A MICROPROGRAM CONTROL UNIT
BASED ON A TREE MEMORY

by
N. Tokura

STAN-CS-75-514
AUGUST 1975

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

;4 Q‘;}' e

By

L

| — [

A Mcroprogram Control. Unit Based on a Tree Memory

Nobuki Tokurs

Department of Enformation and Conputer Sciences
Faculty of Engineering Science

(Gsaka University

, Toyonaka, Japan

[

Abstract

A nmodul arized control unit for mcroprocessors i s proposed that
inplements ancestor tree programs. This |eads to a reduction of
storage required for address information. The pasic architecture is
extended to paged tree nenory to enhance the nmenory space usage
Finally, the concept of an ancestor tree with shared subtrees i s
introduced, and the existence of an efficient algorithmto find

sharabl e subtrees i s shown.

The printing of this research was supported by IBM Corporation.
Reproduction in whole or in part is permtted for any purpose of
the United States Govemment.’

1. [ntroduction.

The limtation of pin count nmakes the architectural design of
—_ m croprocessors difficult [6]. It leads to a sonmewhat restricted

instruction and system capability. The bit-sliced modul arization
has been successfully used to make high performance nodul es. This
method is good for regularly structured units such as AIRU (Arithnetic -
Logic -Register unit), stacks, and others. However, nodul arization of
control units with less regularity has not yet been achieved.

The modul arization of control units is the principal thene of

- this paper, and structured progranming the subordinate one. There have
been several attenpts to realize sone control primtives, e.g. DO WHILE ,
— | F THEN ELSE , on conventional machines. This is done not by changing

the machine itself, but by linmting the usage of the machine. The

efficiency of this restricted code is one of the inportant problens

to be solved. In this paper we take an opposite approach by exanining

a machine oriented to structured programming. However, there seens to

be no general agreenent on what structured programming is [9]. Al so,

structured programming has been the subject of criticism especially

for its inefficiency [5]. As one proposal, we choose the ancestor tree

programto be the basis of structured progranmng. This selection

‘- | eads to an efficient instruction set and a sinply nodul arized contro
unit. Section 2 presents the basic notion and a possible inplenentation.
In Section 3, a paged tree nenory systen1is ﬁroposed to answer the
probl em of memory chip efficiency. Aso, a new paged nemory systemis
described which has a distributed address table entry on bit-sliced
pagednenory. In Section 4 the problemof the coding efficiency of
an ancestor tree programis examned. The result is a broader type

of structured programm ng, allow ng ancestor tree prograns with shared
sub-trees. The inplenentation and the existence of an efficient

— algorithmto find sharabl e subtrees are briefly described.

P—

2. Tree Menory.

Let us first recall some definitions relating to binary trees [L].
In Figure 1, an exanple of a binary tree is shown. Each node has an
al phabetical |abel for reference. Node Ais called the root of the
tree. The root is the unique node to which no edge enters. A node Y
connected by an edge from a node X and placed on the left side of X
is called a_left son of X and the edge (X,Y) is called a left edge.
Right sons and right edges are defined simlarly. In Figure 1, node C
is the left son of node B and node G is the right son of node E
If Yis a left son or a right son of X, then X is called the father
of Y. Anode with no sons is called a_leaf; e.g. nodes D, F, G,
I, K, Mand N are leaves in Figure 1. If there is a path from X
to Y, then Y is called a descendant of X and X is called an
ancestor of Y. A node Xis considered to be an ancestor and a
descendant of itself.

For a binary tree T and a node X in T , a subgraph with the
root X consists of all the descendants of X in T and edges (Y,Z)
in Twith both Y and Z descendants of X .

The depth of a node in a tree is the length of the path fromthe
root to the node. The height of a tree is the length of a | ongest path
fromthe root to a leaf. In Figure 1, node Dis of depth 3 and
the root Ais of depth 0 . The height of the tree is k4 .

