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Abstract
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single linear inequality ax <b whose zero-one solutions are precisely
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1. [ ntroduction.

Gven a set of linear equations

and b such that

f(xl,xe,...,xr? =0 if and only if ¥ ax. <p
jo1 d3d

n .
Z a. x, =b, i =
= 3 X N (i = L,2,...,m) , (1.1)
one may ask whether there is a single linear equation
>
a.x, =bd
o1 (1.2)
such that (1.1) and (1.2) have precisely the same set of zero-one
solutions. As shown by Bradley [2], the answer is always affirmative.
(Actually, Bradley's results are nore general. Some of them have been
general ized further by Rosenberg [10].) In this paper, we shall consider
a related question: given a set of linear inequalities
n
o239 <Py (i =12 m (1.3)
j=1
we shall ask whether there is a single linear inequality
n
2 ax,<b
j=l dJ - (l‘)'")
such that (1.3) amd (1.4) have precisely the same set of zero-one
solutions. |n a sense, which we are about to outline, this problem has
- been sol ved | ong ago.
First, a few definitions. A function
£: {0,1}" - {0,1}
is called a swtchi ng function. If there are real nunbers a,a
12 %02 08y

then f is called a threshold function. If there are (not necessarily

distinct) zero-one Vvectors yi,yn, .-,y and z

Iy ~l’52""’fk such t

hat



f(gi) =0, f(.z.i) =1 for all i =1,2,...,k

and

§)
y.
j=1 ~1
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then, for each integer mwith m> k , the function f is called
m sumabl e. If £is not msumuable then £ is called massunmable.
It is well-known [3], [6] that a switching function is threshold if and

only if it is massumable for every m. (The proof is quite easy:

denote by S, the set of all the zero-one vectors x with f(x) =i

By definition, £ is threshold if and only if there-is a hyperplane

separating S, fromsS, . Such a hyperplane exists if and only if

the convex hulls-of s, and s, are disjoint. (early, these convex

hulls are disjoint if and only if £ is massumable for every m.)
Com ng back to our problem we may associate with (1.3) a switching

function f defined by

f(xp%y..@ @B ) @0 if and only if (1.3) holds.

Then the desired inequality (1.4) exists if and only if £ is massunable
for every m. However, such an answer to our question is unsatisfactory
on several counts. Above all, it does not provide an efficient algorithm
for deciding whether (1.4) exists. w shall develop such an algorithmin
* the special case when all the coefficients 5 . and b, in (1.3) are

|
are zeroes and ones. J

AN mxn zero-one matrix A = (a;;) will be called threshold if, and
only if, there is a single linear inequality

n
Z g% <P

j=1 "’

whose zero-one solutions are precisely the zero-one solutions of the
system

n

;Ziaijxj <1 (i = L,2,..0,m) . (1.5)



Note that the zero-one solutions of (1.5) are conpletely deternined by
the set of those pairs of colums of A which have a positive dot
product. This information is conveniently described by neans of a
graph; in order to make our paper self-contained, we shall now present
a few elenentary definitions from g‘raph t heory.

A @ aph is an ordered pair (V,E) such that Vis a finite
set and E is some set of two-elenent subsets of V. The elenents
of V are called the vertices of G, the elements of E are called
the edges of G. Two vertices u,veV are called adjacent if
{u,v} ¢ E and nonadjacent otherwise. For sinplicity, we shall denote
each edge {u,v} by uv . A subset S of Vis called stable in G
if no two vertices fromsS are adjacent in g .

Wth each mxn zero-one matrix A, we shall associate its
intersection graph G(A) defined as foJN.lows. The vertices of GA)
are in a one-to-one correspondence with the colums of A ; two such

vertices are adjacent if and only if the correspondi ng c;lumns have

a positive dot product. The notivation for introducing the concept is
obvious: the zero-one solutions of (1.5) are precisely the characteristic
vectors of stable sets in G(N) . W shall call a graph Gwith vertices

UyslUys .. 50y threshold if there are real nunbers Bys8pyeeesr and b
such that the zero-one sol utions of

n
2 a.x. <b
j=l J J -

are precisely the characteristic vectors of stable sets in ¢ . dearly,

QA is threshold if and only if Ais threshold; let us also note that
G(A)can be constructed from A in o(mng) steps. Thus the question
"Is A threshol d?" reduces into the question "Is G A) threshol d?".

