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Abst r act

Ve prove that there is a function h(k) such that every
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property: if an edge uv belongs to a cycle of length k in G
then uv or vu belongs to a directed cycle of length at nost h(k)
in H. Next, we show that every undirected bridgel ess graph of
radius r adnits an orientation of radius at most ror , and this
bound is best possible. W consider the same problemwith radius
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0. [ ntroduction.

In 1939, H E. Robbins [12] proved that an undirected graph G
admts a strongly connected orientation if and only if G is
connected and bridgeless. |f G is thought of as the system of
two-way streets in a city, then the theorem gives necessary and
sufficient conditions for being able to make every street in the
city one-way and still get from every point to every other point.

The theorem however, asserts nothing about the distance one has to
travel fromx to y in the one-way systemas conpared to the

di stance between x and y in the two-way system Actually, the
conparison mey be quite discouraging: if Gis a cycle of length
k then for each strongly connected orientation # of G, there
are vertices x and y such that x and y are adjacent in ¢
but it takes k-1 edges to get fromx toy in H .

J. A Bondy and U S. R Murty proposed to study quantitative
variations on Robbins' theorem In particular, they conjectured the
existence of a function f such that every bridgel ess graph of diameter
d admts an orientation of dianmeter f(d) . W shall prove their
conjecture as a corollary to a rather general theorem The theorem
asserts that every undirected graph G admts an orientation Hwth

the followi ng property: if an edge uv belongs to a cycle of length k

in G then uv or vu belongs to a cycle of length at nost

(k-2)2[ (k"l)/2] +2

in H. It i1s an easy exercise to prove that, in a bridgeless graph G

of dianeter d , every edge belongs to a cycle of length at nost 2&+1 .



Thus our theoreminplies that the conjecture is true; in fact,

it inplies that
f(d) < a((ed-1)2%+ 1)

This beund may be drastically inproved. Indeed, we shall prove that
every bridgeless graph of radius » admts an orientation of radius
at nost r2+r (and this bound is best possible). It follows inmediately
t hat
2
f(d) <24 +24

On the other hand we shall show that

£(a).> 3 a3 -d

and we shal| describe graphs of diameter d and arbitrary high
(possibly infinite) connectivity such that every orientation has
diameter at |east

%d2+d

Thus the order of growth of f is established;, however, to find the
exact values of f seenms to be difficult. As a first step in this
direction, we show that f(2) =6 ; the Petersen graph provides the
| ower bound. Finally, we shall turn our attention to the general
probl em of finding, for an undirected graph G, its orientation wth
a mninum dianmeter (resp. radius). W shall show that this problem
is very difficult: in a sense, it is as difficult as the problem of
deciding whether G has a hamltonian cycle or the problem of finding
the chromatic nunber of G .

In general, we follow the standard graph-theoretical notation and

termnol ogy, see Berge [24]" or Harary {7]. In an undirected (resp.



directed) graph ¢, the distance dist(u,v;Qd) from u to v is

- the nunber of edges in a shortest path (resp. directed path) fromu
tov . Note that for an undirected graph ¢ , the function
dist(u,v;G is a nmetric whereas fo.f directed graphs G, we often
have dist(u,v;G # dist(v,u;G . Unlike Mon [11], we postul ate
dist(u,u;G =0 . The diameter of a graph G is the |ongest distance

in G;the radius of Gis

m n max(mex{dist(uw,v;c) , dist(v,u;G))
u \"

Thus the dianeter of G is at |east the radius and at nost tw ce the
radius of G.” Note that the dianeter and the radius are defined only
for connected undirected graphs and for strongly connected directed

graphs. Also, if there is no finite upper bound on the distances in G

then the dianeter and radius are undefined.

1. From Cycles to Directed Cycles.

In the theorem bel ow, we set

nx) = (xeyel(B-1)/21 4o

- for every integer k such that k > 3.

