
the block structure.

~ The second |emma states the conservative property of the priority
vector with respect to the assigned |abel.

Lemma 3.3. For a given incidence matrix and two nodes | gpg j
(i <J) we have, for all 2 <t<m<i,

FRIVEC (1) > FRIVEC (j) = PRIVEC (i) > PRIVEC r(nj)

The proof is trivial and is left as an exercise for the reader.

Now we can prove Theorem 3.1 for both rom mand conim

Proof 3.1. Assune the contrary: the given maxi mal incidence matrix
My does not have a privet-proper node-labelling. Thus there exist
m<i <j such that PRIVECm(i) < PRIVECm(j) . According to Lemma 3.3
this inplies

PRIVECi(i) < PRIVECi(j)

which neans that there is a position k < i such that the k-th bit in
PRIVECi(i) equals 0 and the k-th bit in PRIVECi(,j) equals 1, with
the first k-1 bits in the sane in both PRIVECi(i) and PRIVECi(j) .
Thus in block k of M. (Lenma 3.2) all rows have 0 's in colum i

1
and there is arowp inthe block with a 1 in colum j . W wll
now prove that M, MRy be rearranged in different ways leading to
mitrices M, and M, , each greater than M, , in the sense of row-

2 5
and colum-ordering, respectively. This wll contradict our assunption

t hat My is a maximl incidence matrix.

(i) Suppose My is the romm Then swapping colums i and j
(relabelling corresponding nodes), and ordering rows wthin
bl ocks 1,...,k-1 we obtain a matrix with the blocks 1,...,k-1
identical with those of M; - In the block k , however, row p
Is greater than it was before, and no other row in this block
has been changed. Thus, ordering block k we get a matrix M,
that is rowgreater than M

(ii) Suppose My is the comm Consider blocks 1,...,k-1 ; because
of the definition of k there cannot be a rowwith a 1 in

colum i without another row in the same block with a 1 in
colum j , and vice versa. |In each block if there is a rowp
"wWith a1l incolum i and arowqwtha1lincolumj |,

such that p < g, then interchange rows p and q (rel abel

the corresponding edges). There nust be at |east one such block
or else the colums would not be in order. Then the new colum j
is greater than colum i of My the new colum i is |ess

t han colum i of My and all other colums are unchanged. Thus,
ordering the colums |exicographically, we obtain a matrix l\/%

greater than M, . This conpletes the proof. d

10

Ve can now recall from{[2] how the algorithm for finding the romim
wor ks.

At any stage m, the priority vector gives the indications for the
assignment of |abel m . These indications may appear in two forns;

(1) There is exactly one node pretending to the label m sjnce it
uni quely has the highest value of the corresponding elenent of
the priority vector;

(2) There are several nodes for which the corresponding el enents of
the priority vector have the highest val ue. These nodes are
cal l ed equal pretenders.

The situation of (l)is clear and inplies assigning label mto the
pretender, thus increasing the nunmber of labelled nodes. Calculating
the priority vector for the rest of the unlabelled nodes again and
again gives the situation (1) or (2) and eventually results in the
incidence matrix, maxinmal for the original labelling 1,2,...,m-1 .

In the situation (2) there are nore pretenders that have to be
tried as node m. Successively one by one all of the equal pretenders
are assigned the label m .and, after proceeding as in situation (I),

a matrix maximal for every labelling is calculated. The greatest of
these matrices is stored as the incidence matrix maximal for |abelling
L,2,...,m-1 . The maximal matrix of the graph is identical with the
solution of the problemof finding for the matrix nmaximal for m=1
(no nodes | abel | ed).

The algorithmis based on two recursive procedures, CHOOSE and
PRETEND. Procedure CHOOSE conputes the priority vector and mekes the
right choice for the next label if there is only one pretender; if there
are several it calls PRETEND. Procedure PRETEND mades various tentative
choices for the next label, calling CHOOSE for each. The process is
initiated by examning the valences of the nodes and calling CHOOSE
with each node of highest valence as the initial choice. |t js clear
that for both romim and comim the node labelled first nust be a node
of highest val ence.

Ve nust correct here the algorithmof [2] which applies a val ence
check in situation (2) to narrow down the nunber of pretenders. 1In the
exanple of the graph in Figure 2.1 this would result in M, rather than

2
My s in spite of the fact that My is rowgreater than M, . Qur present

2
algorithmomts this check.

However, the val ence check enployed--in the algorithmis useful for
determning the comm naking the search for the conim nore efficient

than the search for the romim This is elaborated in the next section.

L. Pruning the Search Tree for the Comin.

[t is attractive to search for the commrather than the rom m because
of the follow ng theorem

Theorem 4. 1. Let = My be the comim for sonme graph with nodes numbered

1,s.4n . Then for all i < |

PRIVECi(i) = PRIVECi(j) = val ence(i) > valence(j)

Thus if on the i-th decision |evel two nodes are equal pretenders but
have different valences, the node with the higher valence should be
chosen.

Proof. Assume the contrary, that is, there exist i <j such that
PRIVECi(i) = PRIVECi(j) and val ence(i) < valence(j) . Consider blocks
1L, ...,i-1 of My (cf. Lenma 3.2); because the priority vectors are
equal there cannot be a rowwith a 1 in colum i without a rowin
the same block with a 1 in colum j , and vice versa. Relabel the
edges in the following way. Interchange the pairs of rows, in the
blocks 1, . . .,i-1 , which have 1'sin colums i and j , and also
nmove the remaining rows with a 1 in colum j up follow ng block i-I
The new colum j is greater than the colum i of M because

val ence(j) > valence(i) . Colums 1,...,i-1 renmain unchanged, so after
ordering the colums we obtain M, col um-greater than My s which is a

contradiction. O

12

—

Theorem 3.1 showed that the same search tree leading to privet-proper
| abel Iings of nodes can be used for both the romim and the conim
Theorem 4.1 shows that the conmi msearch tree can be significantly pruned
by considering the val ences when encountering equal pretenders.

Wen arriving at a leaf of the search tree we have a privet-proper
node |abelling and have built up an incidence matrix of the graph wth
this node label-line;. It remains to |abel the edges. In the case of
the romm search it is clear that ordering the rows of the matrix
results in the row-meximal incidence matrix for this node |abelling.

It turns out that for the comm search as well, ordering the rows of
the matrix results in the colum-maximal matrix for the [abellings.
This result is stated in Theorem 4. 2.

Theorem 4. 2. Let a graph with a privet-proper |abelling of nodes be
given by an incidence matrix. Then ordering the rows of the matrix
results in the colum-maximl matrix for the |abelling.

To prove this theorem consider the rowordered matrix. Lemma b4.3
shows that such a matrix has a colum block structure anal ogous to the
row bl ock structure described in Section 3. Furthermore, Lenma 4.4
shows that such a matrix is colum-ordered. The final step will be
to prove that no other pernutation of the rows gives a matrix which
is colum-greater than the rowordered matrix.

Lemma 4.3. A rowordered incidence matrix of a graph with a privet-proper

| abel ling of the nodes has the follow ng two properties:

(A) For every rowin the matrix, a 0 in between two 1's has a 1

~ above it in the same col um,

(B) The highest 1 in any colum is not |ower than the highest 1 in
any succeedi ng col um.

Proof 4.3.

(A) Assume that row p has a 0 in colum k and 1's in col ums
i and j , where i<k <j, and that there is no 1 in colum Kk
prior to rowp . As the given matrix is row ordered, rows with a

13

1 in colum k nust have the other 1 in colum ¢ > i (see
Figure 4.1). But this inplies that PRIVECk(j) > PRIVECk(k) ,
which is not possible since the labelling is privet-proper.

i2kj
0
4 0
1 01
11
Figure 4.1
(B) Suppose the highest 1 in colum i is in row p and the
highest 1 in colum j is in a higher rowg , with i <]
and p >q . Let the other 1 of row g be in colum k .

[f k <i then we hav
Figure 4.2), and if
whi ch is not possibl|g

situation which contradicts (A (see

i then rows p and q are out of order,
4d

Figure k.2

Lemma 4.4. A rowordered incidence matrix of a graph with a privet-proper
| abel ling of the nodes is colum-ordered.

Proof L4.k. Recall from Section 2 that we are concerned only with
connected graphs without multiple edges.

Ve will show that every two colums of the matrix are in order.
Consi der the highest 1'sin colums i and j with i < j . By

14

-

Lemma L4.3B the highest 1 in colum i is not |ower than the highest
lincolumj . W claimthat it is in fact higher, except for the
case 1 =1,] =2 . Suppose the contrary -- then colums i and j
have their highest 1's in the same row,say row p . Suppose further
i <j-1. Then there is a colum k¥ (i <k <j) withaOinrowp,
so by Lemma L4.3A there nmust be a 1 in colum k higher than row p
-- however this violates Lemma 4.38 since the highest 1 in colum i

isinrowp . Oherwise i =j-I , but then nodes 1,...,i-1 are not
connected to nodes i,....n. This can be seen by considering Figure 4.3,
where submatrix M; nust be all 0 's since the rows are ordered, and
submat ri x M, nmust be all 0 's because of Lemm L.38 and the fact that
the 1% in row p are the highest in colums i and j. Thus the

assunption that the graph is connected is violated.

1 i n
M,
P 11
My
Figure 4.3
Inthecase i =1,) =2 the first colum nust have 1'sin the

first two rows and the second colum nust have a 0 in the second row
since the graph has no parallel edges and the first node chosen nust be

a node of greatest valence. Thus colum 1 is greater than colum 2
(except in the trivial case of a graph consisting of only one edge). 3

15

Now | et us prove Theorem 4. 2.

Proof 4.2. By Lenmma 4.3 any rowordered incidence matrix My of a
graph with a privet-proper labelling of the nodes is col um-ordered.
Thus it is sufficient to show that no other permutation of the rows
gives a matrix M, which is colum greater.

Suppose the contrary. Let colum k be the first colum differing
in I\/h and M, and let the first elenment of colum k differing in
My and M, be in rowp . Since M, I's colum greater than M
clearly Ml(p,k) = 0 and Mg(p,k) = 1 . Because colum k differs in
M; and M, only by a pernutation of elenents p,...,e , there exists
g > p such that Ml(q,k) = 1. Therefore row p of My has a 1 to
the left of colum k , say in colum i <k , since the matrix is
row-ordered. As colum i is the sane in both matrices we have
Mg(p,i) = Ml(p,i) =1. The other 1 in row p of M, nust lieto
the right of colum k , say in colum j > k ; otherwise, if j <k,
t hen Mg(p,j) = Ml(p,j) = 1 and there would be three 1'sin rowp
of M, . Thus we have Mg(p,*) > Ml(p,*) . Hence there exists r <p
such t hat Mz(p,*) = Ml(r,*) (with the 1'sin colums i and k),

since M, and M, differ only by a pernutation of rows and My IS

1 2
row-ordered (see Figure 4.4).

M Mo
i Kkj ik
11
P 101 11
1
Figure 4.4

16

But then M (r,%) = M, (ry%) and we have two identical rows in u

whi ch contradicts the assunption that the graph has no nultiple edges.
This conpletes the proof of Theorem4.2.