2. The Main Result.

In this section, we develop an algorithm for deciding, wthin o(ng)
steps, whether a graph G on n vertices is threshold. W shall begin
by showing that certain small graphs are not threshold. These graphs
are called 2K2, Py, and Cy, 3 they are shown in Fi gure 1.
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Fact 1 . If ¢ is 2}{2 , Ph or Ch then ¢ is not threshol d.

Proof . Assume that one of the above graphs G is threshold. Then
there is a linear inequality

alxl + a.2x2 + :3,5x5 + ahxh < b
whose zero-one solutiong are precisely the characteristic vectors of
stable sets in G. |n particular, we have

a, +a, >b , a2+a3>b , a.l+a3§b,a +au<b'

clearly, these four inequalities are inconsistent.

In order t& make our next observation about threshold graphs, we
need the notion of an "induced subgraph”. |et G = (v,E) be a graph
and let S be a subset of V  The subgraph of G induced by S is
the graph H whose set of vertices is S tw such vertices are adjacent
in Hif and only if they are adjacent in G.

Fact 2. If Gis a threshold graph then every induced subgraph Of G
is threshold.

Pr oof . Let the zero-one sol utions of

n

b

2 ax <b

3%
be precisely the characteristic vectors of stable sets in , = |et g
beé a subgraph Of G induced by S . Denot e by Z* t he summati on

over all the subscripts j with U.J ES . Then the zero-one sol utions
of

Z*ar_ _<b

are precisely the characteristic vectors of stable sets inH. 5



Now, we have an easy way of showing that certain graphs are not
threshold (sinply by pointing out an induced subgraph i somorphic to
2Ky » B Or Cy ). On the other hand, we are about o develop a way
of showing that certain graphs are-threshold. ot G pe a graph with

vertices UpsUgseeosu - Gwill be called strongly threshold if there

are positive integers s ,a,,...,a and b such that the zero-one
sol utions of

n
2 ax <b
,j"'l%‘]_
are precisely the characteristic vectors of stable sets in G. (Tt

will turn out later, and may be proved directly, that every threshold
graph is strongly threshold.) W shall show that the property of being
strongly threshold is preserved under two sinple operations. ot @
be a graph with vertices w,u, o= . By G+X , we shall denote
the graph obtained from G by adding a new vertex w .. and all the

edges usu o Wwth 1<i<n. gy GUK, , we shal | denote the graph

obtained fromg by adding a new vertex U and no edges at all.

Fact 3. If Gis strongly threshold then G+EK and GUK, are
strongly threshol d.

Pr oof . Let Bys8; e es8 and b be positive integers such that the
zero-one sol utions of

n
2 ax. <b
J=1

are precisely the characteristic vectors of stable sets in G . Then

the zero-one sol utions of

are precisely the characte!istic vectors of stable sets in ., .
Simlarly, the zero-one solutions of



|
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22 a.x. .+ X < 2b+l

are precisely the characteristic vectors of stable sets in GUK, . O
Now, we are ready for the theorem )

Theorem 1. For every graph G, the following three conditions are
equi val ent :

(i) Gis threshold,
(ii) G has no induced subgraph i sonorphic to 2k, . P, or C,
(iii) there is an ordering AN wel of the vertices of G and
and a partition of {v, Vi ..5v,3 into disjoint subsets P
and Q such that
(*)  every vj eP is adjacent to all the vertices v,
withi <j,
(*)  every v, €Q is adjacent to none of the vertices
vy wth i<

Proof.  The inplication (i) = (ii) follows from Fact 1 and Fact 2.
The inplication (iii) = (:f) may be deduced from Fact 3. | ndeed, |et
Gy denote the subgraph of G induced by {Vl’vz"“’vt} o f
Vepp € P then @, = Grx ;if v, . eq then Gpq = G UK. Hence,
by induction on t , every Gy is strongly thresholLd.

