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"An Adaptive Finite Difference Solver for Nonlinear Two Point Boundary

Problems with Mild Boundary Layers," M. Lentini and V. Pereyra

. .

ABSTRACT. A variable order variable step finite difference algorithm

for approximately solving m-dimensional systems of the form

yf = f(t,yj, t E [a&l

subject to the nonlinear boundary conditions

g(y(a),y(b)) = 0
-=.

is presented.

A program, PASVAR, implementing

and the results on several test runs

comparisons with other methods. The

these ideas have been written

are presented together with

main feautres of the new pro-

cedure are: a> Its ability to produce very precise global error

estimates, which in turn allow a very fine control between desired

tolerance and actual output precision;

b) Non-uniform meshes allow an economical and accurate

treatment of boundary layers and other sharp changes in the solutions.

c> The combination of automatic variable order (via

deferred corrections) and automatic (adaptive) mesh selection

produces, as in the case of initial value problem solvers, a versatile,

robust, and efficient algorithm.
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AN ADAPTIVE FINITE DIFFERENCE SOLVER FOR NONLINEAR TWO POINT

BOUNDARY PROBLEMS WITH MILD BOUNDARY LAYERS. .

M. Lentini* and V. Pereyra +

1. Introduction

We are interested in developing usable software for two-

point boundary problems for m-dimensional systems of the form

(1.1)

Y’ = f(hY) 9 tc [a41

dy(ahb)) = 0 .

In [8, 93 we have already presented a finite difference

algorithm (SYSSOL), based on deferred corrections, which has variable

order capabilities. SYSSOL uses only uniform meshes, which can be

refined automatically in order to reduce the maximum norm of the (esti-

mated) global error on the current mesh below a requested tolerance.

SYSSOL behaves quite adequately for many problems (see

[8, 9]), but becomes inefficient or does not work at all as soon as the
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solution  to the problem or some of its derivatives have sharp

gradients. Unfortunately, this type of phenomenon is frequently

found in the applications.

In [ 9 ] we described-.the deferred correction algorithm

for general nonuniform meshes, even allowing for multipoint boundary

conditions and data with jump discontinuities.

In this paper we describe an implementation of an algorithm

(PASVAR) for approximately solving (1 .l) which is based on the results

of [ 9 I. The main new features in PASVAR consist of an automatic

procedure for choosing nonuniform meshes, and various modifications

in the general strategy of the method. Since in [ 9 ] and other earlier

work we have described the necessary theoretical results and implemen-

tation details, we shall concentrate in this 'paper on the new features

mentioned above , giving only the minimum general information necessary

to make it readable. This basic groundwork will be found in Section 2,

while Section 3 will be devoted to the mesh placement problem. Some

theory justifying our mesh placement procedure has been published

elsewhere [ 13 1. In Section 4 we discuss the practical aspects of the

mesh placement algorithm, which is based on the idea of equidistributing

the norm of the local truncation error.

Section 5 is devoted to an operation count and storage

requirements. In Section 6 we present numerical results on various

problems with the type of difficulties mentioned earlier, i.e. boundary

layers, steep spikes, and so on. We compare PASVAR with various other

programs available : (a) SYSSOL, our uniform step deferred correction

solver; (b) RICHAR, a Richardson extrapolation procedure developed by

Hilda Lopez and LuisRuiz [ 10 I, using some of the basic components of
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SYSSOL; Cc) a multiple shooting algorithm due to Bulirsch, Steer,

and Deuflhard [2]; (d) IDCBVP and PREV5, two deferred correction

codes for scalar second order equations [X&25]; and (e) SUPORT,I.

a linear systems solver based on superposition and orthogonalization

C26l.

The thickness of the boundary layers that can be resolved with

PASVAR depends, as can be expected, on the maximum number of grid

points that can be used. Thus the "mild" in the title stands for the

fact that we have limited, for storage reasons, that maximum number of

grid points in our program to 650/m, where m is the dimensionality

of the system being solved.

We see that PASVAR performs efficiently and reliably in all

the problems considered, within the limitations imposed by the maximum

number of grid points allowed. That limitation is computer dependent.

We emphasize that all the finite difference codes presented

here have provisions for estimating the global error of the computed

solution, and that in all the problems run this estimate has given either

the true error with at least one significant figure, or have been off

for less than an order of magnitude. This is in sharp contrast with the

techniques based on initial value problem solvers, since even the state

of the art codes have no previsions to control the global error of the

entire approximate trajectory. Of course, this additional, and we think,

extremely valuable information, costs something in terms of computer time,

but this cost is amply justified by the added reliability in the numerical

results and the excellent correspondence between requested tolerance (TOL)

and actual global error in the computer solution.s

3



c

e

L

c.

c

c h/l: <_ I( ,

L,

e

L

2. Basic results and notation

Given the m-vector functions y(t), f(t,y), g(cu,E3), we

consider the problem of solving approximately
. .

y'(t) = f(LyW 7 t~[a,bl t
(2-l  >

ddah(b)) = 0 .

We assume that problem (2.1) has an isolated solution

Ptt) bee [4 1 >* We assume also that f is smooth, so that all

involved derivatives of p(t) exist. Piecewise smooth data and

multipoint boundary conditions can also be treated with slightly more

work (see c.4, 9 1).

Let l-r = ( t1 9***> tN+l } be a general partition of the

interval [ 0 1 satisfying:

a = t 1 (t2 < .,. <tN+l
= b

(2.2) hi = ti+,-ti ; h = max hi ; h = min hi ;
1 i

with K a given positive constant. Condition (2.2) implies:

--‘i

(T-3) b-a 5 h 5 K(b-a) ,
N N

and we can use h and l/N interchangeably as equivalent asymptotic

scales.