An ancestor tree is a binary tree with a (possibly enpty) set of
back edges. Each back edge connects a leaf to one of its ancestors,
and each leaf has at nost one back edge leaving it. Figure 2 shows
an example of an ancestor tree. Edges (D,C) , (G,A4) 5 (KH) , (MJ)
and (N,H) are back edges. For any ancestor tree T , the binary
tree T* obtained from T by removing all the back edges is called
the basis tree of T. The tree of Figure 1 is the basis tree of the

ancestor tree of Figure 2.
A flowhart is a labeled directed graph with the follow ng
properties:

(1) There is exactly one node with |abel START which no edges enter.

(2) There aye nodes with | abel STOP from which no edges leave.

Figure 1.

B
C
Fé
]
Figure 2.

A binary tree

An ancestor tree.

(3) The ot her nodes are divided into two classes: one class is the
set of nodes with functional |abels and having only one outgoing
edge, and the other class is the set of nodes |abeled with test
predi cates and having two outgoing edges |labeled 0 and 1 .

If a flowchart of a programis a |abeled tree (or a |abeled
ancestor tree), then the programis called a tree program (or an
ancestor tree program, respectively).

A random access nenory of size 2™ «n consists of 2" registers
each of which is capable of holding a binary word of length n . Each
register is associated with a distinct binary word of [ength m which
is called the address of the register. Usually, the addresses are
treated as binary nunbers ranging from 0 to 2"-1 . This |eads
naturally to the concept of linear memory. However, there are other
concepts. For exanple, two (or nore) dimensional nenory can be
concei ved [11]. Another idea is that of a tree nenory [2].

I'n [2], Berkling considered the register with address (0. ..01)
as the root in a menory of size 2™yn and the register
(am_l R 0) (or the register (am_l & ... 8] 1)) as the
left son (or right son, respectively) of the register
(Oa ;8 . .8) Figure 3 shows a tree nenory of size n =3 .
The register (0 . . . 0) is left unused. Berkling has shown that a
sinple shift register suffices to traverse the tree (Figure 4). By
shifting the register SR left one place supplying O (or 1) to
the right end, we can visit the left son (or right son, respectively)
of the node currently pointed to by the register SR . Conversely,
by shifting SR right one place supplying O to the left end, we can
-visit the father of the current node. The one-bit register v can
"be used as an overflow indicator which is 1 when the register SR
points outside of the tree.

Berkling discussed several aspects of a tree nenory, but apparently
did not intend to apply his scheme to instruction sequencing. This is
quite natural because the basic schene doesn't have enough sequence

control capability for the task. This paper, however, will show that
by adding several features, his scheme becones applicable.

001

010 - 011
100 101 110 111

Figure 3. A tree nemory.

I e A

r— r— r—
3

Figure 4. A shift register.

Engel er Normal Form

Itis known that every flowchart program can be transformed to

an equivalent Engel er normal fomm [3]. The transformation is very
si npl e:

Try to make an equivalent tree program but if a node

already occurs in the path fromthe root to the

currently scanned node, then make a back edge./“
This is denonstrated by exanple in Figure 5 The normal form construction
process nust always termnate because the height of the tree obtained by
removi ng the back edges cannot exceed the nunmber of nodes in the origina
flowchart. Note that this transformation retains the equival ence of
prograns, but introduces some duplicated nodes, such as nodes G and
STCOP in our exanple. Mre precisely, this transformation preserves not
only equivalence but also isomorphism that is, the possible sequences
of actions are identical. The ancestor tree defined here is slightly
different from an Engeler normal formin that the latter may have a back
edge froma non-leaf node. But this difference is not essential. W
can easily obtain an equival ent ancestor tree program from an Engel er
normal formby introducing a |eaf for each back edge (if necessary). |n
Figure 5,G" is obtained fromg* by introducing a new (no-operation)
node A' .

Two Primtives.

Hence, we can concentrate on ancestor tree prograns. To inplenent
ancestor tree programs, the two sequence control operations GO DOM

and GO UP are sufficient.
The operation GO DOM replaces a test instruction of a flowchart
program It has a selector field end is executed as fol | ows:

(1) Select a signal specified by the selector field.

(2) If the signal is 0 (or 1), then visit the left son (or right
son, respectively).