It remains to be proved that (ii) = (iii) . We shall acconplish
this by means of an algorithmwhich finds, for every graph G, either

one of the three forbidden induced subgraphs or the ordering and

partition described in (iii). If G has n vertices then the algorithm

3

takes Q(n st eps.
Before the description of the algorithm a few prelimnary renarks
may be in order. It will be convenient to introduce the notion of the

degr ee dG(u) of a vertex uin agraph g; this quantity is sinply
the nunmber of vertices of G which are adjacent to u . At each stage
of the algorithm we shall deal wth sone sequence g of k vertices
of' G; the remaining vertices will already be enunerated as
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Vie1 2 Vigrn? @ bos and partitioned into sets P and Q. Furthernore,

each weS will be adjacent to all the vertices from P and to no

vertices fromQ, hence it will be adjacent to exactly dG(w) - |p|
vertices fromS . The algorithmis fairly straightforward; only Step k4
may require justification. Executing that step, we shall first find
vertices Ups8y,u5€ S such that dG(ul) > dG(uE) and such that Uz

is adjacent to u, but not to u, . It follows easily that there nust
be a fourth vertex ), ES which is adjacent to uy but not to U, -
The algorithm goes as foll ows.

Gtep . For each vertex wof G, evaluate dG(w) . (This may
take as many as O(n2) steps-) Then arrange the vertices of G
® + w such that

into a sequence W39 Wpy
dy(wy) 2 d5(wp) > . >, (v )
call this sequence S . (This can be done in Q(n log n) steps;
the rest of the algorithmtakes only Q(n) steps.) Set k =n
and P=qQ =¢ .
Step . If k=1 then S has only one term call that vertex Vi

and stop. If k >1 then let u be the first termof S and
let v be the last termof S ; note that

|Pj+x-1 > 43w > 4w > 4,(v) > ||

for every weS.If d.(u) = |P[+k-1,goto Step 2. If dfv) = Iq ,

go to Step 3. If |P| < dG(v) < dG(u) < |P|+x-1, go to Step 4.
Step 2. Set v, =u, delete u from s, replace P by PU {vk} s
replace k by k-1 and return to Step 1.
Step 3. Let Vi TV delete v from S, replace Q by QJ{vk},
replace k by k-1 and return to Step 1.
Bt ep Let u, = u. Find a vertex uy ES which is not adjacent
Find a vertex u, ES which is adjacent to wu Fi nd

! 3 .

a vertex Uy, ES which is adjacent to uy but not to Uy - Then

stop (the vertices Uy 5 Up) Us s Uy i nduce 2K, or P or Cy in G). 0O
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In the rest of this section, we shall present several consequences

of Theorem 1.

Remark 1. For every graph G = (V,E) , we nmy define a binary relstion <
on V by witing u<v if, and only if,

weE , WV = WreE

By this definition, < is reflexive and transitive but not necessarily
antisymmetric. From Theorem 1, we conclude the follow ng.

Corollary 1A. A graph Gis threshold if and only if for every two
di stinct vertices u, v of G, at least one of u<v and v < u
hol ds.

Renmar k2. For every graph G = (V,E) and for every vertex u of G,
we define

N(u) = {vev: v is adjacent to u} .
From Theorem 1, we conclude the foll ow ng.
Corollary 1B. A graph Gis threshold if and only if there is a

partition of Vinto disjoint sets A, B and an ordering Uy, s
of B such that ) )

(*) every two vertices in A are adjacent,
(*) no two vertices in B are adjacent,
(*) N(ul) :_2 N(ue) 2 vee 2 N(uk)

Let us sketch the proof. |f G has the structure described by
Corol lary 1B then G cannot possibly have an induced subgraph i sonorphic
to 2K2 , By or Cb,; hence Gis threshold. On the other hand, if ¢
is threshold then G has the structure described by (iii) of Theorem 1.
In that case, we may set A = V-Q, B =Qand order B consistently

with VisVps ooV

10



Remark 3. For every graph G, we define the conplenment G of G
to be a graph with the sane set of vertices as G ; two distinct vertices

are adjacent in G if and only if they are not adjacent in G . From
the equivalence of (i) and (ii) in-‘Theorem 1, we conclude the follow ng-

Corollary 1. A graph‘iﬁ threshold if and only if its conplenment is
t hreshol d. '

Let us point out that this fact does not seemto follow directly
from the definition.

Remark 4. In order to decide whether a graph G (with vertices
ul,ug,,,i 40 ) is threshold, it suffices to know only the degrees
ds(ug) »dy(u,) s e, dy(u ) of its vertices. Indeed, executing

Steps 1, 2 and 3 of the algorithm we manipulate only these quantities.
On the other hand, if we are about to execute Step 4 then we al ready
know t hat Gis not threshold.

