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"An Adaptive Finite Difference Solver for Nonlinear Two Point Boundary

Problenms with MId Boundary Layers," M Lentini and V. Pereyra

ABSTRACT. A variable order variable step finite difference algorithm

for approximately solving mdimensional systens of the form
y' = £y, t € [a,D]
subject to the nonlinear boundary conditions

g(y(a),y(d)) = 0

I's presented.

A program PASVAR inplenenting these ideas have been witten
and the results on several test runs are presented together wth
conparisons with other methods. The main feautres of the new pro-
cedure are: a> |Its ability to produce very precise global error
estimtes, which in turn allow a very fine control between desired
tol erance and actual output precision;

b) Non-uni form meshes allow an econonical and accurate
treatment of boundary layers and other sharp changes in the sol utions
c¢) The conbination of automatic variable order (via
deferred corrections) and automatic (adaptive) nesh selection
produces, as in the case of initial value problem solvers, a versatile,

robust, and efficient algorithm
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AN ADAPTIVE FINITE DI FFERENCE SOLVER FOR NONLI NEAR TWO PO NT

BOUNDARY PROBLEMS WTH M LD BOUNDARY LAYERS

*
M Lentini and V. Pereyra ¥

1. Introduction

W are interested in devel oping usable software for two-

poi nt boundary problenms for mdinensional systems of the form

y = f(t,y) , te [a,b]

(1.1)
g(y(a),y(®)) = ©

In [8,9] we have already presented a finite difference
algorithm (SYSSQL), based on deferred corrections, which has variable
order capabilities. SYSSOL uses only uniform neshes, which can be
refined automatically in order to reduce the maxi mum norm of the (esti-
mated) global error on the current nesh below a requested tolerance.

SYSSOL behaves quite adequately for many problems (see

[8,9]), but becones inefficient or does not work at all as soon as the
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solution to the problem or some of its derivatives have sharp
gradients. Unfortunately, this type of phenomenon is frequently
found in the applications.

In [ 9] we described-the deferred correction algorithm
for general nonuniform neshes, even allowing for nultipoint boundary
conditions and data with junp discontinuities.

In this paper we describe an inplenentation of an algorithm
(PASVAR) for approxinmately solving (1.1) which is based on the results
of [9]. The main new features in PASVAR consist of an automatic
procedure for choosing nonuniform neshes, and various nodifications
in the general strategy of the nmethod. Since in [ 9] and other earlier
work we have described the necessary theoretical results and inplenen-
tation details, we shall concentrate in this 'paper on the new features
mentioned above, giving only the nininum general information necessary
to make it readable. This basic groundwork will be found in Section 2,
while Section 3 will be devoted to the mesh placement problem  Some
theory justifying our mesh placenent procedure has been published
el sewhere [ 13]. In Section 4 we discuss the practical aspects of the
mesh placenent algorithm which is based on the idea of equidistributing
the norm of the | ocal truncation error.

Section 5 is devoted to an operation count and storage
requirements. In Section 6 we present numerical results on various
problenms with the type of difficulties nentioned earlier, i.e. boundary
| ayers, steep spikes, and so on. W conpare PASVAR with various other
prograns available : (a) SYSSOL, our uniform step deferred correction
solver; (b) RICHAR, a Richardson extrapolation procedure devel oped by

flilda Lopez and Iuis.Ruiz [ 10], using sone of the basic conmponents of



SYSSOL; (¢) a multiple shooting algorithmdue to Bulirsch, Stoer,
and Deufl hard [2]; (a) IDCBVP and PREV5, two deferred correction
codes for scalar second order equations [12,25]; and (e) SUPQRT,

a linear systems solver based on superposition and orthogonalization

[26].

The thickness of the boundary |ayers that can be resolved with
PASVAR depends, as can be expected, on the maxinum nunber of grid
points that can be used. Thus the "mld" in the title stands for the
fact that we have linited, for storage reasons, that maximum nunber of
grid points in our programto 650/m, where mis the dinensionality
of the system being sol ved.

V¢ see that PASVAR perforns efficiently and reliably in all
the problens considered, within the limtations inposed by the maxinmm

nunber of grid points allowed. That linmitation is conputer dependent.
W\ enphasize that all the finite difference codes presented

here have provisions for estimating the global error of the conputed
solution, and that in all the problens run this estimate has given either
the true error with at |east one significant figure, or have been off

for less than an order of magnitude. This is in sharp contrast with the

t echni ques based on initial value problem solvers, since even the state

of the art codes have no previsions to control the global error of the
entire approximate trajectory. O course, this additional, and we think,
extrenmely valuable information, costs sonething in terms of conputer tineg,
but this cost is anply justified by the added reliability in the nunerica
results and the excellent correspondence between requested tol erance (ToL)

and actual global error in the conputer solution.



2. Basic results and notation

Gven the mvector functions y(t), £(t,y), gla,8), we

consi der the problem of solving approxi mately

y'(t) = f(t:Y(t)) b te[a)b] )
(2.1)

g(y(a),y(p)) = 0O

W assume that problem (2.1) has an isolated solution
v*t) (see[h 1 ). W assune also that f is smooth, so that all
invol ved derivatives of y*(t) exist. Piecew se snmooth data and
mul ti point boundary conditions can also be treated with slightly nore
work (see [ 4, 91).

