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Abst r act

This paper considers path problems on directed graphs which are
solvable by a method simlar to Gaussian elimnation. The paper gives
an axi om system for such problems which is a weakening of Salomaa's
axioms for a regular algebra. The paper presents a general solution
met hod whi ch-requires (Xn3) tinme for dense graphs with n vertices
and considerably less tine for sparse graphs.

The paper also presents a deconposition nethod which solves a
path problem by breaking it into subproblens, solving each sub-problem
by elimnation, and conbining the solutions. This method is a
generalization of the "reducibility" notion of data flow analysis,
and is a kind of single-elenent "tearing". Efficiently inplemented, the
method requires Q(m a(m,n)) tine plus time to solve the subproblens,
for problem graphs with n vertices and m edges. Here a(m,n) is
a very slowy growing function which is a functional inverse of
Ackermann's function.

The paper considers variants of the axiom system for which the
solution nethods still work, and presents several applications,

including solving simltaneous |inear equations and analyzing control

Tlow in computer programs. p X .
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1. [ ntroduction.

Consider a systemof linear equations Ax = C , where A is an
n by n, real-valued, non-singular matrix, X is an n by one
vector of variables, and ¢ is an n by one vector of constants.

Mat hemat i ci ans have devel oped many nethods for solving such systens
[15,44], including Gaussian elinination and its variants and a host
of iterative nethods.

Some of these linear algebra techniques apply in other settings.
Klenne [25] and others [6,36,37] have described the use of elinination
met hods to conpute regular expressions for finite automata. Floyd [13]
and others [9,20] have used simlar nethods to find certain kinds of
optimum paths in graphs. Not all of these researchers have realized
the connection of their ideas with Gaussian elimnation.

| ndependent |y, many canputer scientists have devel oped methods
for collecting information about the flow of control in a conputer
program [4,5,10,14,16,17,21,22,23,24,29,31,43,45]. Sone of these
met hods resenble iterative nmethods for solving systens of |inear
equations; others resenble Gaussian elimnation. Flow graphs of

conmputer prograns often have a special property, called reducibility.

For such programs, especially-efficient information collection
algorithms exist [ 16,23,37,43].

In this paper we develop an elimnation nmethod for solving such
path problems. W use an axiomatic setting which covers nost of the
probl em domai ns described above. The axi om systemis a weakening of
Salomaa's axions for a regular algebra [36,37 1, with right distributivity
replaced by a nonotonicity axiom suggested by G aham and Wegnman [16]
and by Wegbriet [L5]. W discuss variants of the axi om system for which

the method is also valid.



For convenience in presenting sone of the results, we use a
graph-theoretic framework in place of a matrix-theoretic one. For
dense graphs With n vertices, the elinination method requires O(ns)
time, for sparse graphs, the running tine depends in a conplicated
way upon the sparsity.

VW al so describe two nmethods for solving a path problem by breaking it
into several path problens on smaller graphs. The first, well-knonwn
by nurmerical analysts, uses the strongly connected components of the
problem graph. For a graph with n vertices and m edges, the nethod
requires Qn+n) time plus the time to solve the subproblens. The
second method, which generalizes the reducibility notion of globa
flow analysis, and which is a type of single-element "tearing", uses
the dom nators of the problem graph. This method requires Q' m %(m,n))
tine plus the tine to solve the subproblems, where =x(m,n) is a very
slowy growing function related to a functional inverse of Ackermann's
function. For reducible flow graphs, the total running tine is
o(m x(m,n)) , better than the o(m log n) running tinme of the best
previ ous algorithms[1k,16,23,43].

The paper contains nine sections. Section 2 gives the necessary
definitions fromgraph theory. Section 3 gives the axiom system for
path problens and presents the elimnation method. Section L discusses
the effect of reversing the edges of the problemgraph. Section s
gives the strong conponents decomposition method. Section & presents
the dom nators deconposition nethod. Section 7 discusses changes to
the axiom system  Section 8 gives exanples of path problens.

Section 9 contains further remarks and concl usi ons.



2. Directed G aphs.

A directed graph G=(V,E) is a finite set Vof n =}V

elenents cal led_vertices and a finite set E of m=|g| elenents
called edges. Associated with each edge e is a vertex h(e) called

the head of e and a vertex t(e) called the tail of e . Edge e

| eaves t(e) and enters h(e) . This definition allows |oops (edges

1285 w th

e wth h(e) =+t(e)) and nultiple edges (edges e
n(e)) = h(ey) , t(ey) = t(ey)).

A path p of length k from v to wis a sequence of edges
P = epsepseensey such that h(ei) = t(ei+l) for 1 <i <k-1,
t(el) = v, and h(ek) =w. W extend h and t by defining
h(p) = h(ek) » t(p) = t(el) . The path p contains edges €15€ps 08y
and vertices t(el) , h(el) , h(ee) s ey h(ek) , and avoids all other
edges and vertices. By convention there is an enpty path (containing
no edges) fromevery vertex to itself. A cycleis a path p,
containing at |east one edge, such that h(p) = t(p) .

A graph Gg'* = (V',E') is a subgraph of a graph G = (V,E)
if vvcVand B'c E. If E' = E(V') = {eecE \h(e),t(e) ev'},
then G' is the subgraph of G induced by the set of vertices v'.
Similarly, if V' = V(E') = {v eV |Ze ¢E with h(e) = v or t(e) = v},
then G' is the subgraph of G induced by the set of edges E'.

If there is a path froma vertex v to a vertex w inagraph ¢,

then w is reachable fromv in g . A graph is strongly connected

if any vertex in it is reachable fromany other vertex. The naxinal
strongly connected subgraphs of a graph ¢ are vertex-disjoint and

are called its strongly connected conponents.




A (directed, rooted) tree T is a graph with a distinguished
vertex r such that there is a unique path from r to any vertex
in T . If a vertex v is on the path fromr to a vertex w,
then v is an ancestor of wand w 1S a descendant of v . W
denote this relation by v Tw. W denote the fact that (v,w) is

atree edge by v -w , and the fact that ¥V - w and v £w by

+
Vv - W .



3. Path Probl ens.

Let R = (8,®,%,0,1) be an algebra consisting of a domain S,
two binary operations @ and © , a unary operation * , and two

constants 0,1¢ S, satisfying the follow ng axions.

Al (x2y) @z = x®(yDz) -- A5 x0(yoz) = (xvy) oz
A2: x®y = y®&x A6 0Gx = x50 = 0

A3: x®dx = X A7: x91 = 16x = X

M. 0®x = x®0 = X A8 xe(y®z) . X0y @ x0z

As a consequence of Al, A2, A5 we can define a partial order < on
Sbhy: x<y ifandonlyif x%y =y .

A9: x <y inplies x0z <yoz

For xeS and i a non-negative integer, |et x*=1if i =0,

x' = xext 1 if 1 >0 .

AL0:  x* < x* for all non-negative integers i .

ANl: (zox)®y<z inplies yox <z .

