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Abstract

This paper considers path problems on directed graphs which are

solvable by a method similar to Gaussian elimination. The paper gives

an axiom system for such problems which is a weakening of Salomaa's

axioms for a regular algebra. The paper presents a general solution

method which-requires 3O(n ) time for dense graphs with n vertices

and considerably less time for sparse graphs.

The paper also presents a decomposition method which solves a

path problem by breaking it into subproblems, solving each sub-problem

by elimination, and combining the solutions. This method is a

generalization of the "reducibility" notion of data flow analysis,

and is a‘kind of single-element "tearing". Efficiently implemented, the

method requires O(m a(m,n)) time plus time to solve the subproblems,

for problem graphs with n vertices and m edges. Here a(m,n) is

a very slowly growing function which is a functional inverse of

Ackermann's function.

The paper considers variants of the axiom system for which the

solution methods still work, and presents several applications,

including solving simultaneous linear equations and analyzing control

This rclsearch was supported byNaL;iWenc.eJ? l n -B.TI * # * : .:'I+:
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1. Introduction.

Consider a system of linear equations AX .- c , where A i;; ~11

n bY n , real-valued, non-singular matrix, x is an n by one

vector of variables, and c is an. . n by one vector of constants.

Mathematicians have developed many methods for solving such systems

[15.,441, including Gaussian elimination and its variants and a host

of iterative methods.

Some of these linear algebra techniques apply in other settings.

Klenne [25] and others [6,36,37] have described the use of elimination

methods to compute regular expressions for finite automata. Floyd 1131

and others [9,x)] have used similar methods to find certain kinds of--.

optimum paths in graphs. Not all of these researchers have realized

the connection of their ideas with Gaussian elimination.

Independently, many canputer scientists have developed methods

for collecting information about the flow of control in a computer

program [4,5,10,1~,16,1~,21,22,2~,2~,2~,~1,43,4~].  Some of these

methods resemble iterative methods for solving systems of linear

equations; others resemble Gaussian elimination. Flow graphs of

e computer programs often have a special property, called reducibility.

For such programs, especially-efficient information collection

algorithms exist [ 16,23,37,43].

In this paper we develop an elimination method for solving such

path problems. We use an axiomatic setting which covers most of the

problem domains described above. The axiom system is a weakening of

Salomaa's axioms for a regular algebra [ 36,37 1, with right distributivity

replaced by a monotonicity axiom suggested by Graham and Wegman [16]

and by Wegbriet 1451. We discuss variants of the axiom system for which

the method is also valid.



For convenience in presenting some of the results, we use a

graph-theoretic framework in place of a matrix-theoretic one. For

dense graphs with n vertices, the elimination method requires 5O(n )

time; for sparse graphs, the running time depends in a complicated

way upon the sparsity.

We also describe two methods for solving a path problem by breaking it

into several path problems on smaller graphs. The first, well-knonwn

by numerical analysts, uses the strongly connected caponents of the

problem graph. For a graph with n vertices and m edges, the method

requires O(n+m) time plus the time to solve the subproblems. The

second method,

flow analysis,

the dominators

which generalizes the reducibility notion of global

and which is a type of single-element '%earing", uses

of the problem graph. This method requires O(m u(m,n))

time plus the time to sol;re the subproblems, where ,x(m,n) is 8 very

slowly growing function related to a functional inverse of Ackermann's

Lfunction. For reducible flow graphs, the total running time is

G(m r(m,n)) ) better than the 9(m log n) running time of the best

previous a&orithms  [14,16,23,43].

The paper contains nine sections. Section 2 gives the necessary

definitions from graph theory. Section 3 gives the axiom system for

path problems and presents the elimination method. Section 4 discusses

the effect of reversing the edges of the problem graph. Section 5

gives the strong components deamposition  method. Section 6 presents

the dominators decomposition method. Section 7 discusses changes to

the gaxiom system. Section 8 gives examples of path problems.

Section 9 contains further remarks and conclusions.
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2. Directed Graphs.

A directed graph G = (V,E) is a finite set V of n = VI I

elements called vertices and a finite set E of m = \E\ elements

called edges. Associated with each edge e is a vertex h(e) called

the head of e and a vertex t(e) called the tail of e . Edge e

leaves t(e) and enters h(e) . This definition allows loops (edges

e with h(e) =t(e) ) and multiple edges (edges el,e2 with

h(e1) = h(e& t t(q = t(e2) ) l

A path p of length k from v to w is a sequence of edges

p = el,e2,...,ek such that h(ei) = t(ei+l) for 1 < i < k-l )- -

t(e,) = v , and h(ek) = w . We extend h and t by defining

h(P) = h(ek) t t(P) = t(el) ' The path p contains edges el,e2,.-,ek

and vertices t(e,) ) h(el) ., h(e2), l -,h(ek) , and avoids all other
edges and vertices. By convention there is an empty path (containing

no edges) from every vertex to itself. A cycle is a path p ,

containing at least one edge, such that h(p) = t(p) .

A graph G1 = (Vt,Er) is a subgraph of a graph G = (V,E)

if V' c, V and Et c E . If E' = E(P) = (eeE \h(e),t(e) eV*} f _'

then Gf is the subgraph of G induced by the set of vertices V' .

Simil-mly,  if V' = V(E') = {v eV I3e eE with h(e) = v or t(e) = v') ,

I then G' is the subgraph of G induced by the set of edges Er .

If there is a path from a vertex v toaverkx w inagraph G,

then w is reachable from v in G . A graph is strongly connected

if any vertex in it is reachable from any other vertex. The maximal

strongly connected subgraphs of a graph G are vertex-disjoint and

are called its strongly connected components.
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A (directed, rooted) tree T is a graph with a distinguished

vertex r such that there is a unique path from r to any vertex

inT. If a vertex v is on the path from r to a vertex w ,

then v is an ancestor of w and-. w is a descendant of v . We

*
denote this relation by v 4 w . We denote the fact that (v,w) is

*
a tree edge by v -,w , and the fact that v -rw and v k w by

+
v-+w.



3. Path Problems.

Let R = (S,@,O,*,O,l)- - be an algebra consisting of a domain S ,

two binary operations @ and 0 , a unary operation * , and two

constants g,le S , satisfying the following axioms.

Al: (xBy)sz = xB(yBz) -- A5: xO(y3z) = (x$y)Gz

A2: xB>y = y,ax A6: 00x = x30 = 0

A3: x3x = x A7: X91 = 10x = x

A4: QOX = x30 = x A8: xG(y9z) = ⌧Oy@⌧Oz  l

As a consequence of Al, A2, A3 we can define a partial order < on- .

S by: x,<y ifandonlyif xay=y.

Ag: x 5-y implies xaz <yaz .-
.

For x& and i a non-negative integer, let x1 = 1 if i = 0 ,

i
X = XOXiwl if i >O .

.
AlO: x1 5 x* for all non-negative integers i .

All: (zox> Oy ,< z implies yOx* 5 z .

These axioms are a weakening of Salomaak axioms for a regular

algebra E 36,‘37  1, with right distributivity replaced by a monotonicity

axiom (Ag) suggested by Graham and Wegman  [16] and by Wegbreit [45].-

Note that if S contains no zero element c but satisfies Al-A& A5,

A7 -All we can always create a zero element 0, , defining 03x = x3:,3 = x ,

*
0.x =X*0=0_, 0 =l. It is easy to verify that Al-All hold for SU CO] .