Let |-r = {t],...,tm1 } be a general partition of the
interval [a,b 1 satisfying

h/h <K ,

with K a given positive constant. Condition (2.2) inplies:

(2.3) b-a < h < K(b-a) ,
N N

and we can use h and I/N interchangeably as equival ent asynptotic
scal es.
The basic finite difference approximation considered is the

trapezoi dal rule:
-1

@ﬂ(u)i = h, (U.. - u ) - % [ f(ti+1 ’ui+1 ) + i(tl,ul)] = O, 1=1 90 ..

i i+ |

(2.4)
g(u1 ’ U’N+1> = 0



Keller studies also the centered Euler schene:

(2.5) h; (ug,-u,) = £(t; + Bn, , 3(uy, +u))

i+1 i
which has properties sinilar to (2.4) and it is easier to use
in the case of piecew se continuous data. However, it is considerably
more difficult to perform deferred corrections with it, because of the
presence of a discretization inside a nonlinear function, which forces
partial derivatives of f with respect to u in the expansion for
the local truncation error. That is the reason for our choice of the
schene (2.4).

As usual, the local truncation error is defined as what is

left when one applies (2.4) to the discretization of the exact solution

to the problem By Taylor's expansion we get:

L 2v
(2.6 1 (y}) :Z -V £2y) BT omPl*R) i,
- 2 Z 51
v=122V1(2v+1) 2v):
wher e
ov
(2v) a
f. = £(t,y*(t) )
i3 at? v t=t,+h. /2
1 1
Ve shorten (2.6) for further reference to
L
, * 2v 2I+2
(2.6) 7 (v}) = Z T (5;) B3+ o(FMP).
v=1
Let T x be the mesh function obtained by adding up the
first k ternms in the asynptotic expansion (2.6), and | et sr(rk)(y*) be
an O(h2k+2) approximation to 7 . . It is well known [9] that if

M.k
JE1) s an o(hgk) di screte approximtion to y*(t) on 7, and if

(k-1)

(u -y*) has an asynptotic expansion in even powers of h, then

- . ) . .
:;ék)(u(k 1)y i's an o) approximation to r . The operators

3
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(k)

S
I

can be readily constructed via nunerical differentiation, as

explained in [ 9 1, and they are the basis for the deferred correc-
tion algorithm They are also used in the dynani cal nonitoring of the

(1) _ (%) _

gl obal error e y*). Notice also the nodification intro-

duced in [23] which elimnates sone earlier theoretical difficulties.
Ve hope it will be clear fromthe context that we are

speaki ng of vector mesh functions on » , i.e. that an expression such

as the one above means:

k (k) .
eg_ )(tj) = ug (tj) -y".l"(tj) , tjen, i=l,...,m .

Anot her inportant fact we shall need later is that the

method is stable in the infinite normj . |, i.e.
k) k
(2.1) 11 eF ey By,
ki
where the constant ¢ is independent of the mesh = . The nesh func-
tion - (k) represents the local truncation error after the kth
s

correction has been performed.

W recall now the deferred correction algorithm Letting

S(O>(u(_1>) = 0, solve successively for k=0,1,2,...
il

s (w) = %) @y
(2.8) |-f -1

glu, 5w ) = 0.
W call u(k) to the solution of (2.8) (closest to y*(t)).
The main features of the deferred correction procedure are:

(a) Solutions of increased accuracy are obtained on the sanme nesh

(conpare with the Richardson extrapolation procedure);
(b) The sane system of equations is solved all the tine (with different

right hand sides).



Under certain conditions, the successively corrected solutions

wll satisfy on the mesh :

I e(k) =) u(k) g - O(h2k+2))

(k)

An asynptotic estimte for e can be found by solving for

A the variational (linear) equation

(2.9)

b

@ﬂ'(u(k>) p = 5B (k1) (et} (k)

™ m

wher e @T; (u0 ) is the Jacobian matrix of s eval uated at u<k) ‘
1T

If A(k) Is the solution of' this linear problemthen:
@.10)  pld oK) 4 g2l

Chserve that if (2.8) is being solved by Newton's method, then 5"[(11(1‘3))

S(k) , S(k+1)
I m

of the estimate (2.10) is just that of one Newton step, i.e. the solution

will be available, and since are also available, the cost
of a sparse system of |inear equations.
For the automatic nesh placenent algorithm, we will be inter-

2k+l+) t (k)

ested in having an 0(h es imate of the leading termin ¢

For this purpose, it is necessary to use in ST(Tk) formulas with a higher
order interpolation error than is necessary for the rest of the process.
In fact, we will insist that

Sfrk) ( 2k+l+)

(2.11)

¥ = r () o™
i.e., the nunmerical differentiation formyla Wll be two orders nore

preci se than before.
Assuming that at the (k-1)th correction we have an expansion

for the global error of the form



2k+2

(k-1) k (t,) B + on

2
(2-12) u - y*(ti) = ek(ti) L

with e_(t.) smooth and independent of n , we conclude that

(k)

(2.13) 1 v ) = s (v¥) - Sék> (ugkq))
= Tﬂ,k_-l'-](y-){) - -rmk(y".l‘) - Sr(rk)(ek(’c,i))hgk + o(h2k+b')

2k+2 k 2k 2k+h
1 () n0P s e (6 )P+ o®EY)

Gbservi ng that S(k)(ek) is itself O(hg), we see that we have in

m
: . (k)
display the leading term of T (y*) .
Lemma 2.1 EKH = s (k1 ) (u(k>) - S(k)(u(k"”) IS an O(hgkm)
Lemm 2.1 - o 1S ar
approximation to the leading term of Tﬂ(k)(y*) .
Proof': Because of (2.11) and (2.12)(with (k-1) replaced by k ) we have

S(k+1)(u§k)) _ S(kﬂ)(y_)i(_) N ST(TkH) (eppr (t;)) L2k | O(h2k+u)

i ™
— TTT,k'H (y')f) + O(h2k+u> ,
and
ST(Tk)(u(i.k-W ) ) = Sg,k>(yifi) + Sﬁk)(ek(ﬁ DE2E + O(hgk+u)
= Tﬂ,k<3fi*) + Sr(rk)(ek<ti))h2k . O<h2k+u) .