These axions are a weakening of Salomaa's axions for a regular
al gebra 36,371, with right distributivity replaced by a monotonicity
axi om (A9) suggested by G aham and Wegman[16] and by Wegbreit [L5].
Note that if S contains no zeroelement O but satisfies Al -A3,a5,
A7 -All we can always create a zero element 0, defining 09x = x®0 = x ,

* .
O'x=x0=0, 0 =1. It is easy to verify that Al-All hold for su {0} .
Lemma 1. If x<y and w <z, then x3w <y®z and xow <yoz .

Proof . By Al, A2, and the definition of <, x2w2y%z = xoyewdz
=y®z. Thus x2w <y®z . ByA9, x0Ow <y®w . By A8 and the
definition of <, yow®@yoz = yo(w+z) = yoz . By the

transitivity of <, xOw <yow <yGz . 3



Let G = (V,E) be a graph. Let a: E-S, ¢c: V8. Then

(G,a,c) is a path problem For any path p = €158 resy in G

we extend a to p by defining a(p) = a(el).fﬂa(e,&)@...c-)a(ey) .

If pis a path of no edges, we let a(p) =1 . A solution to the

path problem (G,a,c) is a mapping x: V -» S such that

d: c(t(p))oa(p) < x(h(p)) for all paths p ;
c2:  x(v) <z(v) for all mappings z: v -3 satisfying the set

of inequalities

Q(E) = 2 z(t(e)) @ale) ®e(v) < z(v) | veV(E)

ecE

h(e) =V

Lenma 2. Let z: v - S satisfy the set of inequalities QE)

Then c(t(p)) @a(p) < z(h(p)) for all paths p .

Pr oof . Let p = €190 ++ 058 be any path in G. W prove
c(t(p)) @a(p) < z(h(p)) by induction on k . If k =0, the result
I's imediate. Suppose the result is true for k > 0 . Then

c(t(p)) @a(p)

c(t(p))ola(e)0...0a(e )]0ale,, )

IA

x(t(e by the induction hypothesis and A9

1)) ©2(eyq)

IN

x(n( e, 1)) = x(nu(p)) by Q(E) . O

If f is any function, et f\X denote the restriction of f

to the domain X .

Lemma 3. Let z: v-35 satisfy the set of inequalities QE) . Let

E' CE . Then iz ) .satisfies Q(E')

V(E*



Pr oof . I medi ate. 3O

W shal|l present a two-step nethod for solving path problens.
The first step is analogous to finding the 1y deconposition of
a nuneric matrix by Gaussian elimnation [15]. The second step is
anal ogous to numeric backsolving [15] and is also related to
propagation nethods for data flow analysis [ 17,21,23,24]. To

present the algorithmwe need a few nore definitions.

Let G = (V,E) be a graph and let (G,a,c) be a path problem
Let v,w e Vand let P be a set of paths fromv towin G.

A val ue yeS% is a_tag for the triple (v,w,P) if

Tl: a(p) >y for all paths peP .

T2: z(w) > z(v)ey for all mappings z: v -3 satisfying QE)

Suppose the vertices of a graph G = (v,E) are nunbered from
one to n and identifiecd by number. A sequence of triples
(v(1),w(1),P(1)), - -«5(v(k),w(k),P(k)) with v(i),w(i) ¢V , P(i)

a set of paths from v(i) to wi) in Gis a propagati on sequence

for G if

Pl: v(i) =wi) =i for 1 <i <n and v(i) #wWi) for ml < i <k .

P2:  Each path p in G can be represented as

P

1<

P(1,)50(3y) s+ sB(ip,, ) » Where i, <3y <. . <,
igj+15nf0r 0<j <1, n+1512j5kfor 1<j<t,
and p(ij) eP(iJ.) for 1 <j < 21-t-|



Given a propagation sequence {v{i),w.i),F{i)) 1or ¢ an.
atag y(i) for each triple in the sequence, the follow ng al gorithm

conputes a solution to the path problem (g,a,c)

SOLVE: begin
init: for i := 1 until n do x(i) := c(i)cy(i);
main  for i := n+l until k do

x(w( i) ) == x(w(i)) Dx(v(i)) ~y(i) “yluii));
ggg SOLVE;

Theorem 1. The mapping x: v - 3 conputed by SCLVE IS a solution

to (G,a,c) .

proof . Let p = p(il),p(ig),...,p(igﬁl) be a path in G, represented
as in P2. W prove by induction on ¢ that d holds for p after

iteration 3

o of main . Suppose ¢ = ¢ . Then

c(t(p)) @a(p) = c(t(p(i;))) @alp(iy))

<e(iy) ey(i,) by T1 and Lemma 1,

and ¢1 holds after execution of init .

Suppose £ > O . By the induction hypothesis,
c(t(p)) ea(p(iy)) ©.0a(p(i,,, ;) < x(t(o(i,,,.))) after iteration

i

o) of main . Thus

e(t(0)) @a(p) < X(6(p(iy,,,))) Ba(p(iy,,))ea(E(i,,,5)

i i >y (w(i before iteration i
Sx(v(ipyp)) O¥(igy,p) O¥((iy )y, p)) Pefore

24+2
of main
<x(w(is, ) ) after iteration i Of main.
Thus d holds for any path p .
To conplete the proof, we show by induction On | that X

satisfies C2 after iterationi of main . Let z satisfy QE)

10



Then, for 1 <1 < n, (i) > (i), and z(i) > z2fi)eyli) by T2.
Hence z(i) > c(i)oy(i) , and x satisfies z(i) > x(i) for

1 <i_<n after init . Suppose x satisfies z(v) >x(v) before
iteration i > ml of main . The only value of x{v) which changes
during iteration i of main is x(Wi)) . By the induction
hypothesis and T2, x(v(i))oy(i) < z(v(i))oey(i) < z(w(i)) before
iteration i . Also z(w(i))oy(w(i)) < z(Wi)) by T2. Hence
x(v(i)) oy(i) oy(w(i)) < z(Wi)) before iteration i, and

X(W(i)) < z(w(i)) after iteration i . By induction, C2 holds for

the final value of x .3

e note\éeveral inportant facts about SOLVE. First, its running
tine is k) , where k is the length of the propagation sequence
(if ®, ©, and * require constant tine). Also, tags for a propagation
sequence depend only on a and not on ¢ . Thus we can solve a set
of path problens (G,a,cl) s (G,a,ce) 3eeey {G,a,ct) by finding a set of
tags for a single propagation sequence and tren using SCLVE once for each e, -
SOLVE is a generalization of the backsolving step used to solve
sinul taneous |inear equations, and is also related to propagation
met hods of gl obal flow analysis.

In order to apply SOLVE, we nust first conpute a propagation

sequence and appropriate tags. The following |emas lead to a way

to conpute a propagation sequence.

Lemma 4. Let WW@{, {Fhen a(e) is atag for

(t(e),n(e), {e}) .

Proof. | medi ate. 2

11



Lenrma 5. Let x be a tag for some triple (v,v,?) . Then <

, * .

is atag for (v,v, P) , where P is the set of all paths forned by
concatenating zero or nore paths in P . (P* i ncludes the enpty

path from v to v.)

Proof. Let p be any path fromv to v in Gg(E') . If p is
enpty, a(p) = lgx* by Al0. If p is non-enpty, p can be

represented as p = PsPos . o By where each 19 is apath inp.