The operation GO UP is used to transfer the control along a
back edge. It has a displacenent field and is executed as follows:

(1) Set the nunber specified in the displacenent field into a counter.
(2) Wile the counter is not zero, decrease the counter by 1 and
visit the father of the current node

7

i

Fig. 5

a) A flowchart A
b)) its equivalent Engeler norm:;l form
c) its equivalent ancester tree form

——

M croprogranmed Control Unit.

The mcroprogramed control unit (for short, mcro-control wunit)
is already modul arized in conparison with its hard-wired random|ogic
counterpart. The microprogrem iS Stored in a mcroprogram menory.
The form of mcro-instruction is"of broad range fromvertical (highly
encoded) instruction to horizontal (conpletely decoded) instruction.
In the context of nicro-processors, a nedially encoded micro-instruction
seenms to be convenient. Hghly integrated f'unction units such as ALRU
wi |l accept an encoded mcro-order instead of a decoded micro-order.
Because of the pin count |imtation, comunication between nodul es
favors highly encoded information. Mdularized function units can work
in parallel. The sequence control of micro-instructions can be done by
some modules. Wth this background, the micro-instruction is considered
here to consist of one field for sequence control mcro-order and several

fields for f'unction mcro-orders.

An | npl ementation.

A possible inplementation is shown in Figure 6. The mcro-
instruction register (MR holds one mcro-instruction. Each nicro-
instruction consists of two parts: one part is a sequential control
part which has a 2 bit field for sequence control mcro-order codes and
a k-bit selector/displacement (S/D) field and the other part is a
function part which has mcro-orders for the f'unction units. The
program control register (¥R) is a shift register which holds the
address of the next micro--instruction. This register can be inplemented
as bit-sliced nodules, The KR receives orders fromthe sequence
control block (SCB) such as shift right, shift left, and clear. The

SCB executes sequence control mcro-orders. There are four kinds of

m cro-orders. Each micro-order is executed as foll ows:

Pre-test GO DOWN

(1) shift the RCR left one place with the output of the multiplexer
shifted in. The multiplexer selects one signal fromthe function
units and other external sources according to the s/ D fjeld.

SEQUENCE N
F
N UNCTIoN UNITS

_ CONTRO

MICRODRDERS

MEIAMORY ADDRESS BUS /
_COUNTER » PC R
PC
CONTROL. : :
_ CONTROL CONTR)’:
oL
—tra e —
E-
DATA/MICROORDER
OL/STATU :
- S SIGNALS
™ Mic 1
Sc B ro 'ﬂS+ruc+ion N
PCR gequence contro| £r9‘$+er
MPVX hfo..sra.m con+pél ...\?(-:k-
MUiTiplexep - 3ISTer
Fig. 6 An implementation of microprogram controp] unit

10

—

(2) Start the execution of function m cro-orders.

(3) After the comletion of all the function mcro-orders,
instruction pointed to by the rcr is fetched.

Post-test Go DO

(1) Start the execution of function m cro-orders.

(2) After the conpletion of all the function mcro-orders, ghjft
the ECR left one place with the output of the nultiplexer
shifted in.

(3) Fetch the next instruction.

Go UP

(1) Start the execution of function m cro-orders.

(2) If the 'g/p field is zero, then go to 3 ; otherwise set the
value of the S/ID field in the counter of SCB. Wile the
counter is not zero, decrease the count by 1 and shift the

KR right one place. After conpleting the shifts, fetch the
next instruction.

(3) The case with zero displacenment is interpreted as a return to
the root. So the R is cleared and a "1" is shifted into

fromthe right. This is easily done by selecting a signal ™ 1"
with selector (0. . . 0) .

STOP C
(1) Cear the IR and gt hers.

By a START/ RESTART/ SINGLE STEP, the KR Wil be set to

-0 . . . 01 and the execubion Wi ||l resune.

The following control capabilities of the SCB will be mninally
required to inplement this system

A Control.
(1) Start the execution of function m cro-orders.

(2) Shift left/right and clear.

11

the ricro -

B. Status nonitoring.

(1) Detect the conpletion of the function m cro-orders.

(2) Detect the overflow and zero of the shift register

The readers can convince themselves of the realizability of thesc
modul es by current technology if they conpare the nodul es wth chips
currently available.

