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Abstract

I
Given an mxn zero-one matrix A we ask whether there is a

single linear inequality ax ,< b whosi zero-one solutions are precisely

the zero-one solutins  of "& < e . We develop an algorithm for answering

this question in O(mn*) st""eps  &d investigate other related problems.
-

Our results may be interpreted in terms of graph theory and threshold

logic.
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1. Introduction.

Given a set of linear equations

;a

*.

i
j=l ij xj = bi ( = l,*,...,m) , (1.1)

one may ask whether there is a single linear equation

n
C a.x.
j=l JJzb (14

such that (1.1) and (1.2) have precisely the same set of zero-one

solutions. AS shown by Bradley [2], the answer is always affirmative.

(Actually, Bradley's results are more general. Some of them have been

generalized further by Rosenberg [lo].) In this paper, we shall consider

a related question: given a set of linear inequalities

n
C a x
j=l

ij j L bi ( i = 1,2,  l s .,m) ,

we shall ask whether there is a single linear inequality

n

j$tl ajxj 5 b

(l-3)

such that (1.3) end (1.4) have precisely the same set of zero-one

solutions. In a sense, which we are about to outline, this problem has

- been solved long ago.

First, a few definitions. A function

(14

. f: Co,l)n -) (O,l]

is called a switching f'unction. If there are real numbers
and b such that

a1,a2,...,a
n

f(xl,x2,"-,x )
n

n = 0 if and only if

then f is called a threshold function. If there are (not necessarily

distinct) zero-one vectors ~$y~,...,y
,k and ~~~"e~.-.,~~ such that

2



f(Yi) = O 9 f(“i> = IL for all i = 1,2,...,k

and

L

i

k k
c y. = ?I zi
i=l N1 i=l

then, for each integer m with m > k- , the function f is called

m-summable. If f is not m-summable then f is called m-assumable.

It is well-known [3], [6] that a switching function is threshold if and

only if it is m-assumable for every m . (The proof is quite easy:
denote by Si the set of all the zero-one vectors x with f(x) = i .

By definition, f is threshold if and only if there-is a hy-perplane

separating So from S
1. Such a hyperplane exists if and only if

the convex hulls-of So and Sl are disjoint. Clearly, these convex
hulls are disjoint if and only if f is m-assumable for every m .)

Coming back to our problem, we may associate with (1.3) a switching

function f defined by

f(yc*,  l l l ,⌧n ) = 0 if and only if (1.3) holds.

Then the desired inequality (1.4) exists if and only if f is m-assumable

for every m . However, such an answer to our question is unsatisfactory

on several counts. Above all, it does not provide an efficient algorithm

for deciding whether (1.4) exists. We shall develop such an algorithm in

- the special case when all the coefficients a
ij and bi in (1.3) are

are zeroes and ones.

An mxn zero-one matrix A = (aij) will be called threshold if, and
only if, there is a single linear inequality

n
a.x. <b

j'l 3 J -=

whose zero-one solutions are precisely the zero-one solutions of the

system

n
C aijXj < 1
j=l -

I ( i = l,*,...,m) . W5)
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Note that the zero-one solutions of (1.5) are completely determined by
the set of those pairs of columns of A which have a positive dot

product. This information is conveniently described by means of a

graph; in order to make our paper self-contained, we shall now present. .
a few elementary definitions from graph theory.

A graphG is an ordered pair (V,E) such that V is a finite

set and E is some set of two-element subsets of V . The elements

of V are called the vertices of G , the elements of E are called

the edges of G . Two vertices u,veV are called adjacent if

b,v) c E and nonadjacent otherwise. For simplicity, we shall denote

each edge (u,v] by uv . A subset S of V is called stable in G

if no two vertices from S are adjacent in G .

