APPLICATIONS OF PATH COMPRESSION ON BALANCED TREES

Robert E. Tarjan

STAN-CS-75-512
AUGUST 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

Applications of Path Conpression on Balanced Trees

Robert Endre Tarjany
Conput er Sci ence Depart nent
Stanford Universit
Stanford, California 3[505

Abst r act
VW devise a method for conputing functions defined on paths in trees.
The method is based on tree manipul ation techniques first used for
efficiently representing equivalence relations. |t has an alnost-linear
running time. W apply the nethod to give Q'm a(m,n)) al gorithns for
two problens.
Af Ve‘fifyi Nng a minimum Spanning tree in an undirected graph
(best previous bound: Qmlog log n)).
B. Finding domnators in a directed graph (best previous bound:
Qnlogn+m).
Here n is the nunber of vertices and mthe nunber of edges in the
probl em graph, and a(mn) is a very slowy grow ng function which is
related to a functional inverse of Ackermann's function.
The nmethod is also useful for solving, in Q'm a(mn)) tinme,

certain kinds of pathfinding problens on reducible graphs. Such

. problems occur in global flow analysis of conputer programs anmd in

© other contexts. A conpanion paper will discuss this application.

Keywords: balanced tree, domnators, equivalence relation, global flow
anal ysi s, graph al gorithm mninum spanning tree, path
conpression, pathfinding problem tree.

¥/ Research supported by a MIler Research Fellowship at University of
California, Berkeley, and by NSF Gant pcry2-03752 02 at Stanford
University. Reproduction in whole or in part is pernmitted for any
purpose of the United States Governnent.

1

r—

r— r— r—— -

1. | ntroduction.

There is & small collection of basic techniques which are useful
for building efficient algorithnms for a wide variety of graph problens.
Here we study one such technique, path conpression on balanced trees.
The technique is a conbination of the ideas of several people. 1t was
first used for efficiently representing equivalence relations, and was
subsequent|y applied to a variety of problens. gsee[2,3,13,21,%6] for
extensive discussions and applications.

V& significantly extend the range of application of the technique
by using it to conpute functions defined on paths in trees. % apply

~this function\' eval uation nmethod to give Q'm a(m,n)) al gorithns for
two seemingly diverse problens:

A Verifying a mninumspanning tree in an undirected graph

(previous best bound: o(m log log n) [10,33,40]).
B. Finding domnators in a directed graph (previous best
bound: Qn log n + m [34328]).
Here n is the nunber of vertices and mthe nunber of edges in the
probl em graph, and a(m,n) is a very slowy grow Hg function which is
related to a functional inverse of Ackermann's function.

The nethod is also useful for solving, in Q'm a(mn)) time,
certain kinds of pathfinding problens on reducible graphs. Reducible
graphs are a speci al ;l ss of directed graphs which arise naturally
when considering global Iiz:operties of computer prograns [7,12,18,19].
Sol vabl e types Of pathfinding problems i ncl ude computing path sets
USi Ng regular expressions [9,32], solving linear equations [15], and
doing gl obal flow analysis of conputer progranms [14,17,23]. These
applications will be discussed in a conpanion paper. The best previous

bound for these problems is QOmlog n) [5,14,17,23,39].

o

The paper contains ten sections. Section 2 gives definitions
and various prelimnary results. Section 3solves the function
eval uation problem using an algorithm which works in general but is
hi ghly efficient only for b\al anced trees. Section b di scusses two
previous applications of path conpression on balanced trees. Section 5
presents a method of deconposing the function evaluation problem into
a problemon a balanced tree and a problem on paths. Section 6presents
a sinple, efficient algorithmfor paths when the function Of interest
is max. Section 7presents an efficient algorithm for paths which
works for any function. Section 8applies the algorithmto the
probl em of verifying a mininum spanning tree and to two simlar
problems. Section g applies the algorithmto the problemof finding
domnators in a directed graph. Section 10 discusses |ower bounds

for various forns of the function eval uation problem

2. Definitions and Prelimnary Results.

Thi s section contains the basic notions needed to discuss the
function evaluation algorithm W will introduce nore advanced notions
as needed.

A graph G = (V,E) consists of a finite set; Vof n = |v| elenents
called vertices and a set E of m=|f elenents called edges. Either
the edges are ordered pairs (v,w) of distinct vertices (the graph is
directed) or the edges are unordered pairs of distinct vertices, also

represented as (v,w) (the graph is undirected). A directed edge (v,w)

i N,

— e ot Do

r

r— r—

is said to_leave v and enter w. A graph Gy o= (VpE) Qs a

subgraph of G if v, cv and E; cE . Apath of length k from

vto win G is a sequence of edges
(vl’v2) ’ (VQ)VE) PR W.:’k'v‘lﬁl) W th Vl = v and Vi =V The

path contains vertices v and edges (v;,v,).Se (Vk'Vk+1)

17722 Vg
and avoids all other vertices and edges. The path is sinple if

VyseeesV,, are distinct (except possibly Vi T Vi) and the path
is acycleif v = Vie1 - By convention there is a path of no edges

fromevery vertex to itself but a cycle nust contain at |east two edges.
An undirected graph is connected if there is a path joining every pair
of vertices.

Atree T = (v,E) is an undirected graph such that T is connected

and contains no cycles. |f atree T is a subgraph of a graph G with

the same vertex set as T, then Tis a spanning tree of G. In a

tree T there is a unique sinple path between any two vertices v
and w ; we denote this path by T(v,w).
A rooted tree (T,r) is a tree with a distinguished vertex r,

called the root. If v and w are vertices in a rooted tree (T,r) ,

we say v is an ancestor of wand wis a descendant of v (denoted
* .

by v ~w) if vison the path fromr to w. By convention v 3 v

for all vertices v . If v 2w and {v,w} i s an edge of T (denoted

by v-w3, wesay vis the parent of wand wis a child of v .

In a rooted tree each vertex has a unique parent (except the root, which
has no parent). Any two vertices v and win a rooted tree have a

unique vertex x , called the least comon ancestor of v and w

(denoted by X = 1ca(v,w)), such that x is on T(v,w) , xiv, and
(vyw)) (vyw)

x 5w . The path T(v,w) consists of two parts, a path joining v and
x containing descendants of % and ancestors of v , and a path joining
x and w containing descendants of x and ancestors of w.

Adirected, rooted tree T = (v,E) is an acyclic directed graph

with a distinguished vertex r, called the root, such that r has no
entering edges and every other vertex has a unique entering edge. Every
directed rooted tree may be converted into a rooted tree by ignoring
the direction of all edges; every rooted tree may be converted into a
directed, rooted tree by directing all edges fromparent to child. Thus
all the concepts of rooted trees apply to directed, rooted trees. we
shal | use either rooted trees or directed, rooted trees as appropriate.
In some contexts it is useful to have a nunbering of rooted tree
. vertices such that each vertex has a nunber larger than its parent. In
other contexts it is useful to have a numbering such that each vertex
has a nunber smaller than its parent. The follow ng al gorithm generates

nunberings of these types.

procedure ORDER(T,T);

begin
procedure SEARCH V) ;
PRENUMBER(V) : = | :3 i+l;
LQL w such that v - w do SEARCH (w) 3
POSTNUMBER(vV) : = | = j+l;
end SEARCH
| :=J :=0;3
SEARCH(r) ;
end ORDER

Any numbering PRENUMBER(v) generable by ORDER is called a

preorder nunbering of (r,r) [24] and satisfies the condition that

evépy vertex have a higher number than its parent. Any nunbering

FOSTORDER(v) generable by ORDER is called a postorder numbering of

(T,r) (24 and satisfies the condition that every vertex have a | ower
nunber than its parent. Procedure ORDER requires Q(n) time if

I npl emented properly [2435]. Note that PrENUMBER(r) = 1 , and
POSTNUMBER(r) = n .

Let ® be any associative (not necessarily comutative) binary
operation, having an identity elenent 0 such that oex = x®0 = X
for all x . ~(1f ® has no identity element, We can create such an
el ement by augmenting the domain of ® .) Let e(v,w) be an
arbitrary function defined on the edges of a rooted tree (r,r), such
that the range of e¢(v,w) i S contained in the domain of & . If v
and w are any vertices satisfying v > w and (V = v,v,) ’(Ve’vj)--‘

(vk’vk+l =W is the path T(v,w) , we define
® (V,W) = C(Vl,vg) ® C(VE,VB) ®...® c(vk’vk‘*'l) I f v % w o,
®@v =0 If v=w.