Remark 1. Anot her type of GO UP operation can also be used. It
requires a counter (D-counter) which keeps the depth of the current

node. The operation is executed as follows:

Wiile the Dcounter is larger than the displacenment field,

decrease the counter by 1 and visit the father of the

current node.
The displacenent field in this case specifies the depth of destination,
while the displacement field in the go UP explained above specifies
the relative difference of the depth to the destination. These two
operations may be distinguished by calling the former a & UP
operation with absolute displacement (for short, aboslute GO UP)

and by calling the latter a Go UP operation with relative
di spl acement (for short, relative GO UP). The discussion with them

are parallel. Therefore, in what follows, we consider only (relative)
GO UP operations.

1

Amounts of Address |Information.

The nost prom nent feature of the proposed systemis that the
address information for sequence control is reduced greatly. The
di splacenent field of length [log nj ¥/ is sufficient for the tree
menory of height m. Let us conpare the anount of address information
necessary to inplement an ancestor tree programunder this systemwth
the anmount required using the conventional linear menory. ret b and p

* . .
*/The base of logarithmis 2. [x] stands for the |east integer
not |less than x .

be the number of test nodes and back edges respectively. Then, in
conventional method using conditional branches and/or junps, (b+p)m
bits are used to specify the destination address, while only p[log m]
bits are necessary in the present nethod.

The experience of trying to emulate the PDP-11 using a currently
avai | abl e hi gh speed m croprocessor has shown that the design of the
instruction decoding section is tedious and the resulting enulator
requires a great deal of time for decoding [7]. This inefficiency
was attributed to the limted branch/junp capabilities of the mcro-
processor, although adnmittedly the decoder of a PDP-11 shoul d be rather
conplex. This decoding problem may be easily solved in the proposed
system It is even possible to inplement a multiple branch by shifting
several bits into the KR.

The Problem of Tree Height.

The problemin this nethod is the limt of the height of trees
inplementable in a limted menory. The rest of this paper is nostly
devoted to this problem

The first effective nmethod to reduce tree height is to reduce the
straight line parts of an ancestor tree program (ne general nethod is
to utilize parallel execution as nuch as possible. After that there
will remain some straight line parts which should be done sequentially
but have neither branches nor loops. These sections can be inplenmented
by a progranmabl e sequencer on a chip. Figure 7 shows one possible
realization. This is essentially a nicroprogramcontroller without any
branches. Several straight line prograns can be stored. The end of
each programis designated by a "1 " in the end bit position
(Figure 7 (b)). The entry points to the program can be set by setting
t he counter value with the START signal. Therefore, a straight |ine
program can be entered at arbitrary points. This allows a program or
its parts to be shared. Each word in ROM has the function part which
is used to control the function units. The event selection bits select
one signal fromthe function units which signals the conpletion of an
operation. Counting clock pulses, the control waits for the selected
signal to becone asserted within a tine period <« specified by the

15

|

[Y B

I]COUNTER |= CONTROL P[]

\‘ ;/_vL 1

| : lenn a [l !

| PERIOD 7S , |

| ' m EVE NT "SELECT

' | RrRom D J

| FUNCTION {
N M{ CROORER '

| |

| A

______________________ [

! MDR memory data register
| |

b)

- L_FUNCTION PARTS
EVENT SELECTION

END BIT

Fig.. 7 a) a programmable Sequencer
b) its word format

14

period-select bits. In nost cases, no wait will be selected. |f the
control gets the response in t , then it directs the next instruction
fetch and initializes its inner tiner unless the end bit is 1 . If
there is no response in time <, then it responds to the master with
the abnornmal end signal AE on-; |f the end bit is 1 and the |ast
response is received in time <, then the control responds with the
normal end signal NE on, and returns to its initial state.

This sequencer replaces "loops for wait" in a program by "waits"
in the control. The tine-out check also serves to detect hardware
mal functions. It is possible to use these chips in a hierarchical
way, in analogy to a nested macro.

This sequencer can be used in several places. For exanple,
mcro-instruction fetch , read-in of a page on a nissing-page fault
(ef. Section 3), and register-saving in case of micro-level error are
possi bl e applications.

The proposed systemw th this sequencer seenms to be sufficient
to inplement ancestor tree prograns with nmany branches but of rather
limted height, such as mcroprograns of mniconputer enulation.