Tn this |l ast conputation we have nmade use of two terns of the expansion
(2.12) in order to obtain the O(h%m) term
Subtracting these two expressions and conparing with (2.13)

the result follows. |



3, The nmesh placenent algorithm

VW have seen that at the kth step of the deferred correction

algorithm the local truncation error has the form

k _ .2k+2 2k+h
(3-1) Tﬁ ) (y%) = ni - Ty, (8) + o)
where the function §k+1(t) does not depend upon the net = . Further-

. . 2
nore the leading termof (3.1)can be estimated to order h by

ST(TkH )(u(k)) _ Sr(rk)(u(k_1 )) .

W are interested in choosing a mesh so that the first termof the
| ocal truné‘ation error is nearly constant in normon this nesh. Since
we have a limtation on the ratio of the largest to the smallest nesh
size (see (2.2)), we have to take into account the possibility that

T.,,(t) be accidentally very small at some grid point. For this purpose,

and assum ng that teféfgl” 5k+1(t) | = M we define the function
6(t) = max (T, ,, ()1 , 2)

where =1/ kK'/° (K defined in (2.2)), ¢ = 1/(2k+2) .

VW shall call a nmesh » (asynptotically) equidistributing iff

h? k+2

2k+2 I a(t) I ( ]'_) = 3

° sup I 6(t) || = E.(1+0(h)) ,

(3.2) h
’c.e[ti,ti+1 )

where E is a positive constant called the |level of equidistribution .

The norm | | .|| 1S the co-vector norm In [13] flhe properties of
equi di stributing meshes are studied in detail and nmore general Lp norms

are al so consi der ed.



For an equidistributing mesh we then have the relationship

(M

a 1=

paiy

b N
(3.3) fG(t)" at 27 h I U(t) HG N . & ,

Thus the level E corresponding to an equidistributing net with N

points is approximtely equal to

(3.4) E ~ v /o Gy -

b
Cbserve that f| Gl = ( J 6(£)° dt) 'fo is not anormsince ¢ <1,
a
and also that (3.4)is mesh independent.

W& see then that for an equi distributing nesh, the level E

itself is an asynptotic bound for the infinity normof the local truncation

error:
(k) = +0(h
(3.5) mex || r (y . E(1 +0(h)).
i=l ,...,N
By using (3.4) we can predict approximtely how many points
will be necessary to achieve a prescribed tolerance & . In fact

(3.6) L O e £’ .

Lemma 3.1 lf, the mesh m is such that

i+l
J G(¢)° at = ¥ (1 + 0(n))
X

1
b
(i.e. G(t)° dt is asynptotically equidistributed) then I-Tis a.e.
6

wWith E = /0 - il G “0/N2k+2: and hence

Gy e e B e (o)

Proof : The proof is entirely simlar to that of Lenma 3.1 of [13]

10



Si nce || . [ is not a normit is convenient to have an

estimate in |, ”OO. To obtain that estimate we need the follow ng

Lemm.

Lemma 3.2 Let p> 1, let ¢ (x) be a scalar Lp function, and

let 0<g <p . Ee;_tML:{x:{cp(x)lZL}WithL>OChosen

so that
b
fM o (x)[° ax=1 f lo(x) | 7 ax .
L
a
Then po
] .
(3.8) el <2 o | wOi) 17 e,
wher e “‘(ML) is the neasure of the set Mo

Proof: See [13] . ||

For p =, (3.8) sinmply becones

(3.8 Mo, < [2u00) ey Pl -

If we conbine (2.7) with (3.5) and (3.8’), we obtain

the follow ng

Theorem 3.3 Let the mesh =m have N+1 points and be equidistributing

for the k th step of the deferred correction algorithm Then the

gl obal truncation error satisfies

2k+2

(K)o @ulMp)PK2
N

with M. defined as in Lemma 3.2for the function

(3.9) Ile (* + o(n)) .

' Gk‘” ”co

CORESNEON]

11



Proof: From (2.7) and (3.5) we obtain
e e w BB ey ar o)

and applying (3.8') we get (3.9) . I

(bserve that “‘(ML) will be small if t) has sharp
peaks. W& give now a sinple exanple to see how this bound conpares
with the standard one for uniform meshes in a boundary |ayer nodel
problem  The essential difference between the two bounds is the

) ]2k+2

appearance of the quantity [ 2y (ML when the nesh is equi-

di stributing.

Exanpl e.

Consi der the first order scalar equation

sy = -y, Y(O) = T,tE[O,'I],

where 5 is a small positive constant. This problem has been anal yzed

in detail in [ 5] . |Its solutionis sinply y(t) = e't/é, and there
is a boundary layer of width § at t=0 . The successive derivatives of
y(t) are
& yt) = (-1)F e_t/6
dtS 55

It is easy to see that if one applies nmethod (2.4) to this problem

then the stability constant ¢ is 1) for § + 0. Aso
2k+2

f 0 (4)= o T y(t)
k+1 k 2k+2
dt
Thus || G| = ¢ ! 5'(9k+2) , and froma uniform nesh estimte we deduce

that N = 5'1 points will be necessary to get an Q1) accuracy. A
sinple calculation shows that in this case " (ML) =c6 with c,
a smal|l constant, and we see from (3.9) that for an equidistributing

-(2k+2))

mesh an O(N error bound holds for any N, and the effect of

12



the boundary layer is conpletely neutralized by the equidistribution

of theeo-normof the local truncation error. (bserve al so that

equidistributing any other snmaller derivative of the solution (as

in Pearson [11]) will not have t\his ef fect.