By T1, a(pi) < x for all i . Thus a(p) < X < X by Al0. llence

T1 holds. Let z: V - 8 satisfy QQE) . Then z(v)>z(v) @x3z(v)

by T2, and z(v) > z(v)@x* by Al. Hence T2 holds. J

Lemma 6. Let y, , y, be tags for (v,w,Pl) and (v,w,Pz) ,

respectively. Then ¥y,.®¥, is atag for (v,w, PlUPQ) .
Proof . Let p be any path in PLUP, . Then p is a

path in either p, or P, , say p, . Hence a(p) < ¥y SY37, s

and T1 holds for p. Let z: V - 3 satisfy QE) . Then

z(w) > z(v)®y1®z(v) oy, = z(v)(yl®y2) by A8. Hence T2 hol ds. -

Lema 7. Let ¥y; . ¥, be tags for (u,v,Pl) and  (v,w, P2) s

respectively. Then Y1095 is a tag for (u,w,Pl-Pe) , Where Pl-P2

Is the set of all paths formed by concatenating a path from P,

with a path fromP2 :
Proof . Let p be any path in P,*P, . Then p can be represented
as p =Py B, W th Py € P, P, €P2 . Hence

a’p) = a(pl)Qa.(pg) <y 0V, , and Tl holds. Let z satisfy Q)

Then z(w) > z(v) oy, and z(v) > z(u)@yl . Hence

12



z(w) > z(u) 0y, 0¥, by A9, and T2 hol ds. ]

The followi ng algorithm a version of Gaussian elinination,
conputes tags for certain triples which forma propagation sequence.
The al gorithm assumes that the vertices of the problemgraph G are

nunbered fromone to n and identified by nunber.

ELI M NATE: begin
for v:=1until ndo for w:=1until ndo y(v,¥) :=0;

for ek do y(t(e),h(e)) := y(t(e),h(e)) Da(e);
loop: for v :=1 until n do begin

a y(v, v) = y(vv)
b: for (wv), (v,w) with (ww >v) and (y(u,v),y(v,w £ Q)
do

v(u,w) := y(u,w) ®y(u,v) ey(v,v) oy(v,w);
end end ELIM NATE;

For u,v,weV , |et Pv(u,w) =(p = €128+ 58, | t(p) = u,
h(P) = w, and h(ei) < v, h(ei),é {fu,w} for 1 <i <1t-1} . Let

P(u,w) = Pmin{u,w}(u’w) . Noti ce that P(u,w) = P _l(u, W) ,

min{u,w}
*
and P(v,v) = {p = €158 e 1se, | t(p) = v, h(p) = v, and h(e;) < v

for 1 <i<1-1}.

Theorem 2. For each final value of y(v,w) conputed by ELIMINATE,
- y(v,w) is a tag for (v,w,P(v,w)).If v = w, y(v,w) is a tag

for (v,w, P(v,w)*) .

Proof . W prove by induction on v that after iteration v of
loop each value of y(u,w) so far conputed is a tag for

w)) , and. y(ww) is atag for (ww,P(w,w) ) if

13



ELI M NATE by Lemma b4 and Lenma 6. Suppose the hypothesis is true

after iteration v-I of loop . Consider iteration v . Execution

of step a causes y(v,v) to become a tag for (V,V,P(V,V)*) by

Lemma 5. Consider any set of paths Pv(u,w) wWith uwyw >v . This
set of paths can be represented as

Pv(u,w) = Pv_l(u,w) UPV_l(u,v)'P(v,v)*-P(v,w) . Step b conputes a

tag for each such Pv(u,w) using Lemmas 6and 7. By induction, the

hypot hesis holds in general. The theorem follows. O

Theorem 3. The following is a propagation sequence for G .

(1) The elenents of {(v,v,P(v,v)) | vev} in any order, followed by

(2) the elenents of {(v,w, P(v,w) | v,weV, v <w} in increasing
order on v (or on w), followed by

(3) the elenents of {(v,w,P(v,w)) | v,weV, v >w} in decreasing

order on v (or on W).

Proof . Let p be any path in G . Let vl=t(p) . For i >1,

| et Vieg be the first vertex u > vy foll ow ng v, onp . Let

Vs be the last such v, definabl e (vj is the largest vertex on p ).
Simlarly let W, = h(p) . For i >1, let Weiq be the last vertex
u>w, precedi ng w, onp . Let W, be the | ast such LA defi nabl e.

~Then v. = w

] 2 W can represent p as

(
P =DsPy - "PEJ"P2j+l"""p2;j+2£—5 , where Pp; € P‘vi’vi+l) for

1<i<ji-1, e P(w

—i) for 1 <i < t-1,

Pojipi-2 1-i+1""y

.) for

Py © P(vi,vi) for 1<i < i

, and Ppiepi-1© P(wz_i,w

1<i<¢~1. The theorem follows. O

14



The conplete algorithm for solving a path problem consists of
three steps:
S1: Apply ELIM NATE to conpute tags.
s2:  Form the propagation sequence given by Theorem 2, onitting
triples (v,w;P(v,w)) With tag 0 .

s3: Apply SOLVE

Steps S2 and s3 require (k) time and space, where k is the
nunber of non-zero tags conputed by ELT4INATE. The running tine of
ELI M NATE depends in a conplicated way upon the nunber of non-zero
tags. By rear_;r'angi ng the conputations and using appropriate data

structures, we can inplenment ELIMIUATE tO run in

v=1

0<:R+E|<<u,v) (H(uv) AQsu>v}|. | {(wmw) { £(vw) £ O, v > v) 1)

tine and (k) storage space [7,40]. (By only storing val ues of
f(v,w which eventually become non-zerc, we can avoi d spending time
zeroing f(v,w). for all v and w.)
For dense graphs the storage bound is o(ng) and the tine bound
is O(n5) For sparse graphs, the rescurce requirements depend upon
the vertex nunbering chosen. Nunerical analysts have devoted nuch
-effort to finding good numbering schenes, both for arbitrary sparse

graphs and for graphs with special structure. See [7,32,33,3k,35,L3].

15



h. tiraph Reversal.

R

If 1" is a set of edges, lcet 1, the reversul of &, be the

set of edges formed by switching the head and tail of each edge in & .
R

If G=(V,E) is a graph, G = (v,ER) is the reversal of G.
(Reversing the edges of a graph corresponds to transposing the
correspondi ng adj acency nmatrix.) Suppose we have a method to sol ve
path problenms on G. W would |ike to transformthis nethod so
that it solves path problens on ol

Theorem 4. Let (v5(1),w(1),P(1)), ..., (v{k),w(k),2(k)) be a
propagation sequence for G . Then
(v(2),w(1), B, -, (v(n) w(m), B(m)P)
(w(1),v(8), PN, ., (w(n+1) , v(nr1) , B(ne1)

R _¢(R R R
sequence for G, where PR = {ez’ €y q 2 el‘ €565 10 eze'P}.

R) is a propagation

Pr oof . | medi at e. |

Thus any propagation sequence for a graph G can be easily
converted into a propagation sequence for its reversal. Furthernore,
any conputation of tags based on Lenmas b -7 can be converted into
a conmputation of tags for the reversal graph by exchanging the
arguments of each © operation corresponding to an application of

Lemma 7. Hence our solution method for the path problem (G,a,c)

al so gives a solution nethod for the path problem ((?,a,c) .