Lemrnal. If xly and w<z,then x3w<ysz and xOw<yOz.-

Proof. By Al, A2, and the definition of '5, x3w3y3z = x3yywsz

= y@z . Thus x9w _<ySz . sy A9, xow syE!w . By A8 and the

definition of 5, yOw9y3z = ya(w+z) = y9z . By the

transitivity of 5, x'ow Ly9w LyGz . 3
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Let G = (V,E) be a graph. Let a: E + S , c: V -, S . Then

(G,a,c) is a path problem. For any path p = el,e2,...,ek  in G

we extend a to p by defining a(p) = a(el)oa(ep)a...aa(ek) .
L

If p is a path of no edges, we let a(p) = 1 . A solution to the

path problem @,a,~) is a mapping x: V 3 S such that

Cl: c(t(p))Oa(p) < x(h(p)) for all paths p ;

c2: x(v) 5 z(v) for all mappings z: v-+s satisfying the set

of inequalities

Q(E) = r; z(t(e))Oa(e)W(v) 5 z(v) \ veV(E)
eeE

Lemma 2. Let z:V-S satisfy the set of inequalities Q(E) .

Then c(t(p))Oa(p) 5 z(h(p)) for all paths p .

Proof. Let p = el,e2,...,ek be any path in G . We prove

c(t(p))Oa(p) < z(h(p)) by induction on k . If k = 0 , the result

is immediate. Suppose the result is true for k 2 0 . Then

c(t(p)) @a(p) = c(t(p>> � ☯a(el> @ l l � aa( Qa(ek+l)

5 x(t(ek+l)) o”(ek+l ) by the induction hypothesis and Ag

5 x(h( ek+l)) = x(h(p)) by Q(E) l

cl

If f is any function, let f\X denote the restriction of f

to the domain X .

Lemma 3. Let z: V+S satisfy the set of inequalities Q(E) . Let

E'cE.- Then '&(Ef) .satisfies Q(E)) .
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Proof. Immediate. 3

We shall present a two-step method for solving path problems.

The first step is analogous to finding the UJ decomposition of

a numeric matrix by Gaussian elimination [15]. The second step is

analogous to numeric backsolving [15] and is also related to

propagation methods for data flow analysis [ 17,21,23,2&l. To

present the algorithm we need a few more definitions.

Let G = (V,E) be a graph and let (G,a,c) be a path problem.

Let v,w E V and let P be a set of paths from v to w in G .
--.

A value yes is a tag for the triple (v,w,P) if

Tl: a(p) >y for all paths pep .

T2: z(w) 2 z(v)Oy for all mappings z: v+s satisfying Q(E) .

Suppose the vertices of a graph G = (V,E) are numbered from

one to n and identifictd  by number. A sequence of triples

(v(l)~w(l)~P(l)), l ~(v(k)~w(k),P(k))  with v(i),w(i) cv , P(i)
a set of paths from v(i) to w(i) in G is a propagation sequence-

for G if

Pl: v(i) = w(i) = i for 1 < i <n and‘ v(i) k w(i) for n+l < i <k .

P2: Each path p in G can be represented as

p = p(il),p(i2),...,p(i21+l) , where i2 < i4 < . . . < i2p ,

l_<i2j+l-< n for 0 ,< j 5 I , n+ls i2j 5 k for 15 j 5 f t

and p(ij) eP(ij) for 1 < j < 21-t-l l

- -
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Given a propagation sequence $-(i),w,.i),T;i))  1'31‘ ti XlL

a tag y(i) for each triple in the sequence, the following algorithm

computes a solution to the path problem
(G,a,c)  l

-.
SOLVE: e

init: for i :=- lunsn %x(i) := c(i)Gy(i);

main: for i := n+luntil k do- I- --
x(w( j-1 > := x(w(i)) --';Ix(v(i))  f-/y(i) N-iyi;~i{i));

end SOLVE;-

Theorem 1. The mapping x: -J --) 3 computed by Sr;L‘,T is a sDlutim

to (G,a,c) .

proof. Let p = p(il)yp(i2),...,p(i2,+1) be a path in G , represented

as in P2. We prove by induction on d that Cl holds for p after

iteration
i20 -of main . Suppose 2 = C . Ynen

and i'l holds after execution of init .

Suppose  1 2 0 . By the induction hypothesis,
-

c(t(p>)aa(p(il)) @ l oa(p(i.2p+l))  ,< x(t(p(i,,+,))) after iteration

i2P -of main . Thus

- c(t(p))ga(p) < x(t(p(i21+2)))  sa(P(i2L+2))  5iz!P(i2e+3))

5 x(v(i2e+2)) 0y(i2L+2) 0y(w(igs+2))  before iter&im i
21+2

of main

,< x(w( i21+2) ) after iteration
i2e+2 -of main -

Thus Cl holds for any path p .

To complete the proof, we show by induction on i that x

satisfies C2 after iteration i of main . Let z satisfy Q(E) .
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Then, f'or 1 < i ,: n ,- - z(i) 2 c(i) , and z(i) 12!i)5y(ij t;r TZ

Hence z(i) 2 c(i)sy(i) , and x satisfies z!ij 1 x(i) for

1 < i < n after init . Suppose x satisfies z(-Ij >x(v) before- -

iteration i > n+l of main . The only value of x(v) which changes

during iteration i of main is x(w(i)) . 3y the induction

hypothesis and T2, x(v(i))Gy(i) < z(v(i))Oy(i) < z(w(i)) before-

iteration i . Also z(w(i))Oy(w(i))  5 z(w(i)) by T2. Hence

x(v(i))3y(i)@y(w(i)) < z(w(i)) before iteration 3 , and

x(w(i)) ,< z(w(i)) after iteration i . By induction, C2 holds for

the final value of x l 27

-=.
We note several important facts aboLt SGLYJE. First, its running

time is O(k) , where k is the length of the propagation sequence

(if 0 , 0 , and * require constant time). ~1so, tags for a propagation

sequence depend only on a and not on c . Thus Tr;e can solve a set

of path problems (cyaycl> y (c,a,c,) y--ey (c,a,c,> by finding a set of

tags for a single propagation sequence and t‘nen using SGLVE once for each ci.

SOLVE is a generalization of the backsolving step used to solve

simultaneous linear equations, and is also related to propagation

methods of global flow analysis.

In order to apply SOLE& we must first compute a propagation

sequence and appropriate tags. The following lemmas lead to a way

to compute a propagation sequence.

Lemma 4.

(t(e),h(e

Let

>Y 14

ed2 .
’ I
WE% r-f:

II (4
t hen a(e) is a tag for

1 .

?roof. Immediate. 13- -
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--

Lemma 5. Let x be a tag for same triple (v,v,P) . Then X+

is a tag for (VYVY p*> , where P* is the set of all paths formed by

concatenating zero or more paths in P . (P* includes the empty

path from v to v.) -.

Proof. Let p be any path from v to v in G(E') . If p is

empty, a(p) = 15 x* by AlO. If p is non-empty, p can be

represented as p = plyp2J . . ..pk , where each pi is a path in P .