P

v (1)

p——

For k=0, and a local truncation error |evel of 0.01,

mesh-step function nust satisfy
) 2 -t/ _
h“(t) s e = 0.01 ,

or
h(t) = 0.1§ et/gé'

The total nunber of points is approximtely given by

N N !
1 1 n
N = Zi = Zhi oo zj () dt" 20,

i=1 i=I 1 0

and the number of points in [ 0, 8] wll be

6
N[o,sw_a{ TR

13
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W see then that for any § nore than halt of the
grid points will be concentrated on the boundary |ayer, as one expects.
O course, N =20 is the optimal number of points for that |evel of

error, but we have also to enforce the condition b/ h < K, with a

nmoderate K which may nmean increasing somewhat the density of the
mesh outside the boundary layer. Still this will require far |ess points
than the (106)'1 points required by a uniformmesh algorithmto give tue
sane order of accuracy.

More general results of the type described in this Section,

detailed proofs, and references to related work can be found in [13].

14



L. Practical mesh placenent al gorithm

In introducing the concept of asynptotically equidistributing
meshes we have taken a step towards the practical inplementation of the
ideas in Section 3.

As a matter of fact, we won't strive to make our conputed
meshes even approximately equidistributing, but rather we shall use a
somewhat nmore lax criterion. The first ground rule in our iterative
procedure to obtain a grid « is that we will only add points, and
once a point is in the nmesh it will never be touched again.

In other algorithns proposed [ 11, 17, 21 1, either a fixed
number of points is noved around, or points are added and renoved in
order to satisfy some equidistribution condition. In our experience
those procedures have a tendency to be nore unstable and to produce
rougher neshes than can be tolerated. There are, of course, ways of
inproving that situation, |ike snoothing, but that only conplicates the
algorithmunduly. On the other hand, the closer the mesh is to an equi-
distributing one, the fewer nunber of points it will have for a given toler-
ance; SO that fact and the cost of producing such a nmesh nust be carefully
bal anced. Al'so, from our exanple above, it is seen that, for a given level
of truncation error, there is an order of the nmethod which mnimzes the
nunber of points required for a given problem O course, one should
take into consideration the amount of work for each order when draw ng
true optimality results. For the time being, these considerations are
far too conplicated to be taken strictly into account in our algorithm
but they provide guidelines for useful heuristics.

Qur procedure starts with a given nesh n(o) with N.+1 points.

0
If no a priori information is available about the problem difficulties

then n(0) will usually be a uniform mesh with step size h(o).

15



Qovi ously, because of conputer storage restrictions, one wll also have
a maxi mum nunber of nesh points that can be considered in any given

mesh, say NVAX . In our programwe have chosen MMAX = 650/m .

(o) 2y (o)

(o)

On ™ we obtain an approximte O(h solution u

™

by solving s (O)(u) = 0, glw uy ;) = o (see (28)) .

™

Then we conpute S(1())) (u(ozo)) , wWhich is anestimatefor the |eading

I TT
termin the local truncation error T(?g) The infinity normis used

T

(k)

throughout. If we want ||+ ""(y)f| _~ <, then fromLemma 3.1and (34)

we obtain that

(4.1) E = & .
(o)

The initial tolerance requested, ¢ , IS up to a certain
extent arbitrary, but nevertheless it should be chosen judiciously. As
z(°> becones smaller, more points will be added to the nesh at the

begi nning, which may be unwise. Let TEM= || u(°>” .\ put

@2 2°) - mx (BvA* TEM, TQ)

where BMA is a paraneter used to control the size of é(o ). The
maxi num norm of the approximate solution, TEM is what connects the

| evel E(o) with the particular problem being solved. Essentially

what we are saying is that we would like to have an equidistributing
mesh with sufficiently many points as to achieve, at the start, a rela-
tive precision BMA with the o(hz) met hod. BMA shoul d not be too
small, since at the early stages of the gane the information available
(u(o)) will tend to be more unreliable, especially for problems with

difficulties.

16



W call (see Section 3 for the definition of \ ):

BI(T) = hy max (| T, (,) ], A =

~ (o2
hy max (|| Ty, (55) 015 A)°5

and

N b
UUN= Z EJ(I) ~ f a(t)%at .
1=1 a
The equidistributing procedure adds points, according to the
following rule. "In the present interval (x; x; ) add IqJ(I) -1

uniformy distributed points, where

(v.3)  1ei(D) 4 | EXI) /B,

and | |~stands for "integer part of ".

Thus the total nunmber of points added in each sweep is
N

1Q = -, IQJ(I) , where (N+1) is the nunber of points in the mesh
J=1
bei ng nodified.

These new points are actually added into the mesh if the

followng conditions are satisfied

(h.}) 0.04 N < IQ< mn (NMAX-N, 70)

If 1Iq < .04N , and the mesh has been nodified during the present process

then the equidistribution term nates.

The condition on the right of (4.4) prevents too many points
being added in any given sweep.

\\¢ observe that with the notation above

uuN |/ BN+ IQ+1 .

If 1Qviolates one of conditions (4.4) and this is not termnal,
we can attenpt to find the "right level™ E* which will bring in a

17



preset number of points  Ig¥ , by putting

(4.5) E¥ = Ex N+ IQ + 1
N + IQ*¥ + 1

and going again through the mesh in order to obtain a vector 1qJ(1)

for this new level. W use in our program
N+ Ig* + 1 = mn (ALG¥N, NMAX)

wWith ALG = 1.1(0.1)1.4. |If the case |Q < .04N is not termnal,
then we redefine the level as in (4,5) with ac = 1.4 . If that |eve
still does not bring enough new points into the mesh, then we decrease
the correction index k by 1 |, until either the mesh is nodified or
k=0. In this latter case a conplete bisection of the nmesh is requested
(if possible). If the right hand condition (4.4) is violated then we
define a new level, also with al¢c = 1.4 , but now we allow AU to
decrease down to 1.1in steps of 0.1 . This process is of course

stopped whenever an all owabl e nunber of new points is produced.