16



5. Deconposition by Strong Conponents.

The purpose of' ELIMNATE is to gather information about the

cycles of G. If Ghas no cycles, SOLVE can be used directly,
assuning that the vertex numbering satisfies t(e) < h(e) for each
edge e . A nunbering which satisfies this property is called a

topol ogical ordering [26]. W can find such a nunbering in O n+m

time [26,38]. Thus, for acyclic graphs, there is a sinple Qn+m
solution algorithm

W can generalize this idea. et G be an arbitrary graph and
let Gy = (VbE), Gy = (VEy) , . . ., G = (V) be the strongly
connected conponents of g . Using depth-first search, we can compute
t he conponents G; and topologically order them that is, arrange
them so that eek with t(e) ev, and h(e) Evj inmplies i<3j .
This conputation requires o(n+m) tine [38].

For 1<i<k, let ((v(i,5),w(1,5),P(1,3)) » 1< 3 < ¢4
be a propagation sequence for G, - For 1 <i <k, let , _ |v. |

- - | it

The following algorithm conputes a propagation sequence for G .

STRONGSEQ  begin

SEQ := §;

for i :=1 until k do for j := 1 until n.ldo
add (v(i,3),w(1,3),P(d,3)) to SERQ;

for i ::1Mk_do begi n
for 9 1= mpeL until k, do

add (v(i}j))w<i}j))P(i)j)) to SEQ;
£2£G€E with (t(e) eVi?:’_rl% (h(e) EVj=j > i) do
add (t(e),n(e), {e}) toSEQ; -
giclgrlq STRONGSEQ,

17



Theorem5. The sequence conputed by STRONGSEQ i s a propagation

sequence for G .
Pr oof . Immediate. 0]

W can conpute a propagation sequence with tags for each conponent
Gy by using ELIMNATE. It follows from Lemma % that the conputed
tags are also tags with respect to the graph G. Thus the tine to
solve a path problemon Gis O(mnm) plus the time to apply
ELI M NATE to each strong conponent of G .

Henceforth, we shall assume that the problemgraph Gis strongly
connected; if not, we conpute a propagation sequence with tags for
each strongly connected conponent and form a propagati on sequence
for G using STRONGSEQ. This algorithm corresponds to solving a
system of linear equations by decomposing the matrix of coefficients

into "irreducible" blocks [1544]. A "reducible" matrix shoul d not

be confused with a "reducible" graph as defined in the next section.

18



6. Decomposition by Domi nators.

The deconposition method presented in Section 5 is quite efficient.
ifowever, in nost practical problems the problern grapa ¢ is strongly
connected and the Secticn 5 method uccomplishes nothing.  |n thi o
section we present a nore powerful deconposition metucd, based upon
the dom nators of the problem graph, which is efficient and which
applies to a large collection of problem graphs which occur in
practice.

Let G = (V,E) be a strongly connected directed graph. et =»r
be a fixed, distinguished vertex of ¢ . |f v,w ¢ V and every

path p from r to w contains v , we say v domnates win G.

Lemma 8. Tnere is a tree T |, called the dominator tree of G, such

* . . . i .
that v -w in T if and ocnly if v dominates w . vertex r is

the root of T and 'I' containc cvery vertex in ¢ .

For any vertex w # r , the inmediate dominator of win G is

the vertex v such that v - w in the dominator tree T . % denote
this relationship by v = idom(w) . By convention idom(r) = 0 .

W can conpute idom(w) for all vertices w in o(m 2(m,n)) time by
- using depth-first search and a sophisticated data nanipul ation

al gorithm [Lk2].
Zemna 9. If ecE , then idon(h(e)) h(e) in T

Froof. Every path from r to h(e) contains jdom(h{e)) . By

zdding edge e to any pazth from r to t(e) , we get a pash from



r to h(e) . Thus any path fromr to t(e) contains idom(hie)) .

and idon(h(e)) domnates t(e) . O

For any edge ecE , let v(e) be idom(h(e)) if t(e) = idom(h(e)) ,
and let v(e) be the vertex u such that idon(h(e)) —»uit(e) i f
‘t(e) Aidon(h(e)) . Let e* be an edge with h(e') = h(e) ,
t(e*) = v(e) . For vev , let Gv) = (V(v),E (v)) , where
v(v) = {w | idom(w) = v} , E*(v) = {e* | eE such that idonm(h(e)) = v # t(e)}.
W call the strongly connected conponents of the graphs v) the

dom nator strong conponents of G . The doninator strong conponents

partition the vertices of G (excluding r ).

The idea\of our algorithmis to conpute a propagation sequence
with tags for G by using a nethod |ike ELIM NATE only within the
dom nator strong conponents of G . For parts of the propagation
sequence connecting doninator strong conponents, we use the Q(m @(m,n))
met hod described in [¥] for conputing functions defined on a tree
(inthis case, defined on the domnator tree T ). If the strong
dom nator conponents are snmall, the resulting algorithmis very
efficient; if each strong dom nator conponent contains a single
vertex, the entire solution process requires Q' m a(m,n)) tine and
space. Luckily, this special case occurs frequently in sane of the
" application areas.

The first part of the algorithm analyzes the graph ¢ . First,
we conpute the donminator tree T of G using the Q(m @(m,n))
al gorithm of [h42]. Next, we conpute v(e) for each edge e using
the Q'm a(m,n)) | east common ancestors al gorithm of (1], al so

described in [42]. Next, we find the strongly connected conponents
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of each grapar G(v) wusing the Cnm

Finally, we nunber the vertices of G fromone to n SO that

(1) if eeE has v(e) , h(e) in different dom nator strong conponents
ofa, then v(e) > h(e)

-+ . . .
(2) v-w in T inplies v>w .

For any edge eckE with v(e) ,h(e) in different dom nator strong
conponents, either v(e) = idonm(h(e)) or idoa(v(e)) = idon(h(e)) .
If v(e) = idonm(h(e)) , then v(e) > h(e) by both condition (1)
and condition (2). |f idom(v(e)) = idom(hfe)) , then v(e) >h(e)
by condition (1) and condition (2) does not apply. It follows that
there is a nunbering satisfying both (1) and (2). W can find such
anumbering in Q(n) time by using a topological sorting algorithm.
The entire graph analysis thus requires ¢(m 2(m,n)) tine (and
Qm space).