With each mxn zero-one matrix A , we shall associate its

intersection graph G(A) defined as fokows. The vertices of G(A)

are in a one-to-one correspondence with the columns of A ; two such

vertices are adjacent if and only if the corresponding c&mns have

a positive dot product. The motivation for introducing the concept is

obvious: the zero-one solutions of (1.5) are precisely the characteristic
vectors of stable sets in G(A) . We shall call a graph G with vertices

upp l l �9Un threshold if there are real numbers a1,a2,...,an and b

such that the zero-one solutions of

n
' a.x. <b

3'1 3 J -=

e
are precisely the characteristic vectors of stable sets in G . Clearly,

,

i

1

G(A) is threshold if and only if A is threshold; let us also note that

G(i) can be constructed from A in O(mn*) steps. Thus the question

'!I, A threshold?"
-

reduces into the question "Is G(A) threshold?".
N

I 2. The Main Result.

L

In this section, we develop an algorithm for deciding, within O(n*)

steps, whether a graph G on n vertices is threshold. We shall begin

by showing that certain small graphs pre not threshold. These graphs
L

are called 2K2, p4 and C4; they are shown h Figure 1.
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Fact 1 . If G is 2
%

, P4 or C4 then (; is not threshold.

i

It

t

t

L

L
bc precisely the characteristic vectors of stable sets in G . Let H

Proof. Assume that one of the above graphs G is threshold. Then

there is a linear inequality -.

"lx1 + a2X2 + a3x3 + "bX4 L b

whose zero-one solution,ci are precisely the characteristic vectors of

stable sets in G . In particular, we have

a +a
1 4>b f a2+a >b,

3 a1 + a3 5 b , a2 + a4 5 b ;

clearly, these four inequalities are inconsistent. 7J

In order to make our next observation about threshold graphs, we

need the notion of an "induced subgraph". Let G = (V,E) be a graph
and let S be a subset of V

l The subgraph of G induced by S is

the graph H whose set of vertices is S ; two such vertices are adjacent
in H if and only if they are adjacent in G .

Fact 2. If G is a threshold graph then every induced subgraph of G

is threshold.

Proof. Let the zero-one solutions of

n

a.x. <b
j'l J J -
=

be a subgraph of G induced by S . Denote by c" the summation
over all the subscripts j with u. ES

J
. Then the zero-one solutions

of

C*ax <b
Lb--

are precisely the characteristic vectors of stable sets in H . a
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L

Now, we have an easy way of showing that certain

threshold (simply by pointing out an induced subgraph

2K2 f P4 or C 4 ). On the other hand, we are about

of showing that certain graphs are-threshold. Let G

graphs are not

isomorphic to

to develop a way

be a graph with
vertices u u19 *‘“vUn ' G will be called strongly threshold if there

are positive integers a1,a2,...,an  and b such that the zero-one
solutions of

n
a.x. <b

3'1 J J -
=

are precisely the characteristic vectors of stable sets in G .
(It

will turn out later, and may be proved directly, that every threshold

graph is strongly threshold.) We shall show that the property of being

strongly threshold is preserved under two simple operations. Let G
be a graph with vertices u1,u2'

. l l ,u
n . By G+Kl , we shall denote

the graph obtained from G by adding a new vertex untl and all the
edges u uifitl with l<i<n. GY GU% > we shall denote the graph

obtained from G by adding a new vertex u~+~ and no edges at all.

Fact 3. If G is strongly threshold then G+Kl and GUK
1 are

strongly threshold.

Proof. Let al,a2,...,a n and b be positive integers such that the

zero-one solutions of
m

L n
c a.x. <b
j=l JJ-

are precisely the characteristic vectors of stable sets in G . Then

the zero-one solutions of

n I '
z a.x. + bx
j=l JJ n+l 1 b

1 Iare precisely the characteristic vectors of stable sets in C;+K
Similarly, the zero-one solutions of

1 l

7



n
2 C a.x. + x

j=l JJ
m1 5 2b+l

are precisely the characteristic vectors of stable sets in GUK, l r)

Now, we are ready for the theorem. 1

Theorem 1. For every graph G , the follo@ng

equivalent:
three conditions are

( >i G is threshold,

c

(ii) G has no induced subgraph isomorphic to 2% , P
(iii) there is an ordering

4 or C4’
yp l l l 9vn of'the vertices of G and

and a partition of (v v2' 3’ l l .,vn 3 into disjoint subsets P

and & such that

t

t
i

( 1* e v e r y vj EP is adjacent to all the vertices v

with i <j ,
i

( 1*
every 3 EQ

is adjacent to none of the vertices

Vi with 5 < j .

