
APPLICATIONS OF PATH COMPRESSION ON BALANCED TREES

*bY
Robert E. Tarjan

STAN-CS-75-512
AUGUST 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERS ITY

Applications of Path Compression on Balanced Trees

Robert Endre Tarjan J*
Computer Science Department

Stanford Universit
3:Stanford, California 9 305

Abstract
--

We devise a method for computing f'unctions defined on paths in trees.

- The method is based on tree manipulation techniques first used for

efficiently representing equivalence relations. It has an almost-linear

running time. We apply the method to give O(m a(m,n)) algorithms for

two problems.
--.

A* Verifying a m3.nimum spanning tree in an undirected graph

i (best previous bound: O(m log log n))*

B. Finding dominators in a directed graph (best previous bound:

- O(n log n + m)).

Here n is the number of vertices and m the number of edges in the

problem graph, and a(m,n) is a very slowly growing function which is

i
related to a functional inverse of Ackermann's function.

L

The method is also useful for solving, in O(m a(m,n)) time,
e

I certain kinds of pathfinding problems on reducible graphs. Such I

L
. problems occur in global flow analysis of computer programs and in i

t
: other contexts.

I
A companion paper will discuss this application.

1 Keywords: balanced tree, dominators, equivalence relation, global flow ri
1

analysis, gra@ algorithm, minimum spanning tree, path

compression, pathfinding problem, tree.I

L

L

J* Research supported by a Miller Research Fellowship at University of
California, Berkeley; and by NSF Grant DCR72-03752 A02 at Stanford

\

University. Reproduction in whole or in part is permitted for any
purpose of the United States Government.

1 "B
1

L

1. Introduction.

There is a small collection of basic techniques which are useful

for building efficient algorithms ..for a wide variety of graph problems.

-- Here we study one such technique, path compression on balanced trees.

The technique is a combination of the ideas of several people. It was
-

first used for efficiently representing equivalence relations, and was

subsequently applied to a variety of problems. See' [2,3,13,21,36] for

extensive discussions and a;pplications.

We significantly extend the range of application of the technique

c
by using it to compute functions defined on paths in trees. We apply

--.
I this function evaluation method to give O(m a(m,n)) algorithms for

i
two seemingly diverse problems:

A. Verifying a minimum spanning tree in an undirected graph

i (previous best bound: o(m loi3 log n> DO,33,401).

L

t

B. Finding dominators in a directed graph (previous best

bound: O(n log n + m) [34,381).

Here n is the number of vertices and m the number of edges in the
\

1

problem graph, and a(m,n) is a very slowly growing function which is
M

related to a functional inverse of Ackermann's function.

The method is also useful for solving, in O(m a(m,n)) time,

L

certain kinds of pathfinding problems on reducible graphs. Reducible

graphs are a special hl
r
$8 of directed graphs which arise naturally

when considerbg glob+ properties gf compu$er programs [7,3.& 18,lg].

c Solvable types, of pathfin&ng problas include computfng path sets

3 using regula,r expregsbons [9,32], solving linear equations [IS], and
,

d.dng global flow analysis,of computer programs [14,17,23]. These

applications will be discussed in a companion paper. The best previous

bound for these problem's is O(m log n) [5,14,17,23,39].

The paper contains ten sections. Section 2 gives definitions

and various preliminary results. Section 3 solves the function

evaluation problem using an algorithm which works in general but is

highly efficjent only for balanced trek Section 4 discusses two\

previous applications of path compression on balanced trees. Section 5

presents a method of decomposing the function evaluation problem into

a problem on a balanced tree and a problem on paths. Section 6 presents

a simple, efficient algorithm for paths when the fun&&on of interest

is max. Section 7 presents an efficient alg)ri.thm for paths which

works for any function. Section 8 applies the algorithm to the
-=.

problem of verifying a minimum spanning tree and to two similar

problems. Section 9 applies the algorithm to the problem of finding

. dominators in a directed graph. Section 10 discusses lower bounds

for various forms of the function evaluation problem.

2. Definitions and Preliminary Results.
e

This section contains the basic notions needed to discuss the

function evaluation algorithm. We will introduce more advanced notions

as needed.

A graph G = (V,E) consists of a finite set; V of n = \V\ elements

called vertices and a set E of m = EI I elements called edges. Either

the edges are ordered pairs (v,w) of distinct vertices (the graph is

directed) or the edges are unordered pairs of distinct vertices, also

represented as (v,w) (the graph is undirected). A directed edge (v,w)

is said to leave v

subgraph of G if

v to w in G is

-
(v,lv,> Y tv2Pv3) Y l l

and enter w . A graph Gl - (Vl,El)

VlfV and ElsE. A path of length

a sequence of edges. .

is a

k from

l ,(v vk' k+l> with v1 =V and vHl=w . The

-

path contains vertices vl'v2' •-*'v~+~ and edges (vl,v2) l Se (v vk' k+l)

and avoids all other vertices and edges. The path is simple if

-

i-.-

L

vl' ..+rHl are distinct (except possibly vl = vHl) and the path

is a cycle if vl = vk+l ' By convention there is a path of no edges

from every vertex to itself but a cycle must contain at least two edges.

An undirected graph is connected if there is a path joining every pair
x_

of vertices.

A tree T = (V,E) is an undirected graph such that T is connected
L

and contains no cycles. If a tree T is a subgraph of a graph G with
/I
i

t

L

the same vertex set as T , then T is a spanning tree of G . In a

tree T there is a unique simple path between any two vertices v

and w ; we denote this path by T(v'w) l

L

A rooted tree (T,r) is a tree with a distinguished vertex r ,

called the root. If v and w are vertices in a rooted tree (T,r) ,

!

e

we say v is an ancestor of w and w is a descendant of v (denoted

L

by v zw) if v is on the path from r to w . *
By convention v 4 v

*
lfor all vertices v . If v -) w and {v'w) is an edge of T (denoted

by v+w 3 ' we SW v is the parent of w and w is a child of v .--
.

I
In a rooted tree

i
has no parent).

unique vertex x

(denoted by x =

each vertex has a unique parent (except the root, which

Any two vertices v and w in a rooted tree have a

' called the least common ancestor of v and w

LCA(v,w)), such that x is on T(v,w) , x : v , and
.

1 3 4 1

c

*
x+w. The path T(v,w) consists of two parts, a path joining v and

x containing descendants of !x and ancestors of v ,

x and

A

with a

w containing descendants of x and ancestors

directed, rooted tree T = (V,E)" is an acyclic

distinguished vertex r , called the root, such

and a path joining

of w l

directed graph

that r has no

entering edges and every other vertex has a unique entering edge. Every

directed rooted tree may be converted into a rooted tree by ignoring

the direction of all edges; every rooted tree may be converted into a

directed, rooted tree by directing all edges from parent to child. Thus

all the concepts of rooted trees apply to directed, rooted trees. We

shall use either rooted trees or directed, rooted trees as amropriate.

In some contexts it is useful to have a numbering of rooted tree

. vertices such that each vertex has a number larger than its parent. In

other contexts it is useful to have a numbering such that each vertex

has a number smaller than its parent. The following algorithm generates

numberings of these types.

m ORDER(T,r);

bs

procedure SEARCH(v);

begin
i

PREXUMBER(v) := i :T i+l;

for w such that v 4 w do- SEARCH(w);-
FDSTNUMBER(v) := j := j+l;

end SEARCH;-
i := 3 0;:=

SEARCH(r);

end ORDER;-

5

Any numbering pRENvMsER(v)

preorder numbering of (T,r) [24]

ev&y vertex have a higher number

generable by ORDER is called a

and satisfies the condition that

than its parent. Any numbering

-_ EDSTORJXR(v) generable by ORDER is called a p&order numberi% of

(T,r) [&] and satisfies the condition that every vertex have a lower

-

-

number than its parent. Procedure ORDER requires O(n) time if

implemented properly [Z&35]. Note that mER(r) = 1 , and

POSTNUMBER = n .

Let @ be any associative (not necessarily commutative) binary

operation, having sn identity element 0 such that O@x = x00 = x

for all x . -(If 0 has no identity element, we can create suih an

element by augmenting the domain of @ .) Let c(v,w) be an
--

arbitrary function defined on the edges of a rooted tree (T,r) , such

that the range of c(v,w) is contained,in ,-the domain of @ . If v

and w are any vertices satisfying v '5 w and (v = y2) ' bJ2d3’ l l 6

(vk'vk+l = w) is the path T(v,w) , we define

0 (V’W> = 45Jv2) @ $‘v3) @ �- l @ c(vk�v&$ if v+w ,

- Qv = 0, if v=w .