The second part of the algorithm conmputes tags for various

triples associated with the graph. An outline appears bel ow.
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DELIM: grcm
LQLV =1 l.Jﬂlan 99,1,9[, w:=1until ".vg,o Yiv,w) t= 03
for ecE do y(t(e),h(e)) := y(t(e),h(e)) @ale);
for v :=1until n do begin
TREE: for ecE such that idom(h(e)) = v do
conpute a tag y(v(e),h(e)) for (v(e),h(e),Pl(e));
CYAE ©  for wev such that idom(w) = v do begi n
conpute a tag y (w,w) for (w, w, P(w, w) ) ;
Conpute a tag y(v,w) for (v,w, I',(v,w)) ;
end CYOLE: )
end,

v(n,n) 1= y(nym);
end DELIM

In this program Pl(e) = Pu(e)(v(e),h(e)) » where u(e) = minf{u | idom(u) =
idom(h(e))}-1 ; and B (v,w) = {p = epse, . . ore | t(p) = v, h(p) =w
h(ej) <v for 1<j <k, and t(ej) =w=4j'>] wth t<e§) >w} .
Step TREE in DELIM uses in its conputations the tags conputed
by previous iterations of CYCLE and TREE. The tags conputed by TRRL
correspond to the edges e* with idon(h(e)) =v . TREE uses a
functional procedure EVAL(v(e),t(e)) such that EVAL(v(e),t(e))
returns the value 1 if v(e) = t(e) and returns the val ue
¥(vyrvp) 03(vpsv,) OF(vyyvs) @ L . 0¥(v) 15V, 1) O¥(vy pov)  if
~v(e) #t(e) , where v(e) = VisVpseeesV, = t(e) is the sequence of
vertices on the path fromv(e) tot(e) in T. Hereis a nore

detail ed inplenentation of TREE

TREE : for ecE such that idonm(h(e)) = v QPV

i v(e) £1(e) then
v(v(e),h(e)) := y(v(e),h(e)) DEVAL(v(e),t(e)) Oy(t(e),t(e))
oy(t(e),n(e));
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EVAL(v(e),t(e)) conputes a tag for (v(e),t(e),Pe(v(e),t(e))
by using assignments Of the form y(vi,vk) = y(vi,vj) Oy(vj,vj) Oy(vj,vk) ,
*

+
v, = V.

where v(e) i ;

Vi t(e) inT, y(vi,vj) is a previously

conputed tag for (v.,vj,Pg(vi,vj))h , y(vﬁ.,vJ.) Is a previously conputed

tag for (vﬂ.,vﬂ.,P(vé,vj)) , and y(vg,vb) is a previously conputed tag
J J n

(vj’vk’PE(vj’vk)) . Lemma 7, each y(vi,vk) conputed in this way

is atag for (vi’vk’PO(Vi’vk)) . After a sufficient nunber of such

assignments, EVAL has conputed a tag y(vl,vl) for (vl,vl,Ez(vl,vl)) .

Then, also by Lemma 7, y(v;,v,) ©y(v,,v,) @y(v,,h(e)) is a tag for

(v(e),h(e), P, (v(e),h(e)) N{p |pcontains e}).By Lemma 6, each val ue
y(v(e),h(e)) conputed by TREE is a tag for (v(e),h(e),P;(v(e),h(e))) .
The total number of EVAL operations carried out by DELIM iS m.
These operations require Qma(m,n)) time if EVAL is inplenented
as described in [42]. The secrets of this inplementation are to save
the conputed intermediate val ues y(vi,vk) for use in later calls on
EVAL, and to order the conmputations in a clever fashion. Procedure
DELI M saves the internediate val ues y(vi,vk) not only for use in
Later calls on EVAL, but also for use as tags in the propagation
- sequence to be constructed.
Step CYCLE applies versions of STRONGSEQ, ELI M NATE, and SOLVE
to the tags conputed by TREE. Here is an inplenentation of CYCLE

ro
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CYCLE : begin

CE:  for wev such that idom w) = Vv, inincreasing order of w, do begin
y(w,w) 1= y(w,w0)";
29}; (u,w),(w,x) with (u,x > W) m (y(u,W),y(W,X) /L Q)
and u,x in same dom nator strong conponent as w do,
y(u,x) := y(u,x) @y(u,w) oy(w,w) Oy(w,x);
end;
CS: fﬂic’i a dom nator strong conponent of G v), in topologically
i ncreasing order, do begin
for w a vertex of Gy in increasing order of w, ‘151

for x a vertex of G with (x >w and (y(w,x) £ 0) do
y(v,w) = y(v,w) ®y(v,w) oy(w,w) 0y(w,x);
for w a vertex of Gy in decreasing order of w do

for x a vertex with (idom(x) =v) and (x <w and (y(w,x) #0) do
T y(vx) = 3(vx) Dy(v,w) oy(w,w) 0y(w,x);

In this inplementation of CYCLE, CE applies the idea of ELIM NATE
to each strong conponent of Gv) , Each value y(u,x) conputed by
CEis a tag for (u,x,P(u,x)) , assumng that the previous iteration

of TREE has correctly conmputed a tag y(v(e),h(e)) for each eeE such
that idon(h(e)) =v . This follows froma proof Iike that of

Theorem 2.

Step CS of CYCLE uses the ideas in Theorem 3, STRONGSEQ, and
SOLVE to compute, for each vertex w such that idom(w) = v , a tag
y(v,w) for (v,w,pg(v,w)) ~ This follows easily froma proof using
Lemma 6, Lenma 7, and ideas in the proofs of Theorem 1, Theorem 3,

and Theorem 5.

Summarizing the above observations, we have the follow ng theorem
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Theor em 6. The procedure DELIM, With TREZE and CYCLE

described, conputes tags for the following triples.

TR1: (v,v,P(v,v)) for wvev.

TR2: (v,w,PE(v,w)) for v - win T

TR3: (v(e),h(e),Pl(e)) for erE

TRY: (v,w,P(v,w)) for each pair of verticec 7, w
are in the same dom nator strong component and

* *

* . . *,
P = epey--e, 0N t he conmponent with t(el)

¥
h(ei) < min{v,w} for 1<i<y-1.

i mpl enented as

such that v, w
there is a path

¥
= v, h(ef):w,

TR5: (V,W,Pg(v,w)) for a subset SB of the pairs of vertices v,w

+ L.
such that v - w in T, where SB satisfies

(i) v(e) £ t(e) = (vlie),t(e)) eSB .

(ii) (vyw) e SB and —(v - win T) = Zx such that

+ o+ .
vox-w In 7 and (v,x), (z,w) < SB .

We assume that

an appropriate z for each (wv,w)« SB is saved by

procedure EVAL.

The total amount of conputation time required by DELIM isS

proportionalto m a(m,n) plus the time required to

apply ELI M NATE

to each strong dom nator component of G . The anmount of storage

space required by DELIM is proportionalto =ma(m,n) (for triples

- of types TR1, TR2, TR3, TR5) plus k (for triples of type TRL),

where k is the total nunmber of non-zero tags resulting from applying

SLIMINATE to each strong dom nator conponent of 7 .