2 i)

W have now shown that the comim is a rowordered matrix with a
privet-proper node labelling. The exanple of Figure 2.1 shows that if
M; and M, are two row-ordered matrices with privet-proper |abellings
it is possible for M, to be row greater than M, and M, colum

greater than M However because of Theorem 4.1 we can (confine our
attention to rowordered matrices with privet-proper labellings and with

[PRIVEC, (i) = FRIVEC,(j) and i < j] = valence(i) > valence(j)

At first sight it mght seemthat if My and M, are two such matrices
t hen My Is row greater than N& if and only if My is colum greater
t han M, . However this is not the case and Figure 4.5 gives a

count er exanpl e.

7

*(q) ueyy xe3®048 MmoX ST (D) Jng ‘(o) usyl

1998918 wmTod ST (q) XTI3eW - (®) Udesd B JO SOOTJIJBUW SOUSPTOUT OM], *Grfp aNITA

18

T T TT
T T T T
T T TT
IT T T 38
1T I I
=T TI||VI|II* T T P
T T i T T L ¢
T |T 1 I
i |t
96w 2T¢68 L 6gLoSHeeT 6

2) (a)

r-

—

5. Data Structures.

A data structure for the search of the maximal incidence matrix of
smal | graphs by neans of this algorithmwas proposed and used in [2].

The incidence matrix of a graph with n nodes and e edges was represented

by e words. If edge i was i nci dent to nodes j and k , then the
i-th word was a bit string with 1t's only in positions | and k . Thus
one row of the incidence matrix was stored in one word of conputer nenory.
Such a representation facilitated manipulating the matrix by |ogica
operations on the bit strings. However, the nunber of nodes in the graph
was limted by the nunber of bits in the computer word. |n the data
structure proposed here the nunber of nodes is linited only by the
conputer integer range and the size of conputer nenory.

In the present inplenentation the incidence matrix INCVAT is stored
in an ex?2 integer array (twice the storage of the old representation).
If edge i is incident to nodes j and k then the i-th row is an
unordered pair of integers j and k .

During the search it is necessary to order the rows of |NCVAT. The
ordering is achieved by introducing an integer vector NEXTEDGE which
transforms INCMAT into a linked list. This vector is dinensioned from
O to e Wth NEXTEDGE(i) = i+l initially, except NEXTEDGE(e) = -1 .
As nodes are |abelled, the edges incident to themare "pulled up to the
top of the list". The pointer LASTLABELLED points to the last such edge
pul led up; initially LASTLABELLED is set to zero. Mre precisely, when
procedure CHOOSE is entered, with say node p chosen to be the next
labelled node, procedure PULILUP is called, which scans down the |inked
list (INCVAT, NEXTEDGE) starting from LASTLABELLED, and upon encountering

an edge incident to p , deletes the edge fromthe list, inserts it follow ng

the edge at LASTLABELLED, and updates LASTWELLED. The two nodes i ncident
to the edge are interchanged if necessary so that p is in the first
colum, the other node is exam ned, and the priority vector PRIVEC IS
nmodi fied accordingly.

Wen a leaf of the search tree is reached the new candidate for the
maxi mal matrix must be calculated fromthe linked list representing the
incidence matrix. This means that the rows of the incidence matrix nust
be |exicographically sorted. The entries in the first colum of |NCVAT

19

are in order deternined by the label permutation found. The second

colum, however, requires sorting of entries within blocks (cf. Lemma 3.2)
to obtain an ordered matrix. Now the new matrix may be conpared wth
MAXMAT, the maximal matrix found so far. This testing -- in the sense of
row ordering -- is an easy task for the chosen data structure. It suffices
sinply to conpare the two-elenent rows of the new matrix with those of
MAXMAT one at a tinme. The test in the sense of colum-ordering is not

as obvious, and will be described in Section 6.

The priority vector PRIVEC does not have to be stored in a way
described in Section 3, with the nunber of bits in each elenent equal to
the nunmber of nodes labelled so far. Instead it is stored here in an
integer array called PRIVEC, whose entries are node nunbers and which is
broken into a nunber of logical blocks. (Now we are talking about bl ocks
in PRIVEC, not the ones defined in Lemma 3.2.) At any stage of the |abelling
process all nodes within a block have equal priority, and nodes within one
bl ock have higher Briority than nodes within another block further down the
vector. There may be a block of nodes that have not been assigned any
priority yet -- the last part of the PRIVEC may contain only zeros. This
block is referred to as the empty block. In the priority vector described
in Section 3, when a node p S labelled one nore bit is added to every
el ement of the vector: 1 to those elenents corresponding to nodes
adjacent to p and O to all other elements. In the data structure
described here, when a node p is labelled, any node adjacent to pis
either added to the enpty block if it is not already in PRIVEC or marked
in PRRVECif it is already there. Such nodes are found by procedure PULLUP,
described earlier. After all nodes adjacent to p have been found
procedure SHUFFLE is called. This procedure scans PRIVEC and shuffles
the entries within each block so that the elenents marked by the action
of ‘PULLUP are nmoved to the top of the block and the unmarked el enents
are moved to the bottom If these two sets of elenents are both nonempty
the block is then split into two blocks, since the marked elenents have
higher priority than the unnmarked el enents. After all blocks have been
shuffled, the enpty block is checked for the presence of any new el enents
If some were added by the pull up operation, a new block is created to
accommpdate them and the remaining zero elenents become the new enpty bl ock.

20

In order to avoid searching the entire vector PRIVEC every tine an

edge incident to p is pulled up, a new vector CrROSSREF i s introduced.
This is the cross reference to PRIVEC. at any tine, if PRIVEC(i) =] >0
t hen CROSSREF(j) = |

The description of the PRI VEC blocks i s stored in a list of records,
pointed to by BLOCKLIST. Each record contains an integer field BLOCKFTR
and a |ink NEXTBLOCK. The BrockPrr fields are integers pointing to the
first element of each of the blocks in PRIVEC. The integer BIOCKPTR
(BLOCKLIST) points to the first element in the highest priority block
of PRIVEC, this elenent is not necessarily the first element of PRIVEC
as will be explained shortly. The pointer EMPTYBLOCK points to the |ast
record in the list. The integer BLOCKPTR (EMPTYBIOCK) points to the
first zero element of PRIVEC, unless every node has been entered in
PRIVEC in which case the pointer will have value n+l .

Initially BLOCKLIST is set to point to a list of two blocks, the
first containing a node of maxi num valence and the second the enpty
block. At any stage in the search the pointer BLOCKLIST points to a
list of at least two records. The initial data structures for a certain
incidence matrix are shown in Figure 5.1.

After initialization, procedure CHOOSE is called. The node with
the highest priority is considered to be labelled and procedures PULLUP
and SHUFFLE are called to performthe actions described earlier. The
resulting data structures are illustrated in Figure 5. 2.

At this point the block containing the labelled node is deleted from
the block list. (In fact the deletion is done in between PULLUP and
SHUFFLE since it is a bit sinpler to do so, but this makes no difference.)
Now anot her node nust be labelled so the first block of the modified
block list is examned. |f it contains only one element, CHOOSE is called.
If'it contains more than one elenent there are several pretenders to the
| abel, so PRETEND is called. Then PRETEND will call CHOOSE several tines,
each time with the first block split into two blocks, one containing a,
single chosen pretender and the other containing the remaining pretenders.
In the comim search the val ence check may reduce the nunber of calls to
CHOOSE (see Section 6).

21

N Aanh

| NCMAT

IT
\

1717

Ly

TN

\

v fwlololerlirlRlw
AN j{Eluluwloatwimd] o

CROSSREF

O OO PO O

Figure 5.1.

R T

\

N NN o) BN I RS) rwwn—\l

PRIVEC

S OO OO W

Exanple of initial

22

LASTTLABELLED

BLOCKLI ST

structure.

EMPTY- BLOCK

LASTLABELLED

NEXTEDGE

| NCVAT

7
<
N
N
N
N
N
N
N
_ Al inlo |~ Ru~9~ N
NV VNV Vv

VAV VY
//\/\/// ’

ALV LV

(S B Afirnlainlo

I aW Eo I FYaW IV NVONR SR RPN J

EMPTYBLOCK

BLOCKLIST

PRIVEC

CROSSREF

after PULLUP and

of CHOCSE,

In first call

SHUFFLE

Figure 5.2.

—ded e d

25

Because of the recursive nature of the search, the crucial question
that one nust ask here is: how nuch nust be kept on the stack? The
answer is that when CHOOSE is calling itself or calling PRETEND only
three words nmust be passed (as val ue parameters): FIRSTBLOCK, EMPTYBLOCK,
and LASTLABELLED; when PRETEND is calling CHOOSE (i.e., at a branch in
the search tree), only a copy of the block list structure nust be passed
in addition. At no time is it necessary to have nore than one instance
of I NCVAT, NEXTEDGE, PRIVEC or CROSSREF. This is very inportant, since
these arrays may be large and the search tree deep. It is not necessary
to keep a copy of INCMAT or NEXTEDGE because any changes nmade to the
linkedlistonly reorder the edges or reverse the pair of nodes incident
to an edge, producing an incidence matrix as valid as the original one.

It is not necessary to keep a copy of PRIVEC or CROSSREF because the only
changes made to PRIVEC take the form either of shuffling elenents within
a block, or of adding elenents to the enpty block. Note that splitting
a block does not affect PRIVEC but only inserts a new record in the block
list. Since elements within one block have equal priority the shuffling
does not destroy the priority information. Any elenents added to the
enpty block of PRIVEC at a lower level may be deleted on return by saving
a pointer to the enpty block before the call; corresponding new CROSSREF
entries may be deleted at the same time. An actual new copy of the bl ock
list structure need be made only when PRETEND calls CHOOSE, since this is
the only point where the search tree branches.

The exanple of Figures 5.1 and 5.2 is continued in Figures 5.3 and
5.4, illustrating the situation after PRETEND has been cal |l ed by CHOGCSE,
"and after CHOOSE has been cal | ed again.

2l

INCMAT NEXTEDGE LASTLABELLED

CROSSREF PRIVEC BLOCKLIST EMPTYBLOCK

 r— r—

1 4
l\)O\ﬂl-—'J:‘\.N

i next call
Flgure 5-3. |n firstcall of PRETEND, j USt before
of ' CHOOSE.

25

| NCMAT NEXTEDGE LASTLABELLED

e 9
5|6 j&—— ; /
112 - //// _ 6 | /
> 1L j& |5 /
\ PR
611 &\\‘7// 3 /
> |2 ;\\\ //, 7 /
2|5 |& ST I3 /
PR
- \
b5 |, =
6|5 |¥ \[3 4
CROSSREF ~ PRIVEC BLOCKLI ST EMPTYBLOCK
passed to CHOOSE passed to CHOOSE
> ~ . Al o
~ & -
1|~ T ~_ 31 — -
2k h"”}’;———ej
51— 7 2 (—-‘] N T Cr
1 :
A EA R i L e
9, 1
by BLOCKLI ST EMPTYBLOCK
by saved by PRETEND saved by PRETEND
|
I: l —
1, ! *j/
L_-Jd2|e <
pREsaC 8L
! a—k
- —--_36
Figure 5.4. In second call of CHOOSE, just before next call
of CHOOSE.