L

c

Proof. The implication (i) =$ (ii) follows from Fact 1 and Fact 2.

The implication (iii) 3 (i) may be deduced from Fact 3. Indeed, let

Gt denote the subgraph of G induced by [vl,v2,...,vt] . If

vt+p P then Gt+l = G+
5

; if vt+l cQ then Gt+l = Gt UK
by induction on t , every Gt is strongly threshold

1' Hence,

a
It remains to be proved that (ii) 3 (iii) . We'shall accomplish

this by means of an algorithm which finds, for every graph G , either

one of the three forbidden induced subgraphs or the ordering and

partition described in (iii). If

takes 2
O(n )

G has n vertices then the algorithm

steps.

Before the description of the algorithm, a few preliminary remarks

may be in order. It will be convenient to introduce the notion of the

degree dG(u) of a vertex u in a graph F ; this quantity is simply
the number of vertices of G which are adjacent to u . At each stage

of the algorithm, we shall deal with some sequence S of k vertices

of' G ; the remaining vertices kill already be enumerated as

8
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vk+lJ v&2 9 l **> vn and partitioned into sets P and Q . Furthermore,

each we-S will be adjacent to all the vertices from I? and to no

vertices from Q l, hence it will be adjacent to exactly dG(w) - IPI

vertices from S . The algorithm is fairly straightforward; only Step 4

may require justification. Executing that step, we shall first find

vertices u >u >u ES such that dG(ul) 2 dG(u2) and such that
12 3 u

is adjacent to u2 but not to
3

u1 . It follows easily that there must

be a fourth vertex u4 ES which is adjacent to ul

The algorithm goes as follows.

but not to u2 .

0 .Step For each vertex w of G , evaluate dG(w) . (This may

take as many as O(n2) steps-) Then arrange the vertices of G

into a sequence
--

w1’w2’ l *,w, such that

dG(wl) 2 dG(w2)  2 l  * -  ,> dG(�,)
;

call this sequence S . (This can be done in O(n log n) steps;

the rest of the algorithm takes only O(n) steps.) Set k = n

and P=Q=#.

1 .Step If k = 1 then S has only one term; call that vertex v

and stop. If k >l then let u be the first term of
1'

S and

let v be the last term of S ; note that

a for every weS l If a,(u) = lPl+k-1 9 g0 to Step 2. If d (v)
G

= P 3I I
go to Step 3. If IPI < dG(v) ,< dG(u) < lPI+k-1 y go to Step 4.

Step 2. Set vk=u3 delete u from

. replace k by k-l and return to

Step 3. Let vk = v , delete v from

replace k by k-l and return to

4.Step Let ul = u l Find a vertex

s 9 replace  P by PU (vk) ,

Step 1.

S t replace Q by QU Evk} 9

Step 1.

u3 ES which is not adjacent

to u1 l Find a vertex u2 ES which is adjacent to u
3 l

Find

a vertex u4 ES which is adjacent to ul but not to u
2.

Then

stop (the vertices u~,JJ~>u~>u~ induce 2% or P4 or C4 in G ). IJ

9
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I In the rest of this section, we shall present several consequences

! -- of Theorem 1.

Remark 1. For every graph G = (i,E) , we may define a binary relaticln <

on V by writing u < v if, and only if,

UWEE, w#v *wveE.

By this definition, < is reflexive and transitive but not necessarily

antisymmetric. From Theorem 1, we conclude the following.

Corollary lA. A graph G is threshold if and only if for every two

distinct vertices u, v of G , at least one of u < v and v < u

holds.

t

Remark2. For every graph G = (V,E) and for every vertex u of G ,

we define

L N(u) = {veV: v is adjacent to u] .