THECREM 1. Every graph G admts an orientation H with the follow ng
property: if an edge uv belongs to a cycle of length k in G

then uv or vu belongs to a directed cycle of length at nost h(k)

in H



PROCF. Let H3 be a maximal directed graph such that H3 is an

orientation of some subgraph of G and such that every edge of H5
isin a directed cycle of length three. (If Gis infinite then

H, exists by Zorn's |emma.) Wen 'H has been chosen for some i

5 i-1

| et Hy be a maxi mal directed graph such that H and H, S

1-15H4
an orientation of sone subgraph of G and qvery edge of H, isina

directed cycle of length at nost i . The graph
H= U H,
i=3 *

is not necessarily an orientation of G: the bridges of G do not
belong to H However, we shall prove that H has the other desired
property: if an edge uv belongs to a cycle of length k in G then uv
or vu belongs to a directed cycle of length at nost h(k) in H.
Cearly, that is all we need: the edges belonging to no cycles of ¢
(that is, the bridges of G) may be directed quite arbitrarily.

Let us consider a cycle LITL PR NPy in G such that, for
some n , neither U gk nor wau, bel ongs to Hn . all we have to
prove is that n <h(k)

For each i with 3 <i <n, let X (resp. vy ) denote the

number of those directed edges wu., .u, (resp. Uyl ) that bel ong

J+173

S to Hy but not to H, For each m= 3,4, ...,n , we shall prove

1
t hat

2 (1-2)x, > mH-k . (1)
i=5

. . * . .
For this purpose, consider the graph H obt ai ned from H by adding

the directed edge wu, and all the directed edges Uy such that



* . .
uj+111 ;ﬁHm . Cearly, all the new edges of H lie on a directed

cycle of length at nost

kil % m m
1+ dist(u,,U.,.3H) = [k - 2 x, |+ 2 (i-1)x,
=1 J’ J+1l° " m 123 1 123 1

By the maximality of H o, this nunber is at least mt1 and so (1)
fol | ows.

Next, define m(0) = 2 and, for every positive integer t ,
mt) = (k-e)et'1+2 . For each t such that mt)<_n , we shall-

prove that

m(t)
‘Z‘Xi >t . (2)
i=3"

Let t be the snallest nonnegative integer such that n(t) < n and

such that (2) fails. Trivially, t >1; by the minimality of t,

we have
m(t-1) mgt)
t-1 < 2 x; < 2 x; < t-1
i=>3 i=?
and so X; =0 for m(It-ll) <i < nt) . Consequently,
mg) mt-1
/ (i—2)xi’ = ' 2 (i-2)x,
i=3 =2 *
t-1 m%) t-1 mt-1)
< 2 (m(s)-2) : X. = 2 (m(s) -m(s-1)) Z
s=1 i=m(s-1)+1 ' =1 i=m(s-1)+1
t-1 t-1
<Z gn(S) -n(s-1))(t-s) = erT(S) - (t-1)m(0)
S= S=

= mt) -k,

X

i



contradicting (1). The same argunent shows that, for each t such
that m(t) < n, we have

m(t)

% y. >t
i 2

i=3

Now, we cannot have n > h(k) = m([(k+1)/2]) : indeed, this would

imply

which is clearly a contradiction.

COROLLARY 1.~ Let G be a graph such that every edge of G bel ongs

to a cycle of length at most k . Then there is an orientation H

of G such that
dist(u,vi;H) < (h(k)-1)dist(u,v;G)

for every two vertices u and v .

A particular instance of Corollary 1 (to be used in Section )
asserts the following: if every edge of & belongs to a triangle

then there is an orientation H of G such that
dist(u,v;H) < 3-dist(u,v;G)

" for every two vertices u and v .

Note that h(3) = 4 and h(4) =6 . If h'is any function
such that Theorem 1 holds with h' instead of h , then we nust have
h' (3) >L (as demonstrated by a wheel with an 0dd number of spokes)
and h'(4) > 6 (as denmonstrated by the pentagonal prism

so for k = %, & the result of Theorem 1 is best possible.



llowever, We do not know i £ h' can b chosen to be o polynomiald. or

even a linear function.