BY Tl, a(pi) < x for all i . Thus a(p) 1' xk ( x* by Alo. Ikncc

Tl holds. Let z: V ---) S satisfy Q(E) . Then Z(V) > Z(V)CJX~L(Y)
,--

by T2, and z(v) 2 Z(V)OX* by All. Hence T2 holds. J
--.

Lemma 6. Let Yl Y Y2 be tags for <v,w,P,) and (v,w,P,) ,

respectively. Then y13y2 is a tag for (v,w, plup2) .

Proof. Let p be any path in PlUP2 . Then p is a

path in either Pl or P2 , say Pl . Hence a(p) ,< yl <yI 3Y2 Y

and Tl holds for p . Let z: V + S satisfy Q(E) . Then

z(w) 2 z(v)Gyl~z(v)Gy2 = z(v)(ylqy2)  by A8. Hence T2 holds. 2

- Lemma 7. Let yl , y2 be tags for (u,v,P,> and (WY p2> Y

respectively. Thk y10y2 is a tag for (u,w,Pl-P2) , where Plop2

is the set of all paths formed by concatenating a path from
p1

with a path from P2 .

Proof. Let p be any path in Plop2 . Then p can be represented

as p=p
1' p2 with pie Pl , p2 eP2 . Hence

a:p > = a(pl)Oa(p2) ,< y10y2 , and Tl holds. Let z satisfy Q(E) .

Then 44 ,> z(v) OY2 and z(v) 2 z(u)ayl . IIence
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44 ,> z(u)QYlaY2 by Ag, and T2 holds. ;13

The following algorithm, a version of Gaussian elimination,

computes tags for certain triples which form a propagation sequence.

The algorithm assumes that the vertices of the problem graph G are

numbered from one to n and identified by number.

ELIMINATE: bs

for v := 1-
for eeE do

loop: for v := 1-

until n do for w := 1 until n do J&W) := 0.- #VU- ryyI/cN AN -'

Y(t(e)Yh(e)) := Y(t(eLh(4) We);

until n do begin
- - -

a: YbY 4 := y(v,v)*;

b:-=_ for (u,v) , (v,w) with (u,w > v) and (y(u,v),y(v,w) # 9)rw-
doNe

YbYW> := Y(U,W) BY(UYV) GY(V,V) @y(vtw);

end end ELIMINATE;- -

* -.
For u,v,w~V , let Pv(u,w) = (p = el,e2,..-,e I 1 t(P) = uY

h(P) = WY and h(ei) ,< v, h(ei)+! {u,w) for 15 i ,< O-1) . Let

P(u,w) = Pmin{u,w)(UyW)  l

Notice that P(u,w) = P
min[u,w]-1 b, 4 t

*
and P(v,v) = b = el,e2,.~.,eQ 1 t(p) = v, h(p) = v, and h(ei) < v

m for l_<is&l} .

Theorem 2. For each final value of y(v,w) computed by ELIMINATE,

- y(v,w) is a tag for (v,w,P(v,w)) l If v = w , y(v,w) is a tag

for (v,w,P(v,w)*) .

Proof. We prove by induction on v that after iteration v of

Yloop each value of y(u,w) so far computed is a tag for

(UYWY pmin{u,v,w) bYW)> Y and. Ybw> is a tag for (u,w,P(u,w)*) if

U = w < v .- The hypothesis is true after the first two for loops of-

13



ELIMINATE by Lemma 4 and Lemma 6. Suppose the hypothesis is true

after iteration v-l of loop . Consider iteration v . Execution

of step a causes y(v,v) to become a tag for (v,v,P(v,v)*) by

Lemma 5. Consider any set of paths P,(u,w) with u,w > v . This

set of paths can be represented as

p,b,w> = pv,l (u,w) UPv_,(u,v)*P(v,v)**P(v,w)  . Step b computes a

tag for each such Pv(u,w) using Lemmas 6 and 7. By induction, the

hypothesis holds in general. The theorem follows. 9

Theorem 3. The following is a propagation sequence for G .

(1) The elements of {(v,v,P(v,v))  \ veV) in any order, followed by

(2) the elements of cbv, p(w4 1 V,WEV, v <w) in increasing

order on v (or on w ), followed by

(3) the elements of [(v,w,P(v,w)) \ v,weV, v >w] in decreasing

order on v (oron w).

Proof. Let p be any path in G . Let vl=t(p) . For i>l,

let vi+l be the first vertex u > vi following vi on p . Let

2
be the last such vi definable (vj is the largest vertex on p ).

Similarly let w1 = h(p) . For i >l , let wi+l be the last vertex

u Xii preceding wi on p . Let wL be the last such wi definable.

_ Then v. = we .
J

We can represent p as

P = plJp29 " "p2j,P2j+l:  l “>P~j+2~-3 J where P2i ’ p(vi’vi+l) for
!

l_<i_<j-1 t p2j+2i-2 E P(w l-i+l'wp-i) for 1 5 i 5 1-l t

P2i-1 ' 'Ci'iJvi) for 1~ i 5 j 1 and p F P(w2j+2i-l- ~-i'wf-i) for

l_<i_<l-1. The theorem follows. a
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The complete algorithm for solving a path problem consists of

three steps:

Sl: Apply ELIMINATE to compute tags.

s2: Form the propagation sequence given by Theorem 5, omitting

triples (v,w,-P(v,w)) with tag 3 .

s3: Apply SOLVE.

Steps S2 and S3 require O(k) time and space, where k is the

number of non-zero tags computed by ELII4INXI!E.  The running time of

ELIMINATE depends in a complicated way upon the number of non-zero

tags. By rearranging the computations and using appropriate data
--.

structures, we can implement

0 k + 5 1 ((u,v) ( f(u,v)

( v=l

ELLMIIU!TE to run in

# 0 Y u > -☺) 1 l I i(v,w)  ( f(v,w) f G-Y  w > v) 1

>

time and O(k) storage space [7,49]. (BJ only storing values of

f(v,w) which eventually become nJn-zero, we can avoid spending time

zeroing f(v,w). for all v and w .)

For dense graphs the storage bound is O(n2) and the time bound

- is O(n3) . For sparse graphs, the resource requirements depend upon

the -vertex numbering chosen. Numerical analysts have devoted much

- effort to finding good numbering schemes, both for arbitrary sparse

graphs and for graphs with special structure. See [7,32,~3,3$j5,k+j.
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h . rfrnI)h Hctversal.

If lC is a set c~f edgeL:, .l-ctL 11:' , the rever:;iL of 11: , 11~s LhC:

set of edges formed by switching the head and tail of each edge in K .

If G = (V,E) is a graph, CR = (V,ER) is the reversal of G .

(Reversing the edges of a graph corresponds to transposing the

corresponding adjacency matrix.) Suppose we have a method to solve

path problems on G . We would like to transform this method so

that it solves path problems on GR .

Theorem 4. Let (v~(l)~w(l),P(l)), ..~,(v(k),w(k),P(k)) be a

'propagation sequence for G . Then
--.

(w(k>Yv(k>,Po4R>Y  l ** Y (wb+l) Y -h+l> Y P(n+l)
R

> is a propagation
i

sequence for GR , where P = (e:, efwl,-..., efl el,e2 ,..., e,cP] .