The basic finite difference approximation considered is the

trapezoidal rule:

m~(U)i ~ hi' (Ui+l - U ) - ~ [ f(‘i+l ‘Ui+, > ’ f’(ti,Ui)l  = O, i=“O*o?TJ
i

(2.4)



Keller studies also the centered Euler scheme:

L

L

c

L.

L

b

L-

L

L

(2.5) hi' (u~+~-u~) = f(ti + $hi 7 3 ui+l( +"i)) 7

which has properties similar to (2.4) and it is easier to use

in the case of piecewise continuous data. However, it is considerably

more difficult to perform deferred corrections with it, because of the

presence of a discretization inside a nonlinear function, which forces

partial derivatives of f with respect to u in the expansion for

the local truncation error. That is the reason for our choice of the

scheme (2.4).

As usual, the local truncation error is defined as what is

left when one applies (2.4) to the discretization of the exact solution
--.

to the problem. By Taylor's expansion we get:

(2.6
L

Tn'yr 1 =
c

-V + O(h2L+2),i=1 7***7 TJ 7

v=12 2v-1 (2$-l )

where

f(2v) = d2”if+ at2v
fYt,Y-e) >

t=ti+hi/2 l

We shorten (2.6) for further reference to

(2.6’)  TV =
c

Tv(ti) h:V + O(h2L+2) l

v=l

Let 7~ k be the mesh function obtained by adding up the
7

first k terms in the asymptotic expansion (2.6), and let SAk)(y") be

an O(h2k+2 ) approximation to 7n;k ’ It is well known [9] that if

U
(k-1 ) is an O(h2k) discrete approximation to y*(t) on n 7 and if

($+I > -y*) has an asymptotic expansion in even powers of h, then

'q(k)(u(k-'))  is an O(h2k+2) approximation tot>
l-r 7rr,k l

The operators

5
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&k) can be readily constructed via numerical differentiation, as
I-T

explained in E 9 I, and they are the basis for the deferred correc-

tion algorithm. They are also used in the dynamical monitoring of the

global error e04 = (Jk) 'c y") . Notice also the modification intro-

duced in [23] which eliminates some earlier theoretical difficulties.

We hope it will be clear from the context that we are

speaking of vector mesh functions on n , i.e. that an expression such

as the one above mean$:

ejk)(tj) = ui")(tj) - I J tjev , i=l,...,m .

Another important fact we shaJ,l need later is that the
c

method is stable in the infinite norm 11 . 11 , i.e.

L

i

i

where the constant c is independent of the mesh IT . The mesh func-

tion T (k) represents the local truncation error after the kth
l-T

correction has been performed.

We recall now the deferred correction algorithm. Letting

,;“+u(-‘)) f 0 , solve successively for k=OJ,2,...

Qi (u) = Jk)

(2.8) l-f
l-r (

$+-l)) J

We call u(k) to the solution of(2.8) (closest to p(t)).

The main features of the deferred correction ,procedure are:

(a) Solutions of increased accuracy are obtained on the same mesh

(compare with the Richardson extrapoJ,ation procedure);

(b) The same system of equations is solved all the time (with different

right hand sides). -
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Under certain conditions, the successively corrected solutions

will satisfy on the mesh :

11 eck) 11 - 11 uck) - y"n 11 = O(h2k+2))= .

An asymptotic estimate for e (k) can be found by solving for

A the variational (linear) equation

@*9) @ ‘(u(~))  A = S;b) (u(~-‘) ) - Slk+’ > (u(k)) ,
7-r l-r

where @ '
I2

u0 ) is the Jacobian matrix of @ evaluated at u04 .
T-r

If A(k) is the solution of' this linear problem then:

(2.10) *Tk)_ = eck) + O(h2k+4) .

Observe that if (2.8) is being solved by Newton's method, then m'(u
l-r

(k))

will be available, and since S 04 , @+I )
l-r 7-r are also available, the cost

of the estimate (2.10) is just that of one Newton step, i.e. the solution

of a sparse system of linear equations.

For the automatic mesh placement algor$thm,  we will be inter-

ested in having an O(h
2k+4)

es lrna e of the leading term in Tt. t 0-d .
7-r

For this purpose, it is necessary to use in S 04
?l

formulas with a higher

order interpolation error than is necessary for the rest of the process.

In fact, we will insist that

(2.11) sAk)(y*) = Tn ,(d + O(h2k+4) 99

i.e., the numerical differentiation formaa will be two orders more

precise than before.

Assuming that at the (k-l)th correction we have an expansion

for the global error of the form:

7
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(2.12) ufk-') - p(t ) = ek(ti) h2k + ek+l(ti) h2k+2 f O(h2k+4),
i

with e,_(t,) smooth and independent of TT , we conclude that

(2-13) Tno(y: ) z @p) - stk) (uik-1))
7-f

(ek(t,))h2k + O(h2k+4)

= Tk+,(ti ) h:k+2 - S(k)(ek(ti))h2k  + O(h2k+4) .
l-r

Observing that TTdk+e )~ is itself O(h2), we see that we have inA

display the leading term of 7TT (k)w) '

--.

Lemma 2.1 Tk+, - s _ U
T-r
(k+' ) ($4 ) &k+ (kdj is an O(h2k+4)

l-r

approximation to the leading term of TV
0w+) l

-

Proof: Because of (2.11) and (2.12)(with (k-1) replaced by k ) we have

S(k+')(~ik))  = SLk+‘)(y%)  + SAk+') (ek+,(ti))  h2k+2 + ()(h2k+4)
TT

= 7n,k+j (Y;)  + O(h2k+4)  J

&k) &k-l > > = &k)
TT ( i

TT (yX) + s(k)(e
i l-r

(t ))h2k + O(h2k+4)
k i

= ~~,~(y+) + SAk)(ek(ti)),ek f 0(h2k+4) .