But for broader applications, other nodifications are necessary and
are discussed in the follow ng sections.

15

3. Paged Tree Menory.

For a larger program the nemory space efficiency will become an
inmportant problem This efficiency is defined as a ratio of the used

memory areatoactual l'y inplemented memory area. The pmpping used in
the last section is best for conplete trees, where a tree of height m
is called a conplete tree if every leaf is of depth m. The nappi ng,
however, |eaves nuch unused nenory area for inconplete trees. The
worst case is a straight-line program |f the length of it is m,

then the mapping will |eave 2"m unused words. A nissing subtree
with the root of depth d in a conplete tree of height m anounts
to 2™% words Ioss.

Qur problemis to find a good mapping for inconplete trees which
preserves the sinple sequencing capability of the proposed system
while it reduces the unused nemory area. The fol|owing method is
pr oposed.

Assume that we have menory chips with 2° words and we want to
store an ancestor tree program of height 2p-1 . Each nenmory chip
can store an ancestor tree of height p-1 and this is considered a

page. The following mapping will be used.

program address page address line address
P P P+l D
! I B § - 2} T B I | ~
O.. . 00 0. . 0 o 00 . .0 01
o.. 0O 0 O.. 1 a
| 1 00 . ..o I a,
\
* 0O O 1 a a 0
. o 1 o-1 0] 0] 1al ap—l *
0 0 1 a'fZ"'ap 1al...ap 00. .. 01 X%
1
a) 2,8, . ap+l 1 a a OO0. I aP+ 1
1
) ap-l ap 8'2p-l 1 ay aP I apfl * a’2p-l

16

-

This is equivalent to considering 2%+1 trees of heignt p-|

instead of a single tree of height 2p-1 .

Each small tree is

i mpl emented on a nmenory chip and is identified by its page address.
If a page is never used, then the corresponding chip need not be

equi pped.

By the new mapping,

a nmssing subtree W th the root of depth

p-i (0 < i <p)anmounts to 21-1 words | 0SS, while it amounts
to 2P-1 words | oss by the original mapping.

An | npl enentation.

The inplementation of the IR will

in Figure 8.

In the mapping shown above,
state * and the state **

change slightly as suggested
the transition between the
shoul d be treated differently from ot her

transitions. There are several methods of acconpl i shing this, but it
may be sinplest to use a counter in the SCB which maintains the current

depth. The counter wll
decrenented by 1 for each step of co UP ,
to p (and vice versa) are detected.

This is but one possible inplenentation.

schemes for the total system are conceivable.

Page address (1+p)
— e

—rN

be increnented by 1 for each GO DOMWN and
and changes from p-|

More sophi sticated

l'ine address (p)

1

~

’ T —o
}(— MPX

v

il

Figure 8

17

}

o

; !

Paged Menory System

The mappi ng defined above maps all the nodes in a subtree With
the root of depth p-1 into a consecutive menory area with the sane
prefix (page address). This paged tree nemory is simlar in nmany
respects to the usual paged memory. |t is possible to place some of
the pages in the secondary storage, to read pages into a rewritable
mermory (RAM and to execute the instructions fromthat nmenory instead
of inplenenting all the pages as ROMs. |t seens convenient to specify
inportant and frequently used pages as ROMs, and store others in the
secondary storage. This approach provides us flexibility to change
dynamically microporograms not in ROME. To inplenent this paging
system a new sinple nethod may be nore effective than the sophisticated
pagi ng systens used in current machines. Mst of the conventiona
pagi ng systens use a page table in an associative nenory and an address
set-up nmechanism The nethod proposed here will use a different
approach.

The sinplest idea is as follows: for sinplicity, each RAM chip
is assuned to hold a page (later, this assunption is renoved). Each
ROM and RAM chip contains chip select logic. Each ROM has a fixed
chip nunber (page nunber). But each RAM nust change its page number
according to its current contents. Each page has afone word with
address (0. . . 0) left unused. This word can be used to store the
page address (or part of this address, as explained later in conjunction
with Figure 9). The page address on the page address bus is checked

agai nst the content ofrthe word. |f they coincide, the chip responds.
If there are no responses fromany nenory chips -- this is detectable
by tine-out logic -- then the mssing page fault procedure will be

started, and a new page will be brought into a RAM chip. This can be
done by a programmabl e sequencer described in an earlier section.