Proof. Immediate. Ll

Thus any propagation sequence for a graph G can be easily

converted into a propagation sequence for its reversal. Furthermore,

any computation of tags based on Lemmas 4 -7 can be converted into

a computation of tags for the reversal graph by exchanging the

arguments of each 0 operation corresponding to an application sf

Lemma 7. Hence our solution

also gives a solution method

method for the path problem (G,a,c)

for the path problem 3(G ,a,c) -

16



I. .

5* Decomposition by Strong Components.

The purpose of' ELIMINATE is to gather information about the

cycles of G . If G has no cycles, SOLVE can be used directly,

assuming that the vertex numberingsatisfies t(e) < h(e) for each

edge e . A numbering which satisfies this property is called a

topological ordering [26]. We can find such a numbering in O(n+m)

time [26,38]. Thus, for acyclic graphs, there is a simple O(n+m)

solution algorithm.

We can generalize this idea. Let G be an arbitrary graph and

let Gl = (VlyEl) , G2 = (V2,E2) , . . . , Gk = (V Ek" k) be the strongly

connected components of G . Using depth-first search, we can comp&e

the components Gi and topologically order them; that is, arrange

them so that eeE with t(e) eVi and h(e) EV.
3

implies isj.

This computation requires O(n+m) time 1381.

For l_<iLk, let ((v(i,j>,w(iyj>,~(iyj~~  Y l,< j 5 'i Y

be a propagation sequence for Gi . For 1 < i < k , let n- - i = IV 1i '
The following algorithm computes a propagation sequence for G .

- STRONGSEQ: bs

SE& := g;

Ei. := 1 s k do for j := 1 until n. do
- I-

add (v(i,j),w(i,~,p(i,j))  to SEQ;

for i :=- 1 until k do begin- - -
FE 3 := ni+l until k. do

- l-
add (v(i,j>,w(i,j)yP(iyj>)  to SQ;

E eeE with (t(e) E Vi z (h(e) E Vj = j > i) do

add &(&h(e), {e)> to SEQ;
end end STRONGSEQ;-ryyy

17



Theorem 5.- - - The sequence computed by STRONGSEQ is a props.&ic7n

sequence for G .

Proof. Immediate. 3 ,

We can compute a propagation sequence with tags for each component

Gi by using ELIMINATE. It follows from Lemma 3 that the computed

tags are also tags with respect to the graph G . Thus the time to

solve a path problem on G is O(n+m) plus the time to apply

ELIMINATE to each strong component of G .

Henceforth, we shall assume that the problem graph G is strongly

connected; if not, we compute a propagation sequence with tags for--.

each strongly connected component and form a propagation sequence

for G using STRONG%& This algorithm corresponds to solving a

system of linear equations by decomposing the matrix of coefficients

into "irreducible" blocks [1>,~~4]. A "reducible" matrix should not

be confused with a "reducible" graph as defined in the next section.
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6. Decomnosition bv Dominators.

The decomposition method presented in Section 5 is quite efficient.

iiowever, in most practical problcmc the problern graph c; is stron<o;ly.

connected and the Sectkn 5 ~~tt-~:,~..~~f3or;l~lis~lc::  not1lin;;. In &ii-i ::

section we present a more powerful decomposition methsd, based up.~

the dominators of the problem graph, which is efficient and which
t

applies to a large collem+b.,ion of problem graphs which occur in

practice.

Let G= (V,E) be a strongly connected directed graph. Let r

be a fixed, distinguishe.d  vertex of G . If v,w E V and every

-path p from_ r to w contains -J , we say v dominates w in G l

Lemma 8. 'inere is a tree T- - , called the dominator tree of G , such
u

that v 4 'd in T if and snly if v dominates w . 'Jertex r is

the rest of T and 'P contains +/cry vertex in !; .

tioof. See [4]. 3

For any vertex w { r , the immediate dominator of w in G is

the vertex v such that v 3 w in the dominator tree T . We denote
e

this relationship by v = i&m(w) . By convention idom(r) = 0 .

We can compute idom'$w) for all vertices w in O(m ,Z(m,n))  time by

- using depth-first search and a sophisticated data manipulation

algorithm [42].

,%rEn% 9. If eeE , then idom(h(e)) h(e) in T .

proof.- - Every path from r to h(e) contains idsm(h:ej) .- - - j&

&ding edge e to any p&h from r to t(e) , tre get a pa% fr;3



.

r to h(e) . Thus any path from r to t(e) contains idzm(!qd) .'

and idom(h(e)) dominates t(e) . Ll

For any edge ec:E , let v(e) be idom(h(e)) if t(e) = idom(h(e)) ,

and let v(e) be the vertex u such that idom(h(e)) -'u f t(e) if

't(e) # idom(h(e)) . Let e* be an edge with h(e*) = h(e) ,

t(e*) = v(e) . For VCV ) let G(v) = (V(v),E*(v)) , where

v(v) = {w 1 idom(w) = v) , E*(v) = (e* 1 eeE such that idom(h(e)) = v # t(e)] l

We call the strongly connected components of the graphs G(v) the

dominator strong components of G . The dominator strong components

partition the vertices of G (excluding r ).
--.

The idea of our algorithm is to compute a propagation sequence

with tags for G by using a method like ELIMINATE only within the

dominator strong components of G . For parts of the propagation

--. sequence connecting dominator strong components, we use the O(m (u(m,n))

method described in [42] for computing functions defined on a tree

(in this case, defined on the dominator tree T ). If the strong

dominator components are small, the resulting algorithm is very

efficient; if each strong dominator component contains a single
e

vertex, the entire solution process requires O(m a(m,n)) time and

space. Luckily, this special case occurs frequently in same of the

- application areas.

The first part of the algorithm analyzes the graph G . First,

we compute the dominator tree T of G using the O(m a(m,n))

algorithm of [42]. Next, we compute v(e) for each edge e using

i;he O(m a(m,n)) least common ancestors algorithm of [l], also

described in [&?I. Next, we find the strongly connected components



l

Final& we number the vertices of G from ox to n so that

(1) if ecE has v(e) , h(e) in different dominator strong components

o f  G, then v(e) ) h(e) . *

(2) -+v+w in T implies ‘J > W .

For any edge ec:E with v(e) ,h(e) in different dominator strong

components, either v(e) = idom(h(e)) or idoa(v(e)) = idom(h(e)) .- -

If v(e) = idom(h(e)) , then v(e) > h(e) by both condition (1)

and cordition (2). If idom(v(e)) = idom(h(e)) , then v(e) >h(e)

by condition (1) and condition (2) does not apply. It follows that
--.

there is a numbering satisfying both (1) and (2). We can find such

anumbering in O(m) time by using a topological sorting algoritkm.

The entire graph analysis thus requires G(m u(m,n)) time (and

O(m) space).