From Theorem 1, we conclude the following.

b

Corollary lB. A graph G is threshold if and only if there is a

partition of V into disjoint sets A , B and an ordering u
of B such that

pup l - -7\

e

( 1

* every two vertices in A are adjacent,

( >* no two vertices in B are adjacent,

Let us sketch the proof. If G has the structure described by

Corollary l.B then G cannot possibly have an induced subgraph isomorphic

to 2
52 , P4 or C 4 ; hence G is threshold. On the other hand, if G

is threshold they G has the structure described by (iii) of Theorem 1.

In that case, Ge may set A' = V-Q , B = Q and order B consistently

with vl,v2,...,vn .

10



Remark 3. For every graph G , we define the complement G of G

to be a graph with the same set of vertices as G ; two distinct vertices

are adjacent in

the equivalence

(? if and only if they are not adjacent in G . From

of (i) and (ii) in-‘Theorem 1, we conclude the following-

Corollary 32.

threshold.

A graph ib threshold if and only if its complement isL
!

Let us point out that this fact does not seem to follow directly

from the definition.

Remark 4. In order to decide whether a graph G (with vertices

/
L

t

L

up/p  l l l ,un > is threshold, it suffices to know only the degrees

d&l) ., d&2>  ; � l l , dG(un) of its vertices. Indeed, executing

Steps 1, 2 and 3 of the algorithm, we manipulate only these quantities.

On the other hand, if we are about to execute Step 4 then we already

know that G is not threshold.

5.Remark Theorem 1 implies that threshold graphs are very rare.

Indeed, from (iii) of Theorem 1, we conclude that the number of distinct

threshold graphs with vertices ul,u2,...,un does not exceed

t n-ln!2 .

d On the other hand, the number of all distinct graphs with the same set

of vertices is

pbwp .

He&e a randomly chosen graph will almost certainly be not threshold.

Remark 6. With each graph G on vertices ul,u2, . . ..u
n

, we may
associate a switching f'unction

f: {o,l]n -) {O,l]

by setting f(xl,x2,...,xn) = 0 if and only if (x1, x2, +Q is the
characteristic vector of some stable set in G . A switching function

arising in this way will be called graphic. From Theorem 1, we conclude

the following.



’ I

i

1
Corollary I.D. A graphic switching function is threshold if and only

-- if it is 2-assumable.

Let us point out that for switching m&ions that are not graphic,

the "if" part of Corollary lD is no longer true. Indeed, for every m

with m > 2

not (m+l)

, there are switching functions which are m-assumable but

-assumable. Ingenious examples of such functions have been

constructed by Winder [l2].

i

i

L
L

Remark 7. When A = (aij) is an mxn zero-one matrix, we shall

consider the follo&ng zero-one linear programming problem:

n
maximize c (2.x.

=j=l J J
subject to the constraints

n
C a .x. <l
jl iJJ-=

X.
3
=O,l

(l_<i<m) , j

(l<j<n) w- -

(24

Defining c(uj) = c.
J

for every vertex uj of G(A) y we reduce (2.1) to
the following problem:

in G(A) , find a stable set S

maximizing c(S) = C c(u) . k
u'2s

(24

In general, (2.2) is hard; one may ask whether it becomes any easier

when A is threshold. The answer is affirmative. Indeed, if G(A) is

thresh"old  then we can find the ordering vl,v2,...,vn and the pariition
PUQ described in (iii), Theorem 1; this takes only O(mn2) steps.

Then we define

{

$
s1 =

if c(vl) < 0

I 3vl if c(vl) 2 0

and, for each t with 2 <t < n ,



/ -f

/

i

L
i
L

St-l i f ’ vi; c Q, and c(v,.) < 0
,

St-1 u [q
St =

if- vt CQ and c(v,) > 0-

St-l if vteP and c(vt) < c(St 1)

c 3vt if v,eP and c(vt) 2 c(St l) .

