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I. Introduction

The classical stack implsmsntation of recursive programs does not aluaU give

results that correspond to our naive intuit ive expectations. For instance, one

might expect the program

F (x1 <=- 8*F(x)

over,  say, the natural numbers, to be identical to the program

F(X) <mm 8 ,

s i nce for any number y, @*y~?y.  Simi iariy, the program

F(x) <-- if F (x1 -0 th 8 rltr 0

w o u l d  b e  expectad t o  y i e l d  t h e  z e r o  f u n c t i o n . S i n c e  t h e  t e s t  F(x)=0  i8

i r re levant , n o t h i n g  b u t  8 c a n  be p r o d u c e d  a8 a n  o u t p u t .  Houever, stack
implementations and the conventional theory of programs dictate that both of

these programs be undef ined for al i inputs, Users of recurslon are so accustomed
.  t o  t h i s  i m p l e m e n t a t i o n  t h a t  t h e y  al-e n o  longer s u r p r i s e d  a t  t h i s  unlntuitive

interpreta t ion, and never stop to consider any alternative meanings of recursive

p r o g r a m s .

A recursive program, such as those above, l o o k s  l i k e  a n  impllcit f u n c t i o n a l
equation relating the values of the function variable F. Such an equatlon  may i n

general have many possibie solution functions (ff;rrdpdfltJ).Sincs there is no unique

solution, the semantics of recursive programs, is selected rather than implied.

T h e  classical stack implementation yields one soiutlon, the ieast deftned  fsxedfmtnt
a of the program. Aq we have seen above, the blind selection of the israt d e f i n e d

solution is inadequate, because a  recurs ive  program oftan c o n t a i n 8  m o r e
information than this solution exhibits.

Ini this paper we suggest the selecti,on of a different and more  defined 8olutlon,
which always exists and which contain8 as much information as possible,

In Section II ue discuss various possible approaches towards recursive programs,
in an attempt to characterize the “best” one. On the basis of, this discussion  we

i ntroduc@  our new ~#trnd  frxed%Wzt  approach in Sect ion 11 i , which i s exemp I 1 f i ed i n

Section IV. Various tschnlquss for proving properties of optimal fixedpoints are

presented in Section V, ’

Th i s paper i s  a n  i n f o r m a l  e x p o s i t i o n  o f  t h e  o p t i m a l  f)xedpoint  t h s o r y ,  Mora

formal treatment is given in Manna  and Shamir [19751  and Shamir f19761.



II. Recursive Programs and Their Fixedpoints

Consider, as a typical example, t h e  fol iowing  r e c u r s i v e  p r o g r a m  Pl o v e r  the

natural numbers Tee8 note ii)]:

Pl: F (x, y) <*- if x=B then y else F(F(x,y-l),F(x-1,~)).

Any solution function to this program must satisfy the relations dictated by the

program, i . e.,

(a) FW,yI =y for all y, and

(b) F(x,y) = F(F(x,y-11, F(x-1.y)) for all x*8 and ail y.

Let us analyze what functions satisfy these two conditions.

--.
The main part of this program is the functional

7TFl:  &f  x-0 then y cl~c F(F(x,y-l),F(x-1,~))  p

in  which the  symbol  F  is  considered as  a func t i on  uariabk  G iven any par t ia l

f u n c t i o n  f(x,y)  , t h e  r e s u l t  o f  s u b s t i t u t i n g  f  f o r  F  y i e l d s  a n e u  p a r t i a l

function, denoted by 7[fl. For example, if us substitute the function

f(x,y) - y

for F(x.y)  9 we obtain the function

- Hfl (x,y) - if x=0  t h e n  y eke f(f(x,y-11,  f(x-1.y))

- if x - 8  then  y else f (y-1.~1
=y. .

.
T h u s ,  : t h e  f u n c t i o n  f(x,y)  h a s  t h e  i n t e r e s t i n g  prop@rty  that f(x,y)-ltfl  (x,Y)  ,

t h a t  i s , f is  a  so lut ion funct ion to  the  funct ional  equat ion Ffx,y)=~[F] (x,y)  .

Since f does not change under the app i icat ion of T , i t i s said to be a #ed@Znt
of the given recursive program.

An entirely different function uhich is a fixedpoint of the program ist

g(x,y), - maxbc,y)  .



S u b s t i t u t i n g  g  ,for F i n  I ~tF1  ,  w e  o b t a i n :

rtgl (x,y) - ff x-8 then y else m~(mcus(x,y-l),m4x[x-1,U))  .

By the def ini ti’on of mu%, this can be simpi ified to: 8
. .

e
T tgl (x, y) - i. x=.8 then  y else mruc(x,y-1,x-l,  yl

m if x-0 then maAx, y) eke max(x, y)
v - mcuc(x,y) l

Thus g(x,y) is a fixedpoint of the r8cursive  program Pl,

Yet another example of a fixedpoint is the partial functions

l(x,yl - if x-0 than y else undejbted  l

To show that this--.functlon  is indeed a fixedpoint  of our recursive program, we

s u b s t i t u t e  I in T , treating undefined as any other value. For this purpose we make

the general assumption t h a t  a l l  f u n c t i o n s  a n d  p r e d i c a t e s  appearing  in T a r e

“natural ly extended,’ in the sense that they are undafftwi  whenever at loret  one

. of their arguments is undef ined.  Thus,  We have;

T [II (x,yl - if x-8 then y eke UUx,  y-l) Jx-1, y) 1
- if ~4 then y Clse

1 (if x=8 then y-l else undefined, Ux-1, y) 1
= if x-8 then y eke i lundeflned,  1 (x-1, y1)

- if x-0 then y else ’
if undefined4  then 1(x-l, y) else undefined

- if x-8 then y else undefined .