This series of tests and nodifications are intermxed in a
somewhat conplex logical structure which is better understood by |ooking
at a flowchart or the actual conputer program Here we have only tried
to list some of the main features of the algorithm

In particular, indefinite cycling is precluded by various
controls so that the nmesh refinenent process always termnates, though
not necessarily with an equidistributed nesh.

VW have insisted in not renoving points fromthe mesh since
this provides an easy way of insuring that the condition h/ ﬁ_f Kis

fulfilled with a reasonable K, and also produces snoother neshes.

18



As we shall see in the nmerical examples, in problens wth
transition regions as thin as 107> (on an interval of size 0.2), the
al gorithm has produced solutions accurate to 10-C with a mesh in

whi ch K <50.

19



5. Qperation count and storage requirenments

In this Section we shall make an operation count for algorithm
PASVAR  There are essentially three large modules in PASVAR and two main
loops: the deferred correction iteration and the Newton sol ver.

(a) The linear equation solver (SYSLIN).

SYSLIN is an inplenmentation of the algorithmof Section 3 of
[ 9 1. SYSLINis called at each Newton step, and at the end of each

correction, in order to estimte the global error

The rel evant parameters for SYSLIN are: m the nunber of
differential equations in the system and N the nunber of nesh points.
The systens solved by SYSLIN are then of size m (N+1) x m(N+1) .

They are algb sparse and highly structured. |n fact the coefficient

matrices involved have the form

(’ G, 0 , . GN+1“
! m A . B T3
’S1 R.] O . . { . %
0 f = 1o, w e
; mN{ | C |DJ
! S
m mN
Lo Sy By -

That is, they are block bidiagonal, with the exception of the first block
row.  The blocks are of size mxm . The system of equations have the

form
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Ve solve the superblock 2 x 2 system by Gaussian elinination,

and that inplies solving subsystens with the |ower block bidiagonal nat-

rix D. Putting € =[ ¢[b], v=[v]|w] we have

(5.2a) Xy = (A - Bv)'1 (b, - BQ’) ’

(5.2b) x = p! ({) - Cx, )

where v=D'c, w=D b are obtained by solving the system

(5.3) DV =_cC.

This is done by means of the recursion

~

S ), ] = 1,...,N .

ol
(5.k4) V., = R, (cC. 5 85V5

J J
Formi ng the expression in each parenthesis of (5.4) takes
P + 1S operations , where P stands for multiplications or divisions,

and S stands for additions or subtractions. Solving one matrix system

(5.4) takes L w (P + S) operations, and thus we have a total of

W

P + (4 O+ m2) S) operations for the recursion (5.4).

The calculation of (5.2.a) and (5.2.b) takes ( lim3 + Nme) P +
3

(Em5+Nm2 + Nm) S, and the total nunber of operations for SYSLINis
3

-~ (most significant terms only)
(5.5) N (7P + b )

3
(cf. [ 7] also).
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This is about tw ce the nunber of operations obtained by
varah [ 16 ] for the case of uncoupled boundary conditions. In that
case, by arranging the equations properly one obtains a band matrix, or

a block tridiagonal one, depending how he |ooks at it.

(b) Calculation of the correction vect orsST(Tk) (u(k_1 ) )

This calculation is perforned in Subroutine U2DCGS . The
rel evant parameters here are : Kk the correction nunber, and m N
as before.
For each grid point we have to generate weights for a differen-

2k+l

tiation formute approxi mating T k(y"{) to order h Since the
2

abscissas are not uniformy distributed, and since Tk is O(hz) :

then (2k+2) ordinates are necessary to produce the required approximation.
The weights are obtained in Subroutine COEGEN, for each grid

point the weight generation takes K (4P + 63 ) operations (see [I]),

(k)

and thus, formngs;”’ costs
(5.6) Nk ((4 + 2n) P + (6k +2m) S )

(c) The mesh selection procedure is a process taking a snmall nultiple

of mN operations. Under certain circunstances it may also require a call

t 0o U2DCGS .

The Newton loov. For each correction, a sparse system of mN non-linear

equations nust be solved. We use a descent Newton iteration with step
and angle control to solve those equations. In cases where there are
convergence difficulties, an optional automatic continuation procedure

is also available (see [9,22]).
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Each Newton iteration takes one evaluation of the right hand
side f(t,u) (vector mesh function), and one evaluation of its Jacobian
matrix.  Then, a conputation of the residual s (u) is required (see
(2.4)); this is a{my) operations process. Finally we have a call to
SYSLI'N

If the process is going to converge at all, it usually takes
no nore than three iterations to achieve | %.(“) I < EPS . The tolerance
EPS varies with the correction order, and with the actual estinmated
gl obal error, in such a way that the equations are solved to a |evel
conpatible with the truncation error. After the first systemis sol ved,
and some accuracy has been obtained, the following systems take usually
f ewer iterati(;ns since better initial values are used,

Thus we can reasonably assess the work for a conplete Newton

process, including one extra iteration for the error estimte, as:

(5.7) LN [13;_ w (7P + L4S) + 16m (P+S)| + 4 (FE + JE)| ,

where FE, JE stand for evaluation of f and its Jacobi an over the

whol e nesh.

If the problemis linear, and the system of linear equations
is not too ill conditioned, this work estimate should be halved. | the
systemis ill conditioned, and after passing through SYSLIN the residual

has not been dimnished sufficiently (it should be zero!), then nore
"New-ton iterations"will be perforned. This process is actually equiva-
lent to iterative refinement, a procedure to inprove the precision of
nunerical solutions to linear systems, and it is automatically built

into the program
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The total work for the kth correction is essentially

163

(5.8) ¥ § (%2 + mP + (2k + 16)m) P+ (o

5 + 6K° +(2k+16)m)S} + L(FE+JE) .