Remar k Theorem 1 inplies that threshold graphs are very rare.
Indeed, from(iii) of Theorem1, we conclude that the nunber of distinct

threshol d graphs with vertices Uy Uy, -..5u  does not exceed

nt 2n4

On the other hand, the number of all distinct graphs with the same set
of vertices is

on(n-1)/2
He&e a randomy chosen graph will alnost certainly be not threshold.

Remark 6. Wth each graph G on vertices UpplUny - - sl
associate a switching function

g Ve may

£: {0,137 ~ {0,1}

by setting f(xl’xe""’xn) =0if and only if (XsX o0 cox ) Qs the
characteristic vector of some stable set in G . A switching function
arising in this way will be called graphic. From Theorem 1, we concl ude
the follow ng.

11



Corollary I.D. A graphic switching function is threshold if and only
if it is 2-assumable.

Let us point out that for swtching functions that are not graphic,
the "if" part of Corollary 1D is no longer true. Indeed, foﬁavery m
with m> 2 | there are switching functions which are massunable but
not (m+l) -assumable. [ngenious examples of such functions have been
constructed by Wnder [12].

Remark 7. Wen A = (aij) iS an mxn zero-one matrix, we shall
consi der the following zero-one |inear progranmmng problem

n
maximze 2 5% subject to the constraints )
-~
n
Ela.ijx.j <1 (1<i<m , > (2.1)
J—.
X, =0,1 (L<j<n) .
J - y

Def i ni ng c(uj) = c.J for every vertex u; of G(A) , we reduce (2.1) to
the follow ng problem

in QA , find a stable set S
o (2.2)
maximzing c(S) = Z c(u) . .
ues
In general, (2.2) is hard; one may ask whether it becomes any easier

when Ais threshold. The answer is affirmative. Indeed, if GA) is
threshold then we can find the ordering V1sVps--+5V,  and the par%ition
PUQ described in (iii), Theorem 1; this takes only o(mne) steps.

Then we define
¢ i f c(vl) <0
vz if e(vy) >0

and, for each t with 2 <t < n ,
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v, « Q and c¢(v,) < 0

t-1
1 U {vt} ife v, €Q and c(v,) > 0
5 = 4 :
S¢_1 i f v, €P and C(Vt) < c(S,G l)
4 {vt} i f v, eP and c(vt) > c(st l)

Cearly, S, s a solution of (2.2).

5. Variations.

Let A = (a ) be an mxn zero-one matrix. W shall denote by
t(A) the smallest t for which there exists a system of |inear
inequal ities

n

El “i5% £ 9 (L<i<t) (-1)

such that (3-1) and
n
J§l 835%y <1 (1 <i<m) (3.2)

have the sanme set of zero-one solutions. Theorem 1 characterizes

.matrices Awith t(A =13 in this section, we shall discuss the

problemof-finding t(A) for every matrix A .
Agai n, the language of graph theory will be useful. For every graph

G = (V,E) , we shall denote by t(G the smallest t such that there
are threshold graphs G, = (V,El) , G2 = (V,E2) seees Gy = (V’Et) with

E1UE2U-~-UEt = E . Qur next result may not sound too surprising.
Note, however, that Theorem 1 is used in its proof.

Theorem 2. Let A be a zero-one matrix and let G be G(A)  Then
t(a) =t (Q

13



Pr oof . The inequality t(A) <t(GQ is fairly routine. Indeed, there are

t threshold graphs G = (V,Ei) Wi th UE, =Eand t = t(Q . For
each i , there is an inequality

n

Z ;X< d.

jm1 193 1
whose zero-one solutions are precisely the characteristic vectors of
stable sets in G - A subset of Vis stable in Gif and only if
it is stable in every Gi .Hence the zero-one solutions of the system

n

1 <i< (3.3)

c..Xx, <d,
j=1 175 - 71 -

are precisely the characteristic vectors of stable sets in G. gince
G= G(a) , thecharacteristic vectors of stable sets in G are precisely
the zero-on solutions of (3.1). Hence t(A) <t =t(Q

In order to prove the reversed inequality, we shall use Theorem 1.
There is a system (3.2) with t = t(A) such that (3.1) and (3.2) have
the same set of zero-one solutions. "Set VvV = {ul,ug,...,un} for each i ,
define

E, =fuu:r #sand coheis > di}

and G, = (V,E;). Since (3.1) and (3 .2) have the sane set of zero-one
sol utions, we have

t

VE = {uu;:a, +a, > 1for sone i = 1,2,...,m} .

