
A MICROPROGRAM CONTROL UN IT

bY
N. Tokura

STAN-C S-75-5 I
AUGUST 1975

BASED ON A TREE ME:MORY

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

A Microprogram Control. Unit Based on a Tree ~em0r-y

Nobuki Tokura
-.

Department of Enformation and Computer Sciences
Faculty of Engineering Science

Osaka University
8 ,,Toyonaka, Japan

L Abstract

L

i.

i

A modularized control unit for microprocessors is proposed that

implements ancestor tree programs. This leads to a reduction of
storage required for address information. The basic architecture is
extended to paged tree memory to enhance the memory space usage.

Finally, the concept of an ancestor tree with shared subtrees is

introduced, and the existence of an efficient algorithm to find

sharable subtrees is shown.

L
L

t

The printing of this research was supported by IBM Corporation.
Reproduction in whole or in part is permitted for any purpose of
the United States Covenment.*

1

1. Introduction.

L

L

L

L.

L-

The limitation of pin count makes the architectural design of

microprocessors difficult [6]. It leads to a somewhat restricted

instruction and system capability. The bit-sliced modularization

has been successfully used to make high performance modules. This

method is good for regularly structured units such as ALRU (Arithmetic -

Logic -Register unit), stacks, and others. However, modularization of

control units with less regularity has not yet been achieved.

The modularization of control units is the principal theme of

this paper, and structured programming the subordinate one. There have

been several attempts to realize some control primitives, e.g. DO WHILE

IF TKEN ELSE , on conventional machines. This is done not by changing

the machine itself, but by limiting the usage of the machine. The

efficiency of this restricted code is one of the important problems

to be solved. In this paper we take an opposite approach by examining

a machine oriented to structured programming. However, there seems to

be no general agreement on what structured programming is [y]. Also,

structured programming has been the subject of criticism, especially

for its inefficiency [5]. As one proposal, we choose the ancestor tree
L

program to be the basis of structured programming. This selection

i

i .

I
4

c..

L
t

leads to an efficient instruction set and a simply modularized control

unit. Section 2 presents the basic notion and a possible implementation.

In Section 3, a paged tree memory system is &oposed to answer the

problem of memory chip efficiency. Also, a new paged memory system is

described which has a distributed address table entry on bit-sliced

pagedmemory. In Section 4, the problem of the coding efficiency of

an ancestor tree program is examined. The result is a broader type
.of structured programming, allowing ancestor tree programs with shared

sub-trees. The implementation and the existence of an efficient

algorithm to find sharable subtrees are briefly described.

L

2

t-9 2. Tree Memory.

Let us first recall some definitions relating to binary trees [4].

L

L .

-_
L

In Figure 1, an example of a binary tree is shown. Each node has an

alphabetical label for reference. Node A is called the root of the

tree. The root is the unique node to which no edge enters. A node Y

connected by an edge from a node X and placed on the lef't side of X

is called a left son of X and the edge (X,Y) is called a lert edge.

Right sons and right edges are defined similarly. In Figure 1, node C

r is the left son of node B and node G is the right son of node E .
: L

L

I

If 'Y is a left son or a right son of X , then X is called the father

of Y . A node with no sons is called a leaf; e.g. nodes D , F' , G ,

1, K9 M and N are leaves in Figure 1. If there is a path from X

to Y, then Y is called a descendant of X and X is called an

ancestor of_. Y . A node X is considered to be an ancestor and a

descendant of itself.

L
For a binary

root X consists

in T with both

The depth of

root to the node.

tree T and a node X in T , a subgraph with the

of all the descendants of X in T and edges (Y,Z)

Y and Z descendants of X .

a node in a tree is the length of the path from the

The height of a tree is the length of a longest path

from the root to a leaf. In Figure 1, node D is of depth 3 and

the root A is of depth 0 . The height of the tree is 4 .

b- An ancestor tree is a binary tree with a (possibly empty) set of

back edges. Each back edge connects a leaf to one of its ancestors,

L
and each leaf has at most one back edge leaving it. Figure 2 shows

an example of an ancestor tree. Edges (W) Y (GA) J (KJ) I (M,J)

and (N,H) are back edges. For any ancestor tree T , the binary
L

tree T* obtained from T by removing all the back edges is called

the basis tree of T . The tree of Figure 1 is the basis tree of the
4 . _ ancestor tree of Figure 2.

