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1. Retrieval on Secondary Key [2]

Common searching techniques use 'primary keys' which uniquely define
arecord. But, it is sonetines necessary to nmake a search on other fields
of a record, called 'secondary keys': W might want to retrieve some
records froma file, given the values of sone of these secondary keys.
These val ues may define zero, one, or several records. A set of values
is called a 'query'.

For exanple, if we considered an hypothetical CIA file containing
information about all the American people, we might be interested in
knowi ng which men are married, own two cars, and have been to France
last year. W do not specify their age, residence, etc.

W now may assume that each secondary key is mapped by a comon
hashing technique into a short bit string. W then need a fast nethod
of retrieval on a reasonably short binary key with some unspecified bits
(noted * ). This technique nust nmap any specified value of this binary
key into a shorter address. This address will correspond to a group of
records called a 'bucket'. This technique nust differ froma comon
hashing technique in that it allows sone of the bits of the key to remain
unspecified. In this case, it is clear that a query may lead to different
buckets and the better the nethod is, the fewer buckets there will be for

a given query.

Exanpl e: Anerican People File
Record 1 Nane Sex Age Married | -----
Mappi ng — l y \
Bi nary Key ———

The previous query mght be represented, for exanple, by: sxo¥%111---
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2. A New Fanmily of Partial Match File Designs and its Binary Tree
Represent ati on.

W. A Burkhard has recently presented a new famly of partial natch
file designs [1]. The interesting aspect of these designs is that they
can be represented by a binary tree. The binary tree |eads directly to
a sinple software inplenentation. To obtain an even sinpler inplenentation,
we have slightly nodified the Burkhard partial match file (mMF) and
introduced a new famly of PMF which has, as we show in the next section,
the same worst case.

The mapping of binary keys into the bucket addresses is described by
a table. Each bucket corresponds to a given value of some of the bits,
the others remaining unspecified. Each entry in the tables gives a
description of-the keys which nmight be in the corresponding bucket. For
exanpl e, the bucket corresponding to the entry *10¥1 m ght contain the
fol l owing keys:

01001 , 01011 , 11001 , 11011 .

Any specified key nust be napped into one, and only one, bucket. This
techni que works for any query with an odd nunber of bits. The tables T,
are constructed by induction.

0
T, corresponds to a one bit key and two buckets: 0 0
¢l
L i s deduced fromTn by the follow ng nethod:
0 %
i
N n
0 *
1%
*
T
n
1%




T: bei ng T, circularly shifted by one position (instead of the
symetric inmage of Tn with colums in the reversing order, as in

the Burkhard technique). It is clear that T || have 2n+1 col umms
n
2n+l

lines. It then maps (2n+1) -bit keys into 2™ buckets
The representation of each table T, by atree Sn is then very
sinple. A node of the tree S, contains the position of a bit in the
query to be checked and a |eaf contains the address of a bucket.
Let us consider the trees for n = 0 and 1 .

and

The table T. is

o which means, if the bit is 0, the

RPo o©

0

1
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corresponding bucket address is 0 and if the bit is 1, the corres-

pondi ng bucket address is 1 . \W can represent this procedure by a

very sinple tree So

0 1

with the convention that -- jf the bit checked at a node is 0 , we go
to the left subtree (here the leaf  [o] ) and to the right sub-tree for

1 (here the |eaf ). If the bit is a* , we go down in both
subtrees

a1

(@)
=
N

the corresponding tree S, IS

NV o)
= OO
* Xk = O
O x x
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W have seen the passage from T, to Tni | Sinilarly, we can
define a transformation on the corresponding trees between ¢ apd s
n

(o) »

n+}l
Let us suppose that we have our tree S, corresponding to the table 'I'
n

The first bit separates Toa1 into two halves. |f the first bit
is O, the corresponding bucket address is going to be contained in the
first-half; or, if it is 1, in the second-half. cCorrespondingly, the
root of Sy (node @) separ at es Sov

subtree.