VW are interested in carrying out an intermxed sequence of two
- types of instructions on a set of rooted trees. [Initially the set
contains n trees, each tree having only a single vertex. The two

types of instructions are:

EVAL(v): return the value of ® (r,v) , where r is the root of
the tree currently containing the vertex v ;
LINK(v,w,x): conbine the trees with roots v and winto a
single tree With root v by making w a child of

v, and let the new edge (v,w) have value c¢(v,w = x .

In the succeeding sections we develop an algorithm for carrying cut an
intermxed sequence of m EVAL instructions and n-1 LINK instructions.

Then we apply this algorithmto a variety of problens.’

3. A Basic A gorithm Efficient for Bal anced Trees.

In this section we present three algorithns for the function
eval uation problem The first algorithmis extrenely sinple but has
only an Q'm) running time. The second al gorithminproves on the

first by adding a powerful technique called path conpression. The

resultant algorithmhas an Qmlog n) running time and an even faster
Q(m a(m,n)) running time for a special class of trees, called bal anced
trees. The third algorithmachieves an Q'm a(m,n)) bound for all trees
but only works for @ operations having a suitable kind of inverse.

It is useful to consider a static version of the function eval uation
problem Consider any sequence of m EVAL instructions and n-I
intermixed L| NK instructions. Let T be the tree defined by the LINK
instructions (i.e., (v,w)is an edge of T with value c(v,w) = x if and
only if thereis a LINK(V,W,x‘) instruction in the sequence). For each
EVAL(v) i nstruction, let r(v) be the root of the tree containing v
at-the tine the EVAL(v) instruction is to be executed. Then executing
the sequence of instructions is equivalent to conputing the val ue of
@ (r(v),v) inthe tree T for each pair (z(v),v) . (However, the
val ues on the edges of T , and eventhe shape of T , may depend on
the results of the ®vAL(v) instructions. Thus it may not be possible

to construct T without simultaneously carrying out the eval uations.)

r—

— —

Conversely, let T be any tree of n vertices, with val ues

e(v,w) defined on the edges, and |et {(vi,wi)} be any set of m

vertex pairs such that vq’-‘. W, in T . W can use the fol | owing

nethod to evaluate ® (vi,wi) for each vertex pair.

Step 1, Nunber the vertices of T in postorder. Identify each

vertex by its nunber.
Step 22 Sort the pairs (vi,wi) in increasing order on v,
Step 3: for v := 1 until n do begin
for wsuch that v -+ w do LINK(v,w,c(v,w));

~ for (vi’wi) such that v, = v do EVAL(Wi);

i

Step 2 requires Qm tinme and Q(m space using a radix sort
[27], so the time required to solve this static function eval uation
problemis within a constant factor of the time required to solve the
dynami ¢ problem defined by Step 3, and the storage space required is
Q(m plus the space necessary to execute Step 3.

To solve the dynam c funetion evaluation problem we use two
arrays, f(v) and cc(v) . The value of f(v) is the parent of
vertex v in the set of trees so far constructed, f(v) =0 if v
has no parent. The value of cc(v) is | e(f(v),v) if v has a

parent and Q otherwise. The follow ng programs inplenment the Lk

and EVAL instructions.

INITIALI ZE: for v := 1 until n do begin
f(v) := 0;
ce(v) :=0;

end INITIALI ZE;

procedure LINK(v,w,x); begin
f(w :=v,
ec(w) :=x;

end LINK;

a := Q"
W oi=V,

¥ile £(v) £ 0 do begin
a = cc(w o aq
woi= (W
end;
EVAL : = a;
gﬂiEVAL;

This method of inplenenting evar and LINK is sinple but not very

efficient. Consider a sequence of instructions which constructs a

non-branching tree of n vertices, and then carries out m
“evaluations on the vertex farthest fromthe root. Such an instruction
sequence requires o(mn) computing time [13].

. Toavoid this inefficiency, we use the associativity of @ . we
modi fy the EVAL instruction so that it not only conputes @ (r(v),v) ,
but it nodifies the tree containing v . Each vertex on the path
fromr(v) to v is nmade a child of r(v) , and values on the edges
are nodified to preserve @&(r(v),w) values for all vertices win the

same tree as v . Here is a program for this purpose.
P

procedure EVAL(v); begin
if £(v) = O then begin r := v, a :

else if f(f(V)) = O then begin r := f(V); @ ! = ce(v) end;

else begin
comrent first loop reverses f pointers along path from

v to root;
x :=0; ye=v, r:.=1f(v);
while f(r) #0 dobegin
fy) =X X =y, y i=1; r:=f(r);

0 end;

end;

comrent first loop ends with r = r(v);

a :=ce(y);

coment second | oop conmputes & (x(v),v) and nodifies
pointers and val ues;

while x £ 0 do begin

y .= f(x);
d :=a®cec(x);
ce(x) :=a; f(X) :=71; X :=y;
snd end;
EVAL := Q;
end EVAL;

W call this nethod of carrying out an EVAL instruction path
compression [3]. As a side effect, this procedure sets r equal to
the root of the tree currently containing v . It is easy to prove

that this inplenentation returns the correct value of EVAL(v) for

each EVAL instruction. Knuth [11] attributes the path conpression

| dea to Tritter; i ndependently, MeIlroy and Morris {20] used it in an

al gorithm for finding m ni mum spanning tregs. \\& call each tree defined

by the f array an f-tree.

10

Theorem 1. For any internixed sequence of m>n EV. instructions

and n-1 LINK instructions, the running time of the path conpression

algorithmis O(m - max(1, logg(ng/m) / log,(2m/n))) .

Patterson [29] proved Theorem 1 for the case m=n ; a proof for
arbitrary m>n appears in [36]. The bound in Theorem 1 is tight
for values of mand n satisfying, for some positive constants c
and ¢, m<cnor m> cntte

Let (T,r) be the rooted tree defined by the n-1 LINK instructions
(with no path conpression). For any vertex vin T, let d(v) be
the nunber of descendants of v , including v itself. W sayT is
bal anced if v -w in T inplies 2d(w) < d(v) . If T is bal anced,
the path conpression algorithmis faster than indicated by the Theorem1
bound.

Let the function A(i,x) on integers be defined by a(0,x) = 2x
for x >0 ; A(3,0) = 0 for i >1; A(i,1) =2 for i >1;

A(i,x) = A(i-1, A(4,x-1)) for i >1, x> 2. A(i,x) is a slight
variant of Ackermann's function [1]. Let

- a(m, n) = min{z >1 [A(z, 4Tm/n1) > log, n} where [x1 denotes the
smal | est integer not less than x . For fixed n , the function

a(m,n) decreases as m grows.

Theorem 2 [36]. The path conpression algorithmruns in Q'm a(m,n))

time if the tree T defined by the LINK instructions is balanced.

Qur goal is to devise a/fuqction eval uation al gorithm which
requires Q(ma(m,n)) timg fop all trees T . W will acconplish

this by representing an arbitrary tree as a conbination of a bal anced

11

tree and a set of paths, and constructing an efficient function

eval uation algorithm for paths.

For @ operations with a suitable kind of inverse, we can achieve
the Q'm a(m,n)) bound for arbitrary trees with nuch |ess trouble than
in the general case. Suppose that there is a Bool ean function z(x) on
the domain of @ and anofher function I(x) fromthe domain of ® into
the domain of @ satisfying
(i) Z(x) = true inplies yex = x for all y ;

(i) z(x) = false inplies z(1(x)) =Lellv§e and yex+1(xLy for
all y; and
(i1i1) 2(x) =2(y) = false inplies z(x@y) = false .
Then we can nodify the inplenmentation of LINK so that the EVAL instructions
are performed on a balanced tree, regardless of the structure of T .
For this purpose we need a third array, q(v) , which records the
nunber of descendants of each vertex v in the set of trees constructed

by the nodified LINK procedure. The new version of L|NK appears bel ow

procedure LINK(v,w,x); begin

EVAL(v);

conment this EvaL instruction, as a side effect, sets r
equal to the root of the f-tree currently containing v;

ryi= T

EVAL(w) ;

r2:= r,;

if, 2(x) then ce(r,) = x@ce(r,)

else if d(ry) > d(xy) then begin
coment make r, a child of r

2 1
d(ry) 1= da(r)) + d(x,) ;
f(rg) 1= Ty;
ce(ry) 1= I(ee(r))) @xdec(r,);

end el se begin

NI PNINININ NN

12

comment Make r. a child of r_;

1 2
d(rg) i= d(rl)+ d(rg);
f(rl) =Ty
ce(ry) 1= x@ce(r,);
ee(ry) @ = I(ce(ry)) dec(ry);
end end LINK; :

Ve nust, in addition, nodify EvAL to return the value cc(r)®a
instead of a .