These three  funct ions  do not  exhauet  the @St of ai I fixsdpointe  of  the  program.

AnIexample of an ‘ infinite cl888 of f ixedpoints ( indexed by the function u o v e r

the natural numbers) is:

ha(w) - if x-0 then y else a (x1.

A function h=(x,y)  can be shown to be a f ixedpoint of the program, provided that

4 the  funct ion czfn)  sat is f ies:

(s(nIy8 a n d  c&(n))-u(n)  f o r  a i l  n  > 8,
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Examples of functions’ satisfying this condition are the identity function, any
non-zero constant function, or the function uhich assigns to any natural number n

its greatest prime factor.

T h e r e  a r e  a c t u a l  l y  i n f i n i t e l y  m a n y  m o r e  d i s t i n c t  f i x e d p o i n t s , t h e  e x a c t
characterization of which is quite complicated. We can thus see that the set of

al I f ixedpoints  of  the  program may conta in  many funct ions uith e x t r e m e l y

diversif ied behavior. All these functions can be considered as “solutjons”  to the

equation represented by our recursive program,

Some of these f ixedpoints are related by the “less defined or equal” relation. We

say that a function r(x,y) is less defined of equal to s(x,y),  or that s(x,y)  is  more

defined or equal to r (x,y), i f  f o r  a n y  p a i r  o f  n a t u r a l  n u m b e r s  Ca,b) , if r(a,b) is

def ined than s(a,b) is also  def ined and has the  same Valu8; thus, either r(a,b)

i s  u n d e f i n e d  o r  e l s e  r(a,b)-s(a,b)  l Note that a function r(x,y)  may be n e i t h e r
“less defined or equal” nor “more defined or equal” to s(x,y).

T h i s  re’lation  introduoes s o m e  s t r u c t u r e  i n t o  t h e  s e t  o f  a i l  f i x e d p o i n t s  o f  a

recursive’ program. A f ixedpoint  is  ca l led least  (de f ined)  i f  it  is less defined or

equal t o  a n y  o t h e r  f i x e d p o i n t  o f  t h e  p r o g r a m .  D u a l l y ,  a  f i x e d p o i n t  ie c a l l e d

greatest  (defined) 1 f i t i a more def ined or equal to any other f i xedpoi nt.

Among the f ixedpoints of the program .Pl , the fixedpoint:

1 (x, y 1 - if x-0 then y else undefined

stands out. Since any f ixedpoint of Pl must be defined a$ y for x=0, it ie

clear Iy the program’s least f ixedpoint.

Least fixedpoints of recursive programs have long a t t racted  the  a t tent ion  of
computer science, theoreticians for three main reasons (see, e.g., Manna t1374)):

(a) A n y recursive program must have a (unique) least
f ixedpoint. Thus the least fixedpoint can be U88d to

unambiguousiy define  the “m8aning”  of recursive programs,

(b) The ciassicai s tack  implementat ion of  recursive p r o g r a m s

computes the least fixedpoint of the program.

(c) There are powerful method8 for proving properties of the
least fixedpoint  of programs.

A s  a r e s u l t , the l e a s t  f i x e d p o i n t  w a s  c h o s e n  a s  t h e  “ p r o p e r ”  s o l u t i o n  o f

recursive programs and other fixedpoints were absolutely discarded by re8earchere

from further consideration. However, we have an important  object ion to  th ie
choice; i t  contradicts the intuit ive concept that the more deflnsd the solution,

4



the more valuable ,it is. Indeed, there are many recursive programs for which the

l e a s t  f i x e d p o i n t  d o e s  n o t  c o n t a i n  aii the USSfUl information embedded in the

program, information which is contained in more defined fiX8dpOint8,.

Cons i der, for example, t h e  f o l l o w i n g  r e c u r s i v e  p r o g r a m  P2 for  solv ing ths

d i s c r e t e  f o r m  o f  t h e  Laplacs  squation, _.w h e r e  F(x,y) m a p s  paire of intogcsre i n

t&1001 x W,1001  i n t o  reaist

P2: F(x,y) - if x-8 then 2y
else i f x-180 then 3y+388
else i f b-0 tkn 3x

else if y - 1 0 8  then 4x+200
else ~Flx-l,y~+F~x,y-l1+F~x+l,y~~tx,y+i~l/4  .

This recursive program has exactly two fixedpointst

‘

i f  x-0

if x-100
i f  y-8
i f y-108

o t herw i se

and

’ g(x,Y) - 3x+2y+(x,yI/l00  f o r  &x,y~l08 .

There  is  no doubt  that  the  second ( to ta l ly  def ined)  f ixedpoint  g(x,y) contain8 .

much more valuable information than the (mostly undefined) function f(x,y)  .