2. From Radius to Directed Radius.

THECREM 2. Every bridgel ess graph of radius r adnmits an orientation

of radius at nost r2+r

PROCF. W shall find it useful to work with orientations of multi-
graphs: in such orientations, the nultiple edges may be directed both
ways (whereas the single edges nust be directed only one way). By
induction on r, we shall prove the followi ng statenent: "if G s
a bridgeless nultigraph and if u is a vertex of G such that
dist(u,v;G) < r for every vertex v then there is an orientation H
of G such that dist(m,viH) < r*+r and dist(v,u3H) < r+r  for
every vertex v ".

For every neighbor v of u, the edge uv is contained in sone
cycle; let k(v) denote the length of a shortest such cycle. It is

important to note that

N
~—

k(v) < ertl for every v ; (.

the proof of this fact is left to the reader. An orientation A of
some subgraph of Gwll be called adm ssible if thereis a set S
of neighbors of u , together with a directed cycle C, for each ves ,

such that

(i) each Cv has length k(v) and contains either the edge uv

or the edge vu ,

8



(ii) A is the union of all these cycles CV (ve 3) .

Note that by (3) and this definition, we have

dist(u,w;A) < 2r and " dist(w,u;A) < @r (k)
for every vertex wof A . Furthernore, we shall prove that
every maximal adm ssible graph (5)

contains all the neighbors of u .

Assune the contrary, so that w¢a for some naximal admi ssible
graph A and for sone neighbor wof u . There is a cycle

Wy Wos L ey Wy oWy in G such that Wy o=u, W, = W and k = k(w)

If none of the vertices Wos Wy ee ey Wy bel ongs to A then adding the
directed circuit W s W, oW oW to A e obtain a larger
adm ssible graph: a contradiction. Thus we nay assume that at |east
one of the vertices WosWay ooy Wy belongs to A ; | et W be such a
vertex with the smallest subscript. Since wieA , there is sonme veS
such that wiecv - Witing u = V]SV, e e 2V Ty for CV s

we have m= k(v) and either v = v, OF v = v, there is no [oss of
generality in assumng that v = v, . W also have W, o= v.J for some |

Now, we shall distinguish between two cases.

Case 1. w, =v. |In this case, define (:w to be the directed
cycle

U=, oV —»vJ SV T Wil 7 ax T W U

and note that Cy has length k(w) . (Indeed, if C. had nore than
k(w) edges then the path Wy Vs Vg s Yy woul d be | onger than the path
o1? oWy In that case, the closed walk

oy o 0 of 3 b Tap o woul d produce a cycle in G of length

u,V,w

9



| ess than k(v) and yet containing the edge uv : a contradiction.)

Addi ng c, to Awe obtain a larger adm ssible graph: a contradiction.

Case?. wk,é v . In this case, define c, to be the directed

cycle

u - w S W, = cee W, -V, -V, - . . .V —Uu
2 3 | J*+1 j+e m

and note that Cy has Iength k(W . (Indeed, if Cw had nore than

k(w) edges then the path vj,vj+l,

path w,w, 5, o swou. In that case, the closed walk

u,v,v7),. mﬂﬁ‘:‘@w@m ol woul d produce a cycle in G of length

| ess than k(v) and yet containing the edge uv : a contradiction.)

e Vsu woul d be |onger than the

Addi ng c, to A we obtain a larger adm ssible graph: a contradiction.
Now, (5) is proved and the rest is fairly straightforward. Consider

a maximal admissible graph o. (If Gis infinite then the existence

of Afollows by Zorn's lenma.) In G, contract all the vertices

of Ainto a new vertex u (this may create new nultiple edges)

and call the resulting graph G . Note that G* is bridgel ess and

that by (5), we, have
*
dist(u ,v;G) < r-|
_for every vertex of o . By the induction hypothesis, there is an
orientation H of & such that
dist(u*,v;H*) < r“or  and dist(v,u*;be-) < oy ()

for every vertex v of G . Ve may thi nk of g as an orientation
of some subgraph of G . Continuing this orientation with A (and
directing all the remaining edges of G arbitrarily) we obtain an

orientation Hof G. By(k) and (6), we have

10



dist(u,v;H) < r2+r and  dist(v,u3H) ~ r +r

for every vertex v of G.