26

r— r—

6. Differences in Inplenentation of the Search for the Romim and the Coii.

The previous sections showed that the sane basic search tree can be
used for both the romm and the comm and furthermore that the search
tree for the comimcan be significantly pruned by making use of the node
val ences. The pruning is done by considering the val ences of the pretender:
at the beginning of procedure PRETEND. The maxi num val ence of the
pretenders is found, and CHOOSE is called only for the pretenders with
this valence. The valences of all the nodes were conputed at the
begi nning of the program and stored in the array VALVEC.

The data structures described in Section 5 are particularly well
suited for the rommsearch. Wth a slight nodification they may also
be used in the search for the comm At a |leaf of the search tree the
new matrix found nust be conpared with the maximal matrix so far. In
the ronimcase the maximal matrix so far is stored in MAXMAT, an array
with the same format as | NCMAT, and as explained in Section 5it is then
very easy to do the necessary row conparison. However the col um
conparison for the conmim search would be very inefficient using this
structure. A solution is to translate the rowordered incidence matrix
found into an array of n linked lists, each corresponding to a colum
and listing the rows with a 1 in this colum. Then with the maximal
matrix so far stored in a simlar array of linked |ists MAXMATCOL, the
column conparison of the two matrices sinply requires a series of scans

down the lists. The matrix conparison, together with a replacement of
the maxinmal matrix so far if necessary, is done by one of two versions
of procedure UPDATE -- one for the rommand one for the conim

Advant ages of the comim search are denonstrated by the running times
of an ALGOL W program which inplements the search and data structures
described. (One of the parameters to the programis a logical variable
whose val ue specifies whether to calculate the rommor the canim The
"records and references” dynanic storage feature of ALGOL Wis used for
the lists BLOCKLIST and MAXMATCOL. Integer arrays are used for all the
other list structures since they do not change size dynamcally. The
program listed in Appendix A was run for several graphs on an |BM 370/168.
The results are summarized in Table 6.1. The conputer printouts and an
expl anation of the choice of graphs are given in Appendix B.

27

O O N O U W NN %
T

ROM M CcoM M

NCDES EDGES TINE LEAVES TOE LEAVES
9 .01 8 .01 L
7 .02 2l .01 L
17 22 .12 2k .02 2
18 oL .12 2L .03 2
19 29 3k 14k .10 16
22 30 2.13 576 .03 1
23 31 3.10 1152 .0k 2
oL 32 7.03 3456 .06 6
50 78 > 600 .81 L8

Table 6.1. Summary of the results of sanple runs
Time is shown in seconds.

28

W see fromthe results that the comm search is substantially

faster than the rom m search. However the data structures in the prograr
were designed primarily for the romim search. W coul d expect significant
i nprovements in the performance of the comm search if nore suitable data

structures were used. A particularly attractive idea is to conpare the
maxi mal matrix so far with the new incidence matrix found as it is built
up, and thus have the possibility of abandoni ng unuseful |abellings
early. This could be done if nore of the priority information was kept.
The idea of abandoning labellings early mght also be applicable to the
rom msearch, for exanple if the edges were labelled first instead of

t he nodes.

H ghly symetric graphs (graphs with nany autonmorphisns) will require
search trees with a large nunber of redundant |eaves corresponding to
autonorphi ¢ pernutations of nodes. A way to elininate some of these
| eaves by keeping track of autonorphic pernutations as the search
progresses is discussed in [3].

Acknow edgnent .

W are grateful to Prof. D. E. Knuth for his constructive criticism
and encour agenent .

Ref er ences.

[1] Proskurowski, Andrzej, "The Maximal Incidence Matrix of a Gaph,"

Technical Report No. 70, Decenber 1973, Royal Institute of
~ Technol ogy, Stockhol m

(2] Proskurowski, Andrzej, "Search for the Unique Incidence Matrix of
a Gaph," BIT 2 (1k4),197k.

(21 Proskurowski, Andrzej, "Gaph Symetries in the Search for the
Maxi mal Incidence Matrix," Technical Report No. 75, April 197k,
Royal Institute of Technol ogy, Stockholm

29

Appendi x A

The Program

20

CIAIMENT

FIND LG THE MAXIMAL INCIULNCE MATKIA OF A LARLE LKAPH
MICHAEL UVERTUN anb ANOURLEJ PRUSKUROWSKI
CLMPUTER SCLIENCLE UEPAKI MENT
STANFURD ‘UINLVERSTITY
JULY U&7y

ueEGIN

e JCEDUKE KLAPFERSLANGE (INTEULEKR ARKAY INCMAT ¢ MAXMAT(%, %) 3
INTEGER ARFAY PekMUTATIUNC*); INTEOGER VALUE NUODESWEUGES:
LUGICAL VALUE RUMIMS INTEULEKR RESULT LcAvES):
CUMMENT TAKES THE INCIDENCE MATRIX INCMAT OF A GRAPH ANO RETURNS Tiit
(RUMIM OR CUMaA) MaX IMAL MATR IX MasqaT AND THE LABel PERMUTA TIUNS
CUMMENT LEAVES IS SET TuL THt NUMBewxk OF LEAVES IN The SEARCH TREE:
BEGIN
INTEGEK ARRAY NEXT EUGLELGS: sbuoLLS)
COMMENT THESE POINTERS TKANSHFURM [NCMAT INTO A LINKED LIST;
INTEGEK LadSTiLAbcelEL
COCMMENT PLUINID TU LAST BULE "PJLLED ypn B3Y NUDE LAbdLLINu

INTEGER ARKAY PRIVECoChUSOKEF« VALVEC (12:40DES) S
CUMMENT PRIVEC IS THE PnlUxiTY VECTUR. CROS>wrEt+ THE €xOSS
REFERENCE TU PRIVELs ANu VALVEC THE VECTOR UF VALENCESS

XECORC BLOCKUINTEGER BLLLKPTRG REFERENCE(BLOCK) NEXTBLJICK)
REFERENCE(BLUCK) BLULKLISTEMP TYBLUCKS

CCMMENT BLUCURLIST PUINTS TU THE LIST OF BLOUUKS JUF PKIVEC.
EMPTYBLOCK POINTS TU THE LAST ELCMENT OF THE LIST:

.

RECCRD INCELCECINT ELUER EUGENUS REFERENCE(INCEUGE) NEXTUNE) @
REFERENCCUINCEUGE) ARSAY MAXMATCUL(L S INUUES);

CUMMENT FeALS OF Tht LIST RePRESENTATION OF MAXMAT -

USED ONLY IN THE CUMIM SEAKUH:

PRCCEDURE CHCLSE (RKEFERLENWUE(BLUCK) VALUE BLOCKLIST.EMPTYBLOCK
INTEGEKR VALUE LASTLABcLLED) .
COMMENT L AdtL THE UNLY ELEMEnT OF THE FIRST BLOCK IN BLOCKUIST.
- REARRANGE THEt INCILENLE MAT&IX AND MODIFY PRIVEC AUCIKUINGLY
BY CALL INL PULLULP. AND SHUFFLE:
B8EGIN

PrROLCUUKE PULLLP (iINTELER VALUE CHCSEN);

CUMMENT SCAN LOwN INUCIUENCE MATRIX STARTING FRUM
LASTLABELLEUS UPUN ENCUUNTERING AN EDOLE INCIDENT TO Nuot
CHLSENy PRCCEEL JU “PULL UPY THE EOGE TJ LASTLABELLED.
AFTbr LLCKING AT Thnc UTHER NODE CF THE EUGE, MUULFY PRIVEC
ACCURDINGL Y

EEGIN
INTEGER PoFREV.PRIVECLAST
PREV:=LASTLABELLEV s PI=NEATELDGE(LASTLABELLED);
FRIVECLAST:=0LUCKPTRIEMPTYBLOCK) 3 CUMMENT PUOINTS IO
THE FIRST LeKU ELEMENT CF PRIVECS
wWHILE P~=-]1 JUdJd
BELGIN AINTELEK FUUNDox:
FLUNUS= IF IWwCMAT (P L)=CHOSEN THEN 1 ELSE IF
INCMAT (Poc) = CHOSEN THEN 2 ELSE U3
LF FLUNU=~=0 THEN

31

oELLN
INTEweER TEMP;
LOMMENT PUT CHUSEN NOCE IN FIRST CUOLUMN;
IF FUUND=2 THEN
DEGIN INCMAT(P +2):=INCMATL Py i)
INCMAT(Pol):=CHUSEN; ENU;
COMMENT MOUIFY PRI VEC
S=INCMAT L Pe2) s
[F CRUSSKEF (X)=2 THEN CUMMENT NOT | N
PxlvEL SO ADU IT:
VEGIN
PRIVEC{PRIVECLAST) :=X:
LRUSSKEF(X):=PRIVECLAST;
rRIVECLAST :=PRIVECLAST*]L;
eND
LLSE CUMMENT ALREAULY | NPRIVECS O M ARKITS
PRIVeEC(CRISSREF (X)) :=-PHI VECL{CROSSREF (X))
LOMMENT PuLl EDGE HIGHEKR UP N LIST;
IF Pre v-=LASTLABELLED THEN
BEGIN
TEAP e =NEXTEUGE (LASTLABELLED)
NEXTEDGE(LASTLABELLED)IZ=P
NEXTEOGE(PREV) :=NEATEVDGELP)3
NEXTEVGE (P) 3=TEMP;
LASTLABELL ED: =P
- PI=NEXTEDGE (PREV)
END
ELSE CUMMENT P UL L UPNJTNLCESSARY S
bEGIN
LASTLABELL ED:=PREV:I=P;
Pe=NEXTEDGE(P)

END
£END
ELSE CUMMENT CHAUSENN O TFQUNDIN EDGES
BEGIN
PrREVSE =Ps PI=NEXTEDGE(P);
ciNU

EivL ¢
CCMMENT I+ ANY NEW ELEMENTSH A V EJEEN ADUDEU TU PRIVEC
ITHEN CREATE A NEWBLOCKFURTHEM ;
[t PREVECLASTO>BLUCKPTR{EMPTYBLOCK)THEN
EMFTIYELGOKS = NEXTBLOCK {EMPTYBLUCK): =
BLCCKIFRIVECLAST oNULL) S
END PULLUP

PRCCEULRE SHUFF A L KEFERENCE (BLOCK) VALUCEP)}
- LUMMENT SCAN UUwWN LIST UF BLOCK PCINTERS. FrOR ANY BLOCK
CCNTAINING NLOGAT Ive eLEMENTSy SHUFFLE TheBLUCKSPLITTING
| T inNTO Twl BLUCKSe THe FIRST CUNTAINING THE NEGAT | V E
ELEMENTS A N Dlnk SUCUND ITHE POSITIVE - ALSU ReSET THE
NEGATIVE ELEMENIS TU PUSITIVES
WhILENEXTBLUCK(P)~=N U L LDU