A flowchart is a labeled directed graph with the following
,
L properties:

(1) There is exactly one node with label START which no edges enter.

L (2) There aye nodes w);th label STOP from which no edges leave.

3

N .

--

b

(3) The other nodes are divided into two classes: one class is the

set of nodes with functional labels and having only one outgoing

edge, and the other class is the set of nodes labeled with test

predicates and having two outgoing edges labeled 0 and 1 .

If a flowchart of a program is a labeled tree (or a labeled

ancestor tree), then the program is called a tree program (or an

ancestor tree progrm, respectively). ,

A random access memory of size 2mxn consists of 2m registers

each of which is capable of holding a binary word of length n . Each
register is associated with a distinct binary word of length m which

is called the address of the register. Usually, the addresses are

treated as binary numbers ranging from 0 to 2m-l . This leads

naturally to the concept of linear memory. However, there are other--.
concepts. For example, two (or more) dimensional memory can be

conceived [ll]. Another idea is that of a tree memory [2].

In [2], Berkling considered the register with address (0 . ..Ol)

as the root in a memory of size 2mXn and the register

(amBl am,2 "* a1 0) (or the register (a
m-1 am,2 l l l �1 1) >

as the

left son (or right son, respectively) of the register

(0 �m-1 &m-2 l * � �1) l
Figure 3 shows a tree memory of size m Z= 3 .

The register (0 . . . 0) is lef't unused. Berkling has shown that cz

simple shift register suffices to traverse the tree (Figure 4). By

shif'ting the register SR left one place supplying 0 (or 1) to

m the right end, we can visit the left son (or right son, respectively)

of the node currently pointed to by the register SR . Conversely,

by shifting SR right one place supplying 0 to the left end, we can

-visit the father of the current node. The one-bit register v can

'be used as an overflow indicator which is 1 when the register SR

points outside of the tree.

Berkling discussed several aspects of a tree memory, but apparently

did not intend to apply his scheme to instruction sequencing- This is

quite natural because the basic scheme doesn? have enough sequence

control capability for the task. This paper, however, will show that

by adding several features, his scheme becomes applicable.
#

5

L -

010 . .
A3

011

a \
100 101 110

Figure 3. A tree memory.

-=

i

f
i

L
i

111

m
* ? 9

v (SR4 0 or 1
,

Figure 4. A shift register.

6

c

i

I
t

Engeler Normal Form.

It is known that every flowchart program can be transformed to

an equival&t Engeler normal form [3]. The transformation is verq-

simple:

Try to make an equivalent tree program, but if a node

already occurs in the path from the root to the

currently scanned node, then make a back edge:'*

This is demonstrated by example in Figure 5. The normal form construction

process must always terminate because the height of the tree obtained by

removing the back edges cannot exceed the number of nodes in the original

flowchart. Note that this transformation retains the equivalence of

programs, but introduces some duplicated nodes, such as nodes G and

STOP in our example. More precisely, this transformation preserves not

only equivalence but also isomorphism, that is, the possible sequences

of actions are identical. The ancestor tree defined here is slightly

different from an Engel/er normal form in that the latter may have a back

edge from a non-leaf node. But this difference is not essential. We

can easily obtain an equivalent ancestor tree program from an Engeler

normal form by introducing a leaf for each back edge (if necessary). In

Figure 5, G" is obtained from G' by introducing a new (no-operation)
,
node A' .

Two Primitives.

Hence, we can concentrate on ancestor tree programs. To implement

ancestor tree programs, the two sequence control operations GO DOWN

and GO UP are sufficient.