THEOREM %.  For every positive integer r there is a bridgeless

graph G_ of radius r such that every orientation of G_ has
r T

. 2
radius r“+r .

PROOF. Ve shal|l construct a certain sequence Hy,H, - of rooted
graphs. H; is sinply a triangle with one of its vertices designated
as the root. To construct H. , take a cycle Uy e e erlp 50y and
two disjoint eopies of H, ;- Then identify the root of the first
(resp. second) copy of H, 4 W th uy (resp. uEr)' The resulting
graph, rooted at u,, is H. . Finally, G, i's obtained by taking
two disjoint copies of n_ ~and identifying their roots. The graph G,
is shown in Figure 1; we leave it to the reader to verify that G has

the desired property.

Figure 1"

11



REMARK. ~ The graphs G, constructed above are so easy to stud
because of their sinple structure and nunerous cutpoints. W do not
know i f there are undirected graphs G of arbitrarily high connectivity
and radius r such that every orientation of ¢ has radius at

least ro+r . Neverthel ess, we can construct undirected graphs G

of arbitrarily high connectivity and radius r such that every
orientation of G has radius at |east r2/2+ r . ' These are the

graphs Ger,k constructed in Theorem k.

3. From Diameter to Directed D aneter.

For each positive integer d , let f(d) be the smallest integer
such that every bridgeless graph of diameter d admts an orientation
of diameter at nmost f(d) ., By Theorem 2, we have f(d) < 2d°+ 24 |
On the other hand, the reader may verify that each of the graphs G,
of Theorem 7 has diameter d = 2r and that every strongly connected
orientation of G, has di aneter 2(r2+r) = d2/2+ d. Let ¢ denote
the graph obtained from H and Hoq (of Theorem %) by identifying
their roots. Then G, has dianeter d = 2r+1. and every strongly
connected orientation of G}, has di aneter
CrPare (D)4 (x+1) = 2aP+a+ & . Hence f(d) > 2 &+ d for
all a>2.

THEOREM 4. For each'pair d, k , where d is a positive integer and

k is a finite or infinite cardinal, there is a k-connected undirected

graph G of diameter d such that every orientation of Gy o hag
J

d, k
. 1 .2
di ameter at |east Ed +d .

12



PROCF. Begin with disjoint sets of vertices sl,sz,...,sm such that

5, and s have cardinality 1 , each of §; (2 <i < m-1) has

cardinality k , and

1+ (a+1)%/2 (d odd)
m =
1+d(a+2)/2 (d even)
Then, for each i = 1,2,...,m-1 , join every vertex from 8, to every

vertex from Si+l The resulting graph is k-connected; by adding as
few as d edges, we shall bring its dianeter down to d . To do so,

we shall first define

1+ (§+1)j for 0 <j <d/2,
i(j) =

m- (d-j+)(d-J) for d/2 <j <d.
Note that 2 = 1.(l) <i(2) <... <i(d-1) = m2 and that thc scquence
of differences i(j+1)-1i,(j) is2 46,. .. .64 2. TFor each
j=0,1,...,d choose a vebtex e Syq) For each j = 0,1,2,...,d-1
join uJ. to Uipp Call the resulting graph Gd,k . The graph Gh,2
is shown in Figure 2. It is easy to see that Gd,k has dianeter d .
Now consi der any strongly connected orientation of Gd,k . Let Py

(resp. P, ) denote a shortest directed path fromu, to u, (resp.

fromu, to uo). Let ¢ denote the length of P, for s = 1,2 .

a
For eachj , 0<j <ad-1, at least one of the paths P,

. S L avoiding the
1<s <2, contains a subpath from 550) to Si(;ﬁl) avoidiny

d-1
, SO £y gy > 2 (151 -i(f)+ 1) -

edge between u. and wu,
J . i

j+l

. . [ 1 .2
m- 1 +d. Hence the dianeter is at |east %(m-lﬂi) >ja+d.