The second part of the algorithm computes tags for various

triples associated with the graph. M outline appears below.
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for v := 1 until n do for w := 1 until n do yp,w) :-= O;

g eEE do yK),h(e)):'= y(t(e)x)BaTe); -

for v- :=~UIUI n do begin
--

TREE: E eEE such

compute a

CYCLE : ZwcV such

compute a

Compute a

end CYCLE;-
end;-

I ,*
y(n,n) := YF-WY  ;

end DELIM;-

In this program

idom(h(e))]-1 ;

h(ej) < v for 1

Step TREE

that idom(h(e)) = v do

tag YbwYh(4) forv(e),h(e),P1(e));
that idom(w) = v do begin- ,-w
tag Y bbw) for (w, WY p(w, 4 > ;

tag Y(V,W> for (v,w, R,b,w)) ;

;

P,(e) = P,(,)(v(e),h(e)) Y where u(e) = min{u \ idom(u) =

and P,(v,w) = {p = el,e2, . . ..ek 1 t(p) = v, h(p) = w,

< j 5 k, and t(ej) = w 3 3jr > j with t(ej) >w] .

in DELIM uses in its computations the tags computed

by previous iterations of CYCLE and TREE. The tags computed by TRJ?It:

correspond to the edges e* with idom(h(e)) = v . TREE uses a

functional procedure Ev-(v(4,t(e)) such that EVAL(v(e),t(e))

rekrns the value 1 if v(e) = t(e) and returns the value

y(vl,v2) oy(v2,v2) oY(v2,v3) 0 . ..@Y(Vt-lYVP-l)  ~Y(V&l'V~) if

_ v(e) f t(e) , where v(e) = v~,v~,~~~,v~ = t(e) is the sequence of

vertices on the path from v(e) to t(e) in T . Here is a more

detailed implementation of TREE.

TREE : for eeE such that idom(h(e)) = v do- -
ix v(e) # t(e) s

YWLhW := y(v(e),h(e))  WVAL(v(&t(e))  Q~(t(e),t(e))

@Y(t(eLhw;
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EV~(V(4Y-w~ computes a tag for (v(e>,t(e)tP,(v(e),t(e))

by Using aSSigIlmentS Of the fOMn y(Vi,Vk) = Y(Vi,Vj)Oy(vj,Vj)~y(vj,vk)  ,

where
+

v(e) 2 vi f v. ---) vk
*

3
-+ qe> in T , y(vi,vj) is a previously

computed tag for (v.,v
J jYp2CviYvj)i  Y

y(vJ,vj) is a previously computed

tag for (viYviYp(viYvi>) Y and Y(v,Yvl_) is a previously computed tag
J J J J 3 n

( vjYvkYp2(vjYvk)>  l B y  Emma 7, each y(vi,vk) computed in

is a tag for
(viYvk,p2~viYvk))  l

After a sufficient number of such

this way

assignments, EVAL has computed a tag y(vl,vL) for (vl,~P,E2(vl,~P)) .

Then, also by L-a 7, y(vlyvl) Qy(v& aY(Vld+)) is a tag for
--.

(v(e)yh(e)yPl(v(e),h(e))n{p 1 p contains e3) l By Lemma 6, each value

Y(V(4YW) computed by TREE is a tag for (v(e),h(e),Pl(v(e),h(e)))  .

The total number of EV' operations carried out by DELIM is m .

These operations require O(m a(m,n)) time if EVIL is implemented

as described in [&?I. The secrets of this implementation are to save

the computed intermediate values y(vi,vk) for use in later calls on

EVAL, and to order the computations in a clever fashion. Procedure

e DELIM saves the intermediate values y(vi,vk) not only for use in

Later calls on EVAL, but also for use as tags in the propagation

- sequence to be constructed.

Step CYCLE applies versions of STRONG-SE&, ELIMINATE, and SOLVE

to the tags computed by TREE. Here is an implementation of CYCLE.



CYCLE :

CE:

es:

z WCV such that idom(w) = v, in increasing order of w, do begin- -

Y(W) := y(w,w)*;

z (u,w),(w,x)  with b,x > 4 s (YbYwLY(wYx> f '1)

and U,X in same dominator strong component as w do- -

Yw4 := y(u,x) OY(U,W) oy(w,w) @Y(W&

zGi a dominator strong component of G(v), in topologically

increasing order, &bs

$r-w a vertex of Gi, in increasing order of w, do

z x a vertex of Gi with (x > w) and (y(w,x)y 2) g

YbbW) := Y(V) MY ~Y(WYW) ~Y(w,x);

Ew a vertex of Gi, in decreasing order of w, $o-

E x a vertex with (idom(x) =v) as& (x < W) and (y(w,x) fc) &
--.

y(v,x) := Y(V,X) 3Y(V,W) QY(WYW) oY(%x);

*

In this implementation of CYCLE, CE applies the idea of ELIMINATE

to each strong component of G(v) , Each value y(u,x) computed by

CE is a tag for (u,x,P(u,x)) , assuming that the previous iteration

of TREE has correctly computed a tag y(v(e),h(e)) for each eeE such

that idom(h(e)) = v . This follows from a proof like that of

Theorem 2.

Step CS of CYCLE uses the ideas in Theorem 3, STRONGSEQ, and

SOLVE to computej for each vertex w such that idom(w) = v , a tag

Y(V) for bYw&v7H l
This follows easily from a proof using

Lemma 6, Lemma 7, and ideas in the proofs of Theorem 1, Theorem 3,

and Theorem 5.

Summarizing the above observations, we have the following theorem.
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Theorem 6. The procedure DELI& with TRZ and CYULZ implemented as

J described, computes tags for the following triples.

TRl: (v,v,P(v,v)) for VExI  l

TR2: (v,w,P,(v,w)) for v -+ w in T .

TR3: (v(e),h(e),Pl(e)) for e4 .

TR4: (w,p(v,w>) for each pair of vertice::  '/,w such that Y , w

are in the same dominator strong component ani there is a path

p = eT,e$...,eI in the component with t(eIj = -J , h(eL) = w ,

h(eI) < min{v,w] for l<i<r-1.- -

TR'j: (v,w,P2(v,w)) for a subset SB of the pairs of vertices v,w

+
such that v +w in T , where SB satisfies

( >i v(e) # t(e) * (v(e),t(e))  ESB .

(ii) (v,w) 5 SB and 7(-f -+ w in T) = Zx such that

+ +
v-+xdw in T and (v,x>, h,x) F SB . We assume that

an appropriate z f:,r each h,w) c SD i:: saved by

procedure E:VAL.

The total amount of computation time required by DELm is

proportionalto m eb n> plus the time required to apply ELIMINATE

to each strong dominator corzponent of G . The amount of storage

space required by DELIM is proportionalto mX(m,n) (for triples

- of types TRl, TR2, TR3, TR5) plus k (for triples of type TRk),

where k is the total number of non-zero tags resulting from applying

ELIMINATE to each strong dominator component of 3 .

The third part of the algorithm arranges triples of types TXl-TR>

into a propagation sequence. Pirst, we constr;ic';  flk.B s '3T, of list:: I,( 7) ,



one for each vertex v . Each list contains a set of ordered pairs

of vertices (v,w)
+

such that v -+w in T . We construct the lists

using the following algorithm.