W call the new inplenentation of LINK and EVAL path conpression

with balancing. Suppose this inplenentation is used and let T' be

the tree such that v -win ttif and only if v is the first
non-zero value assigned to f(w) . T and T differ in that certain
parents and children are exchanged, and certain edges in T are mssing
fromT' . It is easy to showthat T is balanced and that LINK
adjusts the cc array in such a way that all EvAL instructions return
correct values [2,13,21]. By Theorem 2, path conpression wth bal ancing
requires Qma(mn)) time for an arbitrary instruction sequence.

Morris [20] apparently originated the balancing idea. It also
appears in [16]. Discussion, analysis, and applications of path
conpression wth balancing appear in [2,3,13,21,36].

VW can nmodify the LINK instruction to save n words of storage
if storage is at a premum The value of d(v) is only of interest
when f(v) = 0 ; thus we can store values of d(v) in the f array
if we add a Boolean array to indicate whether f(v) represents a
pointer or a count of descendants.

For sane applications it is useful to generalize the LINK
instruction to allow wto be a vertex other than a tree root. Such

an instruction gLINK(v,w,x) can be inplenented as follows:

13

r-

Procedure GLINK(v,w,x); begi n
Y = EVAL(v);
comment r is now the root of the f-tree containing V;
Lo o VLV N

LINK(r,w,y Px);
Eﬂ,‘l QI NK;

14

4. Two Previous Applications.

This section presents two previous applications of path conpression
with balancing. The algorithms constructed for these applications wll
be used in succeeding sections.

The first algorithm conputes unions of disjoint sets. W& can use
the algorithm to represent equivalence relations [25]. Suppse we are
given n disjoint sets, each containing one elenent, and each having a
di stinguishing name. W wish to carry out two types of instructions
on these sets. The instruction types are: FIND(x) : return the nane
of the set containing element x . UNION(A,B) : add the elements
inset Btoset A , destroying B .

To carry out these instructions, we use four arrays, ce(x) , d(x) ,
f(x) , and r(A) . W define xay = x for all x, y, and I(Xx) = x ,
z(x) = false , for all x . W initialize cc(x) to be the nane of
the set initially containing x , d(x) to be one, f(x) to be zero,
and r(A) to be the single element initially in set A. Then we use
path conpression with balancing to carry out UNION and rmm instructions

as follows:

-

procedure FIND(x);
W (x)

procedur e UNION(A,B);
LINK(r(4) , x(B) , 4) ;'
The time required for m>n FINDsand n-1 interm xed UNI ONs
is Q(ma(mn)) . The space required is Qn) . Since @ is SO
sinple, the procedures for &vaL and LINK can be shortened sonewhat

for this special case. This set union algorithmis useful for handling

15

EQUI VALENCE and COWMON st atenents in FORTRAN [8,16], finding M ni num
spanning trees [10,33], and checking flow graphs for reducibility [37].
The second algorithm due to Aho, Hoperoft, and uliman [2],
computes |east conmon ancestors in a rooted tree. |et (r,r) be a
rooted tree and |et {{vi,wi}} be a set of mvertex pairs. W& wish

to conpute ICA(vy,w,) for each pair. The following nethod uses the

set union algorithmto carry out the conputation.

Step 1: Nunber the vertices of T in postorder. Idemtify each
vertex by its nunber.
Step 2 Sort the pairs {vi,wi} so that v; Sw, for all i and
vy SV for all i <]
Step 3: for v :=1untiln do
initialize a set {v} naned v; ,
Step 44 forw:=| - n % -
for {vi’wi} such that v =W d(l‘N
ICA(vi,wi) = FTND(vi);
let u be the vertex such that u-win T,
QNION(u,w)%

end;
L o d

VW can prove that this algorithm works correctly by using properties

of depth-first search; the postorder nunbering corresponds to

a depth-first search of the tree (r,r) . see [2,34,37,%8]. If there
are m>n vertex pairs, the method requires o(m a(mmn)) time and

AQ'm space to compute | east common ancestors.

16

5. Representation of an Unbal anced Tree.

Let (T,r) be arooted tree. 1wor each vertex v let d(v) be
the nunber of descendants of v in v, and let f(v) be the parent
of vinT (f(r) =0) . If v winT, w say the edge (v,w)
is good if 2d(w) < d(v) and bad if zd(w) > d(v) . For each vertex
v there is at nost one bad edge (v,w) . Let b(r) = 0 and for
v £1 let b(v) be the unique vertex such that b(v) A f(v) inT,
the path T(b(v),f(v)) contains only bad edges, and f(b(v)) # 0
inmplies (f(b(v)),b(v)) is a good edge. Let TB be the tree with
edges {(b(v),v) | v # r}.(See Figure 1.)

Theorem 3. TB is bal anced.

Proof . For each vertex v, let d'(v) be the nunber of descendants
of vinTB . If (f(v),v) is a bad edge in T, d'(v) =1 . Thus
2d'(v) = 2 < a'(b(v)) . If (f(v),v) is a good edge in T, then

a' (v) =d(v) . Thus 2a'(v) = 2d(v) < d(f(v)) < d(b(v)) = a'(p(v)) .

In either case 2d'(v) < d'(b(v)) , and TB is bal anced. O

For the purposes of the function eval uation problem we can represent
-any tree T by the correspo n,ﬂi ng balanced tree TB and the set of

paths defined by the bad edgesi Each edge (b(v),v) in TB has an
associ ated value ch(b(v),v) = @r(b(v),v) . Gven any vertex pair

(r(v),v) , We can represent @r(r(v),v) as

@I(T(V)’V) = c(r(v),x) @ [@T(X:Y)] ® c(y,z) ® | @TB(Z,V)]

where (r(v),x) is an edge of 7, X z y by a path of bad edges

inT, (y 2) isanedgeofT,andzfv in TB .

7

| — [p— r—

r—

W can nodify 1mk to update the tree TB and the set of bad
edges, and modify EVAL to conpute ar(r(v),v) using the deconposition
above. LINK requires six arrays:.. cb(v), ecc(v) » b(v) » £(v) >
s(v) , and d(v) . For each vertex v, f(v) is the parent of v
inT, cc(v) is the value of edge (f(v),v) in T, s(v) is a
list of the children of v in T, and d(v) is the nunber of
descendants of v in T . The pointers b(v) represent the tree TB ,
and cb(v) is the value of @p(b(v),v) =\@I,(b(v),v) . Initially
eb(v) = (V) =0, b(v) =f(v) =0 ,sv =¢, and d(v) =1 for
each v .

As soon ‘és a LINk(v,w,x) instruction occurs, we can conpute the
value of d(w . Thus, for each child u of win T, we can decide
whether (w,u) is a good edge or a bad edge. If (w,u) is a bad edge,
we use a procedure Linkp to add the edge (w,u) with value cc(u)
to the set of bad paths. If (wu) is a good edge, we find all
vertices y such that (wy) is an edge of TB, and for each suchy ,
we add (w,y) Wi th val ue @ (w,y) to TB . The program bel ow
inpl ements this conputation. The program uses a recursive procedure

prs to find, for each good edge (w,u) , the vertices y such that

(wy) is an edge of TB . The program assumes the existence of a

‘procedure LINKP for adding edges to bad paths.

18

procedure LINK(v,w,x); begin
procedure DFS(y,a);
for zes(y) do begin
b(z) := u;
cb(z) := a®ce(y)s
i 2'a(z) > d(y)) then DES(z, cb(2));
end DFS;
d(v) = d(v)+ d(w);
cc(w) := x;
add wto s(v);
for ues(w) do if 2'd(u) >d(W) then
LINKP(w, U, cc(u));

else begin

c :=0;
DFS(u,c);
end end LINK

Consider 'this program The time required for n-l1 calls on Lk
is Qn) plus the tine for all calls on DFS and rmkp . Each
recursively nested call on DFS causes b(z) to becone non-zero for
a new value of z . Thus the total nunber of calls on DFSis Q'n) .
The time required for all calls on DFS is proportionalto the total
nunber of calls, so this time is Qn) , and the total time for n-I
LINK instructions is Qn) plus the time required for the LINKP
instructions.