13



Figure 2

In the rest of this section, we shall prove f(2) = 6.

THEOREM 5.  Every bridgel ess graph of dianeter two adnits an orientation

of dianeter at nost six.

PROCF. Let G be a bridgel ess graph of diameter two. W may assune
that some edge uv of ¢ is contained in no triangle (otherw se the
desired conclusion follows from Corollary 1). Let A (resp. B )
denote the set of all the neighbors of u (resp. v ) other than v
(resp. u ). Furthernore, |et A, (resp. Bl)denote the set of

all the vertices in A (resp. B) that have no neighbors in B

(resp. A ). Set A, = A-A B, = B-B, and denote by C the set

2 1 72 1

of-all the vertices not in f{u,vJUAUB . The reader may easily verify
that the orientation of G, described sinply by v o v o8 2 -4 -y
and B » By, ~ A ~ A has dianeter at nost six. (Here X - Y neans
that every edge joining a vertex of x of X with a vertex y of Y

is directed fromx to vy .)

14



Next, we shall prove that Theorem 5 is best possible. A part

of our argunent is of independent interest; therefore we shall state

it onits own.

LEMMA.  Every strongly connected orientation of the Petersen graph

contains a directed cycle of length five

PROCF. Let H be a strongly connected orientation of the Petersen
graph; assunme that H contains no directed cycle of length five.
Since His strongly connected, it contains sone directed cycle;
furthernore, the shortest directed cycle has no diagonals. |n the
Petersen graph, there are no cycles of length seven and every cycle
of length greater than seven has a diagonal. Hence we may assune
that H contains a directed cycle of length six. |n the Petersen
graph, every two cycles of length six are equival ent under some
automorphism; hence we may assume that H contains the directed

cycle 1424344454641 shown in Figure 5.

N,
7

Figure 3
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At | east one edge of 11 enters O and at |east one edge ot 1

leaves O ; without loss of generality, we may assume 7 - o and
8 -~ 5 ,creati gy .t hdlowj r eet edistytlage 58- « £+ Icth2rui8e— 15 -8  forces
Simlarly,

we nust have 3 -7 (otherwise 7 -3 forces 6 - 7 creating the
directed cycle 3 sk - 5 6 -7 -3 ). But then 3 -7 -0 -8 -2 - 3
is a directed cycle of length five: a contradiction.

(Let us digress in order to nention a problem suggested by the
| enmma. Wi ch bridgel ess graphs G have the property that every strong
orientation of G contains a directed cycle whose Iength equals the
girth of G? The Petersen graph has this property and so does every

bri dgel ess graph of radius one.)

THEOREM 6.  Every orientation of the Petersen graph has dianeter at

| east siXx.

PROCF. Let us assune that sonme orientation # of the Petersen graph

has diameter at nost five. By the lemm, H contains a directed
cycle of length five. In the Petersen graph, every two cycles of

length five are equivalent under some autonorphisn hence we may assune

that H contains the cycle 1 -2 - % L 5 -1 shown in Figure b

16



Figure L

Consi der the "cross edges" 16, 27, 38, ko, 50 ; each of them

my be directed towards the pentagon or away fromit.

Case 1. Three consecutive cross edges are directed in the samec

sense. Wthout |oss of generality, we may assune that 0 -5, ¢ . |

and 7 -2 . Here, the contradiction is inmmediate: distQ%7;Hl}>6.
Case 2. No t hree consecutive edges are directed in the same

sense. W may assume 8 - 3 and 9 - 4 forcing 5 o 2 o7 and,

Sdinturn, 6 1. Now, dist(3,6:H) <5 forces 0 8-6 and
dist(3,93H) < 5 forces 0 -7 -9 . But then dist(1,8;H) > 6,

a contradiction.