There are indications that nore sophisticated equation solvers (both
linear and nonlinear) can be valuable in difficult problens [4,24],

and we are presently working in this direction.

In order to analize the cost of any given actual run, we have

to consider the follow ng quantities. Ny oo N the different

Yo o N
nunber of grid points used; Cy s Cqs e @ie C = the nunber of corrections
performed with each fixed mesh. Since the amount of work in a correction
depends upon its order, we also have to consider as paraneters the

starting or der s s K Jearly k., = 0 . From(5.8), and

Kyr Ky 0

after some sinplifications, we obtain the followng estimte

ZNC{

(5.9) + (336 m + 16m + 6(kj + cj)

28 o + T6m + 1+(kj +cj)2 + 2(kJ. + cj)m) P

24 2(k; + ¢;)m) S ]

+ lsth.(FE + JE)

Except for small systems (m<5),this estimate can be further

sinplified to

(5.9") zr: Njcjm3(9P +58) + hey(FE + JE)
j=0
For a given problemit is inpossible to predict the program path,
i.e. to determine a priori the 'paraneters N.J, cj,kj, unl ess sone very
strong and unrealistic hypotheses are nade.
It is plausible that with the information we have provided here,

a nore elaborate conplexity analysis could be performed. Al'so, conparisons
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of the type carried out by Keller [18] can be perforned by making
appropriate hypotheses. For instance, assuning that instead of SYSLIN
the sane |inear equations solver as in [18] is used, that the sane
nunber of Newton iterations is required, and that the basic mesh need
not be changed, then iterated deferred corrections require always |ess
operations and function evaluations (for a given order) than successive
Richardson Extrapolations. W feel, however, that these work estimates
give only pointers and general indications. A conputer test on severa
actual inplenentations and on a large, representative set of problems is
what is required in order to make nore final assessnents. One step in
this direction--.is furnished by the results of the follow ng Section. See

al so [101] .

St orage requirenents. The storage requirements (nmost significant

terms)for our inplenentation, depending upon the two problem paraneters

mN, are given below. In the case that no dynamcal array space allocation is
avail abl e, those paraneters should be replaced by maxi mal values. W have
considered a maxi mum of 20 deferred corrections, which should be nore than
sufficient for nost problens, but in any case that is not a storage consum ng
part of the algorithm The expressions below correspond to nunber of rea
words required. The actual storage in bytes will depend upon the kind of

. conputer and precision being used.

PASVAR : Dat a . 2w+ (mH) y
Working area : LbmN+2N+ 170 .
SYSLIN
Wrking area : n® (N+8)

Thus the total storage required is

(5.10) Storage = n° (N+10) + (5m+3) N + 170

real nunbers
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6. Numerical results and conparisons

In this Section we give results for program PASVAR  and conpare
themwith results obtained with other FORTRAN prograns:
SYSSQL:  the uniform mesh version..of PASVAR [9];
RICHAR a Richardson extrapolation, finite differences code [ 10];
MJISHO a multiple shooting code [ 2 ];
IDCBVP: A deferred correction code for scalar second order equations

with no y' present [12];

PREVS5 : an inproved version of |DCBVP by Daniel and Martin [25];

SUPCRT: A linear systens solver based on the Godunov method [26].

In [8Fwe have anticipated simlar results, but the ones here corres-
pond to different versions of the various prograns (with the exception of
SYSSQL ). For instance, RICHAR can now perform extrapolations wth any
sequence of steps ho/kﬂ, I =0,1,.... W call RICHARI to the one using
t he sequence k, = ei, and RICHAR2 to the one using 5( =1,2,3,4,6,8,12,16...

The results for MULSHO were obtained by MM.Deuflhard, Rentrop
and pesch, under the direction of R Bulirsch, and we are very grateful
to themfor their cooperation. Appropriately chosen paranmeters and
shooting points now produce convergence from zero initial values in all
cases tested. Also, nuch inproved results in terns of total number of
function evaluations are obtained with MULSHO2 , in which the integration
routine has been replaced by VOAS , an initial value code provided by
T. Hull.

The results for SUPORT were obtained by M Scott and H Wtts,

using a Runge-Kutta-Fehlberg integrator for achieving the absolute
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error tolerance of 107 and a variable order Adans integrator for

absol ute tol erances of 1078 and below  Since SUPORT, as opposite to

all our codes, has no way of requesting (and obtaining) a desired accuracy

in the conputed solution (see [26], Section 12), the results given

in Tables 1 and 2 were obtained by running each problemwth a large

spectrum of input tolerances and selecting those results which satisfied

the output tolerances nore closely (and with the least work, of course).
The test problens are all small systens, but they show in one

way or another troublesone behavior. One exception is Problems,

which is used as an indicator of how the prograns behave when confronted

with a smooth problem Al problens and prograns were started with

17 poi nts, uniform neshes, and initial values for Y identically zero

with the exception of the shooting programs for which we indicate the

shooting points in each instance, and of SUPORT which does not

require a starting mesh. W have collected all the nunerical

results in Table 1. In the case of convergence to the desired
tol erance we record: EFE = equivalent function evaluations = F + wJ,

where F is the nunber of times the right-hand side f£(t,y) has
been evaluated for one value of t, and J is the nunmber of Jacobian
evaluations. The weight w varies from problemto problem and it

is indicated in Table 1; in all cases W< 1 and it reflects the
relative cost of evaluating the Jacobian matrix as conpared with
that of evaluating the vector function f. Ctherwise we print

the precision reached (if it is close to the one requested), or:
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NC = no convergence;

— = results not available.

In our programs we request that the estimated maxi num absol ute
error on the whole grid, and for all conponents of the solution vector,
be less than TOL for successful termination. MJISHO has a relative
tol erance parameter available to the user (EPS), and we give its val ue
in the various cases run.