The third part of the algorithm arranges triples »f types TRl -TRY

into a propagation sequence. First, We construct a set of list:: Ll ),



one for each vertex v . Each list contains a set of ordered pairs

. + . .
of vertices (v,w) such that v -winT. We construct the lists

using the follow ng algorithm

LI STS: begin
for v :=1until n do L(v) = @;

for each triple (u,w,PE(u,w)) of type TRS do
if = (u-winT) then begin
let utviwinT be such that (u,v), (v,w) €SB;

add (v,w) to L(u);
end end LISTS;

Next, we renove duplicates fromeach list L(u) and order the
pairs (v,w) on each L(u) in decreasing order on w. A radix
sort [28] acconplishes this in o(m a(m,n)) tine and space, since
the total length of the lists is Qm a(myn)) . Finally, we apply

the following algorithmto conpute a propagation sequence.
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PROP:  begin

Ps := ¢;
Pl: for v := 1 until n do add (v,v,P(v,v)) to PS;
loop: for v := 1 until n do

for G, a dom nator strong conponent of V),
i n topologically increasing order, do begin
p2: for wa vertex of Gy do_
for eecE such that h(e) = w do
if t(e) £ vle) then
add (h(e),t(e), {e}) to PS;
P3: for w a vertex of Gss in increasing order of w do
for x a vertex of 5, with (x<w) and (y(w,x) £0) do
add (w,x,P(w,x))‘to PS;
P4:  for w a vertex of G, in decreasing order of w do
for x a vertex with (idom(x) = V) and
(x >w and (y(w,x) £ 0) do
add (w,x,P(w,x)) to PS;
P5: for w a vertex of G4 do for (w,x) - L(W
add {u,x,P,(u,x)) to PS;
Po: for v i=n-1 step -1 untill do begin
let u-vinT,

add (u,v,Pg(u,v)) to PS;
end end PROP

Theorem 7.  The sequence PS conputed by PROP is a propagation sequence

for G.

Pr oof . Let p be any path in G. Let v, =t(p) . For i >1,

| et Viil be the first vertex u following v, onp such that

u>v., and - (idom(v,) L idom(uw) in T) . Let v, be the last

such v, definable in this way. For 1<i<t, 1st w be the

| ast vertex u between vi and Vi1 OB P such t hat
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idom(vi) = ddom(u) in T [if +here is nc such w , let w, = - ).

O s 5
Then we can represent o as p = p,,p,, 3Doy_=sPn, 5 s SW-EYe
t(PQi-l) =V t(p2i) = Wy forl < i < P-I, h(pgz_e) = h(p),
Poi_1 contains only proper descendants of idom_(vi) , and Poy

contains only proper descendants of W (with the exception of
t(pgi) and h(pzi) ). Ilote that any path Py; 7 Can be enpty, as
can Poyo

Since every vertex u on Poy o except t(ppl_ satisfies

o)
+ . ;
t(sz-z) -y inT, we can wite Py, @S

pgz_e = P2£-2,l’p2£—2,2,' ,Pgl-g,ek y where

v, . - £ -
t(p22—2,23—l) h(pEI-E,Qj—l) m L, (P22-2,2j) h(PEl.-Q,Qj) >

is a path in Pe(t( h(p )) , and

Pop.p,05-1 Poyo, 2,3'-1)’ 2¢-2,23-1

P22-2,2j is a path in P(t(pez_e,gj),h(pgl_z’ej)) . The triples
(vsw,Po(v,w)) for v -w in T are added to the end of PS,
in decreasing order of w, by steo F5 ocf PROP.

For each 1 < i < -2, every vertex u on Pos_q satisfies
idom(vy) L. Applying the ideas in Theorem 5 and Theorem 5, We
can represent Py; 1 Aas a sequence of paths selected, in order,
fromthe path sets P(w,x) added to PS during steps P3 and Pk
n iteration J’_.g.arg(vi) of loop , alternating with paths selected
from the path sets P(v,v) added to FS during step Pl.

Wat remains to be shown is that, for each 1 <i <L-2,

D,. can be represented as a sequenze of paths selected, in order,

1
from the path sets P, (v,w) added tc s during step ps5 in iterations

idom(wi) to idom(vi+l) -1 of loop , alternating with paths geiected

L
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from appropriate path sets F( v, v), and ending with @ path o o

added to Ps during iteration idom(v. .) of step F!. Thus. coneider
e ——— l+ .

1
any path p,. . Let p,; 1=e be the path consisting of the |ast
J

edge e on Pp; - Then py. = Xy pgi,e ’ Pei,l » Where. X, is a path
in pe(t(xl),h(xl)) > Pps o is a path jn P(t(Pei,l)’t(PEi,l)) s
and DELIM has conputed a tag for (v(e),t(e),PQ(V(e),t(e)))-

Let j =1, =z, =v(e) . W repeat the following step until

reaching a value of j for which t(x;) = h(x;) . W have

-+ ¥*
2 -.‘t(xj) - h(xj) and (Zj’h(xj)’PE(zj’t<xj))) €SB . |If
. + .l.
t(xj) # h(xj)\', there is sone z such that z.J—o z - h(xj) and
*
(ZJ.,Z,P2(ZJ.,Z)) : (Z’h(xj))Pg(zj:Z)) €SB . If t(x_:]) -z, let

» Where Xx. is a path

2341 T B30 %5 T X401 Poj oge00 Poj o1 J+1

in P.(t(x.),z) , L. i in P , and
2(( J)’ ) Poj,oge2 'S @ Path (2,2) Pai,25+1

. . +
is a path in P2(z,h(xj)) A I 4 —»t(x4:1) , let 2oy = z

X are

. = X, . . . .
g1 T %50 Pay,ogee’ Py ogen 0 VHET® Py ogip 304 Do oo
enpty paths. Since the distance between ;_ and n(x.) in T
J J
strictly decreases with increasing j , ayent ually we reach a val ue
of j , say k, for which t = h . Then and
j y (%) = h(x) Xy Pos, 2k
~are enpty paths, and we have deconposed Py; as
. =Dns R . . . . where s
Poj =Ppy,0x-17Poi,0x-07". "2 P50 7 Pp3 1 Ppi, o441 IS
a path in P .~ h i i
is not empty, for 1 <j < k-1 . Since either , F

i f < s
pgl, 23+l J ‘Jj+l
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, F : .
or T'(Xjﬂ) —*t(xj) in T , the %ripies corresponding to the non-enpty

pat hs p?i,?}j+l are added to Pg in the order

4 P,(t (p )

( (Pr»i, ox-1) 7 h(pifi, DRVERNL (Iifi,:w:-l) ’ h(l’:ei, 2k )5
(“b(pgi,ﬁ) s h(pZi’:) 5 ngt(pei,j) , h(Pzzi,;') )) during step 55 in

iterations  idom(w,) to idom(v, .)-1 of loop . e
(t(e),nle),{e}) is added to PS during Step S2 in iteration
idom(vi+1)

Combi ni ng the decompositions ¢ the paths D D
2i-1 7 *2i
(1 <i<t-2), Doy 3 and p,, , gives & decomposition of p

which satisfies the condition for a Propagation sequence. 3

Below is a sunmary of the deccmpositian al gorithmfor solving path

problers.

Step 1:  Analyze the graph o tc find ity dominator strong components
and number its vertices.
Ti ne: A m alm,n))
Space: Q'm
Step 2: Apply DELIM to conpute tags.
Ti me: O{m a(m,n) + elimination tinme within doni nator
strong compcnents)
Space:  Q(m a(m,n) + X) , where k is fill-in within
dom nator strong conponents.
Step 3:  Apply LISTS and PROP to compute @ Propagation sequence.
Ti ne: 0(m alm,n) + %)

Space:  O(m alm,n) + X .



step Vo Apply soLve.
Ti me: QA m a(myn) + k)

Space: Q'm &(myn) +k) .