Clearly, Sn is a solution of (2.2).
)

3. Variations.

Let A = (aij) be an mxn zero-one matrix. We shall denote by

t(A) the imallest t for which there exists a system of linearN
inequalities

n
cc <d
j=l

ijxj - i

such that (3-l) and

n

(1 ,< i < t)

(l<i. <m)-

(3.1)

(3.2)

have the same set of zero-one solutions. Theorem 1 characterizes

- matrices A with t(A) = 1 ;

problem of-finding

in this section, we shall discuss the

t(A) for every matrix A .

Again, the language of graph theory will be useful. For every graph

G = (VYE) ,
.

we shall denote by t(G) the smallest t such that there

are threshold graphs Gl = (V,E$ , G2 = (V,E2) ,..., Gt = (&Et) with

ElUE2U...UEt = E . Our next result may not sound too surprising.

Note, however, that Theorem 1 is used in its proof.

Theorem 2.

t(A)

Let A be a z&o-one matrix and let G be G(A)

=t(G) . -
. Then

13



Proof. The inequality t(A) 5 t(G) is fairly routine. Indeed, there are

t threshold graphs Gi = (G,Ei) with UE
i-- E and t = t(G) . For

each i , there is an inequality

. .

..x. < d.
j=l iJJ- 1

whose zero-one solutions are precisely the characteristic vectors of

stable sets in G
i

. A subset of V is stable in G if and only if

it is stable in every G
i l Hence the zero-one solutions of the system

$c <d
j=l

ijxj - i (1 5 i < t)- (3.3)

are precisely the characteristic vectors of stable sets in G l Since
G = G(A) , thecharacteristic vectors of stable sets in G are precisely

the zero-on solutions of (3.1). Hence t(A) <t = t(G) l

N -

L-

i

In order to prove the reversed inequality, we shall use Theorem 1.

There is a system (3.2) with t = t(A) such that (3.1) and (3.2) have

the same set of zero-one solutions. "Set V = (ul,u,,...,u,3 for each i ,

define

i
L

t

L
Ii

Ei = {UrUs: r #= S and C. + Cis > di)
lr

and Gi = (V,Ei)  l Since (3.1) and (3 -2) have the same set of zero-one

solutions, we have-

t
U E. = {urus: air+ais > 1 for some i = 1,2,...,m] .
i=l IL

hence G = (V, UEi) is G(A) ; it remains to be proved that each G

is threshold. Assume the cktrary.
i

Then, by part (ii) of Theorem 1,

. there are vertices ur , us , u , u
P q

such that

L uu EE
rq i' uu EEsp i

L
UrUp/JJEi ,, UsUq~Ei l

14
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L

Hence by the definition of Ei ,

C. +c
1 12 iq

>d c +i ' is

C
ir +c <dip - i , 'is+

clearly, these four inequalities

Next, we shall establish an

we have

c. >d
iP i'

c. <dlg- i '

are inconsistent. c]

upper bound on t(G) l In order to
do that, we shall need a few more graph-theoretical concepts. A triangle

is a graph consisting of the pairwise adjacent vertices; a star (centered

at u ) is a graph all of whose edges contain the same vertex u . The

stability number a(G) of a graph G is the size of the largest stable

set in G .

Theorem 3. For every graph G on n vertices, we have t(G) ,< n-@G) .-=.
Furthermore, if G contains no triangle then t(G) = n-a(G) .

Proof. Write G = (V,E) and k = n-a(G) . Let S be a largest stable
setin G; enumerate the vertices in

i with l<i<k, let E
V-S as ul,u2,..',

uk . For each

4 consist of all the edges of G which

contain u
i l Then each Gi = (V,E.)

threshold graph.
1 is a star and therefore a

Since S
I

is stable, we have UE
t(G) 5 k .

i
=E. Hence

Secondly, let us assume that G contains no triangle.

threshold graphs Gi = (V,k,)
There are t

with 1 < i <t , t =t(G) and UEi = E l

a It follows easily from Theorem 1 that each Gi , being threshold and

containing no triangle, must be a star. Hence there are vertices

upp l l �☺ut such that every edge of every Gi contains u
i ' Since

U Ei = E , the set

v - cyp l l .,u

t
3

is stable in G
l Hence a(G) 2 n-t(G) . r)

Let us note that we may have t(G) = n-a(G) even when G does
contain a triangle. For example, see the graph in Figure 2.