In this last computation we have made use of two terms of the expansion

(2.12) in order to obtain the O(h2k+4) term.

Subtracting these two expressions and comparing with (2.13)

the result follows. II

8
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We have seen that at the kth step of the deferred correction

algorithm, the local truncation error has the form:

(3.1) T;~' (@ = h;k+2 Tk+,(ti) + O(h2k+4) 7

where the function Tk+'(t) aoes not depend upon the net TT . Further-

more the leading term of (3.1) can be estimated to order h2 bY

#+I )(p) _ s;k+u(k-’ >) .
l-r

We are interested in choosing a mesh so that the first term of the
-e.

local truncation error is nearly constant in norm on this mesh. Since

we have a limitation on the ratio of the largest to the smallest mesh

size (see (2.2)), we have to take into account the possibility that

Tk+l(t) be accidentally very small at some grid point. For this purpose,

and assuming that ""g 11 ;k+'b) 11 = ' we define the function
t+, 1

G(t) = m= (l&+‘b)II  9 A)

where (K defined in (2.2)), CJ = 1/(2k+2) .

We shall call a mesh TT (asymptotically) equidistributing iff

(3.2) h;k+2 11 G(t) 11 ( i> -
h2k+2i sup

t~[ti,ti+l )
11 G(t) 11 f E-(1+0(h)) ,

where E is a positive constant called the level of equidistribution l

The norm I I l 11. is the x~vector norm. In [ 131 the properties of

equidistributing meshes are studied in detail and more general
&P norms

are also considered.
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For an equidistributing mesh we then have the relationship

b N

(3.3) G(t)o dt x i': hi 11 U(t) ,,Q m N . f ,
( >i

a i=l .  .

c

c

c

Thus the level E corresponding to an equidistributing net with N

points is approximately equal to

(3.4) E X N+ 11 G 11 .
0

Observe that IJ G l/o f (
I

b
G(t)o dt) ' lo is not a norm since 0 < 1 ,

a
and also that (3.4) is mesh independent.

We see then that for an-... equidistributing mesh, the level E

itself is an asymptotic bound for the infinity norm of the local truncation

error:

(3*5) max I/ ,'") (y )/I = E(l +0(h)) 9
tT i-97

i=l 9.*-J N

By using (3.4) we can predict approximately how many points

will be necessary to achieve a prescribed tolerance r g In fact

(3.6) N >, ( II G Ilo/ a” ’

Lemma 3.1 If the mesh n is such that

J
x
i+l

G(t)O at = 2 (1 + O(h))
X.

b
1

( i.e.
6

G(t>a dt is asymptotically equidistributed) then I-T is a.e.

with E = $la r 11 G 11 /$-k+2, and hence
c5

(3*7) 11 ~;~)(y) 11 2 N-(2k+2) II G I/,(1+0(h))  .

Proof: The proof is entirely similar to that of Lemma 3.1 of [13] . II
10
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Since Jj . Ilo is not a norm it is convenient to have an

estimate in fI , llsoo To obtain that estimate we need the following

Lemma.

Lemma 3.2 Let ~21 , Lp function, and

let O<a<p. "t ML = 1 x: 1 cp (x)1 _> L ] with L 3 0 chosen

so that

Then

(3.8) II TIla12 "O [ p(ML) lop II 0 Ilp
--

where d"L) -is the measure of the set ML l

Proof: See P31 . 11

For p =m, (3.8) simply becomes

(3.U II cp Ilo 5 [ 3.dML) I'/" II WI,*

c

i

c

If we combine (2.7) with (3.5) and (3.8’), we obtain

the following

Theorem 3.3 Let the mesh T-T have N+l points and be equidistributing

for the k th step of the deferred correction algorithm. Then the

global truncation error satisfies

(3*9) II e( k)ll = c (2p(ML))2k+2 11 Gk+,l/ (1 + O(h)) ’
N 03

with ML defined as in Lemma 3.2 for the function

cpw = II G(t)  II l
03

11
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Froof: From (2.7) and (3.5) we obtain

c
II eCk) II < cN- -(2k+2) 11 G Ilo (1 + O(h)) ,

and applying (3.8’) we get (3.9) . 11

Observe that 14(ML) will be small if G(t) has sharp
-.

peaks. We give now a simple example to see how this bound compares

with the standard one for uniform meshes in a boundary layer model

L

c

problem. The essential difference between the two bounds is the

appearance of the quantity [ 21.1, (5) ]2k+2 when the mesh is equi-

distributing.

Example.

Consider the. first order scalar equation

R y’ = -Y J Y(0) = 1 ) t E [WI 9

where 6 is a small positive constant. This problem has been analyzed

in detail in c51. Its solution is simply y(t) = e-t/S , and there

is a boundary layer of width 6 att=O . The successive derivatives of

y(t) are

dS Y(:> = (-1)’ emt/’ .

dts !js

It is easy to see that if one applies method (2.4) to this problem,

then the stability constant c is O(1)

‘k+, b> = 'k .

Thus I] G IJoD = c ’ 6
-(2k+2)

9 and from

for 6 + 0 . Also

a uniform mesh estimate we deduce

that N = points will be necessary to get an O(1) accuracy. A

simple calculation shows that in this case P (3) = cp , with
c1

a small constant, and we see from (3*9) that for an equidistributing

mesh an O(N-(2k+2  > ) error bound holds for any Nt and the effect of

12
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the boundary layer is completely neutralized by the equidistribution

of them- norm of the local truncation error. Observe also that

equidistributing any other smaller derivative of the solution (as

in Pearson [ 11 1) will not have this effect.-.

c

c

For k=O, and a local truncation error level of 0.01, the

mesh-step function must satisfy

h'(t)6 -2 e -t/t5 = 0.01 ,

or

h(t) = 0.16 e t/26 .