W& do not know any other bridgel ess graph of dianmeter 2 which
can play the role of the Petersen graph in Theorem 6. perhaps the
Moore graph of diameter two and degree seven, constructed by IHoffman

and Singleton [8], i s &nother exanpl e.

17



4, Finding Optinmum Oientatiops.

Gven an undirected graph G, let us ask for its orientaticn
with smallest possible dianeter (resp. radius). Cearly, such an
orientation can be found in a finite time: the dianeter and the
radius of a directed graph on n vertices can be found in o(nj)
steps [6] and an undirected graph with m edges has 2" distinct
orientations. In the spirit of Edmonds [5], we shall ask for a
"better-than-finite" algorithm finding optinmum orientations; more
specifically, we shall ask for such an algorithmtermnating within
p(n) steps for sonme fixed polynomal p . Qur results are rather
di scouraging;, "they suggest that no such an al gorithm exists.

The key notion is that of an "NP-hard" problem A certain class
of problens is called NP. This class is very wide: it consists of
all the problens for which the correctness of a proposed sol ution may
be checked in a polynonmial tine (relative to the size of the problen.
That is, NP consists of all the problens wth "good characterizations”
(this notion is due to Ednonds [4]). For exanple, the problem "It a

graph G k-col orabl e?" belongs to NP. Now, let X be a problem with
the following property: if X can be solved in a polynomal tine
then every problemin NP can be solved in a polynonial time. Such a

~problemis called NP-hard. (To many, it seens unlikely that every
probl em in NP can be solved in a polynom al time; such a belief
implies that no NP-hard problem can be solved in a polynonmial tine.)
In a pioneering paper [3], Cook proved that it is WP-hard to find the
largest clique in a graph. Since then, many other people have shown

many other problems to be NP-hard; as a rule, this is done by "reducing"

18



the problemof finding the largest clique in a graph (or another
probl em whi ch al ready has been shown to be NP-hard) into the problem
in question. (For nore information on the subject, the reader is
referred to [1].)

In particular, ILovdsz [10] has shown that it is NP-hard to decide
if a hypergraph is 2-colorable; it is inplicit in his proof that
the same problemrenmains NP-hard even when the input is restricted to
hypergraphs of rank three. The relevant definitions may be found in
Berge's nonograph [2]; for the sake of conpleteness, we shall repeat
them here. A hypergraph is an ordered pair H = (V,E) such that V
is a set and such that Eis a famly of subsets of V. The elenents
of Vare called the vertices of H, the elements of E are called
the edges of H. The nunber of vertices of His called the order
or H, the cardinality of the largest edge of' Ii is called the rank
of H. A hypergraph is called 2-colorable if its vertices can be

colored red and blue in such a way that every edge includes at |east

one vertex of each color.

THEOREM 7. Gven a hypergraph H of rank three and order n , we can
construct in Qnﬁ) steps a graph G with the follow ng property:
G admts an orientation of diameter two if and only if His

2-col orabl e. i

PROCF. Let k be the integer satisfying 10 < k < 15 and '
ntk =2 (nod 4) . W shall find it convenient to work with the
hyper gr aph Hy obtained fromH by adding k new vertices
ATACTERETA and, if Hhas an even nunber of edges, adding new