We are interested in carrying out an intermixed sequence of two

- -es of instructions on a set of rooted trees. Initially the set

contains n trees, each tree having only a single vertex. The two

types of instructions are:

EVAL(v): return the value of 0 (r,v) , where r is the root of

the tree currently containing the vertex v ;

L LINK(v,w,x): combine the trees with roots v and w into a .

‘
L.

single*tree with root v‘ by making w a child of

v , and let the new edge (v,w) have value c(v,w) = x .

6

In the succeeding sections we develop an algorithm for carrying cut an

intermixed sequence of m EVAL instructions and n-l

Then we apply this algorithm to a variety of problems.'

3. A Basic Algorithm Efficient for Balanced Trees.

LINK instructions.

In this section we present three algorithms for the function

evaluation problem. The first algorithm is extremely simple but has

only an O(mn) running time. The second algorithm improves on the

first by adding a powerful technique called path compression. The

resultant algorithm has an O(m log n) running time and an even faster

O(m a(m,n)) running time for a special class of trees, called balanced

trees. The third algorithm achieves an O(m a(m,n)) bound for all trees

but only works for @ operations having a suitable kind of inverse.

It is usef'ul to consider a static version of the f'unction evaluation

problem. Consider any sequence of m EVAL instructions and n-l

intermtied LINK instr&tions. Let T be the tree defined by the LINK

instructions (i.e., (v,w) is an edge of T with value c(v,w) = x if and
c

- only if there is a LINK(v,w,x) instruction in the sequence). For each

EVAL(v) instruction, let r(v) be the root of the tree containing v k

at-the time the EVAL(v) instruction is to be executed. Then executing

the sequence of instructions is equivalent to computing the value of

Q (m,v) in the tree T for each pair (r(v),v) . (However, the

values on the edges of T , and eventhe shape of T , may depend on

the results of the EVAL(v) instructions. Thus it may not be possible

to construct T without simultaneously'carrying out the evaluations.)

7

, ‘

i

L
L

c

Conversely, let T be any tree of n vertices, with values

c(v,w) defined on the edges, and let [(v,,w,)] be any set of m

*
vertex pairs such that v4 3 w, i-n T . We can use the following

method to

A J.

wahatie 0 (vp,) for each vertex pair.

Step 1;

Step 2:

Step 3:

Step 2 requires O(m) time and O(m) space using a radix sort

I
Number the verhces of T in postorder. Identif'y each

vertex by its number.

Sort the pairs (vi,wi) in increasing order on vi .

EV :=lengs

for w such that v- -) w do- LINK(v,w,c(v,w));

k _for (vi,wI) such that vi = v do EVAL(w.);- 1
end;-

c.27 3, so the the required to solve this static function evaluation

problem is within a constant factor of the the required to solve the

dynamic problem defined by Step 3, and the storage space required is

O(m) plus the space necessary to execute Step 3.

To solve the dynamic fknction evaluation problem we use two

arrays3 . The value of f(v) is the parent of

vertex v in the set of trees so far constructed; f(v) =O if v

has no parent. The value of cc(v) is ~ c(f(v),v) if v has a

parent and 0 otherwise.- The following programs implement the LINK

and EVAL instructions.

INITIALIZE: 2

INITIALIZE;end
1

B LINK(v,w,x); be&&

f(w) := v;

V :=lunln

f(v) := 0;
,

mEVAL(v); begin

a := 0'-'
W := v;

ws f_!w) # 0 gbs

a := cc(w) Q a;

W := f(w);

g;

EVAL := a;

end EVAL;r\Nv

ndobs

This method of implementing EVIL and LINK is simple but not very

efficient. Consider a sequence of instructions which constructs a

non-branching tree of n vertices, and then carries out m

- evaluations on the vertex farthest from the root. Such an instruction

sequence requires O(xnn) computing time [13].

1 TO avoid this inefficiency, we use the associativity of @ . We

modify the EVAL instruction so that it not only computes @ (r(v),v) ,

but it modifies the tree containing v . Each vertex on the path

from r(v) to v is made a child of r(v) , and values on the edges

are modified to preserve @(r(V)+) values for au vertices w in the

sane tree as v . Here is a program for this purpose.

9

-

vEVAL(v); b_egin

r := v; a := 0 s
aif f(f(v)) = 0 tzb&r := f(v); a :=
eb&

comment first loop reverses f pointers along path from

v to root;

X := 0; y := v; r := f(v);

WE f(r) # 0 &b@-

f(y) l= x; x := y; y := r; r := f(r);
Wd; i

comment first loop ends with r = r(v);

a

comment second loop computes @(r(v),v) and modifies

--m. pointers and values;

*x#o&33i&
Y := f(x);

a :=
gx> := a; f(x) := r; x := y;

EVAL := a;

We call this method of carrying out an EVAL instruction path

compression [3]. As a side effect, this procedure sets r equal to

the root of the tree currently containing v . It is easy to prove

that this implementation returns the correct value of EVAL(v) for

each EVA5 instruction. Knuth [ll] attributes the path compression

idea to Tritter; independently, McIlroy and Morris [20] used it in an

algorithm for f%nding minimum spanning treqs. We call each tree defined

by the f array an f-tree.

Theorem 1. For any intermixed sequence of m 2 n EV. instructions

and n-l LINK instructions, the running time of the path compression

algorithm is

Patterson [29] proved Theorem 1 for the case m = n ; a proof for

arbitrary m > n appears in [%I. The bound in Theorem 1 is tight

for values of m and n satisfying, for some positive constants c

.

and E , m < cn or m > cnl+e .

Let (T,r) be the rotted tree defined by the n-l LINK instructions

(with no path compression). For any vertex v in T , let d(v) be

the number of descendants of v , including v itself. We say T is

balanced if v +w in T implies 2d(w) s d(v) . If T is balanced,

the path compression algorithm is faster than indicated by the Theorem 1

bound.

Let the function A(i,x) on integers be defined by A(O,x) = 2x

for x 20 ; A(i,O) = 0 for i >l ; A(i,l) = 2 for i >l ;

AM4 = A(i-l,A(i,x-1)) for i ~1 , x > 2 . A(i,x) is a slight

variant of Ackermann's function [1 1. Let I

4 e-b 4 = min{z 21 \A(z, brrn/nl) > log2 nj where TX-! denotes the

smallest integer not less than x . For fixed n , the function

a(m,n) decreases as m grows.

Theorem 2 [36]. The path compression algorithm runs in O(m a(m,n))

time if the tree T defined by the LINK instructions is balanced.

Our goal is to devise a function evaluation algorithm which1 ’
requires O(m CX(m,n)) timy fat all trees T . We will accomplish

this by representing an arbitrary tree as a combination of a balanced

11

tree and a set of paths, and constructing an efficient function

evaluation algorithm for paths.

-- For 0 operations with a suitable kind of inverse, we can achieve

the O(m a(m,n)) bound fbr arbitr&y trees with much less trouble than

in the general case. Suppose that there is a Boolean function Z(x) on
i

the domain of @ and another function I(x) from the domain of @ into

the domain of @ satisfying

(>i w -= true implies y@x = x for all y ;

(ii) Z(x) = false implies 2(1(x)) = false and y@x+I(x) y for=

all y ; and

c (iii) Z(x) =--Z(y) = E implies z(x@y) = E .

Then we can modify the implementation of LINK so that the EVAL instructions

are performed on a balanced tree, regardless of the structure of T l

For this purpose we need a third array, d(v) , which records the

number of descendants of each vertex v in the set

by the modified LINK procedure. The new version of

of trees constructed

LINK appears below.

e LINK(v,w,x);

EVAL(v);

comment this

equal to

EVAL instruction, as a

the root of the f-tree

.
r1 := r;

EVAL(w);

r2 := r;

if Z(x) then-
*giQ

comment

cc(3$:= x@cc(r2)

2 d(r,) then beginMNVW
make r2 a child of rl

dbl) + dbg) ;

r1;

d(r1) :=

f(r2) :=

. cc&) := I(ec(rl))Ox$cc(r2);

end else begin--nn#-neu

side effect, sets r

currently containing v;

12

s make rl a child of r2;
d(5) := d(rl)+ d(r2);

f(rl) := r2;

ccbg) := xOcc(r2);

cc(q := I(cc(r2)>@cc(rl);
end end LINK; . .
- -

We must, in addition, modify EVAL to return the value cc(r)Oa

instead of a .