CEGIN INTELER A yBURKDER: CUMMENTAFTEKSHUFFLINGTH E

BLUCK tL EMENT 5S¢ BUKDERWILLB E J H EINDE X JF THE FIRST

NCANEGATIVE ELEMENT 3

BURDER :=b LUCKPTR (P

FOR [3& BLULKPTREP) UNTIL BLOCKPTRUNEXTBLUIK(P)) - 1

D CIFPRIVECUIIKUTHENCOMMENTMUVEMARKcY
Nuve UP TUNLGATIV tHALFO F BLCCKS
BEGIN [IF I-~= BUORDER THEN

32

— r I

Y

bLtOIN INTEGER TEMP;
| EMP:=PRIVEC(1;
PRIVELIETL) :=PrIVEUL(BORGER)
PRIVEL(IBUORDER)= ~ TEMP
CRUSSKREF(PREVEC (I})e=12
CRUSSKEF(PKRIVEC(BORDER)) 2=BORDER
£END
ELSE PRIVECLL) s==PRIVEC(I):
BUKDER: =BURDER+1;
ENU S
COMMENT IF B8UTH THE POSITI VE AND NEGATI Vi HALVES
OF THE BLUCK ARE INUNEMPTY THEN SPLIT THE sLUCK;:
[F (BCROER~=BLOCKP IR(P)) AND (BORDER~=8LUCKPTR (
NEXTBLOCK(P) }) TheN NEXTBLOCK(P) :=BLUCK(BURDER,
NeEXTBLUCK(P))3
Fi=NEXTBLCCKC P) s

END SHUFFLE 3

INTEGER NEWNULES:

NEWNUUES:=BLOCKPTREEMPT YBLUCK) ¢ COMMENT POINTEK TO
FIRST ZERU ENIRY [N PKIVEC TO BE USED FUk RESTORING:

IF TKACE THEN WKITE ("cNTER CHOOSE W ITH CHOSEN NJOE =4,
PRIVEC(BLGCKPIRIBLUCKLISTY IS

PULLUP(PRIVECIBLUCKPTR(BLOCKLIST)))

CUMMENT NUW THE FIKST BLUCK HAS BEEN DEALT WITHSOD E L E T E
1T BLOCKLIST :=NEXTBLULK(BLUCKLIST)

I NEXTBLUOCK(BLUCKLIST)~=NULL THEN CUMMENT THERE ARE STILL
UNLABELLELC NUDES S

BEGIN INTEGER PRETENDERSS
SHUFFLE(BLUCKLIST)
COMMENT PRIVEC HAS NOW BEEN UPDATEU AS REQUIRED BY
THE LABELLING OF THE NUDE. IF THE FIKST BLOCK OF
Thi MUDIFIGU PRIVEC CONTAINS ONLY ONE ELEMENT THEN
LABEL LT BY CALLING CHOOSE - OTHERWISE THERE ARt
SEVERAL PKET ENUDERDS
FRETENDEKRS :=BLOCKPTK(NEXTBLOCK (BLUCKLIST))=-BLOCK? T (
BLUCKLIST) 3
IF PRETENLERS = 1L THENCHOOSE(BLOCKLISTEMPTYBLOCK s
LASTLABELLEU) ELSL PRETENDIBLOCKLIST,EMPTYBLOCK,
LASTLABELLEUsPKRETCNUERS)
CCMMENT IT IS NUT NECESSARY TUO PASS A NEw COPY JF THE
BLOCK LIST,
ENC
CELSE CCMMENT ALL NUDESH AV E BEENGLABELLED SU CALCULATE
THE INCIUENCE MATK IX FUUND AND UPDATE MAXMAT IF NECESSARY:
IF RCMINM THEN UPLDATE_KUMIM ELSt UPDATE_COMIM;

COMMENT KeSTure PRIEVEC AND CRUSSREF WwHiCH HAVE BEEN
MCUIFIELC BY SEARCH ON UEEPLR LEVELS. UELETE THE NEw
NLUDES FRUM PRILIVE(C AND uvelE Tec THE COUORRESPUNDI No
EANTRLES IN CRUSSKEF; .

WHILE (NEWNGUE S<=NUDES) AND (PRIVEC{NEwWNUDES)-=01) DO

BEGIN
CRLSSREF(PRIVELINEWNODES) J: =03
PRIVEC{NE nNULES) 2 =03
NEWNUDES s =NEWNUDES* 1
END G -
IF TRACE THEN WRITE("EXIT CHUQSE") ;
ENC ChUCGSE &

33

PROCEDURE PheTENU (rLFERENCE(BLOCK) vALUE BLUCKLIST yeMPTYBLUOCK S
INTEGER VALLE LASTLADLLLEUsPRCTENVUERS) ;
CCMNMENT adStoN iNerl cabel Tu £ACH UF THE PreTeNUvEXS IN TURN BY
CREATING A nNEw BLULK CUnTALNWING THE CHUSEN ELEMENT UNLY AND
CALLING LHLUSES
BeolN

Ret ERENCELBLUCK) PruLcuUxke COPY (REFERENCE(BLUCK) VALUE P
REFERENCE(BLULK) KESJULT Q)3
CCMMENT CUPY T HE LIST PUINTED TUO BY P o RETURN A POINTEK
TU 1T AS THE PhUCEUUKE VvALUE, AND SET ¢ Tu POINT TU THE
LAST tbbtMenT Ui Tk LIST S
I+ P = NULL ThinN
stLIN wea=ivubliL ¢ wulL END
ELSE [IF NEXTbLLUKEP) = NULL THEN
BEUIN Wi=pLUCKIBLULKPTRIP) oNULLY: O END
LSt BLULKIBLULKPTRAPISCUPY(INEXTBLUCKLP) 4Q)) 3

REFERENLC(BLULR) HEAD TALL: CUMMENT PUINTERS TuU NEW INSTANCES
CF BLLCALIST ANU EMPTYBLUCK &

INTEGL R ARRAY BLOCKPRKETS>(L::PRETENDERS)

INTEGER MAX o KEPT &

IF TRALE THEn WRITc("ENTER PRETEND WITHY",PRET ENDERS,

PReETENDERS")

CCMMENT CCPY THE FIRSI BLUCK JF BLCCKLIST (CONTAINING THE
PRETENDEK S) "Tu BLULKPRETS: :

FurR [s=1 UNT IL PrelehNvekd DO BLOCKPRETS(I) :=PRIVECIBLOCKPTRI
BLCCKLLIST)*i-1)s

CUMMENT INTROLDUCE A NEW SLUCK FOR THE CHUSEN NOLE:
NEXTBLUCK{BLUCKLIST 0=l UCK (BLOCKPTRIBLUCKLIST)+ 1o NEXTBLUCKI
BLOCKLIST)

CCMMENT FOR THE COUMIM UNLY FINDT H ESTRICT SET OF PRETENUEKS
TOTHE NEXT LABEL BY CUNSIDERINGT H E VALENCES:
| F-~xCMIMTHEN
bEGIN INTEGEK V3
CCMMENT FENU THE MAX VALENCEOFT H E PRETENDERS - KEPT
LSTHENUMBEK UF PRETENDERSWITHTHEM A X VALENCE:;
MAXs=KEPT1:=C;
FCk 1 = AUNTIL PRET ENDERS DO
BLOIN
. Ve=VALVECL(PKL VEC(BLOCKPTRIBLIUCKLIST)+I-1))3
IF VoMaX Trtiv BEGIN MAK:=V; KEPT:=1: END
eidt LF V=MAX THEN KEPT:=KEPI +{;
ENU S
I# TRACE THeN wrRITE("VALENCE CHECK:",KEPT,
“ PRETENUERES) TU Bt CONSIUVEKEDY) S
ENCS
IF RCMIM UK (VALVEC(BLOCKPRETS(L))}=MAX)T H E N
COLMMENT C AL LCAHUUSEPASOINGT H EFLIRSTPRETENDER - T
ISNECESSAKRY 7 - uPASS ANEWC C P YCFT H EBLUCKLIST
BECALSE UF THE TENIATI V E ASSIGNMENT UNLESS (FUR
The CCMIM) CNLY UunNeE PRETENDER HAS THEM A X VALENCE: ...
[t--~kCMmIMANLIREPT=L)T H E N
CRUUSE(BLUCKL I>T o EMPTYDLUCK « LASTLABELLED)
L SE

BEGIN

FEALS=CLPY (SLUCKLIST TAILDS
CHUUSE(HEAU s TATL o LASTLABELLED)
EnND s

34

r

r—

FUrn CHuUSEiNI=¢ ULNTIL PRETENDERS OC
IF RCMIM UK (VALVECIBLULKPRETSICHOCSFEN))=MAX). THEN
el INTeOLGER o LUGICAL FOUND:
i:=1s FUUNUZ=FAL>E: . R B .
COMMENT PREVIOUS CALLS TO CHUUSE MAY HAVE CHANGED THr
Orbbbn Ur THL clEMeNTS IN ThHt FIRST BLOCK UF PRIVEC
SC IT. IS NEULESSAKY Ti) SEAKCH FOR THE JHOSEN NUDE
WHILE —~FUUND VO I+ PRIVECIBLULCKPTRIBLUCKLIST)I+I)=
BLOCKPRETS{CHISEN) THEN
BEGIN Lcumibnl "INTERCHANGE CHOSEN NUOODE WITH THE
PREVIUUSLY (rUSEN NOUE IN THe FIRST POSITIUN OF
The vsLuCkKs
PRIVECIBLUCAPTR (BLCCRLIST)+ [):=PRIVECIBLOCKPTRI
bLUCKLIST))G ‘
PRIVEC(BLUCKPTR(BLOCKL IST)I:=BLUCKPRETS{CHISEN]);
CRUDSOKEFIPKRIVECIBLOCKPTR(BLOUKLIST)I+L)): =
BLOCKPTRABLOCKLIST)+];
CRUDSREFIBLUCKPRETSICHCSEN))2 =
BLOCKPTR{BLUCKLIST)
FCUND:=TrUL 5
ENU
ELSE {3=1]+1};
COMMENT CALL CHUust PASS ING THE PRETENDER - IT
IS NECES>ARY TU PASS 4 NEw CLPY OF THE BLOCK LIST
BELAUSE OF THE TENTATIVE ASSIGNMENT UNLESS (FOK
Tht CUuMIM) UNLY. UNF PRETENNDFR HAS THF MAX VAl FNCF:

IF ~RCMIM ANU (KEPT=1) THEN - o
CHUJSE (0 LUCKLL ST oEMPTYBLOCK s LAS TLABELLED)

EL St
BEGLIN
hEAUI=CUPY(BLOCKLIST,TAIL) ;
CHUUSE(HEAUD +TAIL LASTLABELLED)
eivG o :

ENUS

I[F TRACE THEN WRITc(YEXII PRETEND™):
ENU PRETENDS

PROCEDUKE UPUA TE_RCMiIM:

COMMENT COMPAKETHE INLIDENLE M ATRIXOBTAINEDBY N E W LABELLINGTO
THE MAXIMAL MATRE X FCUNUSUFRA RIMAXMAT) AND REPLACET H E LATTER

| FNECESSARY

CCMMENT ThisS | S FUKR THE ROMIM ONLY ¢
BEGIN
CUMMENT BECAUSE UF THE ALTIONO FPULLUPs THE FIRST LOLUMN

OF INCMAT IS AxRANGEU IN THE JESIRED (LINKEU) URDER WITH
THE LABEL PERMUTAT TON GIVEN BY CRUSSRKREF;

CUMMENT IN THIS PrOCEUWUKE THE TERM "BLOCK® IS USEDT O MEAN
A SelTILN O K INCMAT Wl TH ALL ELEMENTS QF HE F IRST COLUMN
EWUALe ANLC THE RELATIUN "MAXMATONEWMATRIX” 1 S USED TUMEAN
MAXMAT 1S BETTER THANITHENEWM A TR I X ;
INTEGEFR ARRAY RELABELLEL(1 : sMAXVAL)

CUMMENT RciABboliu IS USED FUR SORTING THE SECOND COLUMN OFfF
Tht CURRENT BLUCLK UF INOMAT BEING EXAMINED:

INTEGER [9JoJUeKi COMMENT | POINTS TO INCMAT, v AND J 0Ty
MAXMAT aNU K Tu ReLABELLED;

INTEGEK EL T LoLUMP

COMMCNTELTLL 3 ThHe ELeMENTINT H EFIRSTCOLUMNIFT H E
CURRENT BLUCK OF ITNCMAT BEING EXAMINCU:

COMMENT COUMP IS SeTPOSITIVE L F MAXMATONEWM A TR I X
ANU NEGATIVE IF MAXMATKNEW MATRIX:

35

PROCEULRE SUKIT
CUMMENT SURT KELABELLEL FRUM 1 <0 & IN ASCENDING
STRALGHT INSERTIUN SUKT®
FOn L2=2 UNTIL K LU *
BEOGIN INTELERK KEY .1
I:=L-13
KeEY:=ReLABELLEVD (LY G
wHiLE (I > 0) ANU (KEY < RELABELLEUL(L)) DJ.
BEGIN
nCLAbELLEU (I +]1) =xELABELLEUCIT)
L:=i—-1s
EinL
RELABELLEULI+ L) s=ReYS
ENCs

PrUCELUUKE COMPARLE ¢
CUMMENT CUMPARE THE PAKT UF THE INCIDENCE MaTRIX

URDER BY

IN

RELABLLLEL TUuobtTHER willl THE FIRST CULUMN €L EMENT
CRUSSREF{ELTL) wiln THte CURRESPONDING BLUCK UF MAXMAT,
LOMP 1S 5eT PUSITIVE 1r YMAXMAT IS BIGUER AND NEGAT IVE

iF MAXMAT 1S SMALLER:
tEGLN
WHlLE (CULMP=u) ANL (J<JO+K]) CO
BEGIN

CUMP:==((MAXMAT{J oL)-CRCSSREF(ELT L)) * NUDES +

MAXMAT(J+2)-RELABELLED(J=JO+ 1))

CUMMENT WaATUH JUT FOR OVeKFLUW FJUR LARGE GRAPHSS

Ji=dtis
ENU §

IF CCMP-=U THEN CUMMENT SET J TO FIRST ENTRY IN MAXMAT

VDIFFERKENT FROUM THAT IN THE NEw MATRIX;
Ji=d-13
Enu CCMPAKE $

LCGGICAL FIRSTSAME;

CLMP:=C3
$=NEXTELGE(O):

JUi=us Ki=Us

whilt (I-=~1) ANU (CuMP <= 2J) DO CCMMENT COUNTINJUE UNLESS

IT 1S ESTABLISHED THAT ™MAXMAT > NEW MATRIXS

BEGIN

FIRSTS AME: =TRUE

JeSJLIi=JUutK; Ki=uvs

ELTL:=INCMATL Lol

wHiLt FIKSTSAaME vU COMMENT CCPY >ECOND

CULUMIN GF A BLJULK UF INCMAT TO RELABELLED:
BeGIN
Ki=Kt 1l
RELABELLED (N):=CRUSSREF(INCHAT(Is2))3

CUMMENT CUNT INUE TILL FIRST eLEMENT JF COPIED

tbbt CHANGLE S
FIKSTSAME: = LINEXTEDGE(T)~==-1) AND

(ILNCMATINEXTEDGE(L) o1) = ELTL)

1:=NEXTEUGE(1);
ENLG

SUKT 3

IF CLMP=U THEN LUMPARE;

IF CUMPKU THLN CuMMENT NEWw MATRIX > MAXMAT SO REPLACE

Tht LATTEKS

36

|
f
i

Fur mi=g UNTIL vO¢#xK-1 D)
BEGIN
MAAMAT M or) S =2CROSSKEF(ELTL)
MAXMAT(Me20:=RELABELLED(M=-JO¢ 1)

ENU3
ENU S
Ir LEAFTRKACE THEN
BEOIN

wRITLI"LEAF UF StAKCH TREE - LABEL PERMUTATION [S:');

FOr I3=1 UNTIL NuwES OO
stGlh uF | REM 12 =
WRITECN(PRIVEC(T))
ENU S

1 THEN IUCGNTRUL(2);

END S
| fOCMP<LC THEN
BEOIN CUMMENT UPUATE PERMUTATICN:
Fur [2=]1 UNTIL NoLES DO PERMUTATION(I) s=PRIVEC(I};
[F TRACE THENn WRITE("MAXMAT UPDATEUY);
oD .
ELSE IF TRACE THEN WRITE("MAXMAT NOT UPUATED")
IF TRACE THEN wWRiTE (") ;
LEAVES :=LEAVES+L
ENU UPLATE_RIMIM;

PRUCEDURE UPUATE_CUMIM;
CUMMENT (CMPARE THE INCLUENCE MATRIX OBTAINEL BY Ntw LABELLING TU

THE (CULMIM) MAX IMAL MaTR IX FUUND SO FAR (STURED IN MAXMATCOL)
AND REPLACE THE CATTER IF NeECeSSAxY;

BEGIN :

CCMMENT BECAUSE UF THE ALTIUN OF PULLUP+ THE FIKST CCLUMN
UF INCMAT [S ARKANGED N THE OESIKED (LINKED) JRDER WITH
THE LAdeL PEKMUTAT IUN GIVEN BY CROSSREF:

COMMENT IN THIS PRUCEUDURE THE TERM "BLUCK"™ IS USEDU TO MEAN
A SELTICN OF INUMAT Wwllr ALL ELEMENTS CF THE FIRST CULUMN
EQUALy ANU Thk KoL ATIUN "MAXMATONEW MATRIX" [S USED TU MEAN
MAXMAT IS BelTTEx THAN THE New MATRIX:

INTzGbr ARRAY RELABELLEUL 12:MAXVALD :

CUMMENT RELABELLED 15 USED FUR SURTING THE SECUNU COLUMN UF
TFE CUKRENT BLULK OF INCMAT BEING EXAMINED:

INTEGER 1+eJOoKs LOMMENT 1,J) POINT TO INCMAT,

AND K TU RELABELLED;

INTEGER ELTLoRELLsLASTUGHPARED,COMP

COMMENT ELTL IS THt ELEMENT IN THE FIRST CULUMN UF THE
CURRENT BLUCK UF iNLMAT BEING EXAMINEU, AND RELL IS ITS
ReLABELLEU VALUE. LASTCCMPARED IS THE LAST CULJMN OF THE
MATR [X CUMPARLL SU FAK;:

COCMPENT CLMP 1S SET PUSLTIVE IF MAXMATONEW MATRIX
ANU NEGATIVE I+ MAXMATSNEW MATRIX: ,

REFERENCECINCEDGE) ARRAY INCMATCOL oCOLTAIL(12 :NUJES) ;
COMMENT INCMATCUL > rUn THE HEADS UF THE (T EMPURARY)

LIST REPRESENTATIUN UF INCMAT AND COLTAIL IS FOR THE TAILS:

PROCEDUKE SCwT3

COMMENT SCRT KELABELLED FROM 1 TO K IN ASCENDING ORDER BY

STRALGHT INSERTIUGN SOKT;

FUR Li=2 UNTIL K V.V

- BEGIN INTLGER KEY 413

[e=L-1;
KEY:=RELADELLEDIL } 3
WHILE (I > 0) ANV (KEY < RELABELLED(I)) wO

37

BEGIN
KelaoclLLEUGTI¢#1l) e=RELABELLEU(T)S

1:=1-1is

ENU
sELABELLEUL I+ L)I=KEY S
ENL S

PRULCELLRE TRANSKELL S
CUMMENT EXPANL THe LIST UF INCMATCCL CORRESPUNUVING T3
CuLtumMnN Relds
FCK L3=0L UNTIL ~ UU
CULTALLIKELL) ® NthunL(CDLTAIL(RELL))
INCECGERE{JU#L~LonULL)5

PRUCEULULRE TRANSKELABLLLEUS
CUMMENT EXFANL THE LIST> CORRESPUNDING TO THt .C3LUMNS
SPECLFIEY [iv kELAbELLEDS
FUR L:=1 UnliL K DU
cCiLlalL{kerAotbliLEulL))=
ne XTUNELCULTAT LIKELABELLED(L)) 3=
INCECLE(JC +L-LoNULL DS

PrCCEDURE CUMPAKES
CLMMENT CCMPARE CULUMNS LASTCOMPAREUL®L THROUGH RELL IJF
THE Thu LiST >Thw Tuke> INCMATCOL ANV MAXMATCOL .
CCMP IS SET PUSLILIVE IF MAXMATCUL I> BIGLER THAN
INCAATCUL sy lebe MAXMATONEW MATRIX, ANL NEGATIVE IF
IT IS SMALLEKS
BeOLIN
ReFERENLE (L INCEVULE) PL,P23
INTECER ws
LOGICAL ENLCULUMNSG
CS=LASTCLMPAKED S
aHiLE (CLUMP=U) ANU (Q(RELL) Lo
BEGIN
ws=Wtls
rle=MAAMATCUL(J)
PL:xNEXIbNL(INCMATCOL(QI):
einLCULUMNS =F ALSE;S
wHilE (uuMP v) AND ~ENDCOLUMN DO

bt(]l"
iFf PL=NULL THEN
8EGIN
i1F P2=NULL THEN ENOCOLUMN: =TRUE
LLSE CuMpi=-]
END
cl>E I+ P2=NulLi THEN COMP:=
cl>t ‘
sEGIN
CUMP :=EDGENC(P2)-EJGENU(PLS
PL:=NEXTCONE(P LI ; P2:=NEXTONE (P23
ENUS
LNUS

END 3§
LASTCCMPAKED: =rELLS
END CUMPAKL

LUGICAL FIKSI>DAMES
CLMPi=Us
LASTCCMPAREL:=0US

—ﬁ------IIllIlllIIIlllll.'.lllllllll!!!!!!!!!!!