1 into a left and right

In the first-half of T .. T is directly inserted, which neans
if a query leads to the bucket £ in Tn , the query constructed with

the preceding query (shifted by 1 position) with a 0 leading bit,
IS going to lead to the same bucket £ in T, SO, the left subtree

of S,,, 1 | but with the content of each node increased by one.
In the second-hal f of Tn+l’ Tn is inserted after a circular
shift of one position. |n the sane way, the right subtree of Sl

is Sn but with the content of each node increased by one, except the
r oot @ changed into @ and the content of each |eaf increased

by ol
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Let us represent on the sane figure,

the induction on Tn

and s_ :
n
0 k
T ‘
n Node °n
k
Leaf
L
l-- k+1 22
-l 0 * Sn+1
M
1 % . Node Node
- : K = k1 kK - k+l
Root
- . 0 - 2n+2
.: : . Leaf Leaf
1% le ~ g M ¢ - g™ h
i | S |

It is easy to check the transformation between

S0 and 8, -
Let us now determne the various properties of the tree S, (see
T), and the corresponding tree §), on the next page)
A - S, 1s perfectly balanced.
B -- At level i (0 <i <n) the content of' the nodes is either

i (denoted by mn ) or en+1-i (denoted by

) max ).
mn, is always a left son and gy 4 right son.

C -- The content of a leaf can be conputed directly by the path
used fromthe root adding at each level i , 0 if we go

to the left and 2™ i e go to the right.

6
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1¥x3x1%01
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ex1%0 11
Tex) 0- -]
Ix*x%1171
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Properties A, B, C hold for 8o » 8y . Suppose that A, 3, C
hol d for S,

Qoviously, A holds for 841

The level i of 8, corresponds to the level i+l of Sp4q - Por
i >0, the node i of S, gives i+l and the node 2nt+l-i gives
en+2-i = 2(n+1)+1-(i+1l) . For i =0 , the node O of = gives 1 in

the left subtree and 2nm+2 = 2(n+1)+1-1 in the right subtree. So, the
property B holds for SR
The increase at level i+l in Sl is either 0 or 2
exactly the same as in level i in Sn . If we follow the sane path
in the | eft subtree of Sn+l as in Sn . we find g as in sn. If we

follow the same path in the right subtree of Spey 0 W find p+oftL
since we had to go right in Sl at level 0 and add 2™*,

C holds for S o+

n+l-(i+1)

oy
1

The representation of this famly of partial match file designs, by
so sinple a binary tree, leads to an easier proof of the worst case and
a very sinple search algorithm

5. Wrst Case.

The worst case is expressed in terms of the nunber of buckets wn(k)
found when k bits are unspecified. W A Burkhard has shown that the
worst case for his mr famly can be expressed in terns of the Fibonacci
nunber in the follow ng way:

w, (k) = ok for 0 <k < n+1-r121--l
_  ntl-k n

wn(k) =2 For ptl for n+1-l.§.| <k < ntl
- pk-(nt1)

wn(k) =2 L for ntl < kK < 2n+l

Using the tree, we can prove those sane results for our new pur famly.
Let us set the notation: If the position i <n (or i >n ) of the
query contains a *, all the nodes which are left sons (or right sons)



regull, in a % 4 i e v o .
in the level i (or oenty-i) of 8, - In such a casc,
we are going to say that the level i ha:; onc star. Consequently, | f
4 ~ e ,
all the nodes at a level i arc *s, we arc goins to say that the Lc,vel

i has two stars.
Finally, we represent S, inthe followng way: a node is denoted

by a * if it corresponds to an unspecified bit and by a o f jt

corresponds to a specified bit.
As an exanple, we can have the follow ng tree:

PN
AN
A AN

Since in our study of the worst case we considered first the left son to
be unspecified, a dot corresponds, in fact, to a bit 0 .