We call the new implementation of LINK and EVAL path compression

with balancing. Suppose this implementation is used and let T' be

the tree such that v dw in T' if and only if v is the first

non-zero value assigned to f(w) . T' and T differ in that certain

parents and children are exchanged, and certain edges in T are missing

from T' . It is easy to show that T' is balanced and that LINK

adjusts the cc array in such a way that all EVAL instructions return

correct values [2,13,21]. By Theorem 2, path compression with balancing

requires O(m CX(m,n)) time for an arbitrary instruction sequence.

Morris [20] apparently originated the balancing idea. It also

appears in [16]. Discussion, analysis, and applications of path

compression with balancing appear in [2,3,13,21,36].
e

We can modify the LINK instruction to save n words of storage

if storage is at a premium, The value of d(v) is only of ifi-terest

when f(v) = 0 ; thus we can store values of d(v) in the f array

if we add a Boolean array to indicate whether f(v) represents a

pointer or a count of descendants.

For sane applications it is useful to generalize the LINK

instruction to allow w to be a vertex other than a tree root. Such

an instruction GLINK(v,w,x) can be implemented as follows:

13

--- -- ----.-- -.--__. _ -.

N GLINK(v,w,x); begin
Y := EVAL(v);

comment r is now the root of the f-tree containing v;
. .

end GLINK;-

14

4. TWO Previous Applications.

This section presents two previous applications of path compression

with balancing. The algorithms constructed for these applications will

be used in succeeding sections.

The first algorithm computes unions of disjoint sets. We can use

the algorithm to represent equivalence relations [25]. Suppse we are

given n disjoint sets, each containing one element, and each having a

distinguishing name. We wish to carry out two types of instructions

on these sets. The instruction types are: FIND(x) : return the name

of the set containing element x . UNION(A,B) : add the elements

in set B to set A , destroying B .

To carry out these instructions, we use four arrays, &4 9 d(x) >

. f(x) I and r(A) . We define x%y = x for all x, y , and I(x) = x ,

z(x) -= false , for all x . We initialize cc(x) to be the name of

the set initially containing x , d(x) to be one, f(x) to be zero,

and r(A) to be the single element initially in set A . Then we use

path compression with balancing to carry out UNION and FIND instructions

as follows:

-FIND(x);

W..(x) ;

procedure UNION(A,B);

LINK(+) > r(B) 9 A) ;'

The time required for m > n FINDS and n-l intermixed UNIONS

is O(m CX(m,n)) . The space required is O(n) . Since @ is so

simple, the procedures for EVAL and LINK can be shortened somewhat

for this special case. This set union algorithm is useful for handling

15

EQUIVALENCE and COMMON statements in Ey)RTRAN [8,16], f5nding minimum

spanning trees [10,33], and checking flow graphs for reducibility [37].

The second algorithm, due to Aho, Hopcroft, and ul.hm [2],

computes least common ancestors in a rooted tree. Let (T,r) be a

rooted tree and let [{ i, iv w)} be a set of m vertex pairs. We wish
-

,'

to compute ICA(vi,wi) for each pair. The following method uses the

set union algorithm to carry out the computation.

L-

c-

L-

k-

c

Step 1:

Step 2:

Step 3:

Step 4:

i-
We can prove that this algorithm works correctly by usjng properties

Number the vertices of T in postorder. Identie each

vertex by its number.

So& the pairs [v,,w,l SO that vi 5wi for all. i ad

vi <v.
- J

for all i < j .

for v :=l*ns

initialize a set {VI named v; ,

pm-w := l - n % -

% [V,lW,) such that Wi = W do'

ICA(vi,wi) := FIND(vi);

let u be the vertex such that u 3 w in T;

UlYION(u,w);
1

,
L

L

IL
t
L

1

of depth-first search; the postorder numbering corresponds to

a depth-first search of the tree
CM) l See [2,34,37,383. If there

are m ,>n vertex pairs, the method requires O(m a(m,n)) time and

O(m) space to compute least ccxnmon ancestors.

16

5* Representation of an Unbalanced Tree.--II_-

Let (T,r) be a rooted tree. li'or each vertex v 3.c-L d(v) be

the number of descendants of v in 'JI , and let f(v) be the parent

of v in T (f(r) = 0) . If v dw in T , we say the edge (v,w)
. .

is good if 2d(w) ,< d(v) and bad if 2d(w) > d(v) . For each vertex

v there is at most one bad edge (v,w) . Let b(r) = 0 and for

v # r let b(v) be the unique vertex such that b(v) 5 f(v) in T ,

the path T(b(v),f(v)) contaiks only bad edges, and f(b(v)) f: 0

implies (f(b(v)),b(v)) is a good edge. Let TB be the tree with

edges {(b(v),v) 1 v # r} l (See Figure 1.)

Theorem 3. TB is balanced.

Proof. For each vertex v , let d'(v) be the number of descendants

. of v in TB . If (f(v),v) is a bad edge in T , d'(v) = 1 . Thus

2d'(v) = 2 < d'(b(v)) . If (f(v),v) is a good edge in T , then-

d' (4 = d(v) . Thus 2d'(v) = 2d(v) < d(f(v)) < d(b(v)) = d'(b(v)) .

In either case 2d'(v) < d'(b(v)) , and TB is balanced. Cl

For the purposes of the function evaluation problem, we can represent

- any tree T by the correspo ding balanced tree TB and the set of
?

paths defined by the bad edgesi Each edge (b(v),v) in TB has an

associated value cb(b(v),v) = Qy(b(v),v) . Given any vertex pair
.

(r(vLd J we can represent Q#+JLv) as

~W),v) = c(r(v),x) @ [@T(x,y)] @ c(y,z) @ [BTB(Z,V)]

where (r(v) Jx)
36

is an edge of T, x 4 y by a path of bad edges

in T , (YJ d
*

is an edge of T , and z 3 v in TB .

17

-

We can modify LIXK to update the tree TB and the set of bad

- _--

-

edges, and modiQ EVAL to compute ~WLV) using the decomposition

above. LINK requires six arrays:.. cb(v) j v) , b(v) , f(v) ,

SW) and d(v) . For each vertex v , f(v) is the parent of v

in T , cc(v) is the value of edge (f(v),v) in T , s(v) is a

list of the children of v in T , and d(v) is the number of

descendants of v in T . The pointers b(v) represent the tree TB ,

and cb(v) is the value of . Initially

g$v) = CC(V) = 0, I b(v) = f(v) = 0 9 S(V) = # , and d(v) = 1 for

each v .
-=_

As soon as a LINK(v,w,x) instruction occurs, we can compute the

L- value of d(w) . Thus, for each child u of w in T , we can decide

whether (w,u) is a good edge or a bad edge. If (w,u) is a bad edge,

i we use a procedure LINKP to add the edge (w,u) with value cc(u)

/

i

L

to the set of bad paths. If (w,u) is a good edge, we find all

vertices y such that (u,y) is an edge of TB , and for each such y ,

we add (u,y) with value Q&y) to TB l The program below

L
implements this computation. The prograJn uses a recursive procedure

*
DFS to find, for each good edge (w,u) , the vertices y such that

! .(u,y) is an edge of TB l The program assumes the existence of a

Iprocedure LIMP for adding edges to bad paths.

18

m LINK(v,w,x); bs

wDFS(y,a);

a3r-zES(y) g

b(z) := u;

cb(z)
g 2*d(z) > d(y) DFS(z, cb(z));

d(v) := d(v)+ d(w);

add w to s(v);

~ucs(w) Eg2*d(u) >d(w) s

LINKP(w, u, cc(u));

C := 0 ’-’-=.
DFS(u,c);

end end LINK;- -

Consider 'this program. The time required for n-l calls on LU\TK

is O(n) plus the time for all calls on DFS and LINKp . Each

recursively nested call on DFS causes b(z) to become non-zero for

a new value of z . Thus the total number of calls on DFS is O(n) .

The t-ime required for all calls on DFS is proportionalto the total

e
number of calls, so this time is O(n) , and the total time for n-l

LINK instructions is O(n) plus the time required for the LINKP

instructions.

The following program implements the EVAL instruction. The program

assumes the existence of a procedure EVAIB which uses path compression

on TB to compute path values in' TB . EVALB is identical to the path

compression algorithm in Section 3 except for the use of arrays b(v) >

cb(4 in place of f(v)
☺& l

The program also assumes the existence

of a procedure EVALP which cjnlputes path values on the set of bad paths.