Moreover, i t  i s  q u i t e  o b v i o u s that  any programmer  ur i ting such a recursive

program unconsciously thinks about the function g(x,y)  as the “solution” of the
functional equation represented by the program, Thus, the arbl Wary select ion of
the least ‘fixedpoint as the “proper 80lUtiOn” seems a poor choice in thie case .

This example might suggest a turn to the other extreme - considering greatest
fixedpoints rather than least fixedpoints. Unfortunately, there are many programs.
for. which there is no such greatest fixedpoint, as program Pl shows: There I8 no
function which is more define! than aii the fiXSdpoint8 exhibited,

.
A m o r e  m o d e s t  a p p r o a c h  c o u l d  b e  t h e  s e l e c t i o n  o f  a mu&m& flwd@tnt,  I.+, a
f ixedpoint which is not less dsf in&d  than any other f ixedpoint.  However, there
are  d i f f icu l t ies  wi th  ‘ th is  choice  too. Whils a n y  reCUrSiV6 p r o g r a m  ha8 euch  a

’ f ixedpoint, i t may have more than one. T h i s  i s  d8monstrated b y  progrerrn  Pl, i n

. which  the  funct ions  f(x,y), g(x,y)  a n d  h,(x,y) are  a l  i  examples  of  t o t a l ,  a n d

therefore maximal, ‘fix8dpOintS o f  Pl. T h i s  indicate8  t h a t  Pl is a n  “underdefined”

-
l

recurs i ve program t h e  r e l a t i o n s  s t a t e d  b e t w e e n  v a l u e s  o f  F  f o r  various

arguments  (x,y) are not sufficfent  to uniquely determine one defined value of the

5



f ixedpoint. Thus a randomly chosen maximal fixedpoint is by no means superior to

the least f ixedpoint I(x,y) in this case.

An artif icial example’which  i l lust rates  th is  problem is :

P3: F(x) <-’ F(x)

over,  say, the set of the natural numbers. Any partial function over the natural

numbers  is  c lear ly  a  f ixedpoint  o f  th is  ext remely  “underdefined”  p r o g r a m .  T h e

least  f ixedpoint o f  P3 is the total  ly u n d e f i n e d  f u n c t i o n , a n d  e v e r y  t o t a l
function over the natural numbers is a maximal  f ixedpoint .  In such a caee, the
least f ixedpoint seems the most appropriate solution, since no other f ixedpoint
can be considered a more “valuable” solution of this program.

III. The Optimal Fixedpoint

Thus far we have objected to the classical least fixedpoint and the  proposed
greatest and maximal fixedpoint  approaches to recursive programs. we now suggest
a  n e w  a p p r o a c h  - - the “opt imal  f ixedpoint  approach”.  1 t  combines the nice

proper t ies  of al l  the above approaches in that the f ixedpoint selected a l w a y s

uniquely  ex is ts , and it suppl ies the maximal  amount of valuabie  informat ion

e.mbedded  in the p r o g r a m . Thus in the three examples considered so far, the new
approach wi I I select the least fixedpoint in the “underdef i ned” programs Pl and

P3 9 but  wi  I I se lect  the  des i red  total  f ixedpoint (which differs from the l e a s t

f i x e d p o i n t )  i n  t h e  Lap&s prograk P2 l

In order to develop the new approach we first introduce the notion of

“conei  stency”. TWO functions are said to be consistent if they have identical va lues

for any argument for which both are defined. For example, let

8

f,(x)

i

i f  x -0

undefined i f  x - i

0 . otherwise

* i f  x-Q

fz(X) if x - l

otherwise

E i f  x -0

f,(x) - if x - l

ndefined otherwise

Then f, and f2 are consistent, as are fl and fa . However, f2 and f3 are n o t

consistent, since for x-l both  are def insd and have different values. Note  t h a t

6



no two of these functions are related by the “lees defined or equal” relation.

‘

Two consistent functions can be regarded as being “approximatel-y  the  same”:  One

function may be defined for eeverat arguments at which the other ia undef ined,

and vice versa; but the two functions cannot have contradictory defined values,

,

They can be considered as two incomplete reprseentation8  of tha eame know!edge,
and one can define a funct ion tihich is morii  defined than both of th@m,  thue being
superior to both partial representat ions.

r

We now ‘def i ne a f i iedpoi nt f of a program P to be fx~-~~Mstc?~t  i f f i e cone t a t e n t

with any other f ixedpoint g‘ of P l That i 8, whenever f i e defined, eay f (XI -a ,

then for any other f ixedpoint g V ii t h e r  g(x) i s  undefined  o r  g(x) ma l Thus the

v a l u e  a is i m p l i c i t l y  d e f i n e d  b y  t h e  p r o g r a m  a s  t h e  o n l y  poeeible  d e f i n e d

s o l u t i o n  a t  X. Every recur8 i ve program has at l e a s t  o n e  fxp-con8istent

f ixedpoint, sirice the l e a s t  f i x e d p o i n t  o f  t h e  p r o g r a m  i s  lee8 d e f i n e d  than (and

thLje  c o n s i s t e n t  wit@ a n y  o t h e r  fixedpoint  o f  t h e  p r o g r a m .  fhue, the classical
least fixedpoint is one of these valuable fixedeointe,  but only one of many.