LISTS: x . .

for v- := luntiln do L(v) = @;Nyvw -
E each triple (u,w,P,<u,w))  of type TR5 d3

- (if 7 u -, w in T) then begin-*VVVW
let u f v'>w in T be such that (u,v),(v,w)  ESB;

add (v,w) to L(u);

end end LISTS;- -

Neti, we remove duplicates from each list L(u) and order the

pairs (v,w) =.on each L(u) in decreasing order on w . A radix

sort [28] accomplishes this in O(m a(m,n)) time and space, since

the total length of the lists is O(m a(m,n)) . Finally, we amly

the following algorithm to compute a propagation sequence.
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PROP: bs

Ps := $4;

Pl: for v :=lunUl n $-add (v,v,P(v,v)) to PS;

loop: for v := 1 y~-n dx

z Gi a dominator strong component of G(v),

in topologically increasing order, do begin-r-
IT?: E w a vertex of Gi do

E eeE such that ze) = 'VT :d

g t(e) k v(e) z

add (h(e),t(e),{e]) to PS;

P3: ,fsw a vertex of Gi, in increasing

for x a vertex of- Gi with (x<w)

add (w,x,P(w,x))to PS;

order of w, do

P4:-=_ ,fsw a vertex of Gi ;J1 decreasing order of w, do.'-
Ex a vertex t;ith (idom(x) = v) g

(x > w) and (y(w,x) + 0) do- -
add (&,P(w,x)) to PS;

P5: zw a vertex of Gi do for (u,x) r L(w)

add [u,x,P2(u,x)) Z'G

end;s-
P6: for v- := n-l ,ss -1 until1 do beginrm rvv.yvvIN

let u 3 v in T;

add (u,v,P,(u,v))  to PS;

end end PROP;-.-

Theorem 7. The sequence PS computed by PROP is a propagation sequence

for G .

Proof. Let p be any path in G . Let v7 = t(p) . For i > 1 ,-

let vi+1 be the first vertex u folkding vi on p such that

u >v. and
1 ,(idom(vi) !+ idom(u) in T) . Let -Q be the last- -

such vi definable in this day. For l<i.<P,let wi be the- -

last vertex u between v
i

and v
i+1

sn p such that
s
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L

idom(vi) = idom(u) in T (if there is nc EXC~ ;I , 12-t; i.;'. = :- j.
1 'i

Then we can represent p 2s p = p,,p,+...,p-\ -,,=- 37-2
A I +jAI-~ t ----

t(P2i-l) = vi Y t(p2i) = wi for 1 < i < P-l,- - hl:P _2p 2) = h(P) t

'2i-1 contains only proper descendants of idom(vi) , and p2i

contains only proper descendants of w
i

(with the exception of

t(p2i) and h(p2i) ). ITote that any path p2i 1 can be empty,

can Q-2  l

as

Since every vertex u on p2! 2 except t(p
* 28-2 ) satisfies

t(p21,2) f u in T , we can write
p21-2 as

p2a-2 = P2p&l’P2&.2,2  l ** � %14,2k, ., -+elere

t(P2~-2,2j-lr~  4 h(p2f-2,2jBl)  Iin ’ ’ "(P21-2,2j)  = h(P2fy2,2j)  ’

P21-2,2j-l is a Path in '2Ct(P2f-2  2i ,),h(P
Y u-- 2P-2,2j-11) Y and

--
'2P-2,2j is a Path ill P(t(P21-2 ,j),h!P 2P-2,2j I> . The triples

Y

(v,w,P2(v,w)) for v 3w in T are added to the end of PS ,

in decreasing order of w , by stew F5 sf PROP.

For each 1 < i < 2-2 , ever;i ;W+E:C u- on p- 2i-1 satisfies

idols f U - Applying the ideas in Theorerr! j and The~rcm 5, we

can represent p2i 1 as a sequence of paths selected, in order,

from the path sets P(w,x) added to PS during steps P3 and P4

- in iteration idom(vi) of loop , alternating with paths se3-ec$eld

from the path sets P(v,v) added to PS during step Pl.

What remains to be shown is that, for each I < i < L-2 ,a -

3-3. can be represented  as a sequence zf paths selected, in order,

I"rJrn the path sets P,!v,w) added to FS during step P5 in iterations

Zdom(wi) to idom(vi+l)-l of loop , alternating >:ith paths cellected



fram appropriate path sets F( v, -V-I , and endin_: I,+:! ;: ~zt.1~ ':: t' :, {C 1

added to FS during iteration idom(vi+l) cf step i'.?. 'i'!n~s. ~~L~!l;:i.i~*~*L

anY Pth P2i l Let P2i 1
Y

= e be the path consisting of the last

x1 is a pathedge e On P2i l Then P2i = ~1‘:' P2i,2 t Ppi,l Y where

in P2(t(Xl)Yh(xl))  Y P2i 2 is a Path in
Y ‘Ct(P2i l)Yt

Y (P I>2i,l '

and DELIM has computed a tag for (v(e),t(e),P2(v(e),t(e)))  l

Let j=l,
'3

= v(e) . We repeat the following step until

reaching a value of j for which t(xj) = h(xj) . We have
-t

'J
-t(xj) ", h(xj) and (zjyh(xj),P2(zj,t(xj)))  ESB . If

t(xj) # h(xj)-., there is some z such that z. f z 'f h(xj)
3

and

( Zj,Z,p2(Zj,Z))  , (Z,h(Xj),P2(Zj�Z))  ESB l If t(X.> � Z Y 1�

3

'j+l = 'j Y xj = Xj+lY P2iy2j+2Y P2iy2j+l Y where xj+l is a Path

in P2(t(xj),z) , p2i 2j+2 is a path in P(z,z) , and
Y p2i,2j+l

is a path in P2(z,h(xj)) . If z :t(x.) , let
3

zj 1 = z ,+

empty paths. Since the distance between z
3

and h(xj) in T

strictly decreases with increasing j , eventually we reach a value

of j , say k , for which t(5) = h(s) . Then xk and p2i 2k
I

- are empty paths, and we have decomposed p2i as

p2i = p2i, 2k-1� p2i, �&-2 � � l � p2i,  2 ' pzi, 1 ' where $1 2j+l isI

a Path in P2(t(P2i 2j+l)Yh(P
I 2i,2j+l1) ' '2i,2j is a path in

p(t(P2i,2j)Yh!P2i  2j)) Y and (t(PY 2i,2j+l),h(P2i,2j+l)) is On L(z-')
,!

if p
2i,2j+l is not empty, for 1 < j < k-l . Since either z

s
f z

,j+l
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or T;(x~+~) Lt(xj) in T , the cbriples corresponding to the non-empty '

paths p
2i,2j+l are added tc, E in the order

(t(p _:li, i&-1) J h(P:ii, :>k-l) 9 pp hfi,t,k-lj  Y "!I';!i, Qk
*-1))) I - * * Y

(t( P2i ~,> Y "(P2i
>' ;') ~ p~'t!P2i,j) ., h(p .'1 21,;

) )) during; step :;T in

iterations idom(wi) to idon(vi+,)-1  of loop . Triple

(twN4Yie3) is added to FS &ring step S2 in iteration

idom(v ).
i+l

Combining the decompositions ~5 the paths p
2i-1' '2i

(1 5 i < t-2) , ~2~ 3 , and p2p-2 gives a decomy>osition of p-

which satisfies the condition for a Propagation sequence.
cl--.

Below is a summary of the decomposition  algorithm for solving path

problerrs.

Step 1: Analyze the graph '; +,c r'ini its dominator strong components

and number its vertices.

Time: O(m CY(m,n)j

Space: O(m) .

Step 2:
e Apply DELIM to compute tags.

Time: O(n CX(m,n) + eJ‘-7Y?-ination time within dominator

strong corzpcn2nts)

Space: O(m a(m,n) + k) , lihere k is fill-in within

dominator strong components.