[TS=aNEXTELGE(L)
JGi=1 Ki=0s
FUuk L: = AUNTIL NLueD> DU ANCMATCOL(L) s=CULTAILIL) =
INCCUCE(OINULL) CUMMENTUJUMMYR ECOR 3
wHILE (L=~=-1) ANU (LUMP <= U} DU CUMMENT CUNT INJE UNLESS
IT1 5 ESTABLISHEL THAT MAXMATDNEWM ATR I X ;
BEGIN
FIRSTSAME :=IKUE 3
JO2=JO+K; K:=03
ELTL:=INCMATLL o003
RebL L3=CRUSSKEF(ELT L)
WHILE ¢ IkSTSAME oL CUMMENT CLPY SECOND
COLUMIN UF A BLULK OF INCMAT TUO RelLASBELLED:
BEGIN *
Ki=K+ 13
RELABELLED(K 2:=CROSSREF(INCMAT(I,2))3
CUMMENT CUNTINUETILLF | R S TELEMENT UF COPIEU
ELGE C HANLE 53
FARSTSAME : = (WEXTEOGE(I)>==10A N D
(INCHMAT(NEXTEOGEL L) L) = ELTL)
L3=NEXTEDGE(I
tNUs
TRANSKELL S
iF C{Mr=u THEN CUMPARE;
~IF CLMP<L={ THEN

BEGIN
SUKT
TRANSRELABELL El):
END;
eNU ¢
| fLEAFTKACE THEN
BEGIN
sRITE("LEAF UF >EARCH TREE ~-LABEL PERMUTATION [IS:“):
FOr 12=L UNTLLNQUESD O .
BEGINI FLwkeM1l 2= 1 THEN IQCONTROLI2):
WREITECN(PRIVEC(TIN)
END;
END

I F CCMESO THEN
BEGIN CUMMENT UPuATE PERMUTATION:
FUR Is=1 UNTIL NJLES DU PERMUTATION(I) :=PRIVECI(I):
CCPMENT UPLAT e MAXMATCOL;
FOR [3=1 UNnTLL NJueS VU
MAXNMATCLL LT 3=NEXIONECINCMATCOLC(L))
CUMMENT DKUP LUMMY RECORD;
IF TRACE THEN WRITE("4AXMAT UPDATEDY™);
END
ELSE IF TRACE THEN wWRI TE("™MAXMAT NCT JUPDATED"™);
IF TRACE THEN WRITE(" ")
LEAVES:S=LEAVES+ L
ENC UPCATE_CLMIM;

PROCEDUKE TRANSLA TE_MA XMAT ;
CCMMENT TRANSLAT £ The (COMIM) L IST REPRESENTAT IUN
MAXMATCCL I NTG THE ARKAY MAXMAT;
FCR |3=1 UNIL NCLES LU

BEGIN
REFERENCE(INCELGE) P3
P:=MAXMATCOL (103
WHILe P~= NULL LU

39

tEGIN
I MaxMAalicuocnU P)L)=NUDES+]L THEN
MAaAMAT(ELDLENULIP) o b3 2=
ELSE MAAMAT(EDLENUI(P)202=1;
Pi=NEXTUNE(P)
ENDS
ENU s

PRUCEDUKE PKINT (KREFEKENLE(BLOLK) VALUE BoEs INTEGER VALUE L)
COMMENT PrINT OUT The uATA STRUCTURE CONTENTS [F veBJdo IS SET;
IF JtB8UC Then -

BEGIN
WRITe("BLUCK LIS 153"
whiLk ge~=hULL LG
BEOGIN
WRITEUNIOLUCKPIR(L))G
gs=NEXTLLLOK (B
END
WRITE("EMPTYoBLULK [S:') 3
Ir EMPTYBLOCKR=NULL ThEN ~RITEON("NULL ") ELSE
WRITeUN(BLUCKPFTRLE D) S
WKITE("PRIVEL 1S5:") 3
FOK ©I2=1 UNTIL NUDL> DU wRITEON(PRIVEC(I) IS
wEITE("CROSSREF [5:3%);
FCr 1:i=4 UNTIL NUubeS LU uRITtCN(CRLbSREf(ll).
WREITE{PNEXTELLESEM) ;
FuRk [13=0 UNTIL EULLES VU NKITCON(NEXTEUGE(I))o
Wkl le{"LASTLABELLED ="9L §
wRITE("Y v)3
ENUS

INTEGEFK MAXVAL: CUMMENT MAXIMUM VAL ENCE OF A NUDES
CUMMENT Ll TLALLI L UATA SIKUCTURESS
FCR I:=1 UNTIL tLeS DU FOR Ji=1 UNTIL 2 DU MAXMAT({I,Jd)3=NODESHL
[F -<0MiM ThEN FUR L2=i UNTIL NUDES DU MAXMATCuL tI):s=nJdLL;
LEAVES:=03
COMMENT LSt NEXTELGe TU MAKE INCMAT A LINKED LISTS
FUr l3=u UNTIL EDGES=L U NEXTEDGEL(L)S=1+i
NEXTEDCeteuCEddi=—{s
LASTLABELLEL =05
FOR [3=1 unTIL NubtS DU PRIVECET)2=CROSSREF{I)z=VALVEC(]) =03
LOMMENT CALCLLATE vALENCES UF NOOES S
MAXVAL s =y
FOk TI2=1 UNTiL ELGES DO FUK J2=1 UNTIL 2 DO
BeGlIn v
VALVECCINCMAT (Lo d) dssVALVECCINCMAT(L 4d))*1 3
Ir VALVECUINCMAT (L ,Jd)) > MAXVAL THEN MAXvaL:i=VALVECI
INCMAT(Led))
ENLS
CIMMENT INITLALIZE BLOCK LIST TO A LIST GF Twl BLULKS, THE FIRST
CONFAINING A NULE wilTH The ALOHEST VALENCE ANV THt SeCOND THt
EMPTY BLCCKS
EMPTYBLULK:=oLUCK(ZoeNuULLI 3 bLuu&leT =BLOCK{L £eMPTYBLUCK);
CUMMENT ChOLSE FCK Tht FIRST LABCLLED NOOE EACH UF THE NUDES wlTH
THE rIoHEST vALENCE IN TURNS
FOR I:=1 UNTIL NCGCe> DU IF VALVEC(I) = MAXVAL THEN
BcoulN
PivVeL(lis=13
ChCSSKEF (LIS =4
CHUUSE (BLUCKLLST +EMPTYBLUCK LASTLABELLEDI) S

40

e

o r—

COMMENT KEST Lwk CRUSOSKEF: CRUSSREF(I)I:=0
END 3

LF ~RCVMIM THEN TRANSLAT E_MAXMAT;

END KLAFPERSLANGE

INTEGER NCDES+EDGES»LEAVES S
INTEGER ARRAY lNCHATaMAXMAT‘1:3LUUOL::2,;
INTEGER ARRAY PERMUT AT ICN(L33 LU0
LOGICAL DtBUG'IKALEoLtAFIKALt.KuMIM.
INTFIELDSIZEs=3;
LEAFTRACE:=FALSE:
TkACc :=FALSE;
UVEBUG:=FALSE;
KEAD (NUDE S+ EDGES KLMiIM);
wHILE NOUES>T (0
BEGIN
IOCONTRUL(3) s
IF RCMIM THEN WRITE("* * RUMIM * *¥) E{St WRITE("* # CJMIM * *")',
WRITE(YNUMBER UF NUUES =",NuUcS." NUMBER . GF EDGES. =%,
EDGES) : :
FOF T2=4L UNTIL EUGES VO FUR Js=L UNTIL 2 DO READON(INCMAT(I,d)):
WRITE(" INCIVENCE MATRIX 15:%);
FOR I:=1L UNTIL ELGES LU WRITE(INCMAT(I, l)’lNCMAT(I’Zl)o
KLAPPERbLANbE(INCMAI.MAXMA]cPtkMUTATIONoNUDESctDbESoRUMleLEAVtS).
WRITE("MAXIMAL MATKIX i5:%);
FOk T:=1 UNTIL cDGeS DU wWRITE(MAXMAT(I,1), HAXHAT(I:&)).
WRITE("LABEL PERMUTATIUN IS 2%,
FUR [:=1 UNTIL NLUES ©O
BEGIN IF I REM 1< = 1 THEN IOCONTRCL(2)
WRITcUN(PERMUTATIONCI})
END 3 :
WRITE("NUMBEK OF LEAVES IN SEARCH TREE =%,LEAVES);
READ (NOUES ¢+bUGES yRULMIM) 5
END3S
END.

b1

Appendi x B
Sanpl e Runs.

The exanpl es given bel ow are not intended to serve the purpose of
a systematic analysis of the programs performance. However they
illustrate the difference in efficiency of the rom mand com m searches.
An attenpt at a nore systematic analysis of the basic search algorithm
by means of "random graphs", is given in [1]

Maxi mal incidence matrices were conputed for several graphs.
Gaph 1 is the exanple used throughout Section 5 (see Figure 5.1 (a));
a trace of the programflow is shown for this exanple only. Gaph 2
was nmentioned in Section 2 as having unequal rom m and conim (see
Figure 2.1). Gaph 3 represents the structure of an electrical filter,
whi ch indicates a-possible application. Gaphs 6, 7 and 8 are subgraphs
of Graph 9, which is the largest graph we have tested and has arbitrarily
chosen edges.

The results of the conputer runs follow.

ko

x % RGMIM * =
NUMBEK OF NuDES = ¢ NUMock L+ LUGLS =
itNCIDeNCE MATRIX S

G
3 1

Vi NN - -
LA N O < S S (i o

ENTER CHUUSE WITH CHCSEN ACUE = 3
ENTEK PRETEND WITH 4 FRETENDERS
ENTER CHUUSE WITH CHCSEN Nult €
ENTER CHUUSE WITH CHCSEN AULL i
ENTER CHUUSL WITH CHOSEN wuut P4
ENTER CHOLSE WITH CHOSEN NLDc 4

ENTER CHUOSE wlTH CHNOSEN NuUDE S

LEAF UF StAKCH TREE - LABEL PERMITATICN i5:

3 o i 2 4 5
MAXMAT UPUAILED

wonon oy i

EXIT CHIISE
eXIT CHUGSE &
EXLIT CHUUSE
EXIT CHOUSE
EXIT (CHUJSE

ENTER CHOGUS. wITH CHOSEN Nuobt = - i
ENTER PRETEND WITH 2 PRETLNUERS
ENTER CHUOSE WITH CHOSEN NGO = O
cNIER CHUUSE WITH CHOSEN Nuvt = 2
ENTER LACUUSE WITH CHCSEN NLLE = 4
ENTER CHLOSE WITH CHUSEN NuUE = &
LEAF OF SEARCH TREE - LABEL FLrMUTATICN 153