The fxp-coneietept fixsdpointe can be considered a8 the only genuine solutione of

a recurs i ve program, since only they contain uniquely determined valuoa, We can

thus concentrate our attention on the subset of fxp-coneietent  fixadpointe  rather
.  t h a n  o n  t h e  e e t  o f  a l  i  fixedpoints  o f  t h e  p r o g r a m .  In t h i s  reetrictad set o f

solutions we are natural ly intereeted in maximal ly defined eolutione of.  the
program. Whi le the greatest fixedpoint approach wae not applicable to the set of

all fixedpoints of the p r o g r a m , we now fortunately have fees note (ii)l:

Basic Theorem: The set of all fxp-consistent  fixedpoints  alarup contains a (unique) pretest elmmt.

L e t  ue n o w  l o o k  a t  t h e  s e t  o f  f i x e d p o i n t s  f r o m  a d i f f e r e n t  p o i n t  o f  view.

~ Previously, we discussed the possibility of selecting B maximal flxedpoint  ae the

“proper” solution of the program. This  approach wao not applicable, eince the
program may have infinitely many such solution8 with no information common to all

o f  .them, and no one of which eeeme superior to the others. A natural way to

reeplve  this problem ia to find a fixedpoint which extracts the unanimity a m o n g

the‘se  m a x i m &  fixedpoints, thus be ing a  sat is factory  representat ive  of  a l l  o f
them. Such a f ixedpoint can be obtained by coneidering the fixsdpointe which a r e
lees defined than al I  the maximal f ixedpoints. For theee fixedpointe we aga in
h a v e  [see note (iii)]:

. Basic Theorem: The set of fixedpoints  which atu lass &fined  than a(l bximal  fixedpoints of the
program, has a (unique) gwatest rlcmsnt.



We have thus arrived at two possible definitions of the “most desired s o l u t i o n ”

of a recursive program, the first by ascending as much as possible from the least

fixedpoint in the set of fxp-consistent fixedpointe, and the second by damcending
from the maximal f ixedpointe.

It i s  q u i t e  n a t u r a l  t o  r e l a t e  t h e s e .  t w o  “ d e s i r e d  s o l u t i o n s ”  o f  a  recursive

program. Surprisingly enough, these two fixe?lpoints always coincide, and we cal l

the f ixedpoint thus defined the optimal fixedpoint  of the program.

By t h e  d e f i n i t i o n  o f ,  t h e  o p t i m a l  f i x e d p o i n t , i t  fo l lows that  a n y  r e c u r s i v e

program has a unique optimal fixedpoint. If the program hae only one fixedpoint

which, is fxp-consistent, the  opt imal  f ixedpoint  co inc ides wi th  the  claeeical

least f  ixedpoint. On the other hand, if  the program has a u n i q u e  m a x i m a l

f ixedpoint, the  opt imal  f ixedpoint  co inc ides wi th .  i t .  In all o t h e r  c a s e s ,  t h e

optimal f i x e d p o i n t  “ f l o a t s ”  s o m e w h e r e  i n  t h e  s e t  o f  a l  I f ixedpointe. We
i I lustrate  this with the following diagram (see Fig. 1) , wh i ch eummar i zee some of
the  s t ructura l  proper t ies  of  the  set  o f  f ixedpoints  of  recurs ive  programs.  In

this diagram an upper section (Fig. 2A) represents  the  set  o f  a l  I  f ixedpointe--.
w h i c h  a r e  m o r e  d e f i n e d  o r  e q u a l  t o .  f  ; s imi lar ly ,  a  lower  sect ion (P ig .  28)
represents  the set of .al I fixedpoints which are lees defined or equal to f . The

“etratpgic  poei t ion” of the optimal fixedpoint is clearly visible.

IV. A Detailed Example

Consider the following family of recursive programs over the natural numbere:

P* ’f,i ’ F(x) <-- rf x=0  t h en  i  e lse  j*F(F(x-1))  .

W e  shal I investigate the structure of the set of fixedpoints for a few recureive

pcograme in this family, thus illustrating the behavior of the optimal fixedpoint

approach in various eituatibns. In order to systematically analyze the possible
va lues of  f ixedpoints  for  some x-a , we evaluate the term F(a) by  repeatedly

subat i tut ing 7 tF1 for var ioue occurrences of F . Note that we make use of the

fact that F represents a fixedpoint of the program, but not neceeeari Iy thar  least
fixedpoint or the optimal f ixedpoint.

Programs Psj:

F(x)  X--S if x-0 then B else j*F(F  (x-1) 1 .

Let us analyze the possible values of F for successive arguments x t

8



I ne maximal uxeapoints

The optimal fixedpoint.
.

The f xp - bnsistent  fixedpoints

.m. 1. The fixedpoints  of a recksive program .

‘he f ixedpoint .

. .

Fig. 2A

.

.