edge {vl,ve} . Note that #. has an odd nunber of edges. To

0

!
!
i |
I



construet ¢ , take disjoinlt cets P and () such bthatl the clements

ol P (resp. Q ) are in a one-to-one correspondence with the verticon

(resp. the edges) of Hy for simplicity, we shall 1 abel each clement

of P (resp. Q) by the corresponding vertex (resp. edge) of Hy
Join by an edge every two vertices in P and every two vertices in Q;
join a vertex veP to a vertex eeq if and only if uece jn Hy .
Then add four vertices Wy W, w5 W, and join each of themto
all the vertices in PUq . Finally, add a new vertex x and join
it to all the vertices in P . W shall show that the resulting
graph G has the desired property. (Note that the number of edges
of G may be of the order fi .)
Firstly, assume that G admts an orientation ¢ of diameter
two. Color a vertex u of H blue (resp. red) if in ¢ , we have
L X - U (resp. u -x). Since dist(x,e;G*) = 2 (resp.
dist(e,x;G*) =2) for every eeq , every edge of H includes at
- | east one blue (resp. red) vertex. Thus His 2-colorable.
Secondly, assunme that H is 2-colorable. Then Hy admts
a 2-coloration such that the nunber of blue (and red) vertices is
- odd and at least five; this 2-coloration i nduces a partition p - P, UP

W are going to describe an orientation G of G ; before doing so,

let us digress a little. By a cyclic tournanent of order 2k+rl , we

shall mean the tournanment with vertices such that

P

Ug =uy, g for every j = 1,2,...,k (arithmetic nodul o 2k+1 ). The

parity partition of such a tournament is the partition ays defined

i
by A = (Up,Usy.--5uy,, .3 and B ={u2,uu,...,’1}2k}. If k > 2 then

the parity partition has the follow ng nice properties:

20
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(i) if ufA then there are vV, € A such that v, - u v,

(i) if u/B then there are v, v, B such that by U v,
, : * ,

Now, the orientation ¢ of « my be described as follows. ror

each of the three sets 1)l

graph induced by that set so as to obtain a cyclic tournament. Let

» P, , Q, direct the edges of the complete

A, UB, be the parity partition of P, (i = 1,2) and let AUB be

the parity partition of Q. Direct

x—»Pl—»PZ—»x 5
P »Q -~ Py
A-.LUAeawl - A,
B—»wl—»BlUB2

.

AlUAE—ow2 - B ,

3
B—*W5~A1UA2 5

1

2;}'

W leave it to the reader to verify that G has dianmeter two.

CORCLLARY 2. It is NP-hard to decide whether an undirected graph

admts an orientation of dianeter two.

THEOREM 8. G ven a hypergraph H of rank three and order n , we
can construct in (Xn6) steps a graph ¢ with Ehe follow ng property:

G adnmits an orientation of radius two if and only if His 2-colorable.
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PROOF.  Take disjoint sets P and @ such that the clementsol P
(resp. q ) are in a one-to-one correspondence W th the vertices
(resp. the edges) of H. Join by an edge every- two vertices in p;
join a vertex veP to a vertex ecq if and only if vee in o .
Then add a new vertex X and join it to all the vertices in P
call the resulting graph Gy - To construct G, take two disjoint

copies of G, and identify their vertices x . W leave it to the

0
reader to verify that G has the desired property.

CORCLLARY 3. It is NP-hard to decide whether an undirected graph

admts an orientation of radius two.

REMARK.  Easy nodifications of our constructions show that (i) for
every k with k >4, it is NP-hard to decide whether an undirected
graph admts an orientation with dianeter at most k , (ii) for every
K with k >4, it is NP-hard to decide whether an undirected graph G
adnits an orientation with radius at most k . To prove (i), take
the graph G as constructed in Theorem 7, add a cycle

UpsUgs oo W os U and identify u, wth x . To prove (ii), take
two disjoint copies of the graph G, construct ed in Theorem 8, add

~a tree T consisting of four paths of length k-2 starting at the
same vertex. Now take two of the four end vertices of T and identify
themwith the vertex x in one of the copies of Gy then identify
the remaining two end vertices of T with the vertex x in the other

copy of Gy
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REMARK.  Corollary 2 shows that in general, it is very hard to
deci de whether an undirected graph G admts an orientation of
diameter two. However, if G has too few edges then the answer is
al ways negative. More precisely, Kat ona and Szemerédi[9] proved
that no undirected graph with n vertices and fewer than

g log,, g edges admts an orientation of dianeter two.
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