In this nethod, the page table is distributed anong the chi ps and
the associative search is replaced by a coincidence check against the
content of the address 0 in each RAM This idea can be used in
systenms other than tree menory systemby adding an extra word to
hol d the page address

18

On (S kS)

\OI__T%C

LINE

PAGE ADD RESS LINE
T —1
Y ——)
v e A \r' PN v) .. v
OMPARATOR ‘(CCHPI\RATOEL" - ‘ICCHPARATCR }"‘
1\...{.' 4‘“}',....,}&] : /L,f,...r
PAR 1 * PAR PAR
RAM f RAM RAM
i | T 2 S
/3 I 1 1
B
ADDRESS V l' \
L i
DATA WORD (ks)

Fig. 9

19

A possible chip design and arrangement

l
|

COINCIDENCE

£

LY
~
>

——n

To realize this system the current design of menory chips nust
be slightly changed. The problemis the appropriate sel ection of
parameters such as page address bits, line address bits, and word
length under limted pin count.-. To fit a broad range of applications,
the chip is desired to be adaptable to various parameter selection.
Figure 9 shows a solution to this problem

Let s be the word |ength of rAM words. Assune that the length
of micro-instruction is ks and that page address is of q bits
width with g < ks . Then k chips are used as a page and the
coi ncidence signal wll be obtained through k serially connected
conparators which conpare the s bit page address with the page
address register (PAP). The PAR may be the word of address 0 or an
extra register. The read/wite control signal is applied to each
chip ANDed with the coincidence signal. |n a sense, this is a bit-
sliced page nenory.

W note, finally, that a secondary storage device which transfers
a page selected by a page address to a suitably selected RAM chip
should be available; e.g. an electronic disc with key-retrieval and
bl ock transfer capability.

Wiat replacenent algorithmis suitable in the paged tree nenory
systen? One principle may be to replace the farthest page in terns
of kinship to the current page. The dynanic behavior of a structured
programreflects its structure (or should). This will nake it easier
to devise a replacenment algorithm.

20

L, Ancestor Tree with Shared Sub-trees.

Now | et us consider another possible objection. as mentioncd
earlier, every flowhart can be transformed INt0 an ancestor treeup
to isonorphism But this transformation requires node-splitiing,
that is, sone parts of the program nust be copied. It does not change
the execution time of the programbut it may require greatly increased
space. As an exanple, let us consider an acyclic graph isonorphic to
Pascal's triangle truncated to height n . Let us call this graph v
(Figure 10). The graph T, has (ngg) nodes and the transfqrmed !
binary tree has 2°-1 nodes. This is an exanmpl e of exponential
space explosion in the structured counterpart of an unstructured or
go-to program This example IS an extreme one. But the feature that
a lower node is shared by many ancestor nodes is not rare. Here is
another exanple [10]. A veryshort nodule in PDP-11 DOS Monitor,
containing 67 instructions, expands to an equivalent ancestor tree
program of 212 instructions. One conmon design goal is to mninize
program size -- especially in the nonitors of miniconputers. Therefore
Q0 T0's (junps/branches in this case) are used freely in real progranmng
despite Dijkstra's warning [5].

As a conpronise, yet another instruction called SHARE is
introduced. This is essentially GO TO but it is used with clear
awareness that a sub-tree is shared with other control paths. Thys,
the usage is limted. 1In this sense, we nay be said to be yet in the
real m of structured programmng. For exanple, T, (Figure 10) can
be realized as a program of Figure 11. The |abel/' %' neans an
instruction " SHARE X ". This programhas % nore nodes than the
original program In general, a triangle program T of height n
is realized as a binary tree programwith (n;l) rm?e nodes than
T, wth (rrl2-2) nodes. Thus, the exponential explode is excluded
with the cost of speed (that is, the extra instruction SHARE nust be
executed). This instruction can be used with ancestor trees also.
In this case, we nust be careful due to possible back edges returning
to ancestor nodes over the root of the shared subtree.