The following programinplenents the EVAL instruction. The program
assunes the existence of a procedure EVALB whi ch uses path conpression
on TB to conpute path values in" TB. EVALB is identical to the path
conpression algorithmin Section 3 except for the use of arrays b(v) ,
cb(v) in place of f(v) , f gc_:f(v) . The program al so assumes the existence

of a procedure EVALP which Q&njputc)es path values on the set of bad paths.
J

A

- 19

i 2

procedure EVAL(v); begin
a = EVALB(v);

comment as a side effect EvaLs(v) sets r equal to the root
of the tree containing v in the part of TB SO far
construct ed;

X :=1r;

if f(x) #£0then a := EVALP(£(x)) ®cc(x) ®a;

coment as a side effect EvALP(£(x)) sets r equal to the
root of the tree containing f(x) in the set of bad
paths so far constructed;

a := ce(r) @a;

EVAL := a;

end EVAL;

Suppose we execute a sequence of m EVAL instructions and n-l
intermxed LINK instructions. The EVAL instructions require Q(m tine
plus the time required for m EVALB and m EVALP instructions. The
EVALB instructions carry out path conpression on the balanced tree TB
and by Theorem 2 require Q'm a(m,n)) tine. Thus the entire sequence
of instructions requires Q'ma(mmn)) time plus the tine for the
LINKP and EVALP instructions.

To conplete the algorithmwe need a way to inplenent function

evaluation on a set of paths; that is, to inplement rmkp and EVALP.

- The next two sections present two ways of doing this so as to achieve

an Q(m a(m,n)) tinme bound. The algorithmof Section 6is quite
sinple but is only valid for the special case when xoy = max{x,y} .
The al gorithm of Section 7works for all operations g but requires
certain advance know edge about the sequence of Evar and LINK

instructions.

20

6. An Algorithm for the Operation max{x,y} .

In this section we assune that x®y = max{x,y} . The speci al
properties of mex{x,y} allow us to construct a réasonably sinple
function evaluation algorithmfor the set of bad paths. The algorithm
uses the disjoint set union algorithmof Section 4 in conbination

with the follow ng theorem

Theorem 4. Suppose X A y 2 inT. Then @ (%,7) < ® (x,2) .

| f w—»xtytz inTand 9 (xy) = ®(x2), then @(wy) = ®(w,z) .

Pr oof . Qobvious. 1O

For any vertex v , consider the set of vertices w such that
VS by a path of bad edges in T .By Theoremy we can partition

- this set of vertices into a collection of sets g, such that each 5,

i
consists of the vertices on a path of T, all vertices wes, have
the sane value of @&(v,w) (denoted by ®8;), and if weS; , X e S.J,
iti, w=x, then @8, < ®s. .

Qur function evaluation method for the bad paths uses the set
union algorithmto keep track of the sets Si and' their associ ated
val ues ®s; . The algorithm uses as the name of the set 5 t he
vertex wes; such that x ESi i nplies whx inT. The al gorithm
uses two arrays, max(v) and t(v) . Initially max(v) = -» (= 0)
and t(v) =0 . As the algorithm proceeds, max(v) = D5, if vis
t he name of set 5, and t(v) =w if v is the name of a set 85
and wis the name of a set S, such that v Zx 3w inplies

xeSiUSJ. . Initially each vertex v is in a singleton set (v)

naned v.

21

The al gorithmal so needs a nmechanismto keep track of the vertex

r(v) whichis the first vertex on the path containing v in the set
of bad paths so far constructed. Two arrays, |ast(v) and root(v)

are used for this purpose. |njtially last(v) = root(v) = v for all

vertices. As the algorithm proceeds, |ast(vhe |ast vertex on
the path containing v in the set of bad paths so far constructed,

and root(last(v)) is the first vertex on this path. The follow ng

programs implement LI NKP and EVALP.

procedure LINKP(v,w,x); begin
last(v) :=last(w;
root (last(v)) :=v;
max(w) := X;
t(v) 1= W
vhile (t(w) # 0) and (max(t(w)) < X) 4o begin
UNION(w,t (w)) ;
t(w) 1= t(t(w));
end end LINKP,

procedure EVALP(v); begin
r := root(last(v));

EVALP := max(F1np(v)) ;
end EVALP;

Execution of n-I LINKP and minterm xed EVALP instructions

requires Q(m a(m,n)) time. Using this inplementation in combination
with the decomposition method of Section 5gives an o(m a(m,n)) time

function evaluation method for the special case of x&y = max{x,y} .

The method requires Q(n) storage space.

22

7. A CGeneral Algorithm

To achieve an Q(m a(m,n)) bound for an arbitrary operation @,
we nust make an assunption about the sequence of EVAL and LINK
instructions. W assume that the entire sequence of EVAL and LINK
instructions, with the exception of the x paraneters in the LINK
instructions, is known in advance. Thus we can precompute the trees
T and TB, and determne in advance the paths V Sw over which we
nust conpute @ (v,w) .

W represent the set of bad paths by two sets of balanced trees,
TR and TL . Consider any bad path and suppose its vertices are
numbered in postorder from 1 to k. Let v and w be vertices
on this path for which we want the value of @®(v,w) . \¥ conpute
® (v,w) as @ (v,w) =[®(vwlel®(ww)], where u - (25+1)2*
is the vertex with largest i in the range w<u<v .

To conpute’ ®(u,w) , we use a forest TR. TR is the set of
trees with vertices 1 through k such that the father of vertex

L (Se|e Figure 2.) The value of an edge (x,y)

(2;j+1)2i is (j+1)2
in TRis @r(x,y) . TR is a set of balanced trees nunmbered in
- postorder. W can use path conpression in TR to conpute
ap(ww) | @plu,w) |

~To conpute ®(v,u) , we use a forest TL . TL is the set of

trees with vertices 1 through k such that the father of vertex

(2;j+1)2i is o't (See Figure 3.) The value of an edge (x,y)
in TL is @r(y,x) . TL is a set of balanced trees nunbered in
preorder. If we define x¢'y = yox, then @I,(v,u) = @fL(u,v) for

any pair of vertices (v,u} such that u v in TL.

23

A

The idea we want to use is to conpute @r(v,u) = @i,L(u,v) for
appropriate pairs (v,u) by using path conpression in TL . This
i dea does not work directly, however because conpressing a path
uy 5 vy in TL may cause a later pair (uz,vg) to becone unrel at ed
inTL . (See Figure 4.)

To solve this problem we use the fact that we can precompute
the trees T, TB, TL, and TR and the paths over which we wish
to evaluate. W reorder the paths in TL so that path conpression
will work, and we synbolically conpute values for each appropriate
path in T , TB , TL , and TR This synbolic conputation works as
follows. We construct a unique identifier e for each edge (v,w)
of T, withf(e) =v, g(e) =w. For each path T(x,z) , the
value of which we wish to compute as @ (x,2) = I Ba(xy)] @l @5 (y52)] 5
we al so construct a unique identifier e , with f(e) =x, g(e) =z,
p,(e) =e , p,(e) =e,, where e identifies the path (x,y)
and e, identifies the path T(y,z) .

After constructing identifiers to represent the entire conputation,
we reorder the identifiers in a way consistent with the order of the
EVAL and LINK instructions. Then we read through the identifiers

and the EvAL and LINK instructions, carrying out the conputation.

‘The al gorithm presented bel ow, has SiXx steps.

Step 1 Initialize all variables. Construct T . Conpute d(v)
for each vertex of T .

tep : Construct TB, TR, TL . For each EVAL(v) i nstruction,
find the vertex r such that EvAL(v) = ®(r,v) and

e e, such t hat

construct identifiers e,

5 H

2L

®(r,v) = (@, (2(ey),r) 1 ® [@pp(£(ep),8(e,))]
® c(f(e5),g(e5)) @[®TB(f(eh)’g(eh))].

Use path conpression to symbolically conpute val ues for

appropriate paths in TB and TR .

Step : Sort the pairs (f(ey),r) in decreasing order on d(f(e,)) .
8tep : Use path conpression to synbolically conpute values for appropriate

paths in TL. For each pair (r,f(e,)) , construct an identifier ey
Step 5: Sort the identifiers e in increasing order on d(f(e)) ,

breaking ties in decreasing order on d(g(e)) .
Step 6: Process t he identifiers and the LINK and EVAL instructions

in order, carrying out the actual evaluation.

Thi s al gorithm hinges upon the synbolic conmputation and the
reordering of identifiers so that the actual conputation proceeds
in an order consistent with the order of the gvaL and LINK instructions;
the x val ues occuring i n the 'LINK i nstructions nay depend on the
results of previous EVAL instructions. Since d(v) > d(w) inplies
V=w or -—(w : v) in T , the sorting in Step 3 guarantees that
" the path compression in Step & will work. Furthermore Step 5sorts
the identifiers e so that D, (e) and py(e) i f defined, precede e ,
end |f e pr ecedes e, and e and e, identify edges of T, then
the LINK instruction corresponding to e precedes the LINK
instruction corresponding to e, -
If all the x values in LINK instructions are known ahead of
time, as in the static evaluation problem mentioned in Section 3,we
can dispense with Steps 5and 6and the synbolic conputation and

carry out all the evaluations directly. W nust still reorder the

eval uations on the forest TL using Step 3.