Hence G = (V, UEi) is G(A) ; it remins to be proved that each G,
is threshold. Assune the contrary. Then, by part (ii) of Theorem 1,

there are vertices U, U 1|13 uq such that

ur%‘ el i ugpeEi

u £ B, usuq £ E;

14
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Hence by the definition of E. . we have

c, +c > 4. +
v I e i Gs cip>di ?

c. +c. : c, +
Ir Ip<-d| , is " %iq -<di ?

clearly, these four inequalities are jnconsistent. O

Next, we shall establish an ypper bound on t(G .In order to

do that, we shall need a few nmore graph-theoretical concepts. A triangle
is a graph consisting of the pairwise adjacent vertices; a star (centered
at u)is a graph all of whose edges contain the sane vertex u . The
stability number «(g) of a graph Gis the size of the largest stable

set in G.

Theorem 3. For every graph G on n vertices, we have t(Q < n-a(G) .
Furthernore, if G contains no triangle then t(G = n-a(Q

Proof. Wite G=(V,E) and k = n-a(Q . Let S be a largest stable
tset 1n G enunerate the vertices in \V-S as Upplps e eeply For each
i with 1<i<x, let E, consist of all the edges of G which
contain u. .Then each Gy = (V,Ei) is astar and therefore a
threshold graph. Since S‘ is stable, we have UE, =E . Hence

(e <k.

Secondly, let us assune that G contains no triangle. There are %
threshold graphs G, = () with 1 <i <t , t =t(Q and UE, = E .
It follows easily from Theorem 1 that each G, bei ng threshol d and

containing no triangle, nust be a star. pHence there are vertices
Upslpy ..oyl such that every edge of every Gi cont ai ns ui . Since
UE, = E , the set

V- {ul’uE’ <.l

is stable in G .Hence (@) > n-t(Q . O

Let us note that we nmay have t(Q = n-a(G egyen when G does
contain a triangle. For exanple, see the graph in Figure 2.

15
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Wien a(G is very large, the upper bound on t(GQ given by
Theorem 3 is nuch smaller than n . On the other hand, if a(Q is
very small then t(G is often very small. (In particular, if
a(G) = 1 then t(G = 1.) Thus qne night hope that, say,
t(GQ < n/2 for every graph on n vertices. Qur next result shows
such hopes to be very much unjustified.

Corollary 3A. For every positive e there is a graph G on n
vertices such that t(G > (1-¢)n .

Proof. Erdos [7] has proved that for every positive integer k there
is a graph G on n vertices such that G contains no triangle,

a(G) < k and, for some positive constant ¢ (independent of k ),

n > c(k/log k)g . Gven a positive ¢, choose k |arge enough, so
that rck > (I og k)2 , and consi der the graph Gw th the above
properties. W have

a(G < k <£Z(Iog k)2_< en

and so, by Theorem3, +t(G) = n-a(G) > (l-¢)n . O

Finally, we shall show that the problem of finding t(G is very
hard; nmore precisely, we shall show that it is "NP-hard". Perhaps a
brief sketch of the nmeaning of this termis called for- There is a
certain wide class of problems; this class is called NP. |t jincludes
some very hard problens such as the problem of deciding whether the
vertices of a graph are colorable in k colors. An algorithmfor
solving a problemis called good if it terminates within a nunber of
steps not exceeding some (fixed) polynomal in the length of the input
[5]. A few years ago, Cook [L4] proved that the existence of a good
algorithmfor finding the stability number of a graph would inply the
exi stence of a good algorithm for every problemin NP.  Such a conclusion,
if true, is very strong. (For exanple, it inplies the existence of a
good al gorithmfor the cel ebrated traveling salesman probl em) A probl em
X is called NP-hard if the existence of a good algorithmfor X would
inply the existence of a good algorithmfor every problemin NP.  (For
nore information on the subject, the reader is referred to [1] and [8].)

17




Corol | ary 3B.

The problemof finding t(G is NP-hard.

Proof . Pol jak f9] proved that even for graphs ¢ that contain no

the problem of finding "a(@ is NP-hard. For such graphs,
however, we have a(¢) = n-t(Q

triangles,

; hence the existence of a good al gorithm
for finding t(G would inply the existence of a good algorithm for

Poljak's problem  Since Poljak's problemis NP-hard, our problemis

NP- hard. oI
W shall close this section with two remarks on t(Q .
Remark 1. First of all, we shall

present a sinmple [ower bound on t(Q .
For every graph G = (v,g) , let us define a new graph ¢* = (v¥,&8%)

as follows. The vertices of G* are the edges of G; that is, v¥ = E
Two vertices of G¢* , say {u,v} V" and {w,z} e W
in G if and only if the set
in G.