Fig. 28



F (0) - if 0-0 then 0 else j*F(F(B-1)) - 8

F(1) - if l-0 then 0 e l s e  j.F(FU-1)  1

- j*F(F(B)) - j*FM - jeO - 6

F(2)  = q 2 - 0  t h e n  0 else j’F(F(2-1)) -*

- j*F(Ffl))  - j*F(8) - j*8 = 8

It can be eaei ly shown (by induction) that F(x)=0  for any natural number x , Thue

for any j , the prbgram Po,j has exactly one fixedpointt

fIxI -0 for any natural number x .

It i s  c l e a r l y  t h e  p r o g r a m ’ s least f ixedpoint as well  as the program’s optimal

f ixedpoint.

The behavior of the programs changes draet ical Iy when we take i to be 1 r a t h e r

than 0 .

Program P l ,0:

F(x) <-= if x-0 then 1 else 8*F (F (x-1) 3 .

The value of F(0) is clearly 1 , by a direct app
definition. For x-l , however, we get:

lication o f  the r e c u r s i v e

F (1) - if l-0 then 1 else 0.F (F(l-1) 1 ’

- 0*F(F(fN)  - B*F(l) .

We now have exactly two possible values for F(1) ;

1 F(1) - undefined or F(1) - 0 .
.

Selecting the first poeeibi lity, F(1) - undefined, we obta in :

F (2) - y 2-0 then 1 else 8.F (F (2-l I 1

= 0*F(F(l)) - 0*F (undefined)

1 - 0’ (if undefined-0 then 1 else 0* F (F (undefined-1 1) 1

= 0. undefined - undefined .

Continuing in this way, we get the fixedpoint:

18



i f  x -0

. otherwise .

,
However ,  i f  we.eelect  the second poeeibili#U,  F(l)-8  ) we havo to con t I nuo 4 n the

fol lowing way:

F (2) - if 2-0  then 1 else 8.F (F (2-l 1)

- @*F(FW)  - &FCe’,  . 0’1 - 0,

and so on. We thus get the fixedpoint

1 if X-8

g(x) -I otheruiee .

T h e  f u n c t i o n s  f(x) a n d  g(x) a r e  c l e a r l y  t h e  o n l y  p o s s i b l e  fixedpointe of the
p r o g r a m .  S i n c e  f(x)  is l e e s  d e f i n e d  t h a n  g(x) + f(x) ia t h e  program’o Ietaet
f ixedpoint whi le g(x) is the program’s optimal fixedpoint.

Program PI,, : .

F(x)  <=- i f  x-0 then 1 else F(F(x-1))  .

T h e  v a l u e  o f  FUN i s  n e c e s s a r i l y  1 .  E v a l u a t i n g  F(1) , ue g e t :

F(1) - rf 14 then 1  e l s e  F(F(l-1))
= F(F(0))  - F(1) ,

a n d  t h u s  a n y  n a t u r a l  n u m b e r  (as  uell as the  va lue  undefhrd)  ie o eolution of this

equa t i on. I f we choose F (1) -undefined 9 we get  (exact ly  ae in  program PIpI t h e

f ixedpointt

if x-8

f(x)  -

ndeftned otherwise .

.
S i n c e  a n y  o t h e r  f i x e d p o i n t  o f  PI,~ must a l s o  b e  1 f o r  x - 8  ,  f(x)  la clearlg the

program’s least f ixedpoint.

. S u p p o s e  w e  c h o o s e  F(1) - 8 l ,k than continua  with8
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F (2) - if 2-0 then 1 else F (F (2-l) 1

- F(F(lH - F(0)  - 1

F (3) - if 3-8 then 1 else F (F (3-l 1)
- F(F(2))  - F(1) - 0

..and so on. We thus get the fixedp0in.t:

,
i f  x  ieeven

ifxieodd.

If w e  t a k e  F(l)-1  ,  we obtain,

F(2) - i f 2-0  then 1 else F (F (2-l 1)
- F(F(l)) - F(1) - 1 ,

and so on. We thus objain the fixedpointt

h(x) - I for any najural  number x .

1) we take F(1) - 2 , we get:

F(2)  - i f 2-0  then 1 else F (F (2-l 1)
- F(F(lH - F(2)

and a g a i n we may choose any dealred v a l u e  f o r  F(2) ( i n c l u d i n g  t h e  value

undeftned)  . ’

I t -  is possible to continue this detailed analysis and find infinitely m a n y  m o r e

f i x e d p o i n t s  o f  PI,, . But in order to characterize the optimal f ixedpoint of thie

program it suffices to consider just one more fixedpoint!

- k(x)  - x+1 for any natural number x .

Since the optimal fixedpoint should be less defined than both maximal fixedpoints

h(x)  a n d  k(x) , it cannot be defined for any x>@  (for any such x both h(x) a n d

k(x) a r e  d e f i n e d  a n d  h(x)zk(x))  l Therefore the program’s optimal f ixedpoint

coincides in this case with the program’s least fixedpoint f(x) .

PrograA P 1 ,2:

F (x1 x-- if x=0 then 1 else ,2*F (F (x-1) 1 .

12



Ae before, al I  f  ixedpoint8  of PI,*  are d e f i n e d  a8 1 for  x -0  .  F o r  x-1 ue hovg

: F(1) - i f  1=0 then 1 ~IJG 2*F(FW) - 2’FW .