The operation GO DOWN replaces a test instruction of a flowchart

program. It has a selector field end is executed as follows:

(1)

(2)

back

(1)

(2)

Select a signal specified by the selector field.

If the signal is 0 (or 1), then visit the left son (or right

son, respectively).

The operation GO UP is used to transfer the control along a

edge. It has a displacement field and is executed as follows:

Set the number specified in the displacement field into a counter.

While the counter is not zero, decrease the counter by 1 and

visit the father of the current node.

7

I =A 8-r

A

STOP

pig. 5

STA R-r

STOP‘ .

START

=) G-
II

=C?F

b) its eqwivahnt EngeXer normal for-
Cl its equivahmt anccste;tT tree f0m

8

Microprogrammed Control Unit.

The microprogrammed control unit (for short, micro-control unit)

is already modularized in comparison with its hard-wired random logic

counterpart. The micro_program is stored in a microprogram memory.

The form of micro-instruction is-of broad range from vertical (highly

encoded) instruction to horizontal (completely decoded) instruction.

In the context of micro-processors, a medially encoded micro-instruction

seems to be convenient. Highly integrated f'unction units such as ALRU

will accept an encoded micro-order instead of a decoded micro-order.

Because of the pin count limitation, communication between modules

favors highly encoded information. Modularized function units can work

in parallel. The sequence control of micro-instructions can be done by

some modules. With this background, the micro-instruction is considered

here to consist of one field for sequence control micro-order and several--_
fields for f'unction micro-orders.

An Implementation.

A possible implementation is shown in Figure 6. The micro-

instruction register (MIR) holds one micro-instruction. Each micro-

instruction consists of two parts: one part is a sequential control

part which has a 2 bit field for sequence control micro-order codes and

a k-bit selector/displacement (S/D) field and the other part is a

function part which has micro-orders for the f'unction units. The

program control register (FCR) is a shift register which holds the

address of the next micro--instruction. This register can be implemented

as bit-sliced modules, The FCR receives orders from the sequence

control block (SCB) such as shift right, shift left, and clear. The
.SCB executes sequence control micro-orders. There are four kinds of

micro-orders. Each micro-order is executed as follows:

Pre-test Go DOWN

(1) Shift the PCR left one place with the output of the multiplexer

shifted in. The multiplexer selects one signal from the function

units and other external sources according to the S/D field.

MEMORY ADDRESS /jusA

..
.. .
..
l.

F i g . 6 An implementation of microprogram control unit

10

(2) Start the execution of function micro-orders.

I

(3) After the comletion of all the function micro-orders, the n:icz-,- -
instruction pointed to by the KR is fetched.

Post-test Go DOWN . .

(1) Start the execution of function micro-orders.

(2) After the completion of all the function micro-orders, shift

the PIlR left one place with the output of the multiplexer

shifted in.

(3) Fetch the next instruction.

Go UP

(1) Start the execution of function micro-orders.

(2) If the =S/D field is zero, then go to 3 ; otherwise set the

value of the S/D field in the counter of SCB. While the

counter is not zero, decrease the count by 1 and shift the

IXR right one place. After completing the shifts, fetch the

next instruction.

(3) The case with zero displacement is interpreted as a return to

the root. So the FCR is cleared and a rf1t' is shifted into

from the right. This is easily done by selecting a signal “ 1"

with selector (0 . . . 0) .

STOP t

;
(1) Clear the KR &d others.

By a START/RESTART/SINGLE STEP, the RR will be set to

: 0 . . . 0 1 and the execu$ion will resume.

The following control capabilities of the SCB will be minimally

required to implement this system. I

A. Control.

(1) Start the execution of function micro-orders.

(2) Shift left/right and clear.

11

B. Status monitoring. '

(1) Detect the completion of the function micro-orders.

(2) Detect the overflow and zero of the shift register.-.

The readers can convince themselves of the realizability of these

modules by current technology if they compare the modules with chips

currently available.