I
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When a(G) is very large, the upper bound on t(G) given by

Theorem 3 is much smaller than n . On the other hand, if a(G) is

very small then t(G) is often very small. (In particular, if *

a@) = 1 then t(G) = 1 .) Thus Qne might hope that, say,

t(G) L n/2 for every graph on n vertices. Our next result shows

such hopes to be very much unjustified.

Corollary 3A. For every positive E there is a graph G on n

vertices such that t(G) > (1-s)n .

Proof. Erdijs [7] has proved that for every positive integer k there

is a graph G on n vertices such that G contains no triangle,

a(G) < k and, for some positive constant c (independent of k ),

n > c(k/log k$ . Given a positive E , choose k large enough, so

that rck 2 (log k)2 , and consider the graph G with the above

-
properties. We have

a(G) < k < $ (log k)2 < sn-

i and so, by Theorem 3, t(G) = n-a(G) > (1-&)n . 0

r/

t
Finally, we shall show that the problem of finding t(G) is very

hard; more precisely, we shall show that it is "NP-hard". Perhaps a

L

I

brief sketch of the meaning of this term is called for- There is a

certain wide class of problems; this class is called NP. It includes !

a some very hard problems such as the problem of deciding whether the i
1

L vertices of a graph are colorable in k colors. An algorithm for 1,

t

,

,

solving a problem is called good if it termbates within a number of

steps not exceeding some (fixed) polynomial in the length of the input

[5]. A few years ago, Cook [4] proved that the existence of a good

algorithm for finding the stability number of a graph would imply the

existence of a good algorithm for every problem in NP. Such a conclusion,

if true, is very strong. (For example, it implies the existence of a

good algorithm for the celebrated traveling salesman problem.) A problem

X is called NP-hard if the existence of a good algorithm for X would

,

imply the existence of a good algorithm for every problem in NP. (For

more information on the subject, the reader is referred to [l] and [8].)

17 1



Corollary 3B. The problem of finding t(G) is NP-hard.

Proof. Poljak &] proved that even for graphs G that contain no

triangles, the problem of finding "a(G) is NP-hard. For such graphs,

however, we have a(G) = n-t(G) ; hence the existence of a good algorithm

for finding t(G) would imply the existence of a good algorithm for

Poljak's problem. Since Poljak's problem is NP-hard, our problem is

NP-hard. •l

We shall close this section with two remarks on t(G) .

Remark 1. First of aI& we shall present a simple lower bound on t(G) .

For every graph G =
-=_

L as follows.

(V,E) , let us define a new graph G* = (V*,E*)

The vertices of G* are the edges of G ; that is, p = E

L
4

Two vertices of G* , say (u,vj eV* and (w,zj e V*
.

L
in G*

, are adjacent
if and only if the set Ewbw,23

in G .

induces 2K2 , P4 or C
Figure 3 shows an example of G and G* .

4

L

L
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As usual, the chromatic number x(H) of a graph H = (V,E) is the
smallest k such that V can be partitioned into k stable sets. We

claim that

t(G) 2 ⌧(G*) l
. . (3.4)

Indeed, there are threshold graphs Gi = (V,Ei) with 1 < i <t ,- -
t =t(G) and UEi = E . By (ii) of Theorem 1 and by our definition

of G* , each Ei is a stable set of vertices in G* . Hence x(G*) <t .-
Note that the problem of finding the chromatic number of a graph is

NP-hard; hence for large graphs G , the right-hand side of (3.4) may be
very difficult to evaluate. For small graphs, however, (3.4) is quite

useful and often precise. In fact, we know of no instance where it

holds with the sharp inequality sign.