.
We h a v e  a r r i v e d  a t  a n  e q u a t i o n  ( f o r  the V-&JO of F(1) 1 w h i c h  haa exactly two

solutions:

F (1) - undejInsd  or F (1) l 0 +

i If ue dec ide  to  take  the  va lue  F(1) - undrftnud,  ue a g a i n  get t h e  fixedpointt

If x-e

o t heru  i 80

uhich is the program’8 leaet f ixedpoint.-i.

C h o o s i n g  t h e  o t h e r  pospibility,  i.b., F(l)-@ , u8 get:

F (21 I 2*F(F(l)I - 2.FW - 2  ,

F (3) - 2*F(F(2))  - 2’F(2) - 4  ,

and final ly:

F (4) - 2*F(F(3)) - 2*F(4) a ,

T h e  valueo  ‘for F(2) and F(3) uere i m p l i e d ,  o n c e  we c h o s e  F(l)-0  . But for  F (4 )  ,
ue a g a i n  h a v d  t o  choose  betuern  the t w o  poeelble solutiona  o f  t h e  equation,

namely,

F (4) - und$?ned  o r  F(4)-0 .

I f we. choose F (4bund@n~d  ) then 8’n argument  aimilrr to the one uaod  prrviou~ly

shous  tha! f o r  a n y  104 , F (xl andefined.  Thus  ue have  the f i xedpo  i nt

i f  x -0
if x - l

.i f x-2
if x-3 ’

undrffned  othsrwiee
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However, i f we choose F(4)-0 , we must continue as follows

F (51 - 2~FfF14)) - 2*FM - 2

F (6) - 2*F(Ff5)) - 2*F(2) - 4

. .

F (7) - 2*F(F(6))  - 2*F(4) - 8 ,

and so on. The periodic function thus obtained is defined  for any natural number

x as:

T O sum u p , t h e  r e c u r s i v e  p r o g r a m  Pi,2 h a s  e x a c t l y  threa fixsdpointa,  e a c h

generated by a differ&it selection of a solution to the above squationst

c1’ if x - 8
f (XI -

ndefined o t herw  i ee

i f  x-0

i f  x-1
if x=2

if x - 3
other w i se

Note that f is less defined than g and g is less defined than h . The only

maximal f ixedpoint of this program is h , a n d  t h u s  i t is alao -the p r o g r a m ’ s
optlmal f ixedpoint .

ProgYm P,p:

F (xl <=- rf x-0 then 1 eke 3.F (F (x-1) 1 .

As before,  FM)-1 , and there are exactly two possible values for F(1) :s

14



F(1)  - undefined or F(1) - 0 .

The f’irdt possibi I ity leads to the same lorat  fixedpoint  as brfora:

I

i f  X-0. . .

otherui be

The second possibility leads to:

F (2) m ,3*F(F(b))  - 3°F(8) - 3 9

F (3) - 3*F(3)  .

Here we have the same choice once more,

F(3)  - undefined or F(3)  - 8 .

If we choose  F(3bundefhed  we  get  the  f ixedpoint

if X-0

i f  X-l

g(X)  - if X-2

otherwise

However, if we choose F(3)-0  we continue with

F (4) - 3*F(F(3))  - 3*F(0) - 3  ,

F (51 - 3*F(F(4))  - 3*F(3) - 0 ,

and 90 on, and we obtain the third possible fixedpoint:

I i f  x -8

h(x) - 8 i f  x-1+2i

3

i-0,1,2,.,,

3 i f X-2+21

T h e  o p t i m a l  fixedpoint o f  PIa is c l e a r l y  h(x) .

Program P l ,4 :

.
F(x)  <-- i f  x - 0  then 1 else 4*F(F(x-1)  1 .
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This program behaves entirely differently from the ~88~8 consldered previously.

For x-0 , w e  s t i l l  g e t  F(6)-1 .  For  x-l  ,  uo get!

F(1) - 4’F(F(0))  - 4’F(l) ,

and we have the same choice as before,

F(1) - undefined or F (1) - 8 .

If we take F(l)=0 , we continue with:

F (2) - 4*F(F(l)) - 4*F(81 - 4  ,

and therefore:

F ( 3 )  - 4*F(F(Z.))  - 4*F(4) - 16DF(F(3))  .

Here we encounter a new problem! We do get an equation for the value of F(3) ,
but  F(3)  is  conta ined in  another  occurrence of  F on the  r ighthand elde of the
equation. Since we do not know the global behavior of this function, we cannot
simply solve this equation. However, based upon resul ts in number theory, I t can

be shown that  any f ixedpoint  o f  th is  program must  be  u n d e f i n e d  for  x23 ,

There.fore, the program P,,4 has exactly two fixedpoints:

c

1 if X-8

f(X) -

undefined other-u i se*

a?d

.

i  f  X - 0
i f  X-l

if X-2

otherwise .

Since f  is less defined than g , f is the program’8 least f ixedpoint and g 18 the
program’e optima.1  (and. maximal) fixedpoint. In contrast to programs PI@, PI,2 and

Pip, the optimal f ixedpoint Is not a total function, even though it  Ia still m o r e

defined than the least fixedpoint.

Final ly, ue consider
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Program P 1 ,5:

.