SSep 3: Apply LISTS and FROF ta compute a Propagation sequence.

Time: O(m &m,n)+ kj

Space: O(0 cr(m,n) + kj .



::tep 11 : Apply SOLVE.

Time: O(m a(m,n) + k)

Space: O(m a(m,n) -!-k) .

. .

We see that the total running time of the algorithm is proportional

to ma(m,n) plus the elimination time within the dominator strong

components, and the storage requirements are proportional to m e% 4

plus the fill-in within the dominator strong components. In summary,

this algorithm allows us to trade a slightly non-linear overhead cost "

for large savings in elimination time, if the graph G has more than

a few dominator strong components. Using Theorem 4, we can also

apply the algorithm profitably to graphs

a few dominator strong components.

The power of this algorithm lies in

important application areas, most of the

whose reversal has more than

the fact that in several

graphs of interest readily

decompose into many dominator strcng components. A graph such that

each of its dominator strong components has a single vertex we call

a reducible graph (relative to the fixed vertex r ). This definition
,

is not the standard one, but it is equivalent to many other

characterizations; see [18,19,41]. On reducible graphs, the

decomposition algorithm carries out no elimination; the total time

- and space requirements are
ob NWH l

(In this case the algorithm

can also be simplified somewhat.)

Ullman [ 43 ], Kennedy [ 23 ], and Graham and Wegman [ 161 have

proposed O(m log n) time algorithms for solving global flow analysis

problems on directed graphs. Our algorithm constitutes a generalization

of the Graham-Wegman algorithm to arbitrary graphs, and to solving
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arbitrary path problems. By using the improved data manipulation

algoritkm  of [k?], we have reduced the time bound to O(m a(ra,n)) for

reducible graphs. The extension to arbitrary graphs using dominator

strong components seems to be a nakral idea, apparently overlooked

by previous researchers.



- This section considers several ways in wilich t!~ :sxi;bI!!s C:IL~ ?L

7
* l Variants of the Axiom System.

modified without affecting the validity of the algorithms presented.

Boundedness.

In some applications (especially in global flow analysis [14&,C?l]),

the X- operation is not present. I'nstclkd,  an axiom of the f'onn

AB:
xk+l k -

< c x1-
i=O

is assumed. k
In this case we can define x* = (1+x) . It is then

easy to prove Al0 and All. To compute x* , we apply the formula
--.

log2 k
X * = (13x)2 = ( . . . ((1oX)2)2 ...)2 ,

which uses log2 k 0 and 0 operations to compute x* .

Uistributivity.PC__

In applications to regular expressions [~),P>,;,I,3*(  1, We can

strengthen axioms A9, AlO, All to

A9D: (x3y)az = (xOz)~(yO2)
M

AlOD: (yox*ax) @y = yax*

AllD: zax3y = z implies yox*_<z .

In this case the solution to a path problem @,a,~) is the minimum

solution to the set of equations

QE(E) = c z(t(e))Oa(e)ac(v)  = z(v) 1 vc:V l

eeE

h(e) =v
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Inverses.

Tn applications to numeric prot~.Lcm::,  axj c)rn A *; ~J.c)(b::  no-t; h:l.~l.

AX: For all x there is an element -:c f S such that. .

xs(qx) = r,x3x = 0 .

A9I: (xay) oz = x 0 z 9 y $3 z .

AlOI: For all x f 0 there is an element x%s such that

x0x-1 -1= x 3X =l.

These are the

for x # 1 .

(zox) sy =J

axioms of a division ring. We define x" = (la@~)-~

Then z = yOx* is the unique solution to the equation

. A solution to a nwIleric sth problem is a vector z

satisfying QE(E) .

The definitions and grocfs in Sections 5 -6 are not valid for

numeric path problems, because deletion of axiom A3 means there is no

partial order defined on the set S . Eowever, the solution algorithms

presented in Sections 3 -6 are still v-al---IQ. i?or a developent of the

ideas necessary for new proofs, see [15,4&]. See [h-O] for further

discussion of a numeric version of the decomposition algorithm in

e Section 6.

An added difficulty in the numeric case is that 1" is undefined.

- This means that not all path problems have solutions. Furthermore the

eliJination methods in Sections 3 -6 may not find solutions even for

path problems which have them. Numerical analysts have developed

-Jarious pivoting schemes to overcome this problem [15]. It is interesting

to n&e that the existence of additive inverses allows the use of

independent permutations of roes and csLum,ns in the matrix of coefficients



to rearrange  the computations  il-5j. In the non-numeric  applications

covered b;- tkc Section 5 &si,x. s;;;!'te:!!, only s'irnuI.taJk!~~~lc  p(f~7nlJLai;:i:JIL::



8. Applications.

This section presents several of the more common types of path

problems. Many others undoubtedly exist.

. .
Applications on Acyclic Graphs.

Suppose we wish to find the transitive closure of a graph

G = (V>E) - We can assume that G is acyclic (if not, we first

find its strongly connected components and reduce each to a single

vertex). Let S = {YlYC_V), c(v) = {v) for veV , a(e) = $4

for eeE , YOZ = YUZ , YOZ = YlJZ . If x(v) is a solution

to @,a,~) 9 then x(v) is the set of vertices from which v is
--.

reachable in G . A solution x(v) can be computed in O(n+m) set

union operations using the method suggested in Section 4. For an

exposition of this well-known algorithm, see [12].

We can use the same idea to compute dominators in an acyclic

&mph  l
Let G = (V,E) be acyclic and let r ve a fixed vertex.

Let S = {Y 1 Y 5 VI , c(v) = {VI for veV , a(e) = {h(e)] for

eEE , Y3Z = mz ) YOZ =YUZ . If x(v) is a solution to

(G,a,c) , then x(v) Is the set of dominators of v . The Section 4

method computes the sets x(v) in O(n+m) set operations. This

algorithm is due to Hecht and Ullman [ 17 ]. Note that the dominators

+ for an arbitrary graph can be computed in O(m a(m,n)+ z Ix(v>l,
VEV

time without using set operations [k?].

As a last application of this kind, consider critical path

analysis. Let G = (V,E) be an acyclic directed graph with a source

-Jerk ex s , a sinkvertex t , and length a(e) on each edge. We

desire the length and location of a longest path from s to t . Let
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c(s) = 0 , C(v) = -w for vcV-Is] , y3z = max(y;z] , yOz = y+z .

If x(v) is a solution to (G,a,c) , then x(t) is the length of a

longest path from s to t , and such a path can be constructed by

examining x(v) for appropriate vertices v . Computing x(v)

requires O(n+m) time. See [8]. _a

Simple Applications on Graphs with Cycles.

Let G be a graph, let C be a finite set, and let c* denote

the set of finite strings over C . Let A denote the empty string.

Let S denote the set of subsets of z* . For eeE , let a(e) = [w(e)) ,

where each w(e) is some word in C* . Let @ denote set -union, let

0 denote set concatenation (YOZ = cyz \ycY and ZCZ)) , and let *
-e.