-=_

Problem. Is there a graph G such that t(G) > x(G*) ?

Remark 2. We shall outline a heuristic for finding a Qmall" (although

not necessarily the smallest,) number of threshold graphs Gi = (V,Ei)

such that UEi = E , thereby providing an upper bound on t(G) . The

heuristic is based on a subroutine for finding a "large" threshold graph

Go = (V,E') with E0 c E .

The subroutine goes as follows. Given a graph G = (V,E) , find a

vertex v of the largest degree in G , let S be the set of all the

vertices adjacent to v and let H = (S,T) be the subgraph of G

induced by S . Applying the subroutine recursively to H , find a

"large" threshold graph Ho = (S,T') with To cT . Then define

E0 = T"U(wv: w&5]

and Go = (V,E') .

The heuristic goes as follows. Given a graph G = (V,E) , use the

subroutine to find a large threshold graph Go = 0(V,E ) with E" c E .

Applying the heuristic recursively to the graph (V, E-E') , find

threshold graphs Gi = (V,Ei) with UEi = E and, say, 1 < i < k .
7 -

Then define GM1 = Go .

Clearly, the running time for this heuristic is 3O(n ) .

20



4. Pseudothreshold Graphs.

A switching function f: (O,l~n --) [O,l] is called pseudothreshold

[ll] if there are real numbers al,-a9,...,ar,b (not all of them zero) Y
such that, for every

n
C a.x. <
j=l JJ

n
a.x. >

jc;L J J=

By analogy, we shall

A-‘ L Al

zero-one vector (x,,x~,...,x ) , we have
-L L

b =? f(X1'X2'...,Xn) = 0 )

b s f(Xl,X2,~..,Xn) = 1 .

call a graph pseudothreshold if there are real

11

numbers W'b bv) I not all of them zero, such that, for every

subset S of V, we have

c a(u) <b * S is stable,
UES

L (44

L
, c ah> b b = S is not stable.

u&3

L
i
L

.

L

.

In this section, we shall investigate the pseudothreshold graphs. (We

do so at the suggestion of the referee of an earlier version of this

paper,) In fact, we shall develop an algorithm for deciding whether a

graph is pseudothreshold.

terminates within 4
When G has n vertices, the algorithm

O(n ) steps;
a it is not unlikely that this bound

may be improved.

We shall begin by making our definition a little easier to work with.

F&t 1. A graph is pseudo-threshold if and only if there are real

numbers a(u),b (UN) such that b is positive and, for every subset

S of V , we have (4.1).

Proof. The "if" part is trivial; in order to prove the "Only if" part,

we shall consider a pseu&othreshold  graph G = (V,E) . We may assume

E 1 $ (otherwise a(uI b5 and b = 1 does the job). Since the empty

set is stable, (4.1) implies ' b > 0 . In order to prove b > 0 , we

shall assume b = 0 and derive a contradiction. First of all, since
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every one-point set is stable, we have a(u) fi 0 for every UC V .

Secondly, since not every

a(w) < 0 .

a(u) is zero, there is a vertex w with

and v .

Finally, since E I$ ,. there are ad;jacent vertices u

Setting S = [u,v,w] we contradict (4.1). a

From now on, we shall assume b > 0 . For every graph G = (V E)

we shall define two subsets PO , Q
Y

0 of v .
The set po

consists of
all the vertices u for which there are three other vertices

such that
Ul Y u2'"3

uu~,uu2,uu  CE ,3 ul”2Y u~“3  Y u2”3  / E l

T h e  s e t  Q. consists of all the vertices

other vertices =.v
v for which there are three

1 2
, v , v

3 such thatL

L
wlY w2Y w3Y v~v3 k E Y

vlv2yv2v3  E E l

These definitions are illustrated in Figure 4.

r

L

F i g u r e  4

3 3



L

L

I
L

L
L

Fact 2. Let G = (V,E) be a pseudothreshold graph. Then

UCP
0 * a(u) 2 2b/3

v e Q. 3 a(u) 5 b/3
. .