I i ,
i

-

L

L

I-

L

I

i

L
L

eEVAL(v); bs

a := EVALB(v);

comment as a side effect EVALB(v) sets r equal to the rot

of the tree containing v in the part of TB so fax

constructed;

X := r;
if f(x) f 0 then a- := EVALP(f(x))Occ(x)Oa;

comment as a side effect EVALP(f(x)) sets r equal to the

root of the tree containing f(x) in the set of bad

paths so far constructed;

a

EVAL := a;

end EVAL;-

Suppose we execute a sequence of m EVAL instructions and n-l

intermixed LINK instructions. The EVAL instructions require O(m) time

plus the time required for m EVALB and m EVALP instructions. The

EVALB instructions carry out path compression on the balanced tree TB

and by Theorem 2 require O(m a(m,n)) time. Thus the entire sequence

of instructions requires O(m a(m,n)) time plus the time for the

LINKP and EVALP instructions.

To complete the algorithm we need a way to implement function

evaluation on a set of paths; that is, to implement LINKP and EVALP.

- The next two sections present 'cwa ways of doing this so as to achieve

an O(m a(m,n)) time bound. The algorithm of Section 6 is quite

simple but is only valid for the special case when x3y = msx(x,y} .

The algorithm of Section 7 works for all operations XB but requires

certain advance knowledge about the sequence of EVAL and LINK

instructions.

20

6. An Algorithm for the Operation max{x,y) .

In this section we assume that x@y = max{x,y') . The special
/

properties of max{x,y] allow us to construct a reasonably simple

function evaluation algorithm for the set of bad paths. The algorithm

uses the disjoint set union algorithm of Section 4, in combination

with the following theorem.

Theorem 4. Suppose x f y 5 z in T . Then 0 (x,y) 5 0 (x,z) .
* *

If w-,x-,yJTz in T and 23 (X>Y> = O(x,z) , then @(w,y) = @(w,z) ,.

Proof. Obvious. Cl

--.
For any vertex v , consider the set of vertices w such that

*
v dw by a path of bad edges in T l By Theorem 4 we can partition

this set of vertices into a collection of sets Si such that each S.
1

consists of the vertices on a path of T , all vertices WES i have

the same value of ~(v,w) (denoted by OSi), and if wcSi , x E S. ,
J

i/j 9
*

w 4x, then @Si < OS. .
3

Our function evaluation method for the bad paths uses the set

union algorithm to keep track of the sets S
i and'their associated

values @Si . The algorithm uses as the name of the set Si the

vertex WCSi such that x ES
*

i implies w-+x in T . The algorithm

uses two arrays, max(v) and t(v) . Initially max(v) = -03 (= 0)

and t(v) = 0 . As the algorithm proceeds, max(v) = @S i if v is

the name of set Si , and t(v) = w if v is the name of a set Si

and w is the name of a set
* *

S
3

such that v 3 x --) w implies

XESiUS. l

3
Initially each vertex v is in a singleton set (v)

named v.

21

--

The algorithm also needs a mechanism to keep track of the vertex

r(v) which is the first vertex on the path containing v in the set

of bad paths so far constructed. Two arrays, last(v) and root(v)

are used for this purpose. Initially last(v) = root(v) = v for all

vertices. As the algorithm proceeds, is the last vertex onlast(v)

the path containing v in the set of bad paths so far constructed,

and root(last(v)) is the first vertex on this path. The following

programs imphmrt LINKP and EVALP.

c

B LINKP(v,w,x); m

II
L

i

last(v) :=--. last(w);

root(last(v)) := v;- -
max(w) := x;

t(v) := w;

t

s (t(w) f 0) s (max(t(w)) ,< x) do+
UNION(w,t(w));

t(w) := -t;(t(w));

c.
end end LINKP;-NW

L
~EVALP(v); s

r := root(last(v));- -
EVALP

. Execution of n-l LINKP and m intermixed EVALP instructions

requires O(m CX(m,n)) time. Using this implementation in combination

with the decomposition method of Section 5 gives an O(m a(m,n)) time

function evaluation method for the special case of x@y = max{x,y] .

The method requires O(n) storage space.

22

7* A General Algorithm.

To achieve an O(m a(m,n)) bound for an arbitrary operation 0,

we must make an assumption about the sequence of EVAL and LINK

instructions. We assume that the entire sequence of EVAL and LINK

instructions, with the exception of the x parameters in the LINK

instructions, is known in advance. Thus we can precompute the trees
*

T and TB, and determine in advance the paths v 4w over which we

-

must compute EQv,w> l

We represent the set of bad paths by two sets of balanced trees,

TR and TL . Consider any bad path and suppose its vertices are

numbered in postorder from 1 to k. Let v and w be vertices

on this path for which we want the value of o(w) l We compute

@ (v,w) as 3 (v,w> = [. @(V,U)l 0 [O(U,W)] , where u = (2j+l)2i

is the vertex with largest i in the range w ,< u 5 v .

To compute' B(u,w) , we use a forest TR . TR is the set of

trees with vertices 1 through k such that the father of vertex

(2j+l)2i is (j+l)2i+1 . (See Figure 2.) The value of an edge (x,y)

in TR is Q&%Y> l
TR is a set of balanced trees numbered in

- postorder. We can use path compression in TR to compute

@$�,w) = @☺R(�,w) l

_ To compute @(v,u) , we use a forest TL . TL is the set of

trees with vertices 1 through k such that the father of vertex

(2j+l$ is j2i+1 . (See Figure 3.)

in TL is @$y,x) . TL is a set of

preorder. If we define x@y = y@x ,

any pair of vertices (v,uJ such that

.

23

The value of an edge (x,y)

balanced trees numbered in

then @$v,u) = qL(u,v) for
*

u -,v in TL l

The idea we want to use is to compute Q+(v,u) = qL(u,v) for

appropriate pairs (v,u) by using path compression in TL . This

idea does not work directly, however, because compressing a path
*

u1 -+ v1 in TL may cause a laterpair (u2,v2) to become unrelated

in TL . (See Figure 4.)

To solve this problem, we use the fact that we can precompute

the trees T , TB , TL , and TR and the paths over which we wish

to evaluate. We reorder the paths in TL so that path compression

will work, and we symbolically compute values for each appropriate

pathin T,TB,TL,and TR. This symbolic computation works as

follows. We construct a unique identifier e for each edge (v,w)

of T , with f(e) = v , g(e) = w . For each path T(x,z) , the

c.

L value of which we wish to compute as @f(x,z) = [',(x,y)] @[@,(y,z)])

L
we also construct a unique identifier e , with f(e) = x , g(e) = z ,

p,(e) = el , p,(e) = e2 , where el identifies the path T(x,y)

L.. and e2 identifies the path T(y,z) .

I

i

After constructing identifiers to represent the entire computation,

we reorder the identifiers in a wiy consistent with the order of the

,

iL
I

L

d EVAL and LINK instructions. Then we read through the identifiers

and the EVIL and LINK instructions, carrying out the computation.

IThe algorithm, presented below, has six steps.

L
L

Step 1: Initialize all variables. Construct T . Compute d(v)

for each vertex of T .

2 :Step Construct TB , TR , TL . For each EVAL(v) instruction,

find the vertex r such that EVAL(v) = O(r,v) and
L

construct identifiers e* 2 , e3 , e4 such that

24

@(r,v) = [o$L(f(e2>,r> 1 @ [@T&(“2)9g(e2))]

3 :Step

4 :Step

Step 5:

Step 6:

@ c(f(ej),g(e3)) @ ☯ @TB(f(e4h(e4)> 1 l

Use path compression to symbo~lically compute values for

appropriate paths in TB and TR .

Sort the pairs (f(e2),r) in decreasing order on d(f(eg)) l

Use path compression to symbolically compute values for appropriate

paths in TL. For each pair (r,f(e2)) , construct an identifier e1'
Sort the identifiers e in increasing order on d(f(e)) ,

breaking ties in decreasing order on d(g(e)) .

Process the identifiers and the LINK and EVAL instructions--.

in order, carrying out the actual evaluation.

This algorithm hinges upon the symbolic computation and the

reordering of identifiers so that the actual computation proceeds

in an order consistent with the order of the EVIL and LINK instructions;

the x values occuring in the'LINK instructions may depend on the

results of previous EVAL instructions. Since d(v) 2 d(w) implies

V =w or l(w 5 v) in T , the sorting in Step 3 guarantees that
e
the path compression in Step 4 will work. Furthermore Step 5 sorts

the identifiers e so that pi(e) and p2(e) , if defined, precede e ,

ana if el precedes
e2 and e1 and e2 identify edges of T , then

the LINK instruction corresponding to el precedes the LINK

instruction corresponding to e2 .

If all the x values in LINK instructions are known ahead of

time, as in the static evaluation problem mentioned in Section 3, we

can dispense with Steps 5 and 6 and the symbolic computation and

carry out all the evaluations directly. We must still reorder the

evaluations on the forest TL using Step 3.