W see that the total running firre of the algorithmis proportional
to ma(m,n) plus the elimnation time within the dom nator strong
conponents, and the storage requirements are proportional to m a(m, n)
plus the fill-in within the dom nator strong conponents. In sunmary,
this algorithmallows us to trade a slightly non-linear overhead cost
for large savings in elimnation tine, if the graph G has nore than
a few dom nator strong conponents. Using Theoremk4, we can al so
apply the al g()\fithm profitably to graphs whose reversal has nore than
a few dom nator strong conponents.

The power of this algorithmlies in the fact that in several
i mportant application areas, nost of the graphs of interest readily
deconpose into many dom nator strcng conponents. A graph such that
each of its dominator strong components has a single vertex we call
a reducible graph (relative to the fixed vertex r ). This definition
Is not the standard one, but it is equivalent to many other
characterizations; see [18,19,41]. On reducible graphs, the

deconposition algorithmcarries out no elimnation; the total tine

" and space requirements are 0O(m a(m,n)) . (In this case the algorithm
can also be sinplified somewhat.)

Ullman [43], Kennedy [ 23 ], and G aham and Wegman [16] have
proposed QCmlog n) tine algorithms for solving global flow analysis
problems on directed graphs. Qur algorithm constitutes a generalization

of the Gaham Wegnman algorithmto arbitrary graphs, and to solving
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arbitrary path problems. By using the inproved data manipul ation
algorithm of [Lk2], we have reduced the tine bound to ¢o(m a(m,n)) for

reducible graphs. The extension to arbitrary graphs using doninator

strong conmponents seens to be a natural idea, apparently overl ooked

by previous researchers.

\»
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7. Variants of the Axiom System.

This section considers several ways in waich the axioms can be

modi fied without affecting the validity of the algorithms presented.

Boundedness.
In sone applications (especially in global flow analysis [14,10,21]),

the x operation is not present. Instcad, an axi om of the rfomm

AB: xk+l <

Svie
»
b

i
is assuned. In this case we can define x = (l+x)k. It is then

easy to prove AL0 and All. To conpute X , We apply the formula

log2 k

x" = (1ox)? = (. .. ((1ex)®?...)?

whi ch uses log, k @ and © operations to conpute x .

Distributivity.

In applications to regular expressions [6,25,%0,5¢ |, W can
strengt hen axionms A9, A10, All to
A9D: (x@y)0z = (x02)®(yo2)
A10D: (y@x*Ox) ®y = yOx*

Al11D: z0x®y = Z implies y@x*gz

In this case the solution to a path problem (G,a,c) is the mninmm

solution to the set of equations

QE(E) = Z z(t(e)) oale) De(v) = z(Vv) | vev

ecE

h(e) =v
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[ nverses.

Tn applications to numeric problems,axiomA’docunothold.

instead of A5, AY, AlO, All we aucume

A3T: For all x there is an elenent == 5 gych that
x®(Ax) = 6x3x = 0
A9I: (X@y) 0z =x 0z @ y Q 7.

A10I: For all x # 0 there is an element yx .g sych that
-1 -1

XOX =X "Zx = 1.

These are the axions of a division ring. W define x' = (L@ox) ™t
for x £1 . Then z = yex s the uni que solution to the equation
(zox) 9y =z . A solution to a numeric zath problemis a vector z
satisfying QE(E)

The definitions and procfs in Sections % -6 are not valid for
nuneric path problenms, because deletion of 5yiom A3 neans there is no
partial order defined on the set S . However, the solution algorithms
presented in Sections 3 -6 are still V-alow. 7or a develomment Of the
i deas necessary for new proofs, see [15,LL]. gge (k0] for further
di scussion of a numeric version of the deconposition algorithmin
Section 6.

An added difficulty in the nuneric case is that 1" i's undefined.
This neans that not all path problenms have solutions. Furthernore the
elimination methods in Sections 3-6 pay not find solutions even for
path problems which have them  Nymerical analysts have devel oped
various pivoting schemes to overcome this problem([15]. It is interesting

to note that the existence of additive inverses allows the use of



Lo rearrange the computations {15]. In the non-numeric applications

covered by the Section 2 axiom syctem, only sipultancous crmubatlons
J

< rows and columns are ralid. In addition, Lhe cxistence of

tree munipuiation

»

multiplicative inversec wllowe cimplificaticn of Lhe

nethod underlying the algorithm of Section ¢ (see [h2]).



8. Applications.

This section presents several of the nmore conmon types of path

probl ems.  Many others undoubtedly exist.

Applications on Acyclic G aphs.

Suppose we wish to find the transitive closure of a graph
G = (V,E) . W can assunme that Gis acyclic (if not, we first
find its strongly connected conmponents and reduce each to a single
vertex). Let S={x|ycv}l, c(v) ={v}for vev, a(e) = ¢
for eeE, Y®Z = YUZ, Yoz =YUZ . If x(v) is a solution
to (G,a,c) , then x(v) is the set of vertices fromwhich v is
reachable in G. A solution x(v) can be conputed in O(ntm) set
uni on operations using the nethod suggested in Section 4. For an
exposition of this well-known algorithm see [12].

W can use the same idea to conpute domnators in an acyclic
graph, Let G = (V,E) be acyclic and let r ve a fixed vertex.
Llet S={Y|Ycv}, c(v) ={v}for vV  a(e) = {n(e)} for
ecE, YPZ =YNZ,YO0Z=YUZ . If x(v) is a solution to
(G,a,c) , then x(v) Is the set of doninators of v . The Section 4
met hod conputes the sets x(v) in Qn+n) set operations. This
algorithmis due to Hecht and Ullman [ 17]. Note that the domi nators

“for an arbitrary graph can be conputed in Q'm a(mn)+ Z |x(v)])
veV

time without using set operations [Lk2].

As a last application of this kind, consider critical path
analysis. Let G = (V,E) be an acyclic directed graph with a source
vert ex S, a sinkvertex t , and length a(e) on each edge. W

desire the length and location of a longest path froms to t . Let
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c(s) =0, v) = -=for vev-{s}, y9z = max{y,z}, y0z = y+z .
If x(v) is a solution to (Ga,c) , then x(t) is the length of a
l'ongest path froms to t , and such a path can be constructed by
examning x(v) for appropriate vertices v . Conputing x(V)

requires Q(n+m) tine. See [8]."

Simple Applications on Graphs with Cycles.

Let G be a graph, let £ be a finite set, and |et z* denot e
the set of finite strings over ¢ . et A denote the enpty string.
Let S denote the set of subsets of & . For et , let a(e) = [wWMe)) ,
where each w(e) is some word in 5" . Let ® denote set -uni on, |et

© denote set concatenation (Yoz = {yz |yeY and zcz)) , and let *

denote transitive closure (_Y* .-.WU Yi , Where v0 = {a} and
i=0

vt =Yi®Y) . Let r be a fixed vertex in Gand let c(r) = {p},
c(v) =@ if vev-{r}. If x(v) is a solution to (G,a,c), then
x(v) = {a(el)Oa(ez)Q e Oa(e) |p = €58y s n sy is a path fromr
tovingG}. Conputing the regular set recognized b-y a finite automaton
is thus a path problem gsee [6,25,36,37].