25

The al gorithmuses thirteen arrays and one array of |ists.

For each vertex v, et(v) is the identifier of the edge from

the parent of vtovinT.. Arrays eb , op
represent TB, TR, TL .

of descendants of v in T, and s(v) is a list, of children of v

inT.

vertex on each bad path as described in Section 6.

h(v) is the nunber of vertices (including v) fromv to the end of

the bad path containing v .

el similarly

For each vertex v , d(v) is the nunber

Arrays root(v) and last(v) are used to find the first

For each vertex v |,

The array c(e) is used to store val ues

conputed for the identifiers in Step 6.For each vertex v, the

algorithmconstructs a dummy identifier e with f(e) = g(e)

Btep :

frv = 1wl n do begin
et(v) := eb(v) := er(v)
£(v) = g(v) := root(v)
a(v) :=h(v) := 1,

s(v) := ¢;
c(v) :=0;
EEE,;
kK := n;
ident :=list :=¢;
for i := lMMn-lgg

if instruction i is LINK(v,w,x) then begin

a(v) :=d(v)+ d(w;

K := ktl;

et(w :=k;

(k) := Vv, g(k) :=

s(v) 1= s(v) u W}
end Step 1;

26

1= el(v) :=0;

= last(v)

W,

Vi

=V.

Step 20 for i = 1 until mtn-1 do

if instruction i is LINK(v,w,x) then begin
if e*d(v) > d(w) then LINKP(v,w)
else DFS(w);

end el se begin
et instruction i be EVAL(v);
EVAL(v, eb, ¢)) ;
LE et(2(ey(1))) = 0 then es(1) = v
slse e5(1) := eb(f(ey(1)));
EVAL(£(e5 (1)), €25 ¢,)
[1 =_root(last(£(ey(1))));
list := list U {(f(ee(i)),r,i)};

end Step 2;

procedure DFS(x); |
for ves(x) do begtn
if f(et(y)) = w then eb(y) : = et(y)
K := ktl;
£(k) := f(eb(x)); g(k) =y, p,(k) := eb(x);
Py(k) := et(y);

eb(y) := k;
ident : = ident U {k};

end:
if 2¥d(y) > d(X) then DFS(y);
eng OFS

An examnation of Figures 2 and 3 verifies the followng facts, which
formthe basis for procedure rLinkp(v,w) bel ow. Let h(v) = (23‘+l)2i
be the nunber of vertices (including v) fromv to the end of the
bad path containing v . Then {(gog;)‘(w) lo <2 <i-l) is the set
of children of vinTm. If i=0, wis the parent of Vv
inTL; if i>0 and j >0, (geel) i(w) Is the parent of v

in TL ; and if i>0 and j =0, Vv has no'parent in TL .

27

RxQeedure LINKP(v,w) ; begin
h(v) := h(w)+1;

J = h(v);)

if J is odd then el(v) := et(w)
er(w) := et(w);
j =112
Z 1= el(w);

Bile) 1S EVeN & degin
K := kt1;
£(k) :=v; g(k) := 9(2);
py(k) = er(£(z)) ; py(k) := Z;
er(g(z)) : = k;
ident : = identy {k};
L := el(g(z));

o

£ 68(2) £0 then begin
K := kt1;
£(k) = v; g(K) :=gln);
Py(k) = er(£(z)); py(k) := Z;
ident identy {k};
el(v) := k;

8% 2d end LINKP;

28

Step 3:

Step 4

procedure EVAL(v,e,ei);

if e(v) =0 then €i(i) :=v
else if e(f(e(v))) =0 then ei(i) :=e(v)
else Pﬁﬁvv
=0; y :=e(Vv);
me(() #0 do begin
e(g(y)) (=X X 1=y, ¥ = e(£(y));
end;
while x 40 do begin
k = ki
£(k) 1= f(y); 9(k) =g()
pi(k) = e(f(x)); py(k) :=
:= e(g(x));
e(py(k)) :=
ident : = identU {k};
end;
ef{i) := k;
end EVAL;

Using a radix sort,
in decreasing order o

for (z,r,1i) elist do
if z =71 then e,

(

order the triples

N d(z) .

) =

(z,ryi) on |ist
1= el(r)
el (g(y));
8(x);

else if = = g(el(r)) then e, (i)
X ;Y = el(r);
mh||e gt((y) £0 dQNQEQLP
el(f(y)) =xxi=y;y =
end;
wile X £ 0 do begin
k = k1
g0 1= g(y); f(K) :=
pp(k) := el(g(x)); py(k) 1= X
X 1=_el(f(x));
el(p; (k) = k;
ident : = ident U {k};
end;
e, (i) 1=k
end Step 4,

29

r—

—

Step 5: Using a twoipass radix sort, order the identifiers e on
ident in increasing order on d(f(e)) , breaking ties in
decreasing order on d(g(e))

6tep : for i := 1 until mn-1 do
if instruction i is LINK(v,w,x) then begin

c(et(w)) :=x;
for | eident such that f(j) =v do
e(3) := c(p () ®e(py(d));
end el se begin
| et instruction i be EVAL(v);
return c(e; (1)) ®c(ey(1)) @c(ey(1)) ®e(e, (1)
as the result of instruction i
end Step 6;

Initialization and construction of T, TB, TR, TL require Q(n)
time. The path conpressions and symbolic conputations in Steps 2 and %
require Q(m o(mn)) tine. Step 3 requires Q(n) time and space,
and Step5 requires o(a(m,n)) tine and space, since Q(m o(m,n))
identifiers are constructed. Step 6 requires Q(m o(mn)) time.

Thus the entire algorithm requires Q'm a(mn)) tinme and space. The
correspondi ng algorithm for the static function evaluation problem
(omtting Steps 5and 6and the synmbolic conputations) requires

Q'm a(m,n)) time and Q(n) space. It is possible to save storage
space in the algorithmfor the dynamc func!tion eval uation probl em by
del aying eval uation on TB and TR until step6when the values are
actual Iy known and using synbolic conputation only on TL . However,

this saves at nost a constant factor in running tine and storage space.

30

8. Verifying a Mninum Spanning Tree.

This section presents a sinple, direct application of the
function evaluation algorithm Let T be an arbitrary tree
and let @ be a comutative, associative operation. [et each
edge (x,y) of T have an associated val ue e(x,y) which is
in- the domain of @.For any two vertices v.and win T, let
® (vyw) = c(vl, ve) ® c(v2,v5) ®@...® (vk’vk+l) , where
T(v,w) = (vy5v,) 5 (v2,v5) s eee s (vk,vk+l) . The problem we solve is
this: given a set of mpairs of vertices {{vi,wi}} , conpute
@(vi,wi) for each pair.

Our al gorithrri" an application of the |east common ancestors
al gorithmof Section & and of the function evaluation algorithm

appears bel ow.

Step 1 Pick an arbitrary vertex r of T and convert T into
a rooted tree (T,r) .
Step 2 For each pair {vi,wi} , conmpute X; = ICA(v,,w;) usi ng
the algorithm of Section k.
. Step 3: Conpute @T(xi,vi) s @T(xi,wi) for each pair {vi,wi}
using the static version of the function evaluation algorithm

and combi ne the answers to give ® (vyw,) for each pair.

This algorithm requires Q(m a(m,n)) time and Q(m storage
space.

The algorithm has several interesting applications. Suppose
e(v,w) is a real value representing the cost of edge (v,w), and |et

x®y = Xty . Then the algorithmconputes the total cost of each of

31

a set of mpaths T(v,w,) . In this case ® has an inverse and

we can use path conpression with bal ancing, as described in Section 3
to carry out Step 3. See [2] for a similar Solution to a problem
requiring conputation of depths in rooted trees.

Suppose e(v,w) is a real value, and let x®y = min{x,y} . Then

the algorithm conputes the mninum val ue along each path T(vi,w I'n

1)
this case we can use the algorithmof Section 6to carry out Step 3.
This problem arises when determning the mninmum cut (or naxinum flow
between given pairs of vertices in an undirected graph with edge weights.
Gonmory and Hu [22] have given a nethod for constructing, for any
undirected graph G with edge weights, a tree T such that
(I) T has the sane vertices as G, and
(ii) the value of the mninum cut between any pair of vertices v
and win Gis equal to the minimym edge:value On the path
T(v,w) .
Thus, we can use the al gorithm above to conpute m ni numcut val ues for
a set of vertex pairs, assuming that the cut tree T is given.
Suppose G = (V,E) is a graph with real values e(v,w) onits
edges and T = (V,E') iS a spanning tree of G. W say Tis a

m ni num spanning tree if 2 c(v,w) is amnimumanong al l
(v,w)eE!

s‘-panni ng trees of G. W wish to test whether T is a mninmm

spanning tree. The follow ng well-known theoremallows us to apply

the al gorithm above.