3 i 6 2 4 9
MAXMAT UPUATED

EXIT CHOOJSE
CExI1 CHOUSE

EXIT CHOOSE

EXIT CHUOSE

ENTERCHOUSEW ITH CHCSEhNLE=¢

CNTER CHOOSE WITH CHOSEN WuDE = 6

ENTERCHUGSEWITHC HC S E hNLUE= 4

ENTER CHUUSE WI TH CHOSEN NUOE = 5

LEAF UF SLAKCHT R E E - LABEL PERMUTATIUN | S
3 L 2 6 4 3

MAXMAT RUT UPDATED

EXI T CHUUSE

eEXIT CHOOSE

eXIT CHUUSE

EXIT CHUOSE

ix IT PRET END

EXLT CHJJ>SE

ENTER CHUGUSE WITH CHCSEN NGDLE

ENTER CHUUSE WI TH CHCSEN NOLGE
ENTER CAHUUSE WITH CHUSEN nNUDE =

ENTER CHUGOSE WITH CHCSEN NCLCE =

n hm

EEN ¢ S il 2V

L3

enTiex CHIUSE wITiH CHUuSEN nucE = 8

Leabk UF SLARTH THRFE = LAYBEL PermuTALILN (o3
3 Z 1 t 4 P

AnX MaT WaT UPLATELD

LXIT Cril)SE
eXIT oHJUSE
tXxIT CHO)SE
EXIT CHJUSL
e X[1 CHGJSE

cNTER CHOUSE WITH CHOSEN Nuwie = 4
EiNTER PReTEND WITH 3 FRUTENUERS
cNTER LHULSE WITH CHCSEN Nudt = i
SNT ER PReTEND WITH 2 PRETENUERS
ENTER GAUCSE NI TH CHCSEN NLOLE = o
EnT ek CHOUSE AITH CHUSEN Nuve = ¢
enler CHuuSt WITH CHOSEN NUCk = 5

LEAF OF StARCH TREE - LAbLGtL PeKMULTATION 1o
> 4 1 6 2 2
MAXMAT NUOT UPDATED

ExIT CHUGSE
eAlT LHi)SE
EXIT CHUUSE

EnTER CHLUSE WITH CHUSEN NCEE = ¢
chNTex CHUUSE-WITH CHOSEN Nude = ¢
LIWTER CHGGSL AITH CHOSEN NJde = 5

LeAF OF StARCi TREE - LASel PERMULTATIUN >3
3 4 1 2 6 b)
MAXMAT NJT UPJATED

eXIT CHUJISE
eXIT CHuSE
exIT CHUGSE
EXIT PRETEND
exIT CHJOSE

ENTER CHUUSE WITH CHUSEN NUDE = €
ENTEX CHUJSE AITH CHUSEN Nowk = 1
ceiNTER CHJUSE W ITH CHOSEN NJDE = 2
enTeR CHGUSE WITH CHCSEN ANODL = O

LEAF Ut SEARCH TRFE - LASLL FErmUTATIUN 153
3 4 6 1 2 5
1aXMAT NUT UPDATED

eXIT CrniJusE
exXxIT CHuUSE
EXIT CHUOSE
eXIT CHUJSE

ENTER CHUULSL WITH CHUSEN Nuvk = 2
SNTEXK CHUCSE WwITH CHCSEN NDL =
ENTER CHOUSE WITH CHUSEN NUUE = €
ENTE< CHUUSE WITH CHCSEN MNLLbL = 5

LEAF UF SEARCH TREE - LABeL PeERMUTATIUN 153
3 4 Z 1 6 5
MaXMAT NJOT UPDATED

ex IT CROUSL
exIlT CHOUSE
cKIT CHGOSE
EXIT CAGJISE

44

EAIT PRETEiNU '
EXIT LHUUSE

EXLIT PRULTEND

EXIT CHUUSE
MAXIMAL MATRIX IS:

i 2
1 3
i 4
1 5
2l 3
Z ¢
3 o
4 o
b 6

LABEL PERMUTATION IS ¢
3 1) 2 4 5
NUMGcK JF LEAVES IN SEARCH Ik

DUV .05 SECUNDS IN EXECUT ICi

k5

E

E

8

x & COMIM * %

NUMRER = NODFS = 6 NUNMBER (CF ENDGES = 9
INCIDFNCE MATRIX TS:
3 6
1 ?
1 3
1 &
2 3
2 5
3 4
4 5
5 6
ENTER CHNDSF WITH CHOSEN NODE = 2
ENTER PRETFND WITH & PRE TFNDERS
VALENCF CHECK: 3 OPFTENDER(S) 10 ARF CONSIDERED
ENTER CHODSF WITH CHOSEM NCDFE = 6
ENTEFR CHODSE WITH CHOSEN NCNFE = 1
ENTER CHROSE WTTH CHOISEN NNDE = 2
FNTER CHONSE WITH CHISEN NDDE = 4
ENTER CHDNSE WITH CH{JSEN NODE = §

LEAF NF SFARCH TRFF -- LABEL PERMUTATION IS:
3 6 1 2 4 5
MAXMAT UPDATED

EXIT CHNOSE™
EXTT CHONSF
EXIT CHNNSE
EXIT CHONSE
EXIT CHOJSE

ENTER CHNOSE WTTH CHOSEN NODE = 1
ENTER PRFTEND WITH 2 PRFIENNERS
VALENCE CHECK: 2 PRETENDER(S) TN BE CONSTDERED
ENTER CHNNSE WITH CHNSEN NODE = 6
ENTFR CHNNSE WITH CHOISEN NCDE = 2
FNTER CHNOSE WITH CHIISEN NCDE = 4
ENTFR CHONSF WITH CHOISEN MODE = 5

LEAF OF SFARCH TREE -- LABEL FERMUTATION IS:
3 1 6 2 4 5
MAXMAT UPDATFD

EXIT CHPNSE

EXIT CHINSE

EXIT CHONSE

EXIT CHONSE

ENTER CHNNSFE WITH CHOSEN NODE
ENTER CHODNSE WITH CHOSFN NODF
ENTFP CHODSE WITH CHOSEN NODE
ENTER CHODOSE WITH CHOSEN NODE
LEAF NF SFARCH TRFE - LAREL FFRMUTATION IS:

3 1 2 6 4 5
MAXMAT NOT UPDATED

([
AsrO0N

EXIT CHONSE

EXIT CHNNSE

EXIT CHOOSE

EXTY CHONSE

FXIT PRETEMD

EXIT CHNOSE

ENTFR CHODSC WITH CHNSEN NGDE
ENG R CHNOSE WITH CHOSEN NODE

E
L6

it o
-

ENTER CHNDSF WITH CHOSEN NODE
ENTEP CHPOSE WITH CHOSFN NODF
ENTYER CHONSF WITH CHNSEN NODE = 5
LEAF NF SEARCH TRFE - LAREL PFQRMUTATION I§:
€&
MAXMAT NDT UPDATED

3 2 1

FX IT CHONSE
FXTT CHNOSE
EXTIT CHOQSE
EXIT CHNANSE
EXTY CHNOSF
EX| TPRFTEND
EXITCHCNSE

MAXIMAL MATRIX TS:

NP WOPRON e =
OO DMWUOD NN
.
/

[T T]

4 5

LARFL PERMUTATICN IS

3 1 6
NUMRER NF LFAVES |

2

4 5
N SEARCH TREF =

000.02 SECONDS INEXECUTION

¥y

naso

oKX RAMIM * %
NUMRER NE NODES = 7 NUMBER NF EDCES = 7
TNCINENCF MATRIX ISt

1 2
1 3
1 4
) 5 7 5
2 6
2 7
3 4
WAXTMAL MATRTX| S ~ 2
1 2
1 3
1 4 6
1 5
2 3
4 6
4 7

LABFL PERMUTATION IS @
1 3 4 ? 5 6 7
NUMRER OF L FAVES IN SEARCH TREF = 24

000.02 SECONDS | N EXECUT ICN

48

r— r— r—

ok CUMIM * % _
NUMBER UF NGDES = 7 MNIMEER CF ELGLs =
INCIUENCE MATRIX S:

i 2
1 3
1 4
i 5
2 5
2 7
3 4
MAX IMAL mMAT RIX IS:
L 2
1 3
1 4
1 5
2 O
2 i
3 4

LABEL PERMUIATION IS 3
1 Z 3 4 5) {
NUMBER GF LEAVES IN SEARCH Ttk = 4

YUV UL SECONDS IN EXECUT luw

k9

*x %k ROMTM ¥ %

17

NUMRER NF MODES = 17 NUNMBFR CF ENGES = 22
INCIDENCE MATR I X T S¢
1 3
3 A 2
3 5
l% 2 5 T 9 11 13 15
5 7 1« n
6 R
7 A
7 o
g 10
s 1)
9 11 L 8 10 12 1 16
10 12
11 13
12 14
13 14
132 15
14 16
15 16
15 17 .
11 12 ‘
MAXIMAL MATRIX| S
1 2
1 k]
1 4
1 5
2 é
2 7
3 6
6 8
7 8
7 9
8§ 10
9 10
9 11
10 12
11 12
11 13
12 14
12 14
13 15 \
14 16
15 16
15 17
LABEL PERMUTATINN [§
3 5 4 2 6 7 a 9 10 11 12

13 14 15 16
NUMBFR NF LFAVES |

N SEARCH TREE =2 4

000.12SEFCANDS IN EXFCUTINN

50

o ¥ % Gl M & =
NUMbe< Jr NODZES = 17 NuMubER UF cliokS = ¢Z2
PhnclonNCE MATRIX [S:
3 1 >
: é 3
3 “
3 b
“4 (¢}
5 o
2 7
o 8
7 d
7 9
d 1u .
9 iu
g 11
il 1
- 1i lo
i1l 14
1o L4
13 |)
h 1« o
L5 lo
i5 17
- il 1< -
MAaxX i MAL MATRIX IS:
1 <
i 5
- 1 4
i 5
e o
- Z {
3 o
; o o
: 7 R
= 7 4
; 3 10
j 9 iv
- 9 11
19 i2
. id le
L i1 ls
id 14
i3 1o
[) 1>
— 14 15
15 lo
15 i7
| LABEL PERMUTATIUN IS @
3 5 4 Z 1 o { o v i0 11 1<
15 14 15 16 17
NUMBER GF LEAVES IN SEARCE TREE = ¢
b
Ouueul HECUNDS IN &XECUTICN

51

K & RNV o ow

NUMRER T NONR(S = 15 NIMRER 5 FDGES = 24
INCIDENTE MATRTXY TS
1 4
1 1)
1 17
7 3
3 4
3 15
4 5
4 15
b} 6
6 7
7 f
7 16
8 0
9 10
10 11
10 1?
11 12
12 13
12 13
13 14
14 15 -
18 17
17 16
16 8

MAXIMAY MATRIX TS:

o
D DDV N NNNNN gt = s s
D

i¢
11
12
13
14
13
11 15
12 14
12 16
13 15
14 16
15 17
16 15
17 1R
{ ARFL OFRMUTATION TS
12 10 1 11 13 13 9 2 17
16 15 7 4 b 5
NUMRE? OF LEAVES IN St ARCH TREE = 24