, are adj acent

{u,v,w,2} induces 2K, , P, or

C
2 L
Figure 3 shows an exanple of G and o .

18
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As usual, the chromatic number yx(H) of a graph H = (V,E) s the
smal l est k such that V can be partitioned into k stable sets. W

claim that

t(@) > x(¢) . (3.1)

I ndeed, there are threshold graphs Gy = (V,Ei) with 1 <i <t

t =t(G and UE, = E . By (ii) of Theorem1 and by our definition

of G, each E, is a stable set of vertices in G . Hence x(¢*) <t .
Note that the problemof finding the chromatic nunmber of a graph is

NP-hard; hence for large graphs G, the right-hand side of (3.4) may be

very difficult to evaluate. For small graphs, however, (3.4) is quite

useful and often precise. |n fact, we know of no instance where it

holds with the sharp inequality sign.

Probl em I's there a graph G such that t(Q > X(G*) ?

Remark 2. W shall outline a heuristic for finding a "small" (although
not necessarily the smallest,) nunber of threshold graphs G, = (V,Ei)
such that UE, = E , thereby providing an upper bound on t(G . The
heuristic is based on a subroutine for finding a "large" threshold graph
P = (V,Eo) W th E0 c E.

The subroutine goes as follows. Gven a graph G = (v,E), find a
vertex v of the largest degree in G, let S be the set of all the
vertices adjacent to v and let H= (S T) be the subgraph of G
induced by S . Applying the subroutine recursively to H, find a
"l arge" threshold graph 1 = (S,TO) with ™ T . Then define

P =y {wv: wes}

and 0 = (V,EO) .

The heuristic goes as follows. Gven a graph ¢ = (V,E) , use the
subroutine to find a large threshold graph GO = (V,EO) with EOC E .
Applying the heuristic recursively to the graph (V, E-EO) . find
t hreshol d graphs G, = (V’Ei) W t h UE; = E and, say, 1 <_j < k.
Then define Gy = 0

Cearly, the running time for this heuristic is O(n5)

20
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k. Pseudot hreshol d Gaphs.

A switching function f: {0,1}" = {0,1} is called pseudothreshold
[Il] if there are real nunbers a,,a,,...,a_,b (not all of them zero) ,
such that, for every zero-one vector (x,,x,,...,x ), We have

1

n
2 a.x._<b > f(X,,%X,,...,x ) = 0,
4=1 J 3 1’72 n

;El 3% >b o= £xx,..0,x ) = 1

By anal ogy, we shall call a graph pseudothreshold if there are real
nunbers a(u),b (ueV) , not all of themzero, such that, for every
subset S of v, we have

2 a(u) <b = Sis stable,
ues

(4.1)

2 a(u) >b =8 is not stable.
uesS

In this section, we shall investigate the pseudothreshold graphs. (VW
do so at the suggestion of the referee of an earlier version of this
paper,) In fact, we shall develop an algorithm for deciding whether a
graph is pseudothreshold. Wen G has n vertices, the algorithm
termnates within O(nh) steps; it is not unlikely that this bound
may be inproved.

W shal | begin by making our definition alittle easier to work wth.

Fact 1. A graph is pseudo-threshold if and only if there are real
nunbers a(u), b (uev) such that b is positive and, for every subset
Sof V, we have (4.1).

Proof. The "if" part is trivial; in order to prove the "only if" part,
we shal | consider a pseudothreshold graph ¢ = (V,E) . W& may assune
E#¢ (otherwise a(uj =b and b = 1 does the job). Since the enpty
set is stable, (k.1)inplies "b >0 . In order to prove b >0, we
shall assume b = 0 and derive a contradiction. First of all, since



every one-point set is stable, we have 4(qy) <0 for every uc V .
Secondly, since not every a(u) is zero, there is a vertex w wjth
a(w <0. Finally, since E £#¢ , there are adjacent vertices u
and v . Setting S = {u,v,w} we contradict (4.1). J