W can now study three different facts:

Fact 1. Let us see how the Fibonacci nunber arises in the worst case
in studying the special case where all the levels contained one star.
Such a tree with n+1 levels is denoted S: :

*
For n =0, w havesO *

/\

2 buckets = F,

For n =1, we have

5]
=

*
N,

/N

5 buckets = )

Let us assune that the fornmula for the number of buckets found,
Fpes Olds for n and n-1 | and let us study the case for n+l .
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el /x\ whi ch can be expressed by:
/ N\ e
n /.

AN AN AN AN

n-1

*
So, # of buckets for s . = # of buckets for s.+4# of buckets
M

*

f or Snl

= I:n+§ + F(n-l)+5 - Fn+5 + Freo

= Ty T F(n+1)+5

and the nunber of buckets for s* —
n n+?3 .

. . *
Fact 2. Suppose a level i in S contains two stars, let us see at

whi ch level i the nunmber of buckets is nmaxinmum Such a tree can be

represented by the follow ng figure:

*
F. trees S . are explored and we have
ir2 o n-| P Fivo Fn-i+5

bucket s.

10




Now we have: F. F _
#2'n-i+3 = s Pyl
Then it can be easily shown that this product is maximumfor i =1
(or i =nm1)since FF : : i+
- . varies like (.7y+tL
. % HnH -1 (-1) <Fn-21 t A o)
50, In atree S alevel i with two *s gives the worst case for

i=1 or m1.

We can now claimthat if we have | levels with two stars

. . t he
r - i the

Worst case is obtained when those j levels are assenbled either at
the top of the tree or at the bottom

Let us consider the case where j =2 . W can represent the tree

*
S, in the follow ng way:
(A i * .
) For any i, , the tree Si L, gives

. ) 2
the maxi mum of entries at | evel 12

i .
1 " if the |evel i, is equal to1,
812_1 then we obtained the follow ng
i, = —_— representation:  gge (B)
¥ .
////f\\\\ (B) Now 5 . gives the maximum of
R
N N N buckets*lf i, in Sn-l equals 1,

sorn s, i, =2 . This procedure

)
i) can be clearly extended to any
‘ o nunber j .
Sn-i Sp-L

11



Fact 3. The # of paths generated by the respective positions of
two stars, is the follow ng:

- * | evel |

/N /\ VA NNEERAN
YA AN A A AN AN A A
[ YAV VAVRVAVA

1. On the sane |evel, does not affect each other.

2. On two consecutive levels, the second * affects one of the
paths generated by the other.

3. At leamst one level apart, each of the paths generated by the
first x is affected by the second one.

L. W can also remark that any |level without *s can be renoved
fromthe tree without changing the final nunber of buckets.

The analysis of the worst case for any k follows easily.

For 0 < k < n+l-rg] , the nunber of stars in this range allows

us to place all the *s one |evel apart so, going down the tree, each
new * affects every path generated by the others. So

Wn(k) = of | (equal s the upper bound).

W can renark, also, that if we cancel all the levels wthout *s, we
get a tree with only *s and k |evels.

For ml—rg] <k <ntl , the number of *sis such that ntl-k

| evel s have no *s since no levels have two *s for the worst case (see
Fact 3). Thus, we can cancel those n+l-k levels and we are left with
atree wwth n-(n+l-k) levels in which n+l-k |evels have two stars.
By Fact 2, these n+l-k levels with two *s have to be at the top of
the tree for the worst case." \W can then represent the tree in the
foll owi ng way:

12
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/ \ 80 we el

n+tl-k |evels * * w (k) = o1k F
- n

/ /\ n-2[nt+1l-k J+3
* * * *
x and finally,
“n-2[nt+1-k]
n+l-k
W = 2
a y n(k) 2k-n+1
e S
n+l-k *
2 t
ree Sn-e[ n+1-k]