Remark 1. Another type of GO UP operation can also be used. It

L

requires a counter (D-counter) which keeps the depth of the current

node. The operation is executed as follows:

L

While the D-counter is larger than the displacement field,

decrease the counter by 1 and visit the father of the--
current node.

1 The displacement field in this case specifies the depth of destination,

while the displacement field in the Go UP explained above specifies

the relative difference of the depth to the destination. These two

operations may be distinguished by calling the former a Go UP

operation with absolute displacement (for short, aboslute GO UP)

and by calling the latter a Co UP operation with relative

displacement (for short, relative GO UP). The discussion with them

are parallel. Therefore, in what follows, we consider only (relative)

GO UP operations.
t

Amounts of Address Information.

The most prominent feature of the proposed system is that the

address information for sequence control is reduced greatly. The

displacement field of length [log m] *f is sufficient for the tree

memory of height m . Let us compare the amount of address information

necessary to implement an ancestor tree program under this system with

the amount required using the conventional linear memory. Let; b and. p

J* The base of logarithm is 2.
not less than x .

[x] stands for the least integer

i

be the number of test nodes and back edges respectively. Then, in

conventional method using conditional branches and/or jumps, (b+p)m
bits are used to specify the destination address, while only p[log m]

bits are necessary in the present method.

The experience of trying to emulate the PDP-11 using a currently

available high speed microprocessor has shown that the design of the

instruction decoding section is tedious and the resulting emulator

requires a great deal of time for decoding [7]. This inefficiency

was attributed to the limited branch/jump capabilities of the micro-

processor, although admittedly the decoder of a PDP-11 should be rather

complex. This decoding problem may be easily solved in the prop=>sed

system. It is even possible to implement a multiple branch by shifting

several bits into the KR.

The Problem of Tree Height.

The problem in this method is the limit of the height of trees

implementable in a limited memory. The rest of this paper is mostly

devoted to this problem.

The first effective method to reduce tree height is to reduce the

straight line parts of an ancestor tree program. One general method is

to utilize parallel execution as much as possible. After that there

will remain some straight line parts which should be done sequentially

but have neither branches nor loops. These sections can be implemented

by a programmable sequencer on a chip. Figure 7 shows one possible
realization. This is essentially a microprogram controller without any

branches. Several straight line programs can be stored. The end of

each program is designated by a " 1 " in the end bit position

(Figure 7 (b)). The entry points to the program can be set by setting

the counter value with the START signal. Therefore, a straight line

program can be entered at arbitrary points. This allows a program or

its parts to be shared. Each word in ROM has the function part which

is used to control the function units. The event selection bits select

one signal from the function units which signals the completion oi' an

operation. Counting clock pulses, the control waits for the selected,
signal to become asserted within a time period T specified by the

J

13

I--
l

. I
I
I
I
I
I
I

-I
I
J

. . NAC
E E P START

t y q,

?L,..-- I

r

1
1

M

EVE N-i SEiECT - ’ -
I

RC b?
0
R

I
,

fUNCTlON I
Ml C ROQRER I

I
- . t

Wm.--- -- ------a-- --z---c-- I

I I EVENT SELECTrON

Fig. . 7 a) a programable sequencer
b) its word format

14

period-select bits. In most cases , no wait will be selected. If -at?

control gets the response in z , then it directs the next instruction

fetch and initializes its inner timer unless the end bit is 1 . If

there is no response in time 'I , then it responds to the master with

the abnormal end signal AE on-; If the end bit is 1 and the last

response is received in time z , then the control responds with the

normal end signal NE on, and returns to its initial state.

This sequencer replaces "loops for wait" in a program by "waits"

in the control. The time-out check also serves to detect hardware

malfunctions. It is possible to use these chips in a hierarchical

way, in analogy to a nested macro.

This sequencer can be used in several places. For example,

micro-instruction fetch , read-in of a page on a missing-page fault

(cf. Section 3), and register-saving in case of micro-level error are

possible applications.

The proposed system with this sequencer seems to be sufficient

to implement ancestor tree programs with many branches but of rather

limited height, such as microprograms of minicomputer emulation.