21

Fig. 11 T; realized by using SHARE

22

An | npl enentati on.

The instruction SHARE requires a full address as an operand
(page address and line address, in case of paged. tree nemory). Each
instruction es executed as follows (see Figure 12):

SHARE (address)

(1) Push down the RR into the address stack and transfer
the address part to the rR.

(2) Push down the counter Il into the counter stack and clear
the counter II.

(3) Fetch the instruction.

30 DOM (sel ector)

Sane as the expl anation in Section 2 except that counter |I
will be increnented by 1 at the same time the KR is shifted

left one place.

30 UP (displacenent)

(1) Start the execution of function mcro-orders.
(2) If displacement field is zero, then go to 3 ; otherw se
set the value in the counter I.

Wiile counter | is not zero, do the follow ng:
(2.1) Decrenent counter | by 1.
(2.2) If counter Il is not zero, then decrenent it by 1

and shift the xR right one place; otherw se pop-up
both the stacks to counter II and KR and go to

(2.2) again.
If counter | is zero, fetch the next instruction.
(3) (Return to the root.) Clear counter I|l, counter stack,

address stack, and xR, then shift ina"1" fromthe
right and fetch the instruction.

Remar k. The use of instruction SHARE is not |imted to sharing a
subtree. \WWen storing tall tree programs in the menory, SHAREs are
used to join the sectioned frunks, This usage is nothing other than
@0 TO (junp).

23

r———

\y

1

COUNT,

II

COUNT,

¢

STACK

COUNT]

CONTROL

N

SCB

An implementation of SHARE
(Partial structure) :

2k

MPX

'
{
12
|

Search for Sharable Subtrees.

The last problemin this paper is how we can find such sharable
subtrees in an ancestor tree. |f this is too hard, then we can not
utilize the capability of SHARE sufficiently. Fortunately, we have a
good algorithmto find all the sharable subtrees in an ancestor tree
in time nearly proportional to the nunber of nodes in the tree.

There will be no | oss of necessary information if a given
ancestor tree T is replaced by a labeled tree with all back edges
renoved because the displacement field of the instruction retained as
a label will enable us to recover back edges. Then the probl em can
be restated as finding all the identical subtrees up to their |abels.
The subtrees in the ancestor tree which correspond to the identica
subtrees up to label in the corresponding labled tree can be shared.
Here, an inplicit assunption should be explained. That is, every
instruction is treated as one label even if it contains the
di spl acenent field which is of order log log n, where nis the
nunber of nodes in the tree. In the usual situation, this factor
may be considered not to contribute to the efficiency neasure. Byt
if the asynptotical efficiency is of concern, the present algorithm
can be safely said to be an Q'n log log n) algorithm where
0(f(n)) stands for " order of f(n) ".

Lemm. The list of identical subtrees up to labels in a |abeled
tree can be obtained in linear tine.

See the Appendix fora sketch of the proof.

Thus the existence of an alnmost linear algorithmto find
sharabl e sub-trees is shown, though the actual algorithm should be
sinplified further

25

Concl usi on.

The concept of tree menory is re-examned and applied to mcro-
program nenory. It leads to a programw th the address information
greatly reduced, and a sinple nodul arized control unit. Wth the
programabl e sequencer, ancestor tree prograns of |ow height but with
many branches seemto be realizable effectively; e.g. an emul ator of ,
m ni conputers and possibly a core part of small nonitor programs coul d ‘
be inplemented. |If the programis far fromthe complete tree, then
the paged nenory systemwill save the unused nenory chips. A sinple
paged nenory systemis also proposed in which ROV and RAMs can co-exi st.
This technique will be useful for broader applications such as mcro-
code repl acement of some software routines and interpreters of high
| evel |anguages.
Lastly-we have reached a new class of structured progranm ng by
examning the efficiency issue. It was easy to inplenent a COTO in
the proposed system but we stop at SHARE. This conprom se to introduce
SHARE does not harmthe nerits of structured programm ng, because an
ancestor tree programw th SHAREs can be directly expandable to an
equi val ent ancestor tree program
Each user wants a structured progranm ng systemnost simlar to
his problem structure [9]. The ancestor tree prograns (W th shared
sub-trees) seemto be very near to many problens which people want to
i mpl enent by microprogram although it might be too early to say so)
when there is little data on this issue. What can be said at present '
is that users have obtained nore freedom of choice. The presentation 1
is intended to be suggestive and the readers are invited to devel op
their own ideas on this proposal

26

r—

Acknowl edgnent .