Let G = (V,E) be a graph and | et a(e) for ectE denote the

length of the edge e . Let r be a fixed vertex of G. W desire
the length of the shortest path fromr to every other vertex.

- Alternately, we desire the length of the shortest paths between all
pairs of vertices. W allow negative edge lengths. Let c(r) =0,
c(v) == for veV-{r}, y9z = min{y,z} , yoz = y+z ,

- 0 if y>o

vy = - Then a solution =x(v) to (G a,c) gives
-» |f y<o0



the length of a shortest path fromr to v . By computing a
propagation sequence and applying SOLVE n times, we can find
shortest paths for all vertex pairs. The time required by this method
for either the single source or the all pairs problemis 0(n3) for

a dense graphand less for a sparse graph. See [9,13,20] for shortest

path algorithns which use elimnation methods.
Dijkstra [11] has #iven an o(np‘) al gorithm for the sin@ source
probl em wi th non-negative edge lengths. This algorithmruns in

O(min{ng, mlog n}) time if the proper data structures are used [20].

d obal Fl ow Anal ysis.

The followi ng application is an abstraction of a problem which
ari ses often when doing global flow analysis of conputer prograns.
Let L be a set with an operation ® and a zero elenent O
satisfying Al, A2, A3, Ak, Let S be a set of functions f: L - L

satisfying the follow ng axions.

#¥l: S is closed under conposition and @ ( where f ®¢ ic the

function h defined by h(x) = f(x)®g(x) ).

S contains an identity function 1 such that |(x) = x .

b
N

Each funetion in Sis nonotonic; that is, if fe8, x,y EL ,

and x <y, then f(x) < f(y)

If f,ges, let fog be the function h such that h(x) = g(£f(x)) .

If feS, =xeL, let fox denote f(x) Wth this definition,

241-A9 hold on S .

ZLk: For all fes, there is an f -8 saticfying 216 and 711.



The idea of these definitions is the follow ng. Let ¢ = (V,E)
be a directed graph with a fixed vertex r . Let a(e) eSS for all ecE .
Let c(r) EL .Let c(v) = 0 for vev-{r} . The graph G represents
a conputer program each vertex of G represents a basic block of code
(a block with only a single entry and a single exit point). The set L
represents a set of properties which can hold in various blocks of the
program The vertex r is the start of the program For each edge e ,
a(e) (z) is the property which holds at t(e) if the property z hol ds
at h(e) and the program takes the branch corresponding to edge e .

Assune that the property c(r) €eL holds at the start of the

program W desire, for each vev , a property x(v) EL such that

Pl: x(v) holds at block v , i ndependent of the execution sequence

whi ch causes control to reach block v .

In theory, we would like the "best" such set of properties x(v)
("best” means "smallest relative to < "). |In general there may not
be such a "vest" set, and even if there is, the set nmay not be
effectively conputable [22]. W will settle for a set of properties
Xx(v) satisfying d and C2. W can construct such a set of properties
by using the algorithnms in Sections 3 -6. First we conpute tags fora
propagation sequence by using function addition, conposition, and
“transitive closure. Next we apply SOLVE, which finds a solution by
using function application and addition of elenments in L .

Many authors have studied algorithms for this data flow problem
and di scussed concrete exanples of it (see [3,4,5,10,1k4,16,17,21,22,
23,24,29,31,43,45]). TFor most applications, @, @, and * can be

conputed efficiently (i.e. in constant time, see [14]).
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For arbitrary graphs the worst-case running tinmes ofallkncwn
algorithms are Q(nnm) or worse; the running tinme of the elimnation
algorithm of Section 3is 0(n3) (faster if G is sparse). For some
restricted classes of graphs, such as reducible graphs, there are
faster algorithms. Cocke and All en‘ [5,10] introduced reducibl e grapas,
but their gl obal flow algorithms were 0(mm) . Ullman [43] devi sed an
Qmlog n) algorithm for elimnating comon subexpressions in conputer
prograns with reducible flow graphs; Fong, Kam, and Ul nman [14] | ater
extended this algorithmto an abstract setting. Kennedy [23] devised
an algorithm for all graphs which uses node listings. For reducible
graphs, the algorithmis o(m log n) by a result of aho and Ullman(3];
this bound is‘mti ght [ 30]. Graham and Wegman [16] devi sed anot her
O(m log n) algorithm which Reif [31] sinplified and extended. The
G aham Wegnan al gorithm served as the starting point for the faster
and nore general algorithm of Section 6.

The node listing nethod of Kennedy is a propagation method; it
uses only function application and addition of elenents in L .

Ref erences [17,21,24] describe less efficient propagation algorithns.
In order for these propagation nethods to work, the boundedness

axi om AB described in Section 7nust hold. O herw se, X cannot
be computed fromx . The nethods of Ul nan, G aham and Wegman, and
. our nmethods do not require the boundedness condition.

V¢ nmake the followi ng conjectures. Consider a global flow problem
on a graph G such that the underlying al gebra satisfies the boundedness
condition AB for k =1 and the right distributivity axi oms A9D -Al1D
(see Section 7). Suppose G is reducible, with Q'n) edges. Then

(1) any propagation nethod (i.e., a nethod which uses only functicn



application and addition of elenments in | ) requires at |east
Cnlog n operations to solve the global flow problem (in the worst
case), where C is sonme positive constant. Furthernore (2) any
met hod whi ch uses function application, function conposition, and
addition of either elements of L or functions requires at |east

C na(n,n) operations to solve the global flow problem (in the worst
case).

The ideas in [30] and [39,42] may lead to proofs of (1) and (2).

Nuneric Applications.

As discussed in Section 7,the algorithns of Sections 3-6can
be used to sof&e systems of linear equations with pnumeric coefficients
For any system whose underlying graph is reducible or al nost-reducible,
the algorithm of Section 6will be very efficient. Two related exanples
of cases in which this nmay happen are when conputing steady-state
probabilities for a Markov chain (especially if the chain represents
an operating systemor other conputer progran) and when using
Kirkoff's laws to conpute the nunber of times each step in a conputer

programis executed [27].
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7. Remarks and Concl usi ons.

This paper has given an axionmatic framework for path problens
on directed graphs, described a nethod sinmilar to Gaussian elimnation
for solving them and presented two deconposition schenes for speeding
up the elimnation nmethod. The first deconposition schene uses the
strongly connected conponents of the problem graph ¢ ; the schene
is well-known to nunerical analysts. The second method, nore powerful
than the first, uses the doninators of G .

The second nethod reduces the time to solve path problems on
reducible graphs from o(m log n) to O(m ®(m,n)) , where G has n
vertices and m edges. The nethod inproves and generalizes an
al gorithm of G aham and Wegman for solving global flow problens on
reducible graphs. W conjecture that the nethod is optimumto within
a constant factor for solving path problems on reducible graphs. The
nethod is likely to be not only theoretically efficient but practically
efficient as well

By conbining the donminators deconposition ne(hod and the
corresponding method for the reversal of a graph, we get an even nore
power ful deconposition nethod. It may be possible to define the
"strongly biconnected conponents” of a directed graph and to extend
the dominators deconposition idea to these conponents. Doling this

remai ns an open probl em
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