F (~0 <-- y x4 then 1 else 5*F (F (x-1) 1 .

For x-0 we c I ear I y have F (0) -1 l For x-l , we have, a8 usua I, the choice b e t w e e n

F (1) -undefined and F (1) -8 b I f  we take  the  second possib i l i ty ,  ue get F(2)-5  , Tha

difficulty arises when considering the possible values of F(3) t

F (3) - 5*F(F(2)) - 5’F(5) - 25*F(F(4)) - 25eF(5*FtF(3)I)  4

This equation is too difficult to be immediately solved.

Based upon cons I dsrat ions uhich are beyond the scope of thi 8 paper, I,,J~

c a n  f ind the fol loulng two flxedpoints  of P~,B;

gl (Xl - 8

and

,{

I if X-0
i f  X-1+21

5 i f x-2+2i-=. i-8,1,2,...

The optimal f  ixedpoint must be lea8 defined than both of these two total  (and
therefore maximal) fixedpoints, 80 it can b e  def ined only  a t  argument8  of  the

f o r m  x-1+6i a n d  x-2+6i  ,  f o r  i-0,1,2,... . Houever, the function thus obtained i s

n o t  a  f i x e d p o i n t  o f  t h e  p r o g r a m  (e.g., try x-7).  ft c a n  b e  rhoun  that t h e  o n l y

two fixedpoints of P,,s uhich are lea8 defined than this function are:

i f  x -0

* f(X) -

otherwi 8e

a n d
if X-8
i f  X-l

h(x) ‘- if X-2

other u i se

The funct ion  f(x)  is clearly the program’8 least  f ixedpoint .  The fixedpolnt  ho<)
i s  fxp-consietent, since all it8 values are uniquely determined by the equatione.

Since the  opt imal  f ixedpoint  must  be either f(x) or h(x) ,  and the more dsf insd
f u n c t i o n  h(x) is  fxp-cons,istents, h(x) is  the  program’s  opt imal  fixedpoint, Note
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the  eimilarity~betuedn  the opt imal  f ixedpoints  of P,,4 and P1,5 - both are defined

0nI’y for X-0 , x-1 and x-2 ; in Pt,4 t h i s  i s  d u e  t o  t h e  l a c k  o f  poeeible

f ixedpoints, whi lo in P,,s it  is due to their muitlpliclty.

One  could continue to check al I programs P,J ui th j greater than 5 l However ,  UQ

b e l i e v e  t h a t  t h e  p r e c e d i n g  e x a m p l e s  s u f f i c i e n t l y  i l l u s t r a t e  t h e  v a r i e t y  o f

possib le  cases in  the  new opt imal  f ixedpoint  approach. I t  i s  e s p e c i a l  l y
interesting to note that al though the least fixedpoint of al I programs PIJ is the

same, the sets of al  I  f ixedpoints, a s  uell as  the  opt imal  f ixedpointe ,  o f  theee

programs differ widely. We summarize this situation in Fig. 3, where we exhibit

the sets of fixedpoint  of programs PIP to,P1,5  l The least fixedpoint of any much

program i s  r e p r e s e n t e d  b y  t h e  louest d o t ,  w h i l e  t h e  o p t i m a l f  ixedpoint  is
represented by the dot surrounded by a circle.

In  the  example8 considered 80 far, various techniques were used to f ind the
correct  va lue  of  the  opt imal  f ixedpoint . Some of  th88e techniques are  easi Iy

mechanizabie,  uhi le others require deep mathematical knowledge. Unlike the leaet--
fixedpoint of a recursive p r o g r a m , the optimal f i x e d p o l n t  n e e d  n o t  b e  a

computable function. Thus there cannot be a “complete” computation rule which

always computes the optimal fixedpoint, but we can still hope to find good
computat ion technique8 ‘uhich are  appl icable  to  large  8ub8ets of colnmonly  ueed

programs. The examples discussed in this section give the f lavor of a feu much

techniques.

V. Proof Techniques

In this s e c t i o n  ue illustrate  Several t e c h n i q u e s  for proving  p r o p e r t i e s  o f

optimal f lxedpoints. We wish to show that optimal fixedpoint f of a g i v e n

recursive program
fixedpoint.

P h a s  s o m e  p r o p e r t y  Q[fl uithout a c t u a l l y  c o m p u t i n g  t h e
The property Q is a functional predicate, uhich may characterize the

overa l l  behavior  of  f .  F o r  e x a m p l e ,  Q[fl can state that f  is a t o t a l  f u n c t i o n ,

or  th,at f  equals  some g iven funct ion g V or  that  f  is  monotonica l ly  incraaeing

over some ordered domaln, etc.

General ly speaking, there are three elements involved in the process of proving

properties of fixedpointst A function f , a domain 0 , and a desired property Q .
Any one of these three elements can be used as the basis for induction,

T h e  t w o  c l a s s i c a l  m e t h o d 8  f o r  proving  p r o p e r t i e s  o f  l e a s t  fiXedpOint uee

induct ion on the function and on the domain, 1 n the computattonai  induction met hod

(d&akker  and Scot t  [13691), one  f i rs t  proves the  proper ty  Q over  0 for a v e r y
simple function fe, and then successively treats better approximations fi of f .
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I n the structural induction method (Bum ta I I El9691 1 one uses i nduc t i on over the

elements of the domain D, leaving f and Q unchanged.