The total number of points is approximately given by

N N 1
NF

c
1 =

c
h 'iqw &) dt"20,

i=l i=l

and the number of points in [ 0, S] will be



c

We see then that for any 6 more tha,n half of the

grid points will be concentrated on the boundary layer, as one expects.

Of course, N = 20 is the optimal number of points for that level of

error, but we have also to enforce the condition h/ h 5 K , with a

c
moderate K which may mean increasing somewhat the density of the

mesh outside the boundary layer. Still this will require far less points

than the (lOS)'l points required by a uniform mesh algorithm to give tile
c

same order of accuracy.

More general results of the type described in this Section,

detailed proofs, and references to related work can be found in [ 1;; 1.
-.S.

e

c
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c



c
4. Practical mesh placement algorithm

In introducing the concept of asymptotically equidistributing

meshes we have taken a step towards the practical implementation of the

ideas in Section 3.

As a matter of fact, we won't strive to make our computed

meshes even approximately equidistributing, but rather we shall use a

somewhat more lax criterion. The first ground rule in our iterative

procedure to obtain a grid TT is that we will only add points, and

once a point is in the mesh it will never be touched again.

In other algorithms ,proposed [ 11, 17, 21 1, either a fixed

number of points is moved around, or points are added and removed in

order to satisfy some equidistribution condition. In our experience

those procedures have a tendency to be more unstable and to produce

rougher meshes than can be tolerated. There are, of course, ways of

improving that situation, like smoothing, but that only complicates the

algorithm unduly. On the other hand, the closer the mesh is to an equi-

distributing one, the fewer number of points it will have for a given toler-

ante; so that fact and the cost of producing such a mesh must be carefully

balanced. Also, from our example above, it is seen that, for a given level

of truncation error, there is an order of the method which minimizes the

number of points required for a given problem. Of course, one should

take into consideration the amount of work for each order when drawing

true optimality results. For the time being, these considerations are

far too complicated to be taken strictly into account in our algorithm,

but they provide guidelines for useful heuristics.

Our procedure starts with a given mesh TT (0) with No+1 points.

If no a priori information is available about the problem diffic~ties-

then IT(') will usually be a uniform mesh with step size hi01 .

15
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Obviously, because of computer storage restrictions, one will also have

a maximum number of mesh points that can be considered in any given

mesh, say NMAX . In our program we have chosen NMA.X = 650/m  .

On ll(O) we obtain an approximate O(h2) solution u (0)
$0)

by solving @ (o)(u) = 0 t dul + +,) = o (see (2.8)) .
n 0

Then we compute (1) ( >
s o boo

( > ( 1
) , which is an estimate for the leading

l-r I7

term in the local truncation error 7 (0)
n!o) l

The infinity norm is used

throughout. If we want 11 then from Lemma 3.1 and (3.4)

we obtain that

(4.1) ii -: 7 .

The initial tolerance requested, $0) J is up to a certain

extent arbitrary, but nevertheless it should be chosen judiciously. As

7(o) becomes smaller, more points will be added to the mesh at the

beginning, which may be unwise. Let TEM= I/u (O)ll . We put

(4.2) ;(o) = max (BMA * TEM , TOL) ,

bhcre BMA is a parameter used to control the size of c ' .( > The

maximum norm of the approximate solution, TEM, is what connects the

level C O( > with the particular problem being solved. Essentially

what we are saying is that we would like to have an equidistributing

mesh with sufficiently many points as to achieve, at the start, a rela-

tive precision BMA with the O(h') method. BMA should not be too

small, since at the early stages of the game the information available

(lb")) will tend to be more unreliable, especially for problems with

difficulties.

16
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We call (see Section 3 for the definition of h ):

EJ(1) = hi mm ( 11 'k+l (ti) 11, '>a '

and
c

L

U U N = : EJ(I) M jb G(t)% .
I=1 a

The equidistributing procedure adds points, according to the

following rule. "In the present interval (XI, XI+,) add I&J(I) - 1

uniformly distributed points, where

(4.3) mJ(I> 4

and I- J =stands for "integer part of ".

Thus the total number of points added in each sweep is

N
IQ = z IQJ(I> , where (NH) is the number of points in the mesh

J=l

being modified.

These new points are actually added into the mesh if the

following conditions are satisfied

(4.4) 0.04 N <, IQ<, min (NMAX-N, 70) .m

If IQ< .&N, and the mesh has been modified during the present process

then the equidistribution terminates.

The condition on the right of (4.4) prevents too many points

being added in any given sweep.

We observe that with the notation above

u-UN/i xN+IQ+l.

If IQ violates one of conditions (4.4) and this is not terminal,

we can attempt to find the "right level" E* which will bring in a

17



preset number of points IQ++ , by putting

E* = ExN+IQ+l ,
N+I@+l

and going aga,in through the mesh in order to obtain a vector I&J(I)

for this new level. We use in our program

N+I@+l = min (AUYN, NMAX)

with AU = l.l(O.1)  1.4 . If the case IQ < .0&N is not terminal,

then we redefine the level as in (4.5) with ALX: = 1.4 . If that level

still does not bring enough new points into the mesh, then we decrease

the correction index k by 1 , until either the mesh is modified or

k = O . In this latter case a complete bisection of the mesh is requested

(if possible). If the right hand condition (4.4) is violated then we

define a new level, also with ALG = 1.4 , but now we allow AU to

L decrease down to 1.1 in steps of 0.1 . This process is of course

stopped whenever an allowable number of new points is produced.

This series of tests and modifications are intermixed in a

somewhat complex logical structure which is better understood by looking

at a flowchart or the actual computer program. Here we have only tried

to list some of the main features of the algorithm.