But for broader applications, other modifications are necessary and

are discussed in the following sections.

15

3. Paged Tree Memory.

For a larger program, the memory space efficiency will become an

important problem. This efficiency is defined as a ratio of the used

memory area to actually implemented memory area. The mapping used in
the last section is best for complete trees, where a tree of height m

is called a complete tree if every leaf is of depth m . The mapping

however, leaves much unused memory area for incomplete trees. The
t

.

worst case is a straight-line program. If the length of it is m ,
then the mapping will leave 2m-m unused words. A missing subtree

with the root of depth d in a complete tree of height m amounts

to 2m-d words loss.

Our problem is to find a good mapping for incomplete trees which

preserves the simple sequencing capability of the proposed system,

while it reduces the unused memory area. The following method is
proposed.

Assume that we have memory chips with 2' words and we want to

store an ancestor tree program of height 2p-1 . Each memory chip

can store an ancestor tree of height p-l and this is considered a

Pw?* The following mapping will be used.

program address

P P
-------I
0 . . . 0 0e 0 . . . 0 0

O... 0 0 O... 1 a
. 1
. \ '1
. .

-*. O... 0 0 1 a
'** 0

1
. . .

O1 12Ia Ia
ap-l

l
"P

Oaa. la
-

1
. a2 a3 l - * aP+l

..

laI . . . ap-l "p l l l “2p-1

page address line address

P+l
t--
00 . ..o

00 . ..o

00 . ..o
1 a1 ..* a

P
la1 l . . a

P.
..

la1 l . . a
P

t----‘E---1
o... 01
O... l a

1..
.

1 a1 . . .
ap-l

oo... 01

OO... la
. P+l
.
.

l a
p+l l .* a2p-l

*

jtjt-

16

This is equivalent to considering Z!'+l trees of height p-l

instead of a single tree of height 2p-1 . Each small tree i::

implemented on a memory chip and is identified by its page address.

If a page is never used, then the corresponding chip need not be

equipped.

By the new mapping, a missing subtree with

p-i (0 5 i <p) amounts to 2% words loss,

to 2'4 words loss by the original mapping.

the root of depth

while it amounts

An Implementation.

The implementation of the RR will change slightly as suggested

in Figure 8. In the mapping shown above, the transition between the

state * and the state ** should be treated differently from other

transitionsl- There are several methods of accomplishing this, but it

may be simplest to use a counter in the SCB which maintains the current

depth. The counter will be incremented by 1 for each GO DOWN and

decremented by 1 for each step of CO UP , and changes from p-l

to p (and vice versa) are detected.

1

This is but one possible implementation. More sophisticated

schemes for the total system are conceivable.

t
m Page address (l+p) line address (p)

b -
1 ,

. (? < MPX

\1 . . .

Figure 8

17

Paged Memory System.

The mapping defined above maps all the nodes in a subtree with

the root of depth p-1 into a consecutive memory area with the same

prefix (page address). This paged tree memory is similar in many

respects to the usual paged memory. It is possible to place some of

the pages in the secondary storage, to read pages into a rewritable

memory (RAM) and to execute the instructions from that memory instead

of implementing all the pages as ROMs. It seems convenient to specify

important and frequently used pages as ROMs, and store others in the

secondary storage. This approach provides us flexibility to change

dynmiCdly microporograms not in ROMs. To implement this paging

system, a new simple method may be more effective than the sophisticated

paging systems used in current machines. Most of the conventional

paging systems use a page table in an associative memory and an address

set-up mechanism. The method proposed here will use a different

amroach.

The simplest idea is as follows: for simplicity, each RAM chip

is assumed to hold a page (later, this assumption is removed). Each

ROM and RAM chip contains chip select logic. Each ROM has a fixed

chip number (page number). But each RAM must change its page number

according to its current contents. Each page has a[on$word with-_
address (0 . . . 0) left unused. This word can be used to store the

page address (or part of this address, as explained later in conjunction

with Figure 9). The page address on the page address bus is checked

against the content ofFthe word. If they coincide, the chip responds.