25

The algorithm uses thirteen arrays and one array of lists.

For each vertex v , et(v) is the identifier of the edge from

the parent of v to v in T .-' Arrays 2 , , el s*i&&rly

represent TB , TR , TL . For each vertex v , d(v) is the number
i

of descendants of v in T , and s(v) is a list, of children of v

in T . Arrays root(v) and last(v) are used to find the first

vertex on each bad path as described in Section 6. For each vertex v ,

h(v) is the number of vertices (including v) from v to the end of

the bad path containing v . The array c(e) is used to store values

computed for the identifiers in Step 6. For each vertex v , the
--_

algorithm constructs a dummy identifier e with f(e) = g(e) = v .

1 :Step f&v := lsndo-

ee(v> := eb(v) := er(v) :=

f(v) := g(v) := root(v) := last(v) := v;

d(v) := h(v) := 1;

s(v) := $4;

c(v) := o_;

9 I
k := n;
ident := list := $;

fJ3r-i := lem+n-ldo-

g instruction i is LINK(v,w,x) %@.n-

d(v) := d(v)+ d(w);

k := Ml;

et(w) := k;

f(k) := v; g(k) := w;

s(v) := s(v) u (w];

end Step 1;-

26

Step 2: Ei := 1 *m+n-1 g

g instruction i is LINK(v,w,x) t&b=

_if 2*d(v) > d(w) t& LINKP(v,w)

eDFS(w); -.
end else begin- - -

let instruction i be EVAI,(

EVWv&b q+) ;
if et(f(q+(i))) = 0 then e3(i) = vNu-
* e?(i) := et(f(eF));

Ev~wjo),&2);

r := root(last(f(e,(i))));- -
list := listU((f(e2(i)),r,i)];

end Step 2; 'Ncrv
--.

NDFS(x); 1 '

for YES(X) %Y&

E f@(Y)) =we&(y) :=

*$i&

k := H-1;

:= y; p,(k) := eb(x);

P2(k) := c(y);

ident := identU {k);

end;

&*d(y) > d(x) EDFS(y);

end DFS;-

An examination of Figures 2 and 3 verifies the following facts, which

form the basis for procedure LINKP(v,w) below. Let h(v) = (2j+1)2i

be the number of vertices (including v) from v to the end

bad path containing v . Then {(goel)'(w) IO 5 1 5 i-l) is

of children of v in TR . If i=O, w is the parent of

of the

the set

V

in TL ; if i>O and j>O,. (Pfg i(w) is the parent of v

in TL ; andif i>O and j=O, v has no'parent in TL .

27

Jm$gj&g LINKP(v,w) ; s

h(v) := h(w)+l;

5 := h(v);

g 5 1s odd sel(v) -i= et(W)

er(w) := et(w);
j := j/2;

z := cl(w);

while j is even do be ~JJ

k
-4

:= k+l;

f(k) := v; g(k) := g(z);

Pi(k) == -31-(f(z)) ; p2(k) := z;
-.e. &g(z)) := k;

ident := identu {k);
Z := el(g(z));

endrV-

k := ktl;

f(k) I:= v; g(k) := g(z)*

Pi(k) :=
ident

er(f(z)); p2(k; := z;
,, := identu {k];

s(v) := k;
sss LINKP;

28

w EVAL(v,e,ei);

g e(v) = 0 t& ei(i) := v

else if e(f(e(v))) = 0 then ei(i) := e(v)- - - -
else bst-

X := 0; y := e(v);

WE e(f(y)) k 0 do begin-NycNv
ek(y> > := x; x := y; y := e(f(y));-.

end;-
while x f: 0 do beginNV-

k := k+l;

f(k) := f(y); g(k) := g(x);

Plod := e(f(x)); p2(k) := x;

X := ek(x)>;

e(p2(k)) == k;
ident := identu {k];

end;-

end EVAL;r-

. Step 3: Using a radix sort, order the triples (zJrti> on list

in decreasing order on
d(z) l

Step 4: $r- (z,r,i) Elist &

if z = r E e,(i) = r

(r)) e e,(i) := g(r)else

else

X := 0; y

while el(g(y)) k 0 do begin- -
el(f(y)) := x;7;xy := el(g(y));

C?lld;

e x # 0 do begin-rvwyv
k := k+l

g(k) := g(y); f(k) := i(x/;

p2(k) == g(g(x)); PA(k) := x;
X := el(f(x));

el(p$)) := k;

ident := identu {k];

e,(i) := k;
E Step 4;

29

Step 5:

6 :Step

Using a twoipass radix sort, order the identifiers e on

ident in increasing order on d(f(e)) , breaking ties in

decreasing order on d(g(e)) .

&i := l*m+n-1 g

s instruction i is LINK(v,w,x) t-tbs

end else- -
let

j eident such that f(j) = v dz

c(j) := cblkW@c(P2(j));
be&g

&truction i be EVAL(v);

nhrn c(e,(i)) @c(e2(i)) Oc(e3(i)) "c("4(i))

as the result of instruction i;

--

Initialization and construction of T t TB , TR , TL require O(n)

time. The path compressions and symbolic computations in Steps 2 and 4

i
i

require O(m a(m,n)) time. Step 3 requires O(m) time and space,

and Step 5 requires O@(m,n)) time and space, since O(m a(m,n))

identifiers are constructed. Step 6 requires O(m a(m,n)) the.

r Thus the entire algorithm requires O(m %(m,n)) time and space. The,

L corresponding algortthtn for the static function evaluation problem
. .

- (omitting Steps 5 and 6 and the symbolic computations) requires
.

O(m a(m,n)) time and O(m) space. It is possible to save storage
!

s@ace in the algorithm for the dynamic function evaluation problem by

delaying evaluation on TB and TR until Step 6 when the values are

actually known and using symbolic computation only on TL . However,

this saves at most a constant factor in running time and storage space.

30

e

8. Verifying a Minimum Spanning Tree.

This section presents a simple, direct application of the

function evaluation algorithm. Let T be an arbitrary tree
-.

and let @ be a commutative, associative operation. Let each

edge (x,y) of T have an associated value c(x,y) which is

in- the domain of Q l For any two vertices v and w in T , let
,

Q (v,w) = C(V19 V2> 0 c(V~,V3) 0 l . . 0 (vk.�vHl) 9 where

T(v,w) = (v,,v,)) (v2,v3), ..* I (v~,v~+~) . The problem we solve is

this: given a set of m pairs of vertices {{vi,wi)) , compute

Q(vi,wi) for each pair.
--.

0~: algorithm, an application of the least common ancestors

algorithm of Section 4 and of the function evaluation algorithm,

. appears below.

Step 1: Pick an arbitrary vertex r of T and convert T into

a rooted tree (T,r). '

Step 2: For each pair {vi,wi) , compute x. = ICA(vi,wi) using1

the algorithm of Section 4.

e Step 3: Compute QT(Xi,vi) 9 ~(Xi,Wi) for each pair {Vi,Wi]

using the static version of the function evaluation algorithm

and combine the answers to give B(vi,wi) for each pair.

This algorithm requires O(m a(m,n)) time and O(m) storage

space.

The algorithm has several interesting applications. Suppose

c(v,w) is a real value representing the cost of edge (v,w) , and let

XQY = x+y . Then the algorithm computes the total cost of each of

31

a set of m paths T(vi,wi) . In this case @ has an inverse and

we can use path compression with balancing, as described in Section 3,

to carry out Step 3. See [2] for a simU..ar solution to a problem

requiring computation of depths in rooted trees.

Suppose c(v,w) is a real value, and let X$JY = min{x,y) . Then

the algorithm computes the minimum value along each path T(vi,wI) . In

this case we can use the algorithm of Section 6 to carry out Step 3.

This problem arises when determining the minimum cut (or maximum flow)

between given pairs of vertices in an undirected graph with edge weights.

L Gomory and Hu [22] have given a method for constructing, for any

i

t

undirected graph G with edge weights, a tree T such that

(i) T has the same vertices as G , and

(ii) the value of the minimum cut between any pair of vertices v

L and w in G is equal to the mtiimum edgevalue on the path

mb4 g

I
L

Thus, we can use the algorithm above to compute minimum cut values for

a set of vertex pairs, assuming that the cut tree T is given.

L Suppose G = (V,E) is a graph with real values c(v> on its

4 ed.ges ad T = (V,E') is a spanning tree of G . We say T is a

minimum spanning tree if c ev)
(v,w)~E'

is aminimumamong all

s-panning trees of G . We wish to test whether T is a minimum.

spanning tree. The following well-known theorem allows us to apply

the algorithm above.