In particular, indefinite cycling is precluded by various

. controls so that the mesh refinement process always terminates, though

not necessarily with an equidistributed mesh.

We have insisted in not removing points from the mesh since

this provides an easy way of insuring that the condition h/ % < K is-

fulfilled with a reasonable K , and also produces smoother meshes.

18



As we shall see in the numerical exa;nrples,  in problems with

transition regions as thin as 10 -3 (on an interval of size O.e>, the

algorithm has produced solutions accurate to 10 -8
with a mesh in

which K < 50 .-

19



5* Operation count and storage requirements

In this Section we shall make an operation count for algorithm

PASVAR. There are essentially three large modules in PASVAR, and two main

loops: the deferred correction iteration and the Newton solver.
I.

(a) The linear equation solver (SYSLIN).

SYSLIN is an implementation of the algorithm of Section 3 of

[ 9 I* SYSLIN is called at each Newton step, and at the end of each

correction, in order to estimate the global error.

The relevant parameters for SYSLIN are: m the number of

differential equations in the system, and N the number of mesh ,points.

The systems solved by SYSLIN are then of size m (N+l) x m (N-+-l) .
--.

They are also sparse and highly structured. In fact the coefficient

matrices involved have the form

r

G, 0 . l

S, R, 0 .

(5.l)b = j 0 S2 R2 .

. . .

m

=
mN

m illN

That is, they are block bidiagonal, with the exception of the first block

row. The blocks are of size mxm. The system of equations have the

form

20
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We solve the superblock 2 x 2 system by Gaussian elimination,

and that implies solving subsystems with the lower block bidiagonal mat-

rix D . Putting E = [ CJ b ] > v=mqwl we have

BV)-' (b. - gw) I(5.2a) x0 = (A -

(5.2b) ; = D-l

1

6 - cxo > J

where V=D-' C, w=D-' b are obtained by solving the system.

(5.3) D ; = : .

This is done by means of the recursion

(5.4) ? =.= "J' (E. - Sjij 1) , j = l,...,N  .
j 3

Forming the expression in each parenthesis of (5.4) takes

3m P + m2S operations , where P stands for multiplications or divisions,

and S stands for additions or subtractions. Solving one matrix system

(5.4) takes 4 m3 (P + S) operations, and thus we have a total of
T

N ( 7 m3P + (4 m3 + m2) S) operations for the recursion (5.4).
3 3

3The calculation of (5.2.a) and (5.2.b) takes ( 4 m + Nm2) P +
7

( 4 m3 + Nm2 + Nm) S , and the total number of operations for SYSLIN is
7

: (most significant terms only)

(5.5) Nm3 (7P + 4 S)
3

(cf. [ 7 ] also).
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This is about twice the number of operations obtained by

Varah [ 16 ] for the case of uncoupled boundary conditions. In that

case, by arranging the equations properly one obtains a band matrix, or

a block tridiagonal one, depending how he looks at it.

-.

(b) Calculation of the correction vectors ~S(k) (U(k-l > >
l

r

c

c

This calculation is performed in Subroutine U2DCGS . The

relevant parameters here are : k the correction number, and m, N

as before.

For each grid point we have to generate weights for a differen-

tiation formu&a approximating 7TT ,(q) to order h2k+4 . Since the
Y

abscissas are not uniformly distributed, and since T
Id

is O(h2) ,

then (2k+2) ordinates are necessary to produce the required approximation.

The weights are obtained in Subroutine COEGEN; for each grid

point the weight generation takes k2 (4P + 6s ) operations (see [I I),

S(k)and thus, forming n

(5.6) Nk ((4k + 2m)

costs

P+(6k+2m)S) .

(c) The mesh selection procedure is a process taking a small multiple
M

of mN operations.

to U2DCGS .

The Newton 100~.

equations must be

and angle control

Under certain circumstances it may also require a call

For each correction, a sparse system of mN non-linear

solved. We use a descent Newton iteration with step

to solve those equations. In cases where there are

convergence difficulties, an optional automatic continuation procedure

is also available (see [9,22]):
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Each Newton iteration takes one evaluation of the right hand

side f(t,u) (vector mesh function), and one evaluation of its Jacobian

matrix. Then, a computation of the residual @,(u) is required (see

(2.4)); this is a@mN) operations process. Finally we have a call to

SYSLIN.
L

r

i

If the process is going to converge at all, it usually takes

no more than three iterations to achieve 11 @ (u) 11 < EPS . The tolerance
I-T -

EPS varies with the correction order, and with the actual estimated

global error, in such a way that the equations are solved to a level

compatible with the truncation error. After the first system is solved,

and some accuracy has been obtained, the following systems take usually
--.

fewer iterations since better initial values are used,

Thus we can reasonably assess the work for a complete Newton

process, including one extra iteration for the error estimate, as:

--
.“-_. . __- . -----._ --_“_-- - --.-- -----.--

(5.7) m3 (7~ + 4s) + l6m (P+s)
I

+ 4(FE+ JE) ,

_,....P---- ., J

where FE, JE stand for evaluation of f and its Jacobian over the

whole mesh.

If the problem is linear, and the system of linear equations

is not too ill conditioned, this work estimate should be halved. If the

system is ill conditioned, and after passing through SYSLIN the residual

has not been diminished sufficiently (it should be zero!), then more

"New-ton iterations"wil1  be performed. This process is actually equiva-

lent to iterative refinement, a procedure to improve the precision of

numerical solutions to linear systems, and it is automatically built

into the program.
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The total work for the kth correction is essentially

(5.8) N f (y + 4k2 + (2k + l6)m) P+ ($%r?+ 6k2 +(2k+16)m)S] + 4(FE+JE) .