If there are no responses from any memory chips -- this is detectable

by time-out logic -- then the missing page fault procedure will be
.

started, and a new page will be brought into a RAM chip. This can be

done by a programmable sequencer described in an earlier section.

In this method, the page table is distributed among the chips and

the associative search is replaced by a coincidence check against the

content of the address 0 in each RAM. This idea can be used in

systems other than tree memory system by adding an extra word to

hold the page address.

18

r-
-‘-

“-
-a

1
r

r
-
-
-
-

r-
-

c
. - u IP To -

< . :. . <
-

xl \ E
C

O
iN

C
lD

E
N

C
E

i
1
!

To realize this system, the current de::ign of memory chips must

be slightly changed. The problem is the am)ropriate selection of

parameters such as page address bits, line address bits, and word

length under limited pin count.-. To fit a broad range of applications,

the chip is desired to be adaptable to various parameter selection.

Figure 9 shows a solution to this problem.

Let s be the word length of RAM words. Assume that the length

of micro-instruction is ks and that page address is of q bits

width with q < ks . Then k chips are used as a page and the

coincidence signal will be obtained through k serially connected

comparators which compare the s bit page address with the page

address register (PAP). The PAR may be the word of address 0 or an

extra register. The read/write control signal is applied to each

chip ANDed with the coincidence signal. In a sense, this is a bit-

sliced page memory.

We note, finally, that a secondary storage device which transfers

a page selected by a page address to a suitably selected RAM chip

should be available; e.g. an electronic disc with key-retrieval and

block transfer capability.

What replacement algorithm is suitable in the paged tree memory

system? One principle may be to replace the farthest page in terms

of kinship to the current page. The dynamic behavior of a structured

program reflects its structure (or should). This will make it easier

to devise a replacement ,algorithm.

20

I
1

I
L

4. Ancestor Tree with Shared Sub-trees.

Now let us consider another possible objection. As mcnlioncd

earlier, every flowchart can be.transformed into an ancestor tre!c LqJ

to isomorphism. But this transformation requires node-splittin{:,

that is, some parts of the program must be copied. It does not changc2

the execution time of the program but it may require greatly increased

space. As an example, let us consider an acyclic graph isomorphic to

Pascalrs triangle truncated to height n . Let us call this graph 11'

(Figure 10). The graph Tn has ("+z*)
n

nodes and the transformed

binary tree has 2n-l nodes. This is an example of exponential

space explosion in the structured counterpart of an unstructured or

go-to program. This example is an extreme one. But the feature that;

a lower node is shared by many ancestor nodes is not rare. Here is

another example [lo]. A very short module in PDP-11 DOS Monitor,

containing 67 instructions, expands to an equivalent ancestor tree

program of 212 instructions. One common design goal is to minimize

program size -- especially in the monitors of minicomputers. Therefore

GO TO's (jumps/branches in this case) are used freely in real programming

despite Dijkstra's warning [5].

As a compromise) yet another instruction called SHARE is

introduced. This is essentially GO TO but it is used with clear

awareness that a sub-tree is shared with other control paths. Thus,

the usage is limited. In this sense, we may be said to be yet in the
a realm of structured programming. For example, T, (Figure 10) can

be realized as a program of Figure 11. The label/' XT means a.n

instruction " SHARE X I'. This program has 3 more nodes than the

. original program. In general, a triangle program Tn of height n

is realized as a binary tree program with ("e,l) more nodes than

Tn with (
n+2
2) nodes. Thus, the exponential explode is excluded

with the cost of speed (that is, the extra instruction SHARE must be

executed). This instruction can be used with ancestor trees also.

In this case, we must be careful due to possible back edges returning

to ancestor nodes over the root of the shared subtree.

21

G H I J

Fig. 10 T3

pig.. 11 T3 realized by using SHARE

22

l-
1
L

An Implementation.