Theorem 5. T is minimum if and only if, for each edge (v,w) cE-E' ,

c(w> 2 m=Ic(⌧,Y> 1 (XtY> is on wbw) 3 l

32

h

'I!huc, if G has m edges, we can test whether 'I' i:: m3nirnum

in O(m a(m,n)) time by computing @+,(v,w) for each non-tree edge

(bW> using the algorithm above with xQy = max{x,y) and applying

the test of Theorem 5. This result is?nteresting because the best

known algorithms for actually finding a minimum spanningtree [10,33&]

require O(m log log n) time.

9* Finding Dominators.

Several interesting graph-theoretic problems arise in the study

of global flow analysis and optimization of computer code. This section

discusses a problem of this type. A flow graph (G,r) is a directed

graph with a distinguished start vertex r such that there is a path

from r to each node in G . Vertex v dominates'vertex w in

flow graph (G,r) if v f w and every path from r to w contains v .

Vertex v is the immediate dominator of w , denoted v = idom(w) ,

if v dominates w and every other dominator of w also dominates v .

By convention idom(r) = 0 .
e

Theorem 6. Every vertex of a flow graph (C,r) except r has a

unique immediate dominator. The edges {(idom(w),w) 1 wcV-{r]) foMn

a-directed tree rooted at r , called the dominator tree of (G,r) Y
*

such that v dominates w if and only if v +w in the dominator tree.

Proof. See [6]. 3

We wish to construct the dominator tree of an arbitrary flow graph

(G,r) . Reference [6] describes uses of the dominator tree in global

33
c

-_
\

t

code optimization. Aho and Ullman [6] and Purdom and Moore [3O] have

given simple O(nm) time algorithms. Reference [34] gives a more

complicated O(n log n + m) time algorithm and [38] gives a simplified

version of this algorithm. Here we use extensions of the ideas in
. .

[34,38] to develop a new algorithm which uses path compression to

achieve an O(m a(m,n)) t3me bound.

We need ne new concept, that of a depth-first spanning tree.

Let (G,r) be a flow graph with G = (V,E) , and let (T,r) be a

directed spanning tree of G rooted at r , with T = (V,Er) . Let

T have a postorder numbering and assume that vertices of T are

identified by number. (T,r) with the given numbering is a depth-first

SPannh& tree (DFS tree) of (G,r) if the edges of E-E' can be

partitioned into three sets:

(>i
*a set of edges (v,w) with v 4 w in T , called forward edges;

(ii) a set of edges (v,w) w3.th w 5 v in T , called cycle edges;

(iii>
* *a set of edges (v,w) with neither v -'w nor w --) v , but

1 with w > v > called cross edges.

A DFS tree is so named because it can be generated by starting at

L
e r and carrying out a depth-first search of G . A properly implemented

algorithm requires O(m) time to carry'out such a search [35], using

L _ a set of adjacency lists [4,26] to represent G . The search generates T ,

L

numbers the vertices in postorder, and partitions the edges into tree

edges, forward edges, cycle edges, and cross edges. Henceforth we assume

that (T,r) is a DFS tree of G and that vertices are identified by

number.

i Theorem 7. If v>w, any path from v to w in G must contain

i

L
a common ancestor of v and w in T .

34

Proof. See [34,351. El

We will calculate idom(w) for each vertex \f bx ~>~~es::~1rl~ t.'r~.r\

vertices in order, from smallest to largest. For 0 < k < n , let- -. .

Gk = (V, {(V,W) 1 (v,W) EE and w < k]) .- Go = (V,p) ; Gn = G . For

OLkln and l_<w<n let dom(k,w) = max(v 1 there is a path

from v to w in Gk] . It is clear by examining T that

dom(k,w) 2 m=(k,w) for all k and w , and g(k,w) B k if

klw and w<n. Furthermore, it follows from Theorem 7 that

dom(k,w) 5 w for all k and w . We prove some more facts about

dom(k,w) which enable us to calculate it.
--.

Theorem 8. dom(k,k) = max(dom(k-1,v) I (v,k) is an edge} if k < n .

/ Proof. Obvious. ClI

For Osk_<n, l_<w_<n, kzw, let a(k,w) be the smallest

ancestor of w larger than k . Define c(v,w) = (w,w) for all

edges (v,w) ET ,,and x@y = max{x,y) .

e Theorem 9. If k>w,

Proof. Clearly there is a path from

dom(k,w) = @ wbw),4 l

0 (a(k,w),w) to w in Gk ,

so dom(k,w) 1 @(a(k,w),w) l We prove by induction on k that k 1 w

implies dom(k,w) L @(a(k,w),w) . The hypothesis is clearly true for

k =w l Suppose the hypothesis is true for some k and consider the

path in Gk+l from dom(k+l,w) to w . If this path does not contain

k+l , then dom(k+l,w) = dom(k,w) 5 Q(a(k,w),w) 5 Q(a(k+l,w),w) by

the induction hypothesis. If this path does contain k+l , then k+l >w

35

i
L-

L

implies the path from k+l to w in Gk+l contains a common ancestor

of k+l and w , which must k+l . Then dom(k+l,w) = dom(k+l, k+l)

5 Q(a(lr+l,w),w) . 0 . .

Theorems 8 and 9 allow us to compute dom(w,w) for each vertex

w <n by using path compression. We simply execute the following loop.

_forW :=len-1 Afi

s
dom(w,w) := [max(v \ (v,w) EE and v > w)]

0 [max(EVAL(v) I (v,w) CE and v < WI];
--. let v -) w in T;

LINK(~,w,dom(w,w));

end;-

The next theorem shows how to use the values dom(w,w) to commute

immediate dominators.

Theorem 10. Let v p n . If

dom(u,u) > dom(v,v) > u , then

u be the smallest vertex such

Then idom(v) = idom(u) .

*
no vertex u satisfies u -) v ,

idom(v) = dom(v,v) . Otherwise, let

that u 4 v and dom(u,u) > dom(v,v) > u .

J?roof. Clearly no vertex except dom(v,v) on the tree path from

dom(v,v) to v can dominate v . Suppose no vertex u satisfies
*

UdV, dom(u,u) > dom(v,v) > u . Consider any path from n to v .

Let x be the last vertex on the path with x > dom(v,v) . If there

is no such vertex then dom(v,v) = n and

Otherwise, let y be the first vertex following x

dom(v,v) 5 y 5 v
d

l All vertices z between x and

dominates v .

on the path with

y on the path

36

must satisfy z <y by Theorem 7 and the choice of x and y. Thus

dom(y,y) 2 x > dom(v,v) . By the hypothesis this means y = dom(v,v)

(Y = v is impossible since then there is a path from x > dom(v,v)

to v in Gv). Thus dom(v,v) lieson the path from n to v .

Hence dom(v,v) dominates v ,, and idom(v) = dom(v,v) .
i

Conversely, suppose some vertex u
*

satisfies UdV,

dom(u,u) > dom(v,v) > u . Pick the minimum such vertex u . Clearly

no vertex which does not dominate u can dominate v . Thus every

vertex which dominates v dominates u . Now we need only show that

idom(u) dominates v . Consider any path from n to v . Let x

be the last vertex on this path satisfying x > idom(u) . If there

is no such x , then idom(u) = n dominates v . Otherwise, let y

be the first vertex following x on the path and satisfying

idom(u) f y 5 v . All vertices z between x and y on the path

must satisfy z <y by Theorem 7 and the choice of x and y . Thus

*(y,y) 2 x > idom(u) 1 dom(u,u) . Hence y cannot lie between

idom(u) and u , or equal u , since otherwise idom(u) would not

dominate u . Also y cannot lie between u and v by the choice

. of u . l!Uthermore y f: v since y = v implies there is a path

from x > dom(u,u) > dom(v,v) to v in Gv . The only remaining

possibility is y = idom(u) . Thus idom(u) lies on the path from

nto v, and idom(u) dominates v . [z1 I

We use the set union algorithm and Theorem 10 to aompute immediate

dominators. First we sort the pairs (dom(v,v),v) so that (ul,vl)
I

precedes (u2,v,) if and only if u1 < u2 or u1 = u2 and v1 > v2 .

37

I
We use a two-pass radix sort, which requires O(n) time. This

ordering has the feature that if (u,,v,) precedes (u2,v2) and

v < v1 2 9 then u1 < u2 . Next we apply the set union algorithm.

Initially each vertex v is in a ‘singleton set containing only v

andnamed v. As the algorithm examines the pairs in order, vertex v

will be in the set named x if and only if x is the smallest vertex

*
such that x --) v and the pair (dom(x,x),x) has not yet been examined.