000.12 STCONDS IN FXECUTTON

52

— r r—

ok G % v)
NUMBER oF NLOeL = Lo Wusdre UFE LLoES =
[N RV TN TS MaTRIX L5
L Z
L lu
i 12
P >
b t+
3 L5
“+ D
+ io
5 6
o} 7
{ d
I 16
¥} 7
Y LU
iJ i1
Lo le
Ll 1Z
Le 1o
i2 lo
1o La
is i2 -
io 17
17 lo
lo &
MAAX TMAL MaTwIX IS
L d
i 3
i “
1 9
L o
pa 3
Z +
2 [4
3 be)
9 e
6 1o
7 i
9 le
4 1>
i L
1 ls
Fut 15
1< L4
12 lo
L3 15
L Lo
15 it
lo 14
! 13
tAadel PERAUIATION IS)
12 40 111 13 9 < i1
Lo L> 7 4 2
Nuolb UF LeAVES IN SEAKCr Twhit = <

Jule 3 SLLONDS

IN EXECUTIUN

55

L9

L9

L1 S I

NMRE2 I S = 10 CHER L OF TOGES = 2y
INCTERENCE MATRTIX IS
1 3
1 &
? ;
3 %
4)
5 ‘.
& 7
7 2
3 10
3 IR
4 11
4 12
5 e
5 1¢
[&) 14
9 1@
9 19
o I
9 19
10 11
11 12
12 13
13 1%
14 15
15 156
16 17
17 19
1R 12
16 3
MAXTMAL MATRIX T15:
1 2
1 E
1 %4
1 5
1 6
2 3
2 4
? 7
3 7
3 <
4 G
5 10
é 11
7 12
o] 13
R 17
R 14
9 15
3 16
9 17
10 11
125 1R
1?2 18
13 Va
13 13
14 16
15 1é

54

15 17

16 19
LABFL PFPMYTATIOAN IS

3 11 4 13 1 2 12 5 G
15 16 19 13 3 14 17

NUMRER OF LFAVFS TN SFARCH TRFF =144

000.34 SECONDS IN FXFCUTINN

55

L omd
ed, s I
P bodiieg
i 3
L s
B “+
+ Y
bl W
) {
{ .
2]
3 il
- L
“t L
[
p) lo
0 f
P 1
’ L+
) J
7 Ly
FSY] il
il L
Fara i
i3 L+
L+ 1.
J Lo
Lo if
L J
[L7
i)
aA LY
Iy .
i J
L ‘t
L b
L v
€. ;
. +
c {
) {
3 B
+ ‘J
J Lo
0 L1
{ Le
[6) LJ
o 1o
3 Lre
£l Lo
7 Lo
3 ol
L) L
iJ Lo
1< 1o
13 L+
i) Lo
1+ L
D Lo

Al e [X

)

Ny

56

ST

.

i

Eiiot >

4%

~m—

F] I
ls i
Lave L PesmuTATION 1S e
3 L & L 1 < LZ] ¢ / 13
Lo lo i i 3 19 Ll
wuMoaon Jr LEAVES IN SLARCH Theoe = le

[

I
}
|
|
f
(
|
[
A

SOGe L odELLH0S N eXCCUTTen

% coTYMTA E 2 22
MMBED 0T N INES
THOTOENCE MATETX
1 ?
:’ et
B 4
4 5
2 5
2 &
6 7
4 7
1 4
1 g
2] Q
9 10
10 11
11 12
12 13
12 14
7 14
2 5
3 14
14 15
15 14
le 17
10 17
2 11
2 15
4 18
4 19
19 290
2C 21
7 22
MAXTNAL MATRIX 1
1 2
1 2
1 %
1 5
1 6
1 7
1 R
2 3
? 4
3 9
3 3
3 11
? 12
I8 Q
5 6
5 10
i 13
6 14
7 1N
B 15
3 16
S 17
10 1’
L1 16
12 15
L4 20

W

Py
IS

2
«

58

NUMAE =

....................I'l!!rII

1é 20
16 1
17 21
19 22
LABFL PFRMUTAT TON 1S :
3 5 4 2 la s 6 11 1 719 18
13 14 12 15 8 22 20 17 9 21

NUMBFP NF | FAVES TN SEARCH.TREE

032.13 SETONDS IN EXFCUTTON

~

r

—

59

x ok COMIM * *

22

NUMBER (OF NJODES =
INCIDENCE MATRIX [S:
1 2
2 3
3 4
4 5
3 5
3 6
6 7
4 7
l 4
1 8
3 9
9 10
10 11
11 12
12 13
13 14
7 14
2 9
3 14
14 15
15 L6
lo 17 =
10 L7
3 11
3 15
4 18
4 19
19 20
20 21
7 22
MAXIMAL MATRIX IS:
1 2
1 3
1 4
1 5
1 6
1 7
1 8
2 3
2 9
2 10
2 11
2 12
3 4
4 9
5 6
5 1)
5 13
6 l4
7 15
7 16
8 10
9 17
10 18
11 19
13 15
14 20

NUMBER 0Oc

ENGES

3o

—

16 20
16 21
17 21
19 22

LABEL PERMUTATION IS :
3 4 5 2 14 15

13 16 12 19 8 22

NUMBER UF LEAVESINS E A R C HTREE=1

000,03 SECCNDS IN EXECUTIGN

61

17

19

18

AU I 8 B
e T L inUDIES = s 'IEE Focbut:o = 5
grale MaT I 1.

—

i~

N Cmm= P e d LN C
-
C X aéd~~0CuUvuv LN

- >
[N

——
“w o~

~
-
v oS4

& 4 Lo
—
[

-
e
N
(&

[a

<
[
—

smaX LAl 4ATRIX Is:

i Lvua~0e\Lv 400N

L4
Ly
Lo
Lo
L/
L
19
P4v)

(o L T GO TR S UN WO PO U N N il o D VR

-~
e w o

-
-

62

|
———mmnE

L0 i»
B L 21
Lo P}
Lo 22
i 22
< J Zo
Lubel PERaUT AT [ON TS o)
3 3 “+ 2 l« 1> L Li L 7 19 13
L3 io 1) 8 43 ce oo LI 4 21

UMb CR Jr LEAVES N SEARCE fEREE =live

Judelu SLCUNLS IN EXCCUTICN

]

63

% &% CCMIN % %
NUMRER OF NODES = 23 NUMBER OF EDCES = 21
INCICFENCE MATRIX IS:

1 2
2 3
3 4
4 5
3 5
3 6
6 7
4 7
! 4
1 8
a 9
S 10
10 11
11 12
12 13
13 14
7 14
2 5
3 14
14 15
1% 16
16 17
10 17
2 11
1 15
4 18
4 19
16 20
30 21
7 22
7 33
MAXTMAL MATRIX IS:
1 2
1 3
! 4
1 =
1 6
1 7
! 8
7 3
2 S
2 10
2 11
2 13
3 4
4 9
5 6
5 10
5 13
6 14
7 15
7 16
8 10
G 17
10 18
10 19
11 29

6l

r— r— r—

S—

13
14
16
16
17
20
LABFL

3

12

15

<

21

2

22

23

PERMUTATION [S :
4 5 2 14
16 12 10 8

15
22
NUMEFR NF LEAVES IN SEARCH -TREE

300.34 SECCADS IN EXECUTION

65

“ ok ROMIM % %
NUMEFR PE ONANTS = 24 NJNVAER (F FEDGES
[NCTDERCE MATRIX 1S3 '

[™)

L i Y

TVAL MATRIX IS:

z
o OOV~ 15, I I } [% A
o 308} N D DR o Fo ot b s ot K NN DD L PWLOOT AP WA DN D8 T ome &SN
~d

10
g
12

&)

10
13
14
10
15
16
17
12
1o

- s

66

I\

10 24

11 21

12 15

14 22

16 22

16 22

17 23

21 24
LABFL PFRMYTATIAN TS @

3 5 4 2 14 15 € 11 1 7 19 18
13 1& 12 10 2} 24 23 22 20 17 9 21

NMUMBER NF LEAVES IN SEARCH TRFF =3456

07,02 SECAMNDS IN EXECUTION

67

x % CCMIN % %
NUMRER CF NFDES

24

INCINDENCE MATRIX IS¢

CO) OO e et PN DN =

P
st

Pt st

Ll A
[© T B, I -3

N -
~NO DS D

7
7

MAXIMAL MATRIX IS:

(BN
OO VXN N T WRNNVNVNN o e s

Wb Nygmrooaabh N

13
11
12
13
14
14
5
14
15
16
17
17
11
1%
18
19
2c
31
2?
33
34

— pos -
MO PN~ OO WDNTND WV

NUMBER NF ELCGES

32

E
E

—

r— | p— "

1C iC
11 21
13 15
14 2?
16 22
16 23
17 23
21 24
LABFL PFRMUTATION IS :
13 16 12 2 14
NUMRER OF LEAVES1O 8

t5
22
IN SEARCH TREE

C0C.C¢ SECONDS IN EXECUTION

69

* ok (MMM & %

NUMBFR OF N{ONDES = 59 NUMRER CF ENDGES = 73
INCIDFENCFE MATRIX IS:
1 2
? ?
3 4
4 5
3 5
3 6
6 7
4 7
1 4
1 a
8 9
Q 19
10 11
11 12
12 1z
13 14
7 14
2 5
3 14
14 15
15 16
16 17
10 17
3 11
3 15
4 18
4 19
19 20
20 21

?22
23
24
25
26

-
4

+
7
7
7
7
7
8 28
9
19
30

20

27

31
29 32
28 13
27 24
26 25
26 %4
26 23
25 32
24 31
22 23
35 16
36 37
36 18
I8 19
29 49
11 41
12 42
11 43
12 44

70

MAXTMAL MATRIX

11 45
12 46
13 47
14 48
)] 4q
9 4R
R 47
7 446
& 45
48 43
1 50
37 48
36 47
25 46
21 42
11 12
12 27
23 25
23 26
23 27
25 27
1 b
1 3
1 4
1 5
1 6
1 7
1 bat
1 2
1 10
t 11
2 12
? 13
2 14
2 15
2 16
3 4
3 5
3 [
3 17
4 5
4 7
5 18
A 19
7 18
7 20
7 21
8 12
R 2?2
8 23
] 24
Q 12
9 25
10 26
11 27
12 13
12 2?
12 29
12 29

IS:

T1

13
14
14
14
15
15
17
19
19
1o
19
19
20

~
~

7?2
22
’3
24
24
24
25
26
26
29
29
20
20
30
30
32
23
a4
17
37
37
30
‘1
43
47
49

LABEL

;

q
45
36
39

2q

28

0

21

29

22

313

22

29

2?2

4

15

26

17

28

20

40

28]

41

42

29

27

43

43

44

45

26

40

41

46

41

46

49

42

47

43

43

40

40

593

PERMUTAT TNM
4 ?5 23
1 19 13

20 31 2

4G 16 47

4N

NUMEF? 0OF | FAVES T

101,21 SFOAONDS TN

1S @
27 G4A
32 34
11

8 a7

N SFAPCH

EXECUTION

72

14
33
20
41

35

29

41

22
15
42
21

24
13
44
3R