The instruction SHAIG requires a fill addrccs as an operand

(page address and line address, in case of paged. tree memory). T!:ach> M *
instruction es executed as follo& (see Figure 12):

SHARE (address)

(1) Push down the ICR into the address stack and transfer

the address part to the PCR.

(2) Push down the counter II into the counter stack and clear

the counter II.

(3) Fetch the instruction.

GO DOWN (selector)

Same as the explanation in Section 2 except that counter II

will be incremented by 1 at the sme time the ER is shifted

left one place.

GO UP (displacement)

(1) Start the execution of function micro-orders.

(2) If displacement field is zero, then go to 3 ; otherwise

set the value in the counter I.

While counter I is not zero, do the following:

(2.1) Decrement counter I by 1.

(2.2) If counter II is not zero, then decrement it by 1

and shift the FZR right one place; otherwise pop-up

both the stacks to counter II and ER and go to

(2.2) again.

If counter I is zero, fetch the next instruction.

(3) (Return to the root .) Clear counter II, counter stack,

address stack, and FCR, then shift in a " 1" from the

right and fetch the instruction.

Remark. The use of instruction SHARE is not limited to sharing a

subtree. When storing tall tree programs in the memory, SHARE% are,
used to join the sectioned trunks, This usage is nothing other than

GO TO (jump).

23

r
_

r
r-

--
r-

c
r

r

I

0
1

.
I

.
1

Search for Sharable Subtrees.

The last problem in this paper is how we can find such sharable

subtrees in an ancestor tree. If this is too hard, then we can not

utilize the capability of SHARE sufficiently. Fortunately, we have a

good algorithm to find all the sharable subtrees in an ancestor tree

in time nearly proportionalto the number of nodes in the tree.

There will be no loss of necessary information if a given

ancestor tree T is replaced by a labeled tree with all back edges

removed because the displacement field of the instruction retained as

a label will enable us to recover back edges. Then the problem can

be restated as finding all the identical subtrees up to their labels.

The subtrees in the ancestor tree which correspond to the identical

subtrees up to label in the corresponding labled tree can be shared.

L

/

--_
Here, an implicit assumption should be explained. That is, every

instruction is treated as one label even if it contains the

1

1L

displacement field which is of order log log n , where n is the

number of nodes in the tree. In the usual situation, this factor

may be considered not to contribute to the efficiency measure. But

L

if the asymptotical efficiency is of concern, the present algorithm

can be safely said to be an O(n log log n) algorithm where

O(fb-4) stands for " order of f(n) ".

t Lemma. The list of identical subtrees up to labels in a labeled

tree can be obtained in linear time.

See the Appendix for a sketch of the proof.

Thus the existence of an almost linear algorithm to find

sharable sub-trees is shown, though the actual algorithm should be

simplified further.

Conclusion.

The concept of tree memory is re-examined and applied to micro-

program memory. It leads to a program with the address information

greatly reduced, and a simple modularized control unit. With the

programmable sequencer, ancestortree programs of low height but with

many branches seem to be realizable effectively; e.g. an emulator of

minicomputers and possibly a core part of small monitor programs could

be implemented. If the program is far from the complete tree, then

the paged memory system will save the unused memory chips. A simple

paged memory system is also proposed in which ROMs and RAMS can co-exist.

This technique will be useful for broader applications such as micro-

code replacement of some software routines and interpreters of high

level languages.

i

Lastlywe have reached a new class of structured programming by

examining the efficiency issue. It was easy to implement a CO TO in

the proposed system, but we stop at SHARE. This compromise to introduce

SHARE does not harm the merits of structured programming, because an

ancestor tree program with SHARES can be directly expandable to an

equivalent ancestor tree program.

Each user wants a structured programming system most similar to

his problem structure [p]. The ancestor tree programs (with shared

sub-trees) seem to be very near to many problems which people want to

implement by microprogram, although it might be too early to say so

when there is little data on this issue. What can be said at present

is that users have obtained more freedom of choice. The presentation

is intended to be suggestive and the readers are invited to develop

their own ideas on this proposal.