\ :
Here is the computation.

Step 1: E each pair (dom(x,x),x) in order gbs

let u -) x in T;--.
UNION(FIIYD(u),x);

t
3 L& FIND(dom(x,x)) f FIND(x) z

begin idom(x)- - := FIND(x); flag(x) := true end- -
1 else idom(x)- - := dom(x,x); flag(x) := false end;- -

end;-

Step 2: si := n-l* -l~l~~flag(i) E

idom(i) := idom(idom(i));- -

The first loop constructs a set of pointers in array idom(v)1
e

using Theorem 10. The second loop uses these pointers to compute

dominators. The total time to compute dom(w,w) values and

. dominator values is O(m a(m,n)) using the function evaluation

algorithm of Section 6. The storage space necessary 5,s O(m) .

38

10. Lower Bounds.

An interesting theoretic problem is to

O(m a(m,n)) bound is tight, for either the
1 . .

determine whether the

general function evaluation

problem or for interesting special cases. Perhaps surprisingly in
,

light of the dearth of lower bound results, we can prove that theI

O(m s(m,n)) bound is @ight to within a constant factor, for various

cases of the function evaluation problem.

To prove lower bounds, we use the following formal setting.

Let (T,r) be a rooted tree on n vertices, with edge values

selected from the dcrmain of an associative binary operation @ .

Given a set of m pairs (vi,wi) of related vertices, we desire a

lower bound on the number of @ operations required to compute

@ (Vi9Wi) for all m pairs.

A computation sequence for the pairs (vi9wi) is a list of

assignments of the form x := y@z , where y and z are either

edges of T or are variables which have occurred on the left side

of some previous assignment, and each variable x occurs on the left

side of only one assignment. Corresponding to each pair (vi,wi) is ;
i

a variable xi such that, for all substJ.tutions of values for the

edges, the variable xi is assigned value @(viJwi) when the

computation sequence is carried out. We prove that, in the worst

case, any computation sequence for m pairs must be of length at

least kma(m#n) , for some constant k . We prove this result for

various interesting operations @ . In some cases the lower bound

holds even if we allow a second operation to occur in the computation

sequence.

39

Notice that our computation model allows only straightline

programs, with no branching. In certain cases the lower bound does

not hold if we allow branching. In other cases, we conjecture the

lower bound still holds but cannot prove it.

Consider any computation sequence, and let x be any variable

which occurs in the sequence. Corresponding to x is an expression

of the form x = c(x ,y
1 1) @ . . . @ c(xk' ky) which gives the value

computed for x as a function of the edge values. Suppose the

computation sequence satisfies the following property.

(1* If x = c(xl,yl) 0 l *. @ (x,,y,) is the expression for any

variable x , then $,Y& . . •~ (xk,yk) all lie on T(vi,w.)
1

for some pair (vi'wi) l

i

i

Order the pairs (vi,wi) so that if (vi,wi) precedes
CvjJwjJ

*in the ordering and vi f v. , then -,(v. + v.) in T .
J 1 J

For each

L

1

variable x in the computation sequence, assign the corresponding

expression to the first pair (vi,wi) in the ordering such that every

edge in the expression is on
e

T(Vi>wi) l

L Now associate with T and with the pairs (vi,wi) a directed

graph G* and a cost C as follows. Initially G* = T . Process
'<'

'the pairs (vi,wi) in the order defined above. To process a pair'

L
(Vi> WI)) let Vi =x1 -) X2 -) l l l --)

%+l =wi be the path in "T'c from

v to w . Add to G* each edge (x. ,x.)
Jl J2

with j, < j, which is

not already present in G* . Let the cost of the pair (vi>wi) be

li-1 9 where I i is the length of the shortest path from vi to wi

i'n G* (before the new eGes for (v,,w,) are added).
)

Let the cost C

be the total cost of all pairs (vi,wi) .

Theorem 11. The cost C is a lower bound on the length of any

computation 66quence satisfying (1* .

proof. Consider a computation sequence satisfying (*). Assign the
. .

expressions computed by the computation sequence to pairs CviYwi) as

described above. Process the pairs (vi,wi) in the order defined

above, a6 follows. Initialize G* =T. For each pair (vi,wi) ,

add edges to G* a6 described above, and compute the value of all

expression6 assigned to the pair (viYwi) l

For each pair (vi,wi) , the number of @ operations required to

compute all expressions assigned to the pair is at least as
--. ii

CviYwi)

great a6 the cost of (vi,wi) . To prove this, suppose the expression

for @(vi,wi) is computed as

where each expression inside the outer sum is a6signed to a pair

previous to (vi,wI) . We can order the expressions so that for some

r 5 p and for some q2,q3,...,qr ,

* * * * *
vi = x "y11 = Xzq2 3 y2s = X3q3 -) y3k3 -) l l l ,3 Y,kr = wi �

Then (xU,ylk) , (x2q ,y2k) , l ** , (xrq ,y,k) are edges Of G*
. 1 2 2 r r

before pair (vi,wi) is processed, and the number of expressions

combined to compute 3(vi,wi) is no fewer than Pi-l , where .Q

is the length of the shortest path from vi to wi in G* before

m
(vi,Wi) iS processed. Thus C = z li-l is a lower bound on the

i=l

total length of the computation sequence. [zl

41

Now we apply the very general lower bound result of [363, which

states:

Theorem 3.2 1361. There is a co&ant k such that, for all m

and n with m >n, there is a tree T of n vertices and a

sequence of m pair6 (vi,wi) for which the cost of G* is at least

kma(m,n) .

We have immediately; ,

c

Theorem 13* For any m>n, there is a static function evaluation

problem for m-. pairs on a tree with n vertices such that any

computation sequence satiseing (*) has length at least kma(m,n) .

1

:

The power of Theorem 13 lies in the fact that for many interesting

operation6 0, any expression which does not satisfy (*) is useless in

any computation sequence; thus any minimum-length computation sequence

must satisfy (*). Such operations include the following:

(1) Function composition over a suitably general function space.

(2) String concatenation.*

(3) Set union. The lower bound holds even if set intersection is also

I allowed as an operation.

(4) Maximum over real numbers. The lower bound holds even if

minimwn is alSO allowed.

(5) Boole6,n %,nd" over the domain [true, false] . The lower boundryIzIcv-

holds even if Boolean "or" is also allowed.

We prove the lower bound for (5). Consider any computation

sequence which uses A (and) and v (or) to compute A (Vi'Wi) for

&?

for a sequence of m pair6
CviYwi) l Such a computation sequence

corresponds to a monotone Boolean circuit for computing A (viYwi)

for all pair6 CviYwI) ' See [28,31] for lower bounds on the sizes

of restricted kind6 of Boolean circuits for other functions.

Let E be any expression involving /\ and v . Let = denote

truth value equivalence. Convert E into disjunctive normal form

E 5 ED = (xllAy,+ . ..Axli >
1

v . . . v (%A . .."xki)
k

with il<i. for 1~ j s k . Then
-J --, I

E is equivalent to a conjunction,

namely E E (XllAXl2A l **AFli) Y if and only if each variable x
1 11

in the first clause occur6 in all the clauses. It follows that if

ElVE2 5 (x1Ax2Ax3~ . ..~xi) , then either El = (x~x~A...Ax)
i

Or E2 s (X1AX2A -AX,) l r‘

Similarly, let E be any expression and convert E into

conjunctive normal form
,

E 3 EC = (y~vy~v~~~vy~~) A ‘.* A
1

(yklV***Vyki)
ke

with il<i.
- J

for l<j<k.- - Then E is equivalent to a conjunction,

nmely E s (Y~A~~~A . ..Ay.,) , if and only if i. = 1 for
3

1 < j < I and each clause (y. V-.. vy- - Jl jij) for 1 <j <k contains- -

6ome variable y
Pl

with 1 ,<p ,< I l Thus if ElhE2 = (ylhy2~...~y4) Y

then El 3 (YlAY2A*.*Ayk) and E2 s ($7 A g.eAy.) for some j
3 1i

satisfying llj _<krtl_<i . (Achieving this r,epresentation may

require renumbering the variables.)

43

Now consider any ccxnputation sequence which use6 A and v t0

- compute A(vifwi) for a set of m pairs (vi,wi) . Let EL 1 be
the expression computed for A(vI,wi) l By the remarks above

/' *
- a subsequence of the computation sequence must compute a sequence

-
of expressions E

ilYEnj2☺ l l �YE ik = El such that each Eij is either

an edge of T or is equivalent to E
iP AEiq

for some p,q <j .