Theorem5 T is minimm if and only if, for each edge (v,w) ¢E-E',

c(v,w) > max{c(x,y) | (x,¥) is on T(v,w)

32

Tus, i f G has m edges, we can test whether 'I' is minimum
in o(m a(mn)) time by conputing @I(V,w) for each non-tree edge
(vo,w) using the algorithm above with x®y = max{x,y} and appl yi ng
the test of Theorems5. This result is interesting because the best

known al gorithms for actually finding a mninum spanning tree [10,33,40]

require Q(mlog log n) tine.

9. Finding Donm nators.

Several interesting graph-theoretic problens arise in the study
of global flow analysis and optimzation of conputer code. This section
di scusses a problem of this type. A flow graph (G,r) is a directed
graph with a distinguished start vertex r such that there is a path
fromr to each node in G. Vertex v dominaites’vertex win
flow graph (Gr) if v # wand every path fromr to w contains v .

Vertex v is the immediate domnator of w, denoted v = idom(w) ,

if v domnates w and every other domnator of w a|lso domnates v .

By convention idom(r) = 0 .

Theorem 6. Every vertex of a flow graph (g,r) except r has a
unique imediate dominator. The edges {(idom(w),w) | we¢ V-{r}} form

a-directed tree rooted at r | called the doninator tree of (g,r) ,

such that v domnates wif and only if v % in the doninator tree.

Pr oof . See [6]. O

W wish to construct the dominator tree of an arbitrary flow graph

(@,r) . Reference [6] describes uses of the domnator tree in global

33

code optimzation. aho and Ullman [6] and Purdom and More [30] have
given sinple o(mm) tinme algorithnms. Reference [34] gives a nore
conplicated Qn log n+mnm tine algorithmand [38] gives a sinplified
version of this algorithm Here we use extensions of the ideas in
[34,28] t 0 develop a new al gorithrﬁ which uses path conpression to
achieve an Q(m a(m,n)) time bound.

\\ need ne new concept, that of a depth-first spanning tree.

Let (G,r) be a flow graph with ¢ = (v,E) , and let (T,r) be a
directed spanning tree of ¢ rooted at r , with 1 = (v,E') . Let

T have a postorder nunbering and assunme that vertices of T are
identified by nunber. (T,r) with the given nunbering is a depth-first

spanning tree (DFS tree) of (G,r) if the edges of e-£ can be

partitioned into three sets:

(i) a set of edges (v,w) With v oW in T, called forward edges;

(1) a set of edges (v,w) with w v in T, called cycle edges;

(111) a set of edges (v,w) With neither v Zw nor w-* , but

wth w> v, called cross edges.

A DFs tree is so naned because it ¢an be generated by starting at
r and carrying out a depth-first search of G. A properly inplenented
algorithm requires Q(nm) tine to carrylout such a search [35], using
~a set of adjacency lists [k,26] to represent ¢ . The search generates T ,
nunbers the vertices in postorder, and partitions the edges into tree
edges, forward edges, cycle edges, and cross edges. Henceforth we assume

that (T,r) is a DFS tree of G and that vertices are identified by

nunber .

Theorem7. If v >w, any path fromv to w in G nust contain

a common ancestor of v.and win T .

34

Proof . See [3k4,35]. O

We will calculate idom(w) for each vertex v by processing tie
vertices in order, from smallest to largest. For 0 <k <n, let
G, = (V, {(v,w) | (v,w) €E and w < k}) . G, = (W) ; &, = G. For
0<k<n and 1<w<n let donmk,w =max{v|thereis a path
fromv towin GJ. It iIs clear by examning T that
dom(k,w) > max{k,w} for all k and w, and dom(k,w) > k if
k >w and w<n . Furthernore, it follows from Theorem 7that
don(k, w) Zw for all k and w. Ve prove some nore facts about

don{k,w) which enable us to calculate it.

Theorem 8. don(k, k) = max{dom(k-1,v) | (v,k) is an edge} if k <n .

Proof . Gbvious. d

For 0<k<n, 1l<w<n, k>w, let a(k,w be the smallest
ancestor of wlarger than k . Define e(v,w) = dom(ww for all

edges (v,w) ET , .and x®y = max{x,y} .
Theoremg. If k>w, don(k,wW) = & (a(k,w),w) .

Proof . Cearly there is a path from ® (a(k,w),w) to w in Gy

so dom(k,w) > ®(a(k,w),w).\\6 prove by induction on k that k > w
inplies don(k,w) < @®(a(k,w),w) . The hypothesis is clearly true for
k =w . Suppose the hypothesis is true for some k and consider the
path in 6, from dom(k+1,w) to w . |f this path does not contain
k+1 , then dom(k+l,w) = dom(k,w) < ®(a(k,w),w) < ®(a(ktl,w),w) by

the induction hypothesis. |f this path does contain k1 , then &l >w

35

inplies the path fromk+l to win Gyyq CONI ains a comon ancestor

of ®1 and w, which nust k1. Then dom(k+1l,w) = dom(k+l, k+l)

< ®(a(k+l,w),w) . 0O

Theorens 8and 9allow us to conpute dom(w,w) for each vertex

W <n by using path conpression. W sinply execute the following |oop.

for w := 1 until n-1 do

begin N
dom(w,w) := [max{v | (v,w) ¢E and v > W]
® [max{EVAL(v) | (v,w) ¢E and v < w}];
- let vawinT,
LINK(v,w,dom(w,w));
end;

The next theorem shows how to use the values dom(w,w) tO compute

| medi ate domi nators.

Theorem 10. Let v £ n . If no vertex u satisfies u = v ,
dom(u,u) > dom(v,v) > U , then idom(v) = dom(v,v) . COtherwise, |et
u be the smallest vertex such that u % v and dom(uuw) > dom(v,v) >u .

Then idom(v) = idom(u) .

Proof. (Cearly no vertex except dom(v,v) On the tree path from
dom(v,v) to v can domnate v . Suppose no vertex u satisfies
ulv, dom(u,u) > don{v,v) > U . Consider any path fromn to v .
Let x be the last vertex on the path with x > dom(v,v) . If there
is no such vertex then dom(v,v) = n and dom(v,v) dominates v .
Qherwise, let y be the first vertex following X on the path with

dom(v,v) A y v .Al vertices z between x and y on the path

56

must satisfy z <y by Theorem7 and the choice of x and y. Thus
dom(y,y) > x > don{v,v) . By the hypothesis this means y = dom(v,v)
(y =v is inpossible since then there is a path fromx > don(v,v)
to v in G,)- Thus dom(v,v) lies"on the path fromn to v .
Hence dom(v,v) dom nates v , and idom(v) = dom(v,v) .

Conversely, suppose some vertex u satisfies u v)
dom(u,u) > don{v,v) > u . Pick the mninmmsuch vertex u. Cearly
no vertex which does not dominate u can doninate v . Thus every
vertex which domnates v dominates u . Now we need only show that
idom(u) domi nates v . Consider any path fromn to v . Let x
be the last vertex on this path satisfying x > idom(uw) . If there
is no such x , then idom(u) = n donminates v . Oherwise, let y
be the first vertex following x on the path and satisfying
Mu)t y Lv. Al vertices z between x and y on the path
nust satisfy z <y by Theorem 7and the choice of x and y . Thus
dom(y,y) > X > idom(u) > dom(u,u) . Hence y cannot |ie between
idom(u) and u , or equal u , since otherw se idom(u) woul d not
dominate u . Also y cannot lie between u and v by the choice
of U . Furthermore y # v sincey = v inplies there is a path
fromx > dom(u,u) > dom(v,v) tO Vv in G, - The only renaining
possibility is y = idom(u) . Thus idom(u) |ies on the path from

nto v, and idom(u) dom nates v . my

V% use the set union algorithmand Theorem 10 to compute i nmedi ate
domnators. First we sort the pairs (dom(v,v),v) SO that (uy,vy)

pr ecedes (uysv,) if and only if u; <, OF u = w, and vy > v,

37

|
W use a two-pass radix sort, which requires Qn) tinme. This

ordering has the feature that if (u,v) precedes (uyv,) and

2 Vp)

Vi < Vo t hen u <, . Next we apply the set union algorithm

Initially each vertex v is in a ‘singleton set containing only v

and named V. As the algorithmexamnes the pairs in order, vertex v
will be in the set named x if and only if x is the smallest vertex
such that x > v and the pair (Mx,x),x)‘has not yet been exam ned.