26

Acknowledgment.

The author would like to thank Prof. I. Lee of' the Ilniverxity

of California at Berkeley for his talk which inspired the present

work. Thanks also go to Prof. I. Shirakawa of Osake University for

his help. This work was done when the author stayed at the Department

of Information and Computer Sciences at the University of Hawaii and

at the Computer Science Department at Stanford University. He would
like to thank all the people at the departments, Professor W. W.

Peterson and Professor D. E. Knuth, especially.

L

27

F)
. . . , :
.I. i” I

References

[lj A- V* Aho, J. E- Hopcroft and J. D. UlZman, The Design and
Analysis of Computer figor$.thms. Reading:
197% l

Addison-Wesley
9

L

i

i

L

[2] IL J. Berkling, "A Computing Machine Based on Tree Structures "
IEEE Transactions on Computers, C-20 (4), 404-418, April 1-971:

[3] E. Engeler, flStructure and meanings of elementary programs,"
sYmposium On semantics of Algorithmic Languages, 1971.

[4] D. E. ICnuth, Fundamental Algorithms: The Art of Computer
~ogramming, vol. 1, Reading:

[51
Addison-Wesley, 1968.

D. E. muth, "Structured Prog smming with ~0 TO Statements,"
Comput. Surveys, Dec. 1974, 261-301.

[6] I. Lee, "LSI Microprocessors and Microprograms for User-
Oriented Machines," Proceedings of ACM Micro-T, sl-~13, Sept. 197%.

. [7J I. Lee,--.private communication, ls975.

$. 181 R. Jo Lipton, S. C. Eisenstat, and R. A. DeMillo "The Complexity
of Control Structures and Data Structures," Prociedings of
Seventh Annual ACM Symp. on Theory of Computing, May 1975,
186-193.

[p] C. McFarland, 11 Structured Microprogramming," Proceedings of
ACM Micro-T, ~28-832, Sept. 1974. (A

L
l

[lOI J. Okui, N. Tokura, and T. Kassmi
System,"

t "Analysis of a Disk Operating
woto University, Institute of Math. Analysis, 189,

Oct. 1973, 101416.

[U] N. Tokura, "A mlti-dimensional Addressing System/' Trans. IECE
Japan, 53-C, Nov. 1970, 855-862, in Japanese.
translation:

(English

26-33.
SYstms, Computers, Controls 1, Nov.-&c. 1970,

e [l2] P. Weiner, "Linear Pattern Matching Algorithms " Proceedings of
14th Annual Symposium on Switching and Automat: Theory,
Oct. 1973, l-11.

28

Appendix

A Sketch of Proof of Lemma.

The form of the algorithm claimed in the Lemma is briefly

described. . .

For a labeled tree T , let P(T) be a string of tree labels

spelled out when T is traversed in preorder [4]. For example, the

preorder traversal trace P(T) of a tree in Figure 11 is

A B D G H E H I C E ' F I J .

For a given tree T , P(T) can be obtained in linear time simply by

traversing the tree. The length of P(T) equals the number of nodes

in T .

Pl. If subtrees Tl and T2 are isomorphic in a tree T , then

there are two identical substrings P(Tl) and P(T2) in P(T) l

Conversely, if there are identical substrings w1 and w2 in P(T)

for a tree T and if there is a tree Tr such that w =w =
1 2 P(T') 9

then there are isomorphic subtrees Tl and T2 with w1 = P(Tl)

and w
2 = P(T2) l

P2. It is decidable at most in time proportionalto the length of

P(T) whether a substring w of P(T) is a preorder traversal trace

of a subtree of T or not.

e Proof. Simply by traversing.

The problem to find all the repeated substrings in a string is

shown by Weiner [12,1] to be solvable in linear time. Therefore,

with Pl and P2, we can conclude that the problem to list the root

nodes of isomorphic subtrees in a tree is solvable in linear time. !Zl

29