V¢ give conputer times (when available) as a matter of reference.
The tinmes for SUPORT were obtained at a different installation (same
conputer but a different conpiler). The conputer times (in seconds)
can be found in Table 2. The high order scalar equations have been
treated as first order systens in the standard way. The exact solutions

(when available) are given in [&].

Problem 1 [15:

y"' = hoo(y + cos® TH) + o1° cos 2m

This is a problem which is troublesome for nethods based on standard
initial value problens techniques. It can also be interpreted as a
probl em wi th boundary layers of thickness 1/20 at t = 0, 1. MULSHO

used here three equally spaced shooting points, and MJLSHO2 used five.
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Probl em 2 Fal kner- Skan equation [3].

Yt gyt + el -3)21=0

As g approaches the value 2, the solutions of the initial value
probl em associated with this equation become very sensitive with
respect to the value of the nmissing initial condition y"(o0). This
probl em has required continuation in order to provide adequate starting
values for the Newton iteration in all the programs with the exception
of PASVAR W have used g in SYSSOL and RICHAR as a natural con-
tinuation paraneter, performng just one Newton iteration for each of
the values g = o (0.2) 1.8, and then conpleting the process for g = 2.
This is done only once, at the very beginning, on the coarsest nesh
and with the basic second order nethod. Afterwards, the initial values
provided are sufficiently accurate to produce convergence w thout
difficulties. Al this process is perforned automatically, using a con-
tinuation option. The results reported bel ow correspond to the full
conputation for g = 2 and » = 10.

MULSHO and MULSHO2 used the four shooting points xg = 0,1,3,

and 6.

Problem 3 An artificial boundary |ayer problem/[12]

/l

"o -5€y
Y (e + X2)2
y(-O.l) = ( N -O?.)l)ll/z_ B} y(O.l) = —y(—O.l) .
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For ¢ - 0, y(t)> sign t. The problemhas a turning point at t =0
of thickness €l/2‘ The values of < are indicated in parentheses on
the heading of the respective colums. In this problem all prograns
with the exception of SUPORT used the final values for an e to start
the conputation for the followi ng snaller e,

MULSHO used 5 equal Iy spaced shooting points (including the

origin), and it was successful up to ¢ = 10'9, using 26139 r.e. for

that case.

Probl em b [1k4]

y" + (3 cotan t + tan t)y'+ 0.7y = 0

y(30°) = 0, y(°) =5.

This problem has a sharp spike at approxi mtely t = 30.65°, where
y(30.65°) ~ 285, and the high order derivatives are even |arger.
The MULSHO codes used the four shooting points x.J = 30°,

31°, 35°, 60°.

Probl em 5 [11] Another artificial boundary |ayer problem

'+ ey =0

This problem has a boundary |ayer of thickness ¢at t = -1, where
the solution passes fromthe value one to the value two. The results

reported correspond to ¢ = .0l.

30



MULSHO shooting points were x:J = -1, -0.8, -0.5 1 while
MULSHO2 used the sequence x.J =-1, -0.8, -0.5 0, 0.5 1.
This problem was also solved successfully with PASVAR for

8‘ 5 X 10'10.

e = 0.001, 0.0001, TOL = 10'3, and for € =10.001, TOL = 10"
In this last case PASVAR required 2753 equival ent function evaluations
and used 3.75 seconds of conputer time on a CDC 6600/6400 machi ne.

The meshes and solutions for large ¢ were used to start the conputation

for smaller e.

Probl em 6[12] An easy problem

v =3 _sin t-(1 + sin® t)

y() = y(m =0

MULSHO and MULSHO2 used the three shooting points Xy o,

T/2, .
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J

s s r s r

:R 1 2 3(107) 5(1079) 3(1077) 4 5 6
O itos | 01 0.75 0.75 0.75 0.75 0.75 0.75 0.5
TQL = 10 -3
SYSSOL 419 829 NC 'NC NC NC 229
RICHAR1 531 815 671 NC NC NC 1378 227
Rl CHAR? - 743 451 NC NC NC 1248 --
PASVAR 327 H43 1088 7891 9997 18% 1140 195
MULSHO 2061 7657 1232 13076 5892 15815 16363 1866

LSHO2 1224 1188 912 2631 3508 2700 3960 559
| DCRVP 75 398 NC NC 115
PREV5 75 306 NC NC - — 115
SUPORT 312 334 1246 1880 403 802
TOL =10 -8
SYSSOL 1203 3063 2990 NC NC NC NC 331
RICHAR1 1733 NC 1378 NC NC NC NC 1052
Rl CHAR? 1008 3135 1248 NC NC NC NC 732
PASVAR 806 1425 2325 12982 621 7264 2753 297
| DCBVP 385 -- ohol NC NC _ 148
PREV5 354 1460 NC NC _ 148
SUPORT 572 626 2580 3460 688 3832

Table |. Equival ent Function Evaluations: F + wxJ

Weights for IDCBVP, PREV5S were w =0, 1, 0.1 in Problens 1, 3, 6 respectively.
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e e r C r
Problem
Code 1 "2 3 (107) 3(107%) 3 (107) 4 5 6
Limting
precision| 5499 4418 616
SYSSOL 10-13 5.4 x 10712 . NC NC NC 10713
207¢. 2129 3559 4 9827 3212 747
PASVAR  |1.6x 10712 100+ | 5 g 107t 1.6% 10 11| 8.2X 10711 || 10-1%
7nn 573
| DBVP ool . 28813 NC NC - 10713
2 1838 371
PREV5 1ﬁ_f3 10-13 NC NC 10-13
3832 L
SUPORT  |3.2%a0-10 3.6%710712 1.7%21077 |4.2x 1070 1008 | 1.8%900
Table | Cont. Equivalent Function Evaluations: F + wxJ

Vi ghts for IDCVBP, PREVS were w =0, 1, 0.1 in Problens 1, 3, 6 respectively.