Here is the conputation.

Step 1. for each pair (dom(x,x),x) in order do begin
A let u-xinT,
 UNION(FIND(u),x);
if FIND(dom(x,x)) # FIND(X) then
begi n idom(x) := FIND(x); flag(x) := true end
el se idom(x) ::d_on(x,x); M(x) := fal se end;

g
Step 2: for i := n-1 step -1 until 1 do if £ flag(i) then
idom(4) —_gofrq(idqm(i)) ;

The first [oop constructs a set of pointers in array_idom(v)
using Theorem 10. The second | oop uses these pointers to conmpute
donminators. The total tine to conpute_dom(w,w) val ues and
dom nator values is o(m a(mmn)) using the function evaluation

al gorithm of Section 6. The storage space necessary is Q(nm .

38

10. Lower Bounds.

An interesting theoretic problemis to determne whether the
o(m a(myn)) bound is tight, for either the general function evaluation
problemor for interesting sp(eci al cases. Perhaps surprisingly in
light of the dearth of |ower b‘ound results, we can prove that the
O(m a(myn)) bound is %ight to within a constant factor, for various
cases of the function evaluation problem

To prove |ower bounds, we use the following formal setting.

Let (T,r) be a rooted tree on n vertices, with edge val ues
selected fromthe domain Of an associative binary operation o .
Gven a set of m‘mpai rs (vi,wi) of related vertices, we desire a
| ower bound on the number of @ operations required to conpute

. ® (vi,wi) for all m pairs.

A conput ation sequence for the pairs (vi,wi) is alist of

assignnents of the formx := y®z , where y and z are either
edges of T or are variables which have occurred on the left side

of some previous assignnent, and each variable x occurs on the left
side of only one assignment. Corresponding to each pair (vi,wi) I'S
a variable X; such that, for all substitutions of values for the
edges, the variable Xs I s assigned val ue @(vi,wi) when t he
conputati on sequence is carried out. % prove that, in the worst
case, any conputation sequence for m pairs nust be of |ength at

| east kmoa(myn) , for sone constant k . W& prove this result for
various interesting operations @ . In sone cases the |ower bound
hol ds even if we allow a second operation to occur in the conputation

sequence.

39

Notice that our conputation nodel allows only straightline

programs, with no branching. In certain cases the |ower bound does
not hold if we allow branching. 1 other cases, we conjecture the
| ower bound still holds but cannot prove it.

Consi der any conputation sequence, and let x be any variable
which occurs in the sequence. Corresponding to x is an expression
of the formx = e(xyq) ©. . . ® c(x Y)) whi ch gives the val ue
computed for x as a function of the edge values. Suppose the

conputation sequence satisfies the follow ng property.

(%) If x = c(x5y,) .. @ () is the expression for any

KoYy

variable X , then (xp¥y)s . o (x yall lie on T(vi,wi)

Kk’ Vi
for sone pair (vi,wi).

Order the pairs (vi,wi) so that if (vi,wi) precedes (vj,wj)
in the ordering and vi ,éJv. , then ﬂ(Y:*a \ﬁ') inT. For each
variable x in the conputation sequence, assign the corresponding
expression to the first pair (vyr¥,) in the ordering such that every
edge in the expression is on T(vyWs) .

Now associate with T and with the pairs (vi,wi) a directed
gr aph ¢ and a cost C as foll ous. Initially G =T . Process
the pairs (vjw;) in the order defined above. To process a pair'vi’
(vi> w;) 5 let PR TR SR A be the path in I+ from

viow. Addto G each edge (x.,x.) with j, <3j, whichis
d1 o 1 2

not already present in ¢ . Let the cost of the pai r (vi,wi) be

t;-1, where t; is the length of the shortest path fromv, to w,

in ¢ (before the new eages for (vwy) are added). Let the cost C
}

be the total cost of all pairs (vi,wi) :

hn

Theorem1l. The cost Cis a |lower bound on the |ength of any

conput ati on sequence satisfying (¥).

proof. Consider a conputation sequence satisfying (). Assign the
expressions conputed by the conputation sequence to pairs (vi’wi) as

described above. Process the pairs (vi,w in the order defined

;)
above, a6 follows. Initialize ¢ =T. For each pai r (Vi’wi) ,
add edges to ¢ a6 described above, and conpute the value of all
expression6 assigned to the pair (Vi’wi))

For each pair (Vi’"i) , the number of @ operations required to
conpute all expressions assigned t0 the pair (vi’wi) s at |east as
great a6 the cost% of (Vi’wi) .l‘To prove this, suppose the expression

for ®(vi,wi) I's conputed as

{®{c(x:jl’le) @ c(xj2’yj2) @ s @ c(xjk.,yjk.)} ‘l S j S p} 2
- d d

where each expression inside the outer sumis assigned to a pair
previous to (Vi’wi) . W can order the expressions so that for sone

r < pand for SOMe qyds--+5dy ,

* * * * *

= X -y =X, ¥z ... v .
1 2q2 2k2 5q5 5k5 rkr i

*
Then (%,4,¥ f (%5, Vo), J¥*, (% ,y,) are edges of G
‘ 11771k 2q2 2k2 rrq rrk

before pair (vi,wi) is processed, and the nunber of expressions
conbined to conpute @(vi,wi) Is no fewer than 8-l wher e L

. . *
is the length of the shortest path from V; to w, In G bef ore

m

(v;ow;) is processed. Thus C = Z 1,-1is a lower bound on the
i=1

total length of the conputation sequence. O

41

:
i
}
}
i

Now we apply the very general |ower bound result of [36], which

states:

Theorem 3.2 [36]. There is a constant k such that, for all m
and n Wwth m >n, there is a tree T of n vertices and a
sequence of m pair6 (Vi’wi) for which the cost of ¢ s at |east

kma(m,n) .
VW have imediately; ,

Theorem 13. For any m >n, there is a static function eval uation
problem for m- pairs on a tree with n vertices such that any

conput ati on sequence satisfying (¥) has length at |east kmo(m,n) .

The power of Theorem113 lies in the fact that for many interesting
operation6 @, any expression which does not satisfy (¥) is useless in
any conputation sequence; thus any nmninumlength conputation sequence

nust satisfy (*). Such operations include the follow ng:

(1) Function conposition over a suitably general function space.

(2) String concatenation.

(3) Set union. The |ower bound holds even if set intersection is also
al | oned as an operation.

(4) Maxi num over real nunbers. The |ower bound hol ds even if
minimum i S also al | owed.

(5) Boolean "and” Over the domain [true, false] . The |ower bound

hol ds even if Bool ean "or" is also allowed.

VW prove the |ower bound for (5).Consider any conputation

sequence which uses a(and) and v (or) to conpute A (vy,wy) for

k2

for a sequence of m pair6 (vi,wi) . Such a conputation sequence

corresponds to a nonotone Bool ean circuit for conputing A (v;5y)
1

for all pair6 (vi,wi) . See [28,31] for |ower bounds on the sizes
of restricted kind6é of Boolean circuits for other functions.
Let E be any expression involving A and v . Let = denote

truth value equivalence. Convert E into disjunctive normal form

D = (XllelEA . ../\xlil) V...V (xkl/\ AX L)

with i; <i, for 1<j <k . Then Eis equivalent to a conjunction,

j =

namely & = (gax, 0 MMM@"OHl) , if and only if each variable x,,

inthe first clause occur6 in all the clauses. It follows that if

e AX) then either g, = (%) AX A e nX)

1772
or E, = (xl/\x

E(Xl/\XEAXB/\ .

o A ...Axi)
Simlarly, let E be any expression and convert E into

conj unctive normal form
E = E, =(yllvy12v...vylil)/\... A (yklv...vykik)

W t h i) <4 for 1<j<k. Then Eis equivalent to a conjunction,
namelyEE(yll/\yzl/\.../\yll),lf and only if i. = 1 for
1<) <t and each clause (3'1 Veevygs) for 1 <j <k contains

. . 3
6one variabl e Yp with 1 <p <. Thus if E AR, = (yP AV A e AYy) s
t hen E, = (yl/\yz/\.../\yk) a,ndEQE(yA.j.Ay4) ’flor some | , k
satisfying 1<j <kl <i . (Achieving this representation My

require renumbering the variables.)