From now on, we shall assune b > 0 . For every graph ¢ = (V’E)

we shall define two subsets &, , Q0 of V. The set P, consists of
all the vertices u for which there are three other vertices

u u, u

17’ 70’

such that 3
uu,,uu,,uug €E ulug,uluj,ugui,éﬁl

The set Qo consists of all the vertices v for which there are three

ot her vertices V3 v2, v5 such that

T s Ts £ E s vy, vy e

These definitions are illustrated in Figure k.

u
o]
D
u P
3 U
ugPO
v
o V1
Vs v,
veQO
Figure 4
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Fact 2. Let G = (V,E) be a pseudothreshold graph. Then
uep = a(u) > 2b/3
Ve Q = a(u) < b/3
Proof . First of all, if uek, t hen
a(ul) + a(ue) + a.(uB) < b
a(u) + a(ul) >b
a(u) + a(ug) > b
a(u) + a(uB) > b
and so 3a(u) > 2b . Secondly, if veq, then
a(v) + a(vl) + a(vi) < b,
a(v) + a(ve) < b,
a(vl) + a(vg) > b,
a(vg) + a(v5) > b
and so3a(v) <b . ([

Next, we shall define (by induction on t)

.and

Bact

Py = B U {uef: uveg for sone v €Q.} .
Qupq = QU {vev: uv£E for sone ueP}
P U F ¥
= ' Q =U
t=0" ¥ b0 b

If Gis a pseudothreshold graph then P*DQ*

25
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Pr oof . It suffices to prove that

Uuep = a(u) >2b/3 |

veq = a(v) <b/3 ,-

these inplications follow easily (by induction on t ) from Fact 2.

From the definition of P and Q , we readily conclude the
fol | ow ng.

x %
Fact k. If P'NQ =g then every two vertices in P are adjacent
and no two vertices in @ gare adjacent. O

Qur next observation i Nvolves the graph 265 shown in Fi gure 5

ul O- m®) vy
Us O— O Vs
uj O~ =) V5
28
Figure 5

ek



fact No pseudot hreshol d graph contains an induced subgraph

i sonorphic to 5}{2 ‘

proof . Assume the contrary. Then

a‘(ul) + a‘(ue) + a‘(u5) < b,
a(v)) + a(vy) + a(v,) < b,
a(ul) + a,(vl) > b,

a(ue) + a.(ve) > b

-

a(u5) + a(v5) > b

Trivially, these inequalities are inconsistent With b >0 . O

Theoremk4.  For every graph G = (V,E) , the following three properties
are equivalent:

(i) G is pseudo-threshol d,
(ii) Pnq =¢ and Ghas no induced subgraph i somor phic
to 5K2 )

(iii) there is a partition of v into pairwise disjoint subsets P,
Q and R such that

(¥) every vertex fromP is adjacent to every vertex fromPUR ,
(*) no vertex fromQ is adjacent to another vertex fromqug ,

(¥) there are no three pairwise nonadjacent vertices in R .

Proof.  The inplication (i) = (ii) follows from Fact 3 and Fact 4.
To see that (iii) = (i), sinply set b = 2 gnd

0 i f ueq
a(u) = 1 if uer
2 if uep .

It remains to be proved that (ii) = (iii). W shall do this by neans of

a very sinple algorithmwhich ternminates in O(nLS steps either by
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showing that (ii) does not hold or by constructing the partition
described in (iii). The algorithm goes as foll ows.

First of all, find P and Q' . (This can certainly be done in
(th) steps.) Then find out whether P*nQ* = ¢.(If not, stop:
(ii) does not hold.) Then set S =V - (P*UQ*); note that by the
definition of P* and Q¢ , every vertex from S is adjacent to all
the vertices from® and to no vertex fromQ@ . Let S, consi st
of all the vertices in S which are adjacent to no other vertex in S;

define

* *
P=orp ’QzQUSO’ R = s-so

Find out whether there are three pairwise nonadj acent vertices in R .
I'f not, stop: “ P, Q and R have all the properties described in
(iii). If, on the other hand, there are three pairwise nonadj acent
vertices Ug: Usl 5eR then each u. is adjacent to sone v.€R . ALl
three v, 'sare di stinct and pairwise nonadjacent (otherwi se, as the
reader can easily verify, we would have Rﬂ(PO UQO) # ¢ .) Hence ¢

has an induced subgraph i sonorphic to 3K, and so (ii) does not hold.
Renar k. It may be worth pointing out the follow ng corollary of

Theorem 1: If G is pseudothreshold then one can satisfy (4.1) with
b =2 and each a(u) € {0,1,2} .
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