There are indications that more sophisticated equation solvers (both

linear and nonlinear) can be valuable in difficult problems [4,24],

and we are presently working in this direction.

In order to analize the cost of any given actual run, we have

to consider the following quantities. NO , N,, . . . , Nr : the different

number of grid points used; co ) c, ) l .*☺ cr : the number of corrections

performed with each fixed mesh. Since the amount of work in a correction

depends upon its order, we also have to consider as parameters the
=.

starting orders ko, kl,-., kr . Clearly k0 = 0 . From (5.8), and

after some simplifications, we obtain the following estimate

r
N C iZrn3
jj 3

+ 16m + 4(kj + Cj)* + 2(kj + cj)m) P

j=O

(5.9) +(gm3
3

+ 16m t- 6(kj + cj)* + 2(kj + cj)m) S 3

+ 4cj(FE + JE) .

Except for small systems (m < 5), this estimate can be further-

simplified to

(5.9') A
>

NjCjm3(9P + 5s) + 4cj(FE + JE)
.

j=O

For a given problem it is impossible to predict the program path,

i.e. to determine a priori the 'parameters N., c k
J j'j'

unless some very

strong and unrealistic hypotheses are made.

It is plausible that with the information we have provided here,

a more elaborate complexity analysis could be performed. Also, comparisons
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of the type carried out by Keller [I 81 can be performed by making

appropriate hypotheses. For instance, assuming that instead of SYSLIN

the same linear equations solver as in [18] is used, that the same

number of Newton iterations is required, and that the basic mesh need

not be changed, then iterated deferred corrections require always less

operations and function evaluations (for a given order) than successive

Richardson Extrapolations. We feel, however, that these work estimates

give only pointers and general indications. A computer test on several

actual implementations and on a large, representative set of problems is

what is required in order to make more final assessments. One step in

this direction--.is furnished by the results of the following Section. See

also [lo] .

Storage requirements. The storage requirements (most significant

L terms)for our implementation, depending upon the two problem parameters

m,N, are given below. In the case that no dynamical array space allocation is

available, those parameters should be replaced by maximal values. We have

i considered a maximum of 20 deferred corrections, which should be more than

sufficient for most problems, but in any case that is not a storage consuming

M part of the algorithm. The expressions below correspond to number of real

words required. The actual storage in bytes will depend upon the kind of

_ computer and precision being used.

PASVAR : Data .. 2 m* + (m+l) N

Working area : 4mN+2N+170.

SYSLIN :

Working area : m*(N+8) .

Thus the total storage required is

(5.W
I
Storage = m* (N+lO) + (5m+3) N + 170

\

real numbers.
25
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6. Numerical results and comparisons

In this Section we give results for program PASVAR, and compare

them with results obtained with other FORTRAN programs:

SYSSOL: the uniform mesh version..of PASVAR [9] ;

RICHAR: a Richardson extrapolation, finite differences code [ 101 ;

MUISHO: a multiple shooting code [ 2 ] ;

IDCBVP: A deferred correction code for scalar second order equations

with no y' present [12];

PREV5 : an improved version of IDCBVP by Daniel and Martin [25];

SUPORT: A linear systems solver based on the Godunov method [26].

In [8]-.we have anticipated similar results, but the ones here corres-

pond to different versions of the various programs (with the exception of

SYSSOL ). For instance, RICHAR can now perform extrapolations with any

sequence of steps ho/k. , i = 0,l1 ,*... We call RICH&RI to the one using
.

the sequence ki = 2i, and RICHAR2 to the one using k. = 1,2,3,4,6,8,12,16...1
The results for MUISHO were obtained by MM.Deuflhard, Rentrop

and Pesch, under the direction of R. Bulirsch, and we are very grateful

to them for their cooperation. Appropriately chosen parameters and

shooting points now produce convergence from zero initial values in all

cases tested. Also, much improved results in terms of total number of

function evaluations are obtained with MULSH02 , in which the integration

routine has been replaced by VOAS , an initial value code provided by

T. Hull.

The results for SUPORT were obtained by M. Scott and H. Watts,

using a Runge-Kutta-Fehlberg integrator for achieving the absolute

26

c



t

error tolerance of 10-3 and a variable order Adams integrator for

absolute tolerances of 10 -8 and below. Since SUPORT, as opposite to

all our codes, has no way of requesting (and obtaining) a desired accuracy

in the computed solution (see [26], Section 12), the results given

in Tables 1 and 2 were obtained by running each problem with a large

spectrum of input tolerances and selecting those results which satisfied

the output tolerances more closely (and with the least work, of course).

The test problems are all small systems, but they show in one

way or another troublesome behavior. One exception is Problem 6,

which is used as an indicator of how the programs behave when confronted--.

with a smooth problem. All problems and programs were started with

17 points, uniform meshes, and initial values for Y identically zero

with the exception of the shooting programs for which we indicate the

shooting points in each instance, and of SUPORT which does not

require a starting mesh. We have collected all the numerical

results in Table 1. In the case of convergence to the desired

tolerance we record: EFE = equivalent function evaluations z F + wJ,

where F is the number of times the right-hand side f(t,y) has

been evaluated for one value of t, and J is the number of Jacobian

evaluations. The weight w varies from problem to problem and it

is indicated in Table 1; in all cases w < 1, and it reflects the-

relative cost of evaluating the Jacobian matrix as compared with

that of evaluating the vector function f. Otherwise we print

the precision reached (if it is close to the one requested), or:

27



NC = no convergence;

- = results not available.

In our programs we request that the estimated maximum absolute

L

i

error on the whole grid, and for all components of the solution vector,

be less than TOL for successful termination. MUISHO has a relative

tolerance parameter available to the user (EPS), and we give its value

in the various cases run.