Problem ] -3 -6 -7

ons 2 3(1007) | 3(107°) [3(@07") | k& 5 6

TOL = 10-3

PASVAR 0.57 | 0.87 1.16 9.90 11.33 2.11 |1n.23] 0.19

| DCBVP 0.02 0.03 -- -- -- -- 1 0.01

PREVS 0.02 0.04 -- -- [ 0.02

SUPORT* 0.08 0.07 0.23 0.35 |- 0.12 |0. 15 -~

TOL = 10“8 l

BASVAR .77 | 2. 607 1] 19.60 20.42 [12.7713.78] 0.34

IDBVP ] 0.15 0.12 _. - | -- {003

PREVS 0.15 0.09 -- -- -- -- | 0.03

SUPORT* 0.k42 0.50 2,06 2.81 0.7 | 2.51| --

Limting

precil sion

PASVAR 7.34 1834 | 5.23 -- - h9.19 |u.62| 1.28

| DCBVP 0.83 0.43 - - - |o.ap

PREVS 0.72 0.41 0 0.12

SUPORT* 1.65 0.95 2.70 3.17 | %0.9 --
Tabl e 2.

CPU tines in seconds on CDC 6600/6400 at IBL, University of California
Ber kel ey; RUNT6 conpil er.

* . .
On CDC 6600 at Sandia Labs., Al buquerque; FUN conpiler.
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Concl usi ons

Fromthis limted set of tests we can draw some prelimnary
concl usi ons.

Overall,PASVAR is far supéfior to RICHARL and SYSSOL for all
accuracies, and this is nore marked for higher accuracy. RICHAR?
s conpetitive for |ow accuracies in the problens in which it works
(c.f. [10] for conparisons on snooth problens). In all fairness,
we should use a Richardson extrapolation program wth nonuniform
mesh capabilities, but this code isstill to be developed. It is
clear, that whenever applicable, the scalar equations codes are by
far the fastest and nost efficient.

The multiple shooting code MJISHO2 conpares well wth PASVAR

in terms of total number of function evaluations and reliability for
nmost of the problens tested. The main exception is the turning point
Probl em 3 where MJLSHO2 obtains the solution with considerably fewer
function evaluations than PASVAR . Furthermore, MJLSHO2 obtains
good results for € = 10'52 ﬂig, whi | e PASVAR cannot resolve the
boundary layer with the allotted maxi mum nunber of grid points
However, it is worth nentioning that in Problem 4 MULSHO2 takes
Lo more conputer time than MUISHO , despite the fact that this |ast
program requires alnmost 6 tinmes nore function evaluations to achieve
conver gence. Ve should point out also that the nultiple shooting codes
do nat choose the shooting points and various other paraneters automati-
cally, and only give final results on the shooting points. Thus, PASVAR

requires much less user interaction and foreknow edge, and outputs a nuch

nore detailed nesh solution. This detail is automatically nore dense in
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the regions of rapid variation of any conponent of the solution
vector. It would be also useful to conpare the performance of
MULsHO2 for higher accuracy. Professor Bulirsch has indicated
that a nmore user oriented version of his program correcting some

of these drawbacks, will be available in the future.

The conparisons with SUPORT show that PASVAR work too hard in
solving the turning point problem3 for all tol erances and the spike
problemk for TOL = 10'5, 10'8‘ This indicates that our net selection
procedure is too slow for handling this type of quasi-singularities.

The performance of SUPORT is consistently good for |ow and
moderate accuraci es, though we have to keep in mind that the user has
no way of assuring that he will get that accuracy by specifying an input
parameter. W should also keep in nmind that, so far, SUPORT only sol ves
linear problens, and that it can take advantage of certain special
situations, |ike honmogeneous equations (probs. 3, 4, 5) and zero initial
val ues (Probs. 1, 4). The sonewhat disappointing results for high or
limting tolerance seemto stemfromthe inability of the initial value
codes to produce such accuracies. Apparently the boundary value
t echni ques can reach tolerances close to full machine accuracy w thout
excessive degradati on.

W are presently working on a new version of PASVAR which anong
other features has a new system of equations solver (both Iinear and
nonlinear). Prelimnary results indicate that this new code will solve
problens for which PASVAR fails, and also that it will cut the number

of function evaluations and tine by half in nost cases.
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In Table 3 we report sonme information about the nesh place-
ment and deferred correction procedures on the various problens.
V¢ give Nl,the nunber of tines“that a mesh refinement was requested.
Each one of these refinenents requires several nmesh nodifications. The
quantity Né Is the average nunber of these modifications. The row
R gives the higher correction reached, and K is the total nunmber of
corrections perforned.

W see fromthese results that the nesh placement routine
"does not wander" since the average nunber of inner sweeps is never
large than 3, which is reached in only one case (Prob. 5,
Tol = 10'i3). On the other hand we see that high order methods really
came into play, and although we do not claimthat a correction of
index k = 10 will produce an 0(®) accurate solution, it is quite
remarkabl e that such high order corrections do actually produce visible

i mprovements in the conputed sol ution.
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Problem 1 2 3(=3) 3(-6) 3(-7) 4 5
Tol = 10 -3
Ny 1 1 2 4 2 3 1
No 1 1 1.5 1.25 2 2 2
k 3 3 2 5 4 3 2
K 4 6 5 11 8 8 3
Tol = 10 -8
Ny 2 2 3 3 6 2
N, 1 2 1.33 1.33 0.5 1.83 | 1.5
k 6 5 4 8 10 7 6
K 9 10 9 13 13 17 8
Tol = 1077
N, 2 i - - - - 3
T, 1 1.75 - - - - 3
% 10 8 - - - - 7
K 13 17 - - - - 11
TABLE 3
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