43

re--

—

Now consi der any computation Sequence which use6 A and v to

conput e /\(vi,w for a set of m pairs (vi,wi) . Let E. ve

1) i
the expression conputed for /\(Vi,wi).By the remarks above

;.
a subsequence Of the conputation sequence nmust conmpute a sequence

of expressions Eil’EiE’“"Eik = E such that each Eij IS either

an edge of T or is equivalent to Eip/\E for some p,q <

iq
Delete all assignnment6 fromthe conputation sequence except those
corresponding to expressions Eij . The resultant sequence still
computes A (Vi’wi) for all pair6 (vi,wi) and also satisfies (x).

Thus by Theorem 13 we have:

Corol lary 1. For any m >n, there is a rooted tree T of n
vertices and a set of m pairs (Vi’wi) of related pair6 such that
any conputation sequence l‘lSi ng A and v to conpute Alvy, wy) for

all pair6é ha6 length at |east kmoa(m,n) for sone constant k .

The | ower bounds for operation6 (3) and (4) follow from
Corol lary 1; |ower bound6 for operations (1) and (2) are imediate
from Theorem 13.

Several plausible | ower bounds remain conjectures. W |eave

- them as open problens.

(1) Prove a kma(m,n) | ower bound for any operation @& which has
an inverse.
m

(2) Prove a kma(m,n) |ower bound for computing v [a (vyow,)]
i=1

usinga and v ,where {(vi,wi)} Is aset O pairs of

related vertices jn a tree T .

44

(3) Prove Corollary 1 if negation is also allowed as an operation.

(4) Prove that verifying a mininum spanning tree requires kma(m,n)

conparisons in the worst case.

L5

r— r r—

Acknow edgnent s.

I would like to thank Andrew and Frances Yao for several
stinulating discussions On the minimwm Spanning tree probl em which
sparked the ideas in Section 7 and the witing of this paper;
Adrian Bondy and Ron Gahamfor criticismwhich led to correct
formul ation of the ideas in Section 5 Mark wWegman, for many |ong
and rewarding talks about algorithns for global flow analysis; and

Jeff Barth, for providing nonetary stinmulus for this research.

46

{
|
x

(1]

El

(4]
(5]

[10]

[12]

[13]

[1h]

(15]

[16]

(17]

Ref erences

W. Ackermann, "Zum Hilbertshen Aufbau der reelen Zahlen,"

Mat h. Ann. 99 (1928),118-133.

A.V. Aho, J.E.Hopcroft,and J. D. Ullman, "On cONputi ng | east
common ancestors | N trees," Proc. Fifth Annual ACM Synposi um on
Theory of Computing (1973), 253-265.

A. V. Aho, J. E. Hoperoft, and J. D. Ullman, The Design and
Analysis of Conputer Al gorithns, Addison-\Wesl ey,—RerardTngg,—NHss.
(197%), 129-13L.

i bid, 50-52.

A v. aho and J. D. Ullman, "Node || Sti ngs for reducible flow |
graphs," Proc. Seventh Annual ACM Synposium on Theory Of Conmputing
(1975), 177-185.
A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation,

and Compiling, Vol. ||: ConpilTNQg, Prentice-Hall., Englewood
Qiffs, §.J. (1972). BLL0D.

IF. %. Al'len, "Control flow analysis," SIGPLAN Noti ces 5(1970),
-19.

B. W. Arden, B. A. Galler, and R M Gaham ®an al gorithmfor
equi val ence declarations," Comm. ACM 4 (1961), 310-31lL.

R. C. Backhouse and B. A carré, "Reqular algebra applied to
pl)gtlh{égm Ny problems," J. I nst. Maths. Applics.,15(1975),

D. Cheriton and R E Tarjan, "Finding mininum spanning trees,"
submtted to SIAM J. Conput.

V. Chvdtal, D. A. Klarner, and D. E. Knuth, "Selected COMbIi natori al
research problens," sran-cs-72-292, Conputer Science Department,
Stanford University (1972).

J. Cocke, "Global common subexpression elimnation," g GPLAN
Notices, 5 (1970), 20-2h. -

M. J. Fischer, "Efficiency of equivalence algoritmms,” Compl exit
of Computations, R. E. MIler and J. W Thatcher, eds.’, ‘Plﬂgnmn—l
Press, New York (1972),153%-168.

A. TFong, J. Kam and J. Ullman, "Appljcation Of lattice al gebra
to | 00p optimization," Conf. Record of the Second ACM Synposium
on Principles of Prog.—Lang. (1975), I-9.

G. E. Forsythe and C. B. Moler, Conputer Solution Of Linear

Al gebr ai ¢ Systems, [Prentice-Hall, Englewood TI 1115, N.J.(1967)
27-33.

B. A Galler and M. J. Fischer, "An inproved equival ence
algorithm,” Comm. ACM 7 (196k), 301-303.

S. Gahamand M Vegman, s fast and usual |y linear algorithm for
global flow analysis," Conf. Record of the Second ACM Synposium
on Principles of Prog Tang.(1975), 22-3k.

b7

[18]

[19]

[20]
[21]

[22]

(23]

[2k]

(25]
(26]
[(27]

[34]
[35]
[36]
[37]

[38]

M. 8. Hecht and J. D .Ullman, "Flow graph reducibility," SIAM

M. 8. Hecht and J. D. ullmen, "Characterizations of reducible
flow graphs," J. ACM, 21 (197k4), 367-375.

J. E. Hoperoft, private conmmunication.

J. E. Hoperoft and J. D. Ul man, "Set-nerging algorithms,”
SIAMJ. Conput., 2 (1973), 294-303.

T. C. Hu, Integer Programm ng and Network Flows, Addison-Wesley,
Readi ng, Mass. (1969), 129-150.

K. W Kennedy, "Node |isti ngs applied to data flow analysis,"
Conf. Record of the Second ACM Symposium on Principles of Prog.
Lang. (1973), lo-21.

D. knuth, The Art of Conputer Programming, Vol. 1. Fundanental
Al gorithns, Addison- VST ey, Reading, MaSS. (1968), 315-3L6.

ibid, 353-355.

i bid, 295-30k.

D. Knuth, The Art of Conputer Programmng, Vol. 3: sorting and
Searching, Addison-Vésley, Reading, Mss. (1973), 170-178.

E. |. Neciporuk, "A Boolean function, " soviet Math. Dokl., 7
(1966), 999-1000.

M. Paterson, unpublished report, Univ.of Warwick, Coventry,
Geat Britain (1972).

P. W. Purdom and E. F. Moore, "Algorithm 430: | mredi at e
predom nator6 in a directed graph," Comm. ACM, 15 (1972), 777-778.

V. Pratt, "The power of negative thinking in multiplying

Boolean matrices," Sixth Annual ACM Synposium on Theory of
Computing (197Lk), 80-83. '

A. Salomea, Theory of Automata, Pergammon Press, N Y. (1969),
120-127.

R. Tarjan, "Findi n% m ni num spanni ng trees,"” Mem No. ERL-M501

El ectronics Research Laboratory, University of California, Ber kel ey,
(1975) -

R Tarjan, "Finding domnators in directed graphs," SIAM J. Conput.,
5 (1974), 62-89.

R Tarjan, "Depth-first search and linear graph algorithms,"
SIAMJ. Conput., 1 (1972), 1k6-160.

R. Tarjan, "Efficiency of a good but not l|inear set union
algorithm" J. ACM., 22 (1975), 215-225.

R Tarjan, "Testing flow graph reducibility,” J. Comp. Sys.
Sci ences, 9 (1974), 355-365.

R. Tarjan, "Edge-disjoint spanning trees, donminators, and depth-
first search," sran-cs-7h-455, Conmputer Science Departnent,
Stanford University (197k).

48

[39] J. D. Ullman, "A fast algorithmfor the elinination of commn
subexpressions,” Acta I nformatica, 2 (1973), 191-213.

[(bo] A. c. Yao, "An o(|E| log log |v|]) al gorithm for finding
m ni mum spanni ng trees," Info. Proc. Letters, to appear.

49

'991) paoue [eq Jutpucdssaic) (q)
'sau || £aeey Ag pajeoipul sabps peq yim ‘aail (e)

‘'syted Jo 189S e pue 9a1] paoue |eg B Aq 9941 © Hu 1jussa.iday

(a)

e

[] m
¢z 2z Tg oz T

ST %T 9T LT ¢T 2T 11 9 ¢ ¢ 2 1

‘T 24nb 4

(®)

50

—

Figure 2.

The set of trees TR for k =

17

18

20

el .

24

19

21

22

- 15 23
7 11 13 19 21
1h 2P
5 % 9 17 18
I 6 10 12 20 2k
2 by 8 16

Figure 3. The set of trees TL for k = 2k .

52

U

(b)

Figure 4: |nvalid path conpression.

(a) Before conpression of path (ul,vl) :

(b) After conpression of path (u5v)) -

In this tree —(u, & v

55

2 2)