We give computer times (when available) as a matter of reference.

The times for SUPORT were obtained at a different installation (same

computer but a different compiler). The computer times (in seconds)
--.

can be found in Table 2. The high order scalar equations have been

treated as first order systems in the standard way. The exact solutions

(when available) are given in [8].

Problem 1 [ 15 1

y” = 4oo(y + cos* 77%) + 27-r* cos 277-t

y(o) = y(1) = 0 .

This is a problem which is troublesome for methods based on standard

initial value problems techniques. It can also be interpreted as a

problem with boundary layers of thickness l/20 at t = 0, 1. MULSHO

used here three equally spaced shooting points, and MULSH02 used five.

28



Problem 2 Falkner-Skan equation [3].

Y1" + yy" + B[l - (y’J21 = 0

y(o) = y'(0) = 0, y'(m) = 1 .

As S approaches the value 2, the solutions of the initial value

problem associated with this equation become very sensitive with

respect to the value of the missing initial condition y"(0). This

problem has required continuation in order to provide adequate starting

values for the Newton iteration in all the programs with the exception

of PASVAR. We have used S in SYSSOL and RICHAR as a natural con-
--.

tinuation parameter, performing just one Newton iteration for each of

the values p = o (0.2) 1.8, and then completing the process for p = 2.

This is done only once, at the very beginning, on the coarsest mesh

and with the basic second order method. Afterwards, the initial values

provided are sufficiently accurate to produce convergence without

difficulties. All this process is performed automatically, using a con-

tinuation option. The results reported below correspond to the full

computation for B = 2 and 00 = 10.

MULSHO and MUISHO2 used the four shooting points
xj

= O&3,

and 6.

Problem 3 An artificial boundary layer problem [12]

/I

y” = -3EY

(t + x2)*

y(-0.1) =
- 0 . 1

(c + O.OlF '
y(o.1) = -y(-0.1) .
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For E + 0, y(t) 9 sign t. The problem has a turning point at t = 0

of thickness E l/2 . The values of E are indicated in parentheses on

the heading of the respective columns. In this problem, all programs

L
with the exception of SUPORT used the final values for an E to start

the computation for the following smaller E.

MUISHO used 5 equally spaced shooting points (including the

origin), and it was successful up to E = 10-Y, using 26139 F.E. for

that case.

Problem 4 [lb]

y" + (3 cotan t + tan t)y' f 0.7y = 0

y(30°) = 0 9 ~(60') = 5 .

This problem has a sharp spike at approximately t = 30.65', where

~(30.65') = 285, and the high order derivatives are even larger.

The WISH0 codes used the four shooting points x. = 30°,
J

31', 35', 60'.

Problem 5 [ll] Another artificial boundary layer problem.

y"+ g -1y'=()

y&l) = 1, y(l) = 2, E>O.

This problem has a boundary layer of thickness E at t = -1, where

the solution passes from the value one to the value two. The results

reported correspond to E = .Ol.
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MULSHO shooting points were x. = -1, -0.8, -0.5, 1; while
J

MITESHO used the sequence x.
3

= -1, -0.8, -0.5, 0, 0.5, 1.

This problem was also solved successfully with PASVAR for

0.001, 0.0001, TOL 10-3, and for -8E = = E = 0.001, TOL = 10 , 5 X 10-l'.

In this last case PASVAR required 2753 equivalent function evaluations

and used 3.75 seconds of computer time on a

The meshes and solutions for large E were

for smaller E.

Problem 6 [GJ] An easy problem.
-.b.

y" = y3 - sin t*(l + sin* t>

y(0) = y(d = 0

CDC 6600/64.00 machine.

used to start the computation

MULSHO and MULSHO2 used the three shooting points
xj

= 0,

c
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1 2 3c10-3) 3c10-6) 7(1cT7) 4 5 6
weight for
Jacobians

o l 1
0.75 0.75 0.75 0.75 0.75 a75 0.5

TOL = 10 -3

SYSSOL 419 829 -- NC 'NC NC NC 229

RICHARl 531 815 671 NC NC NC 1378 227

RICHAR2 -- 743 451 NC NC NC 1248 --

,PASVAR 327 543 1088 7891 9997 1892 1140 195

MULSHO 2061 7657 1232 13076 5892 15815 16363 1866

MULSH02 1224 1188 912 2631 3508 2700 3960 559

IDCBVP 75 -- 398 NC NC -- -- 115
PREV5 75 -- 306 NC NC --~.~ 5

SUPORT 3l2 -- 334 1.246 1880 403 802 --

TOL = 10 -8

g SYSSOL J-203 3063 2990 NC NC NC NC 331

RICHARl 1733 NC 1378 NC NC NC NC 1052

RICHAR2 1008 3135 1248 NC NC NC NC 732
PASVAR 806 1425 2325 12982 14621 7264 2753 297
IDCBVP 385 -- 2424 NC NC -- mm 148
PREV5 354 -- 1460 .rJc NC -- me 148

SUPORT 572 -- 626 2560 3460 688 3832 --
-._ t.

Table I. Equivalent F'unction Evaluations: F + w+J

Weights for IDCBVP, PREV5 were w = 0, 1, 0.1 in Problems 1, 3, 6 respectively.



/ r

1 '2 3 (lo-3) 3 (103 3 (lo-7) 4 5 6
Limiting
precision 2472 4418 616
SYSSOL lo-l3 2.4X10-12 --

-- NC NC NC
lo-l3

x
PASVAR

2096 3438 3559 9827
1.6x 10'~ 10-14 7.8x d1

3212 747
-- -- 1.6x 10'~~ 8.2~ 10~~' : lo-l4

IDCBVP 2006 2866
10-13 10-13

573
a- NC NC -- mm 10-13

PRJw5 1222
10-13

1838 371
-- 10-13 NC NC -- -- 10-13

SUPORT 22623.2x 10-10 1234 3248
3832

862 7392 ---- 3.6~ lo-= 1.7~ lo-9 4.2X lo-8 10-8 4.8x lo
1

Table I Cont. Equivalent Function Evaluations: F + w*J

Weights for IDCVBP, PREV5 were w = 0, 1, 0.1 in Problems 1, 3, 6 respectively.
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1 2 3(lo-3) 3(109 3(lo-7)

TOL = 10-3
I.