For m1 <k <eml, the nunber of *sis such that k-(ntl) levele

have two stars and the others have one * . By Fact 2, the levels with
two *s have to be at the top for the worst case. So, the tree can be

represented in the follow ng way:

k-(n+1) */ \* Ve get:

| evel s . ok-(nt1)
/\\ /\ i) =2 o[- (n+1) 143
* *x * *
*
“n-[k~(n+1)] T vy (k) = 2 ) Yonthx
J
k-(n+1) *
2 trees Sn-[k-(nﬂ_) ]

13
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4. Searching A gorithm

As we have previously seen, it is not necessary to keep the tree in
mermory because the val ue of the nodes may be conputed when going down this

tree.
W will use the follow ng variabl es:

L =the level in the tree, beginning at zero.
B = the bucket address which is conputed during the search.
QUERY(i) = the i-th bit of the query (starting at zero).

The algorithmis simlar to a binary search. Wen getting to a
node, the bit of the query specified in this node is tested. If it ic
zero, the left subtree is explored and if it is one, the right subtree
is explored. In the case of an unspecified bit, the current |evel and
bucket address at this node are saved on a stack, then the left subtree
is explored. Wen getting to a leaf, the bucket address is stored in a
table. |f the stack is enpty, the search is conpleted; otherw se, the
| evel and bucket address of a node are popped fromthe stack and the
right subtree of this node is explored.

Algorithm S [Searching all the bucket addresses corresponding to a
given query.]

1. [1NTEALLZE. ] Set 1«0, B0, L«0.

2. [TEST BIT OF QUERY.] set L «1I#1, set B«~2B . |f query(i) ="'1",
go to 7.
. [UNSPECIFIED BIT. ] If query(i) = '+, push (L,B) on the stack.

Y. [MVE LEFT.]  Set i «I .

5. [TEST FOR LEAF.] If L<N, goto 2; otherwise, store Bin the

bucket table.

6. [ TEST FOR DONE. ] If stack enpty, the algorithm term nates;
ot herwi se, pop (L,B) fromthe stack.

7- [MWE RIGHT.] Set i « 2w1-L , set B « B+1 , go to 5.

14
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Algorithm S has been implemented in MTN. We sive tho MIN prograe
and, in particular, the inner loop corresponding to Algorithms in

Appendi x 1.

5. Detailed Study of the Average Search Time.

W will now study the average execution time Un(k) Lor compubing
all the bucket addresses corresponding to aguery Wth k unspecificd
bits for a given n.

W will consider, in the follow ng argument, two time costs:

Ch Is the time cost for testing a node and getting to the
next node or leaf (left or right son).

Cq IS the additive cost when encountering a "*" for saving
the parameters in the stack and then restoring them

From the M X program we can see that ¢y has a val ue of 8 when
the son is not a leaf, and 9 when the son is a leaf. W can also see
t hat Cq Is equal to 10 .

By considering that any time we get to the | eaf, except the | ast
time, we have to pop new paraneters fromthe stack, we may take ¢, 3]
and add the extra cost when getting to a leaf, to ¢, . ‘then, W will
take in the follow ng study: )

CS= 11
Units of MX time
CD—8
_Let us nowtry to express U, (k) as a function of k and n . For
agiven n, k can take all the values between 0 and 2n+1 . W have

seen the direct representation of Algorithm S by the tree Sn and the
relation of the trees for n and ntl . Those preceding observations
lead us to express the average time for n+t1 in terms of the average
tine for n . W can remark that if the key 0 is not specified, the
average tinme spent in the left and right sub-tree cannot be considered
equal since the root of each of those subtrees are different.
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In respectof this last remark, we have isolated two types of

average tine:
A (k) - Average time for n is k keys are unspecified, the
first key being specified.
B (k) = Average tine for n if k keys are unspecified, the

n
first key being unspecified.