. .

w
denote transitive closure (Y* = \J Yi , where Y0 = [A] and

ir0
.

y= = YiOY) . Let r be a fixed vertex in G and let c(r) = {A') ,

cw = g if veV-{r] . If x(v) is a solution to (G,a,c) , then

x(v) = {a(el)@a(e2)Q .-. Qa(ek) 1 p = el,e2,..+,ek  is a path from r

to v in G] . Computing the regular set recognized b-y a finite automaton

is thus a path problem. See t 6,25,X, 37 I.

Let G = (V,E) be a graph and let a(e) for eeE denote the

length of the edge e . Let r be a fixed vertex of G . We desire

the length of the shortest path from r to every other vertex.

: Alternately, we desire the length of the shortest paths between all

pairs of vertices. We allow negative edge lengths. Let c(r) = 0 ,

c(v) = Q) for VU-{r] j y3z = min(y,z] , Y~Z = y+z f

* 0 if ~20
y = . Then a solution X(V) to (G,a,c) gives

-03 if y<O



the length of a shortest path from r to v . By commting a

propagation sequence and applying SOLVE n times, we can find

shortest paths for all vertex pairs. Tne time required by this method

for either the single source or the all pairs problem is 3O(n ) for

a dense graph and less for a sparse graph. See [g,13,20] for shortest

path algorithms which use elimination metklods.

Dijkstra [UJ has r:iven an O(n")

problem with non-negative edge lengths.

O(min{n2, m lbg n]) time if the proper

Global Flow Analysis.

algorithm for the sin@ source

This algorithm runs in

data structures are used 1201.

The following application is an abstraction of a problem which

arises often when doing global flow analysis of computer programs.

Let L be a set with an operation @ and a zero element 0

satisfying fi, A2, A3, A4. Let S be a set of functions f: I, 4 L

satisfying the following axioms.

i:l: S is closed under composition and @ ( whcrc f Qc: ic IklC

function h defined by h(x) = f(x)ag(x) ).

i?2: S contains an identity function 1 such that l(x) = x .

F3: Each IZlnction in S is monotonic; that is, if f& , x,y EL ,

and x <y , then f(x) 5 f(y) .

If f,geS, let fag be the function h such that h(x) = g(f(x)) .

If f& , XCL , let fgx denote f(x) l With this definition,

,%l-Ag hold on S .

34:
-%

For all fcS , there is an f CS satiLfyin;_l  Alit :lnd !'.ll.
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The idea of these definitions is the following. Let G = (V9E)

be a directed graph with a fixed vertex r . Let a(e) ES for all eE:E .

Let c(r) EL l Let c(v) = 0 for VU-[r) . The graph G represents

a computer program; each vertex of G represents a basic block of code-.

(a block with only a single entry and a single exit point). The set L

represents a set of properties which can hold in various blocks of the

program. The vertex r is the start of the program. For each edge e ,

a(e) (4 is the property which holds at t(e) if the property z holds

at h(e) and the program takes the branch corresponding to edge e .

Assume that the property c(r) EL holds at the start of the

program. We desire, for each veV , a property x(v) EL such that

Pl: xb>

which

holds at block

causes control to reach block v .

v , independent of the execution sequence

In theory, we would like the "best" such set of properties x(v)

("best" means "smallest relative to 5 '1). In general there may not

be such a "best" set, and even if there is/the set may not be

effectively computable [ 221. We will settle for a set of properties

x(v) satisfying Cl and C2. We can construct such a set of properties
e

by using the algorithms in Sections 3 -6. First we compute tags for a

propagation sequence by using function addition, composition, and

a transitive closure. Next we apply SOLVE, which finds a solution by

using function application and addition of elements in I, .

Many authors have studied algorithms for this data flow problem

and discussed concrete examples of it (see [3,4,~,10,14,16,17,21,22,

23,24,29,31,43,451). Tar jnost applications, 0, G , and -x can be

computed efficiently (i.e. in constant time; see [14]).
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For arbitrary graphs the worst-cas e running times ofallkncwn

algorithms are O(nm) or worse; the running time of the elimination

algorithm of Section 3 is 3O(n ) (faster if G is sparse). For some

restricted classes of graphs, such as reducible graphs, there are
. .

faster algorithms. Cocke and Allen [S,lO] introduced reducible graphs,

but their global flow algorithms were O(nm) . Ullman [43] devised an

O(m log n) algorithm for eliminating common subexpressions in computer

programs with reducible flow graphs; Fong, Kam, and Ullman [lb] later

extended this algorithm to an abstract setting. Kennedy [23] devised

an algorithm for all graphs which

graphs, the algorithm is O(m log
--.

this bound is tight [ 301. Graham

O(m log n) algorithm, which Reif

Graham-Wegman algorithm served as

uses node listings. For reducible

n) by a result of Aho and Ullman  [J];

and Weman 116) devised another

[31] simplified and extended. The

the starting point for the faster

and more general algorithm of Section 6.

The node listing method of Kennedy is a propagation method; it

uses only function application and addition of elements in L .

References [17,21/&l describe less efficient propagation algorithms.

In order for these propagation methods to work, the boundedness
e

axiom AB described in Section 7 must hold. Otherwise, x* cannot

be computed from x . The

. our methods do not require

We make the following

methods of Ullman, Graham and Wegman, and

the boundedness condition.

conjectures. Consider a global flow problem

on a graph G such thatthe underlying algebra satisfies the boundedness

condition AR for k = 1 and the right distributivity axioms AgD -AllD

(see Section 7). Suppose G is reducible, with O(n) edges. Then

(1) any propagation method (i.e., a method which uses only If'unctisn



I ‘j

application and addition of elements in L ) requires at least

C nlog n operations to solve the global flow problem (in the worst

case), where C is some positive constant. Furthermore (2) any

method which uses function application, function composition, and

addition of either elements of L or functions requires at least

C nCx(n,n) operations to solve the global flow problem (in the worst

case).

The ideas in [ 301 and [39,42] may lead to proofs of (1) and (2).

Numeric Applications.

As discussed in Section 7, the algorithms of
--

Sections 3- 6 can

be used to solve systems of linear equations with numeric coefficients.

For any system whose underlying graph is reducible or almost-reducible,

the algorithm of Section 6 will be very efficient. Two related examples

of cases in which this may happen are when computing steady-state

probabilities for a Markov chain (especially if the chain represents

an operating system or other computer program) and when using

Kirkoff's laws to compute the number of times each step in a computer

program is executed [27].
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30 Remarks and Conclusions.

This paper has given an axiomatic framework for path problems

on directed graphs, described a method similar to Gaussian elimination

for solving them, and presented two decomposition schemes for speeding

up the elimination method. The first decomposition scheme uses the

strongly connected components of the problem graph G ; the scheme

is well-known to numerical analysts. The second method, more powerful

than the first,.uses  the dominators of G .

The second method reduces the time to solve path problems on

reducible graphs from O(m log n) to O(m Cx(m,n)) , where G has n

vertices and m--_ edges. The method improves and generalizes an

algorithm of Graham and Wegman for solving global flow problems on

reducible graphs. We conjecture tha'C, the method is optimum to within

a constant factor for solving path problems on reducible graphs. The

method is likely to be not only t‘xoretically efficient but practically

efficient as well.

By combining the dominators decomposition method and the
\

corresponding method for the reversal of a graph, we get an even more

powerful decomposition method. It may be possible to define the

"strongly biconnected components" of a directed graph and to extend

the dominators decomposition idea to these components. Doling this

remains an open problem.
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