PASVAR 0.57 0.87 1.16 9.90 11.33
IDCBVP 0.02 -- 0.03 -- --

PREV5 0.02 -- 0.04 -- --

SUPORT* 0.08 -- 0.07 0.23 0.35

::;10-8 1 1.77 1 2.67 13 . 0 1

IDCBVP 1 0.15 1 -- 1 0.12
I I I

19.60 20.42

PREV5 --. 0.15 -- 0.09 -0 I -0

SUPORT* 0.42 -- 0.50
Limiting
precision

PASVAR 7.34 8.34 5**3
IDCBVP 0.83 -- 0.43 -0

I
-0

PREV5 0.72 -- 0.41 -- --

SUPORT* 1.65 -- 0.95 2.70 3.17

Table 2.

1415

A=2.11 1.13

-0 -0

-=+=-
0.12- - 0.15

0.74 2.51

===+=

19.19 14.62
-0

I
-0

-0 I -0

15.290.90

6

0.19

0.01

0.02

-4

0.34

0.03

0.03
-0

1.28

0.12

0.q

-0

CPU times in seconds on CDC 6600/6400 at LBL, University of California
Berkeley; RUNNY compiler.
*
On CDC 6600 at Sandia Labs., Albuquerque; FUN compiler.
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Conclusions

From this limited set of tests we can draw some preliminary

conclusions.
L.

Overal1,PASVA.R  is far superior to RICH/XL and SYSSOL for all

accuracies, and this is more marked for higher accuracy. RICHAR2

is competitive for low accuracies in the problems in which it works

(c.f. [lo] for comparisons on smooth problems). In all fairness,

we should use a Richardson extrapolation program with nonuniform

mesh capabilities, but this code isstill to be developed. It is

clear, that whenever applicable, the scalar equations codes are by

--.
far the fastest and most efficient.

The multiple shooting code MULSH02 compares well with PASVAR

in terms of total number of function evaluations and reliability for

most of the problems tested. The main exception is the turning point

Problem 3 where MULSH02 obtains the solution with considerably fewer

function evaluations than PASVAR . Furthermore, MULSH02 obtains

good results for E = 10-8 -9, 10 , while PASVAR cannot resolve the

boundary layer with the allotted maximum number of grid points.

However, it is worth mentioning that in Problem 4 MULSH02 takes

4@ more computer time than MUISHO , despite the fact that this last

program requires almost 6 times more function evaluations to achieve

convergence. We should point out also that the multiple shooting codes

do not choose the shooting points and various other parameters automati-- -

tally, and only give final results on the shooting points. Thus, PASVAR

requires much less user interaction and foreknowledge, and outputs a much

more detailed mesh solution. This detail is automatically more dense in
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the regions of rapid variation of any component of the solution

vector. It would be also useful to compare the performance of

MULSH02 for higher accuracy. Professor Bulirsch has indicated

that a more user oriented version of his program, correcting some

of these drawbacks, will be available in the future.

The comparisons with SUPORT show that PASVAR work too hard in

solving the turning point problem 3 for all tolerances and the spike

problem 4 for TOL = 10-3, 10
-8

. This indicates that our net selection

procedure is too slow for handling this type of quasi-singularities.

The performance of SUPORT is consistently good for low and
--.

moderate accuracies, though we have to keep in mind that the user has

no way of assuring that he will get that accuracy by specifying an input

parameter. We should also keep in mind that, so far, SUPORT only solves

linear problems, and that it can take advantage of certain special

situations, like homogeneous equations (probs. 3, 4, 5) and zero initial

values (Probs. 1, 4). The somewhat disappointing results for high or

limiting tolerance seem to stem from the inability of the initial value

codes to produce such accuracies. Apparently the boundary value

techniques can reach tolerances close to full machine accuracy without

excessive degradation.

We are presently working on a new version of PASVAR which among

other features has a new system of equations solver (both linear and

nonlinear). Preliminary results indicate that this new code will solve

problems for which PASVAR fails, and also that it will cut the nwlber

of function evaluations and time by half in most cases.
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In Table 3 we report some information about the mesh place-

ment and deferred correction procedures on the various problems.

We give Nl, the number of times that a mesh refinement was requested.
L.

Each one of these refinements requires several mesh modifications. The

quantity N2 is the average number of these modifications. The row
n
k gives the higher correction reached, and K is the total number of

corrections performed.

We see from these results that the mesh placement routine

'does not wander" since the average number of inner sweeps is never

large than 3, which is reached in only one case (Prob. 5,

To1 = 10-13). On the other hand we see that high order methods really

came into play, and although we do not claim that a correction of

index k = 10 will produce an O(h**) accurate solution, it is quite

remarkable that such high order corrections do actually produce visible

improvements in the computed solution.

c
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F N1 1

c N2 1

Ii 3

K 4

To1 = 10 -8

N1 2

N2 lN

I
c 6 '

K 9

To1 = l(+

e

L

L

Problem 1

To1 = 10 -3

3 2

6 5
=. II

I

2 3

2 1.33

5 4

3w

4

1.25

5

11

3

1.33

8

13

3G7)

2

2

4

8

4

3

2

3

8

6

5

1

2

2

3

6

0

0

TABLE 3
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