Seven different cases, regarding the diverse combinations of the two
first keys and the last one, are going to be considered:

or

ANA

Case 0 1 * or * Case @

/N /N

* *

Case 0 2 * Case 0 or 1
/\ O A" A

Case O Y X Case 0 or L
/'\ O AT A

X

Case O 4 0 or 1

/' \ /\

Case @
a

Bn+l(k) = An(k—2)+Bn(k-|)+ 2CD+CS

since we have to explore both subtrees, the average time in one is
A (k-2) and B (k-1) in the other one. & have also to follow the
two edges corresponding to the time 2CD and to pop in and out the
stack corresponding to Co . In the same way we can conpute the

16
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An+1(k) (or Bn+l(k) ) in each case (:) :

(a \
Bn+l

(k) = 2B (#-2) tec, ¢+ Co B, (k) 2 (k=) C, e
Aprp (k) = A (k-1) +Cp Arg(k) B, (k-1) + ¢
= a9 oo Arg(k) - T oo

V& have now to conpute the probability for each case to occur.

[Remark:  for n+1 we have 2(n+1)+1 = 2n+3 bits |

Case 1
Number of possibilities
to have k stars with
one star in 0 and cne -
star in 1
Number of ways to select =
Number of (k-2) items out of
symmetrical \ x (2n+3)-% = 2n (since thee> X { ents-k | eft
cases items 0 , 1 and 2n+»
are already chosen J
o 2n
/ k-2)

SO

nt+l k-2

N(D _ 2( 2n )22n+5-k

17
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In the sane way we obtain:

)

_ 2n \ . 2nt5-k
Nn+l B (k_5)3

N@ _ (2n)22n+j_K

n+l 4 k-2

The total nunber of ways
given by:

n+1

k-1

k-1

o Ot/ - ® 5 _
N = ( n )2211-%; k N _ ( “n ),)2n+j-k
N© _ (En)92n+§-k @ (zm)
= e _

when the first bit is unspecified is

B ent2 | j2n+3-k
I\|n+_'L B ( ) 2

The total nunber. of ways N

1 When the first bit is specifiedis

n+
given by
B 2n+2 ont S-k
N7, - ( k )2

W can easily verify that

® 20
Y]

and finally that

n+1 1

(®
N = Ng + Ng?l - (2f;5)22n+5-k _

W can derive Al

7
An+l(k) = 2.4 N@ @

1
@ 1=l n+l An+.‘L
I\|n+J_

total nunber of
queries having k
bits unspecified

for n+l
(x) and
) B pq (k)
3 .
T G
k B = — B
(k) 5 B (k) ® 2 N B ()
‘) i=1
Nn+1

18



and finall :
l y Un+l(k)

Upe1 () = N

1 [f‘,@

. N
ne1 Ll An+1(k) Nor1 Bn+l(k)

If we wite = [ entl . .
wn(k) ( k )Un(k) > we get after conputation the follow ng
recurrence fornula:

Wn+l(k) = Qe W gk-Z) + 5wn(k-1) + wn(k) -W

Wi th:

2n
[0 =
v () (3),

and the initial condition:

(1)
w,(0) = ¢C = +
0 D’ Wo(l) ecD C,
Assuming
wn(l) =0 Vi <0 or  ¥i s ops
- § ,
Let us now define the generating function G (z
9 9 ion G (2) _ Wn(k)zk _

k>0

From (1) we directly deduce that:

> k
G’ (Z) = /s (04 Z 2
n + (22 + 3z + 1
Pl nk Ja, 1(2)

Using the formula (1+:\T _ < r). k
(12)” - k'»’o k We can simplify the sum

ina, w get:

Zoa 25 - (az+ en it
2 ok (az B)(1+z) with « =2¢ +C¢, and B

k>0 + 2 ‘ ]

When We express i -
P Gn_| (z) in terms of Gn-Z(Z) and Gn_z(z) interms

of G ,(z) , etc., we finally obtain:

19
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. -1 2 .
(}n(z) = ) Z (2 z Sz 1)t(14z)¢ (n l)+(22 + uz+l)n G (z
i=0 ©
but
Go(z) =zt
SO
n Do i 2 (n-i
Gn<z) - ((XZ 1 U) L (;"/, Tty t' ,L) (],’Z) (:h 1
i=0
2 . - /-
2z-+Jz+1 = (lt+z)(l+2z)
so we have )
n i
() = (amrp) ()™ 3 (L22)
n . 1+z
1=0
N . _ - 50 k ]_—zn+l
Ow using the formula 2 4 = Ti.,  VWe obtain after computation:

Gn('/.) = ((X + JZ))[(]-+'/')n<ll-?’z.)nl'1'— (:J—i-z)”')ni_']* |
Weocan remrk that  (11o0)™d L [ (1ag)an ™l - 5 ()t
J>0

Thent he product (1+Z)n(l+22>n+1 is:

(1+z)%(1427)™ L = & [z ntl )(Pn+l-3)]zk
0 J >0

and finally

Gn(Z) ) <a+ 'in k_zjo [.J'E;IO (n;l)(gml J) (Pml)]

20
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We get after Conputation a direct formulg for

U (k) - --11--
entl | Wy (%)
r ( k
Un(¥) = o(c o~1) 4 2ntl-k I
nl kil P ("n, k1 "
with
(2)
C . = 1 — -
nk ent 1 B2 (nfl)(gml-(ﬁ
k ) J>0 J 2n+1-k
We can remark that this fomyiy gives for
results that we coul d have expected - k = 0 and »2n+1
U (0) =g (n+1)
n+l
Upy(Pot1) = a(2™ )
/-\S;ymptot ic Behavior
Using the big- o notation We have:
(n+1) ~ 14 20-1 .. o5
- 2 »
n I —— O(I’l L))')
J 1.
-nf oy, 5302
Jt -2
n + O(n )
Simlarly
ent+1 o k
_ n 1+0 - )
(k) ‘LEL 1+ O;"'”(k~2)+o<_2
n n
and )
2n+1-j k-j :
' 2n)="d k-1)(k-2) - £ /.
( k-J ) KI')J'\ ( ( )(k 2) 2 (J-l) (j'e) )
cn + o(n"f-)

21
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oo we got for ¢ K afler computation

n

j>0

Using the first and second derivatives of the generating function

) k 1 \J z\Kk . .
_Z (j)(g)‘j :(g) we can give a direct fornula for the sum

SO

k-2

3 \k 5 N
Cok = (5) + -J%ﬁ (7-k)0-§- + o)

and we finally get for ¢ (k)
n

U (k) = A(K)n + B(k) + o(n™h)
. 2 Z k+1
with A(k) = I;-BT ((§> - 1)

and B(k) = a((g)k -l) + %‘% B((g)kﬂ. -l) . g (6—1{)(’;—)1{_1 _

We can verify that for k = 0, we get A(0) = B(0) =8

A program has been witten to conpute the val ues of U (k) The
recurrence (1) has been used instead of the final fornula (2) for an
easier and nore efficient inplementation. Tne results for n < 20
and graphs showi ng the variation of Un(k) for a given k of & piven n
are shown in Appendix 2.

The nethod is very efficient when the number of *s stays within a

reasonable limt. Assuning a 1 s cycle time, the algorithm for
n =15 (31 bits), will take only 65 ns with 20 *s but will take

1.77 s for k = 30 .

22
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In any case, the searching time will be negligible copared ©
time spent for retrieving the records thenselves from secondary storace.

N e
SooLe

As we have already seen in the asynptotic behavior of U (k) , the graph

show the alnost linearity in n for U (k) , k being fixed.

Concl usi ons

The study of this new technique of retrieval on secondary keys chows
two different aspects:

- A very 'good' worst case.
- A very sinple and efficient software inplementation.
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Appendi x 1

M X Program and in particul ar

the inner loop for Algorithm S.
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Appendi x 2

Results and Gaphs for U, (k)

the average execution tine.
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