.

Proof. First of all, if uePo then

ab,> + ab2) + ab3) 5 b

a(u) + a(u,) > b-

a(u) + a(u,) > b-

a(u) + ab3) 2 b

and so 3a(u) 5 2b . Secondly, if vcQo then

a(v) + aby) + a(v,> < b ,

a(v) + a(~,>  ,< b ,

a(y) + a(v,> 2 b ,

ab2> + “(~~1  2 b

and so 3a(v) <b . c]-

Next, we shall define (by induction on t )

P
t+1 = PtU [u@.k;uv~E  for some v c&t) ,

Q-t+1 = QtU(vEV: uv/E for some ucPt} ,

.and

P" = kt , Q*= ;Q

t==o t=o t l

3 .Fact If G is a pseudothreshold graph then P*nQ* = $$ .

23
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1

Proof. It suffices to prove that

u EP* = a(u) 2 2b/3 ,

vcQ* 3 a(v) 5 b/3 ,-

these implications follow easily (by induction on t ) from Fact 2.
r]

From the definition of P* and Q* , we readily conclude the

following.

Fact 4. If P*nQ" =$

and no two vertices in Q*

then every two vertices in P* are adjacent

are adjacent. c1

Our next observation involves the graph 3% shown in Figure 5.

Figure 5

t
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5.Fact No pseudothreshold graph contains an induced subgraph

isomorphic to 3
52 .

proof. Assume the contrary. Then

a(y) + a(~,) + a(~,>  5 b ,

a(~$ + a(~,>  + a(v3) 5 b ,

a(y) + a(y) > b ,-

8(u2)  + a(v,> 1 b ,

a(u3) + a(v3) > b .

Trivially, these inequalities are ticonsistent with b ~0 .
--. iJ

L

i-

L
L

Theorem 4. For every graph G = (V,E) , the following three properties
are equivalent:

( >i G is pseudo-threshold,

(ii) P*nQ* = fi and G has no induced subgraph isomorphic

to 3% Y

(iii) there is a partition of V into pairwise disjoint subsets P ,

Q and R such that

( >* every vertex from P is adjacent to every vertex from FUR ,

( >* no vertex from Q is adjacent to another vertex from QUR ,

(*) there are no three pairwise nonadjacent vertices in R .

P r o o f . The implication (i) 3 (ii) follows from Fact 3 and Fact 4.

To see that (iii) =$ (i), simply set b = 2 and

0 if ueQ

a(u) = 1 if usR

2 if ueP .

.

It remains to be proved that (ii) 3 (iii). We shall do this by means of

a very simple algorithm which terminates in 4
O(n ) steps either by



showing that (ii) does not hold or by constructing the partition

described in (iii). The algorithm goes as follows.

4
First of all, find P* and Q? . (This can certainly be done in

O(n ) steps.) Then find out whether P*nQ* = $8 l (If not, stop:

(ii) does not hold.) Then set S = V - (P*UQ*) ; note that by the

definition of P* and Q* , every vertex from S is adjacent to all

the vertices from P* and to no vertex from Q* . Let So consist
of all the vertices in S which are adjacent to no other vertex in S ;

define

P = P" > Q =Q*USo y R = s-so .

Find out whether there are three pairwise  nonadjacent vertices in R .

If not, stop: L P , Q and R have all the properties described in

(iii). If, on the other hand, there are three pairwise nonadjacent

vertices u u u ER then each1' 2' 3 u
i is adjacent to some vieR l All

three vi 9 are distinct and pairwise nonadjacent (otherwise, as the

reader can easily verify, we would have Rn(PO UQ,) { $8 .) Hence G

has an induced subgraph isomorphic to 3K2 and so (ii) does not hold. I7

Remark. It may be worth pointing out the following corollary of

Theorem 1: If G is pseudothreshold then one can satisfy (4.1) with

b=2 and each a(u) E {0,1,2] .

i

iL
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