The author would like to thank Prof. |. Lee of' the university
of California at Berkeley for his talk which inspired the present
work. Thanks also go to Prof. |I. Shirakawa of Osake University for

his help. This work was done when the author stayed at the Departnent
of Information and Conputer Sciences at the University of Hawaii and
at the Conputer Science Department at Stanford University. pe would
like to thank all the people at the departnents, Professor W W
Peterson and Professor D. E. Knuth, especially.

27

s

Ref er ences

(1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and
i@%ysis of Conputer Algorithms. Readi ng: Addison- Vésl ey,
974 .

(2] K. J. Berkling, "A Conputing Machine Based on Tree Structutes, "
| EEE Transactions on Conputers, G 20 (), hok-ki18, April 1971.

[3]1 E. Engeler, "Structure and meanings of elenentary prograns,"
Symposium on Semantics of Al gorithnic Lenguages, 1971.

[4] D. E. Knuth, Fundamental Al gorithms: The Art of Computer
Programming, VO~ I, REAUTNg. Addi son- Vésl ey, 1968.

(5] D.E.Knuth, "Structured Prog amming wWith go TO Statenents,"
Conput . Surveys, Dec. 1974, 261-301.

(611. Lee, "1 M croprocessors and Mcroprograns for user-
Oriented Machines,” Proceedings of ACM Micro-7, sl-s13, Sept. 1g7k.

[7] I. Lee,_private COMMUNi cation, 1975.

(8] R.J. Lipton, 8.cC. Eisenstat, and R. A DeMilla., Thg. Conpl exity
of Control Structures and Data Structures,” Proceedings Of
SSeventh Annual ACM Symp. on Theory of Computing, Moy 1975,
186-193.

(91 C MFarland, "Structured M croprograming,” Proceedings of
ACM Micro-7, s28-s32, Sept. 197k. . .

(10] J. Okui, N. Tokura, and T. Kasami, "analysis of a Disk Operating
System " Kyoto University, Institute of Math. Analysis, 189,
Oct. 1973, 101-116. —

[11] w. Tokura, "A Multi-dimensional Addressing system," Trans. Ime

Japan, 53-C, Nov. 1970, 855-862, in Japanese. (EnglTSH
transiation: gystems, Conputers, Controls 1, Nov.-Dec. 1970,

26- 33.

[12] . i ner, "Linear Pattern Matching Al gorithnms " Proceedings of
14h Annual Synposium on Switching and Automat: Theetys
oct—1973, 1= 11

28

Appendi X

A Sketch of Proof of Lemm.

The formof the algorithmclained in the Lemma is briefly
descri bed.
For a labeled tree T, let P(T) be a string of tree |abels
spelled out when T is traversed in preorder [4]. For exanple, the
preorder traversal trace P(T) of a tree in Figure 11 is

ABDGHEHI CE' FI J

For a given tree T, P(T) can be obtained in linear time sinply by
traversing the tree. The length of P(T) equals the nunber of nodes
inT.

Pl. If subtrees T, and T, are isomorphic in a tree T, then
there are two identical substrings P@H) and Pmb)i n P(T) .
Conversely, if there are identical substrings w, and w, in P(T)
for atree Tand if thereis atree T' such that Wy =W, = P(T") ,
then there are isonorphic subtrees Ty and T, with Wy =]NT1)

and w, = I%Te).

P2. It is decidable at nost in time proportionalto the length of
P(T) whether a substring w of P(T) is a preorder traversal trace
of a subtree of T or not.

Pr oof . Sinply by traversing

The problemto find all the repeated substrings in a string is
shown by Weiner [12,1] to be solvable in linear time. Therefore
with PL and P2, we can conclude that the problemto list the root
nodes of isonorphic subtrees in a tree is solvable in linear tine. d