Delete all assignment6 from the computation sequence except those

corresponding to expressions E
ij

. The resultant sequence still

compute6 A (vi,wi) for all pair6 (v,,w,) and also satisfies (*).

Thus by Theorem 13 we have:
-==.

Corollary 1. l?or4ny m>n, there is a rooted tree T of n

I
i

vetiices and a set of m pairs (vI,wi) of related pair6 such that

any computation sequence using
1 A and v to compute A (Vi' Wi) for

rI
IL.

all pair6 ha6 length at least kma(m,n) for some constant k .
,

The lower bounds for operation6 (3) and (4) follow from

Corollary 1; lower bound6 for operations (1) and (2) are immediate

1

L
e from Theorem 13.

L

Several plausible lower bOunds remain conjectures. We leave

- them as open problems.

! (1) Prove a kma(m,n) lower bound for any operation @ which has

an inverse.

L
m

(2) Prove a kma(m,n) lower bound for computing V II A (vi,Wi> I
i=l

using A and V , where [(Vi,Wi)) is a set Of pairs of

related veti- a tree T .-_

44

(3) Prove Corollary 1 if negation is also allowed as an operation.

(4) Prove that verieing a minimum spanning tree requires kma(m,n)

comparisons in the worst case.

--

Acknowledgments.

I would like to thank Andrew and Frances Yao for several

stimulating di6CUS6iOn6 on the mintium spanning tree problem which

sparked the ideas in Section 7 and the writing of this paper;

Adrian Bondy and Ron Graham for criticism which led to correct

formulation of the ideas in Section 5; Mark Wegman, for many long

and rewarding talk6 about algorithms for global flow analysis; and

Jeff Barth, for protiding monetary stimulus for this research.

i

L
.

46

References

[l] W. Ackermann, "Zum Hilbertshen Aufbau der reelen Zahlen,"
Math. Ann. 99 (1928)' ll8-133.

E l
I -

[31

A. V* JOY J. E* Hopcroft, and J. D. Ullman, "On computing least
Colon aIKX6tOr6 in trees," Proc. Fifth Annual ACM Symposium on
Theory of Computin& (1973), 253-265.

PI
L [sl

C
WI

t
t91

.
DOI

L

WI

c131

041

D51

D61

[I71

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and
AnaQ6is of Computer Algorithms, Addison-Wesley, Reading, Mass.
m4)' u9-134.
ibid, 50-52.

A. V. Aho and J. D. Ullman, "Node listings for reducible flow
graphs," *OC- Seventh Annual ACM Symposium on Theo* of Computing
(1975)~ 177-185.

Am V* AhO and J. D. U1lman, The Theory of Parsing, Translation,
and Compiling, Vol. II: Compiling, Prentice-Hall., Englewood
Cliffs, N,.J. (1972).

F. E. Allen,
l -19.

"fhrbrol flow ana&misyff SIGPLAN Notices 5 (19‘70) t

B- W* AMen, '8. A. Galler, and R. M. Graham, %n algorithm for
equivalence declarationsyff COG. ACM, 4 (1961)' 310-314.
R. C. Backhouse and B. A. Car&
pathfinding prOblm6/'

"Regular algebra applied to

161-186.
J. Inst. Maths. Applies., 15 (1975),

D. Cheriton and R. E. Tarjan,
submitted to SIAM J. Comput.

"Finding minimum spanning trees,"

V. Chvatal, D. A. Klarner, and D. E. Knuth, %elected combinatorial
research problems," STAN-C&72-292, Computer Science Department,
Stanford University (1972).

J. Cocke,
Notices,

"Global common subexpression elimination,"
5 (1970)' 20-24.

SIGPLAN

M. J. Fischer, "Efficiency of equivalence algorithms/ Complexity
of Computations, R. E. Miller and J. W. Thatcher, eds., Plenum
Press, New York (1972)' 153-168.

A. Fang, J. Kam, and J. Ullman,
to loop optimization,'f

"Application of lattice algebra
Conf- Record of the Second ACM Symposium

on Principles of Prog. Lang. (lg75), i-9.

G- E. Forsythe and C. B. Moler, Computer Solution of Linear
Algebraic Sylstem.2, IPrentice-Hall, Englewood Cliffs, N.J. (1967&
27-33.

B. A. Galler and M. J. Fischer, "An improved equivalence
algorithm,T' Comm. ACM, 7 (1964)' 301-303.

S. Graham and M. Wegman,
global flow analysis,"

"A fast and usually linear algorithm for
Conf. Record of the Second ACM Symposium

on Principles of Prog. Lang. (1975), 22-34.

WI

D91

mu
E11

[=I

1231

[241

[251
WI
I271

Ml

E291

L301

[311

1321
e

c331

c143

1351

[361

[371

I381

M. S. Hecht and J. D l Ullman, "Flow graph reducibility," Sm
J. Comput. 1 (1972)' 188-202.

M. S. Hecht and J. D. Ullman, "Characterizations of reducible
f'bw graph6," J. ACM., 21 (197%)' 367-375.

J. El Hopcroft, private communication.

Jo E. Hopcroft and J. D. Ullman, "Set-merging algorithms,"
SIAM J. Comput., 2 (W73), 294-303.
T. C. Hu, Integer Programming and Network Flows, Addison-Wesley,
Reading, Mass. (1969)' 129-150.

K. W. Kennedy, "Node listings applied to data flow analysisyff
Conf. Record of the Second ACM Symposium on Principles of Prog.
Lang* (1973)' lO-21.

D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, Addison-Wesley, Reading, Mass. (1968)' 315-346.

ibid, 353-355.
ibid, 295-304.-=.
De Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, Addison-Wesley, Reading, Mass. (1973)' 170-178.

E. I. Neciporuk,
(1966)' 999-1000.

"A Boolean function, If Soviet Math. Dokl., 7

M. Paterson, unpublished report, Univ. of Warwick, Coventry,
Great Britain (1972).

P. W. Furdom and E. F. Moore, "Algorithm 430: Immediate
predominator6 in a directed graphyff Corms. ACM., 15 (1972)' 777-778.

V. Pratt, "The power of negative thinking in multiplying
Boolean matrices," Sixth Annual ACM Symposium on Theory of
C0mputi.q (1974)' 80-83. 1

A. Salomaa, Theory of Automata, Pergammon Press, N. y. (1969)'
120-127.

R. Tarjan, "Finding minimum spanning treesyff Mem. No. ERL-M501,
Electronics Research Laboratory, University of California, Berkeley,
(1975).

- _

R. Tarjan, "Finding dominators in directed graphs," SIAM J. Comput.,
5 (1974)' 62-89.
R. Tarjan, "Depth-first search and linear graph algorithmsyff
SIAM J. Comput., 1 (1972), 146-160.

R. Tarjan, "Efficiency of a good but not linear set union
algorithm," J. Am., 22 (1975)' 215-225.
R. Tarjan, “Te6ting flow graph reducibility," J. Comp. Sys.
Sciences, 9 (144)' 355-365.

R. Tarjan, "Edge-disjoint spanning trees, dominators, and depth-
first search," STAN-M-74-455, Computer Science Department,
Stanford University (1974).

48

-_

[39] J. D. Ullman, "A fast algorithm for the elimination of common
subexpressions," Acta Informatica, 2 (1973), 191-213.

[kl] A. C. Yao, "An O(\E\ log log IVl) algorithm for finding
minimum spanning trees," Info. Proc. Letters, to appear.

L

--.

49

1
2

3
5

6

24

(
>

a

24

0
4

Fi
gu
re
 1
.

Re
pr
es
en
ti
ng
 a
 t
re
e
by
 a
 b
al
an
ce
d
tr
ee
 a
nd
 a
 s
et
 o
f
pa
th
s.

(
>

a
Tr
ee
,

wi
th

ba
d

ed
ge
s

in
di
ca
te
d

by

he
av
y

li
ne
s.

(
b
)

Co
rr
es
pn
di
ng

b
a
l
a
n
c
e
d

t
r
e
e
.

L

. .

1

t

16 24

a7 21

18

L

I-

i

t

L
L

Figure 2. The set of trees TR for k = 24 .

e
1

15 23

7

3 5

I \/
6

2 4 8 16

0

17 21

Figure 3. The set of trees TL for k = 24 .

52

-

vl

i

v2

XYu2

--

(>a

u1

v2

54X
u2

u1

i

L
L e

L

Figure 4: Invalid path compression.

(a) Before compression of path (ul,vl) .

(b) After compression of p+th (u,,vl) .

In this tree -,(u2 5 v
2) .

L

w

L

53