Whi le  these two genera l  methods,  appropr ia te ly  modi f ied ,  can also be  uusd  to
p r o v e  p r o p e r t i e s  o f  t h e  o p t i m a l  fIxedpoint  i n  s o m e  c a s e s ,  w e  suggeet a new

induct ion method  (called assert ion tnductfon) uhich use8  the property Q am the baai

for induction. Even though this third type of induction ha8 been totally ignored

in the least f ixedpoint approach, i t turns out to be a very useful technique in

the optimal fixedpoint approach.

r
What we actually prove in the assertion induction method is that any fixedpoint f
of the program belonging’ to some given SUb8et  S of partial function8 ham the

p r o p e r t y  Qtfl . T h e  f a c t  t h a t  t h e  o p t i m a l  f i x e d p o i n t  g posseasee  the desired

p r o p e r t y  )s d e r i v e d  eiiher a s  a  s p e c i a l  c a s e  (if g c S 1, or as a re8ult  of come

further argumentation ( b a s e d  on the definit ion of g as the greatest  f  ixedpoint

which is fxp-consistent).

Note that S may contain functions which are not fixedpoints of the program, and

these  functions need not have the property Q b The assertion induction method

o n l y  8hOWS that al I functions in S which are fixedpoints of the p r o g r a m  h a v e

proper ty Q l The role of the SUbbet  S is to rule out Certain u n w a n t e d  fixedpointe

Which do not have the,  desired property Q e

The Assertion Induction Method

G i v e n :  A recursice prog.ram  P t F(x)  <-- 7 IFI (x1 9 a p r o p e r t y  Q tF1 ,  and a  eubeet S

o f  p a r t i a l  functione.

Coal:  To prove that Qtfl holds for any fixedpoint f of P such that f& . ,

Method: Find a sequence of predicates QitFl , i-0,1,2,.., such that:

- (a) QJfl holds for any f& .

(b) I f  Qi[fl  hold8 f o r  s o m e  fcS a n d  T[fltS’ , t h e n  Q~lt~[fll

holds.

(cl For any f& , if Q&f1  holds for all i , then Qtf1 aieo

holds.

T h i s  m e t h o d  c a n  b e  j u s t i f i e d  b y  t h e  f o l l o w i n g  argument1  B y  p a r t  (e), any
f i x e d p o i n t  ftS h a 8  p r o p e r t y  Qetfl-  . By part (b), if a f u n c t i o n  f& h a m  p r o p e r t y
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Qitfl 9 a n d  Irtfl& , t h e n  r[fl h a 8  p r o p e r t y  &l[Ctfll  . But if f ia a fixedpoint,

t h e n  f-7[fl 8 0  TEflfS S and f has property &,l[fI l Bu induct ion,  anu  f i x e d p o i n t

f<S ha8 t h e  propertieo  QiffI for i=6,1,2,.*. l T h u s ,  p a r t  (c) impiiea t h a t  f  h a e

proper&j  Qtfl . Note that since f  io r e p l a c e d  b y  VTf! in  the  induct ion atsp,,  anu

f which is not a fixedpoint of T is not guaranteed to have all the properties  Qi .

W e  i 1 lustrate  this method wit)!  the foilouing recursive program over the natural

numbers:

P4r F(y) <-- i f  F(x+lM then  F(x+lI+l  rise 8 .

T h e  l e a s t  f i x e d p o i n t  o f  t h i s  p r o g r a m  i s  everywhety  undefined.  We w o u l d  I  Ike t o

prove that the optimal flxedpoint of this program is the constant function

f (x)=8 for any natural number x .

W e  f i r s t  p r o v e two-,  p r o p e r t i e e  o f  t h e  f i x e d p o i n t e  o f  P4 which  e n a b l e  ua t o

properly choose the subset S of partial functionat

( i 1 For any flxedpofnt  f of PI and fiw any natural number x ,
f(M) is undefined if and onfy if fix) is undefined.

T o  show  t h i s ,  a s s u m e  t h a t  f (x+1)  is undefined;  t h e n  c l e a r l y  Vtfl (x1 - if f (x+~)B@

t&n f (x+1) e l s e  0 c a n n o t  b e  d e f i n e d .  S i n c e  f (xbT[fl (x) ( f(x) ie aluo undejhed.

On the other hand, if, f(x+l)  is d e f i n e d ,  t h e n  VtfIo()  is also d e f i n e d ,  a n d  aincg

f (x1- tr1 (x1  , f(x)  ia d e f i n e d .

( i i 1 For any Jixedpolntf of PI and fm any natural number x ,
f(A)=0 ff and only if f(x)=0  .

Th i 8 can be shown  in exact1  &j the aamet way a8 in part ( i ) above.

Th& t w o ,  p r o p e r t i e s  c h a r a c t e r i z e  t w o  poreiblo fixedpoint of the progrrrm e4 t f

which i a everyuher’e undefined and g which i a evsrUwhere  zero@  Our aim now i 8 to

show  that  the  recurs ive  p r o g r a m  h a 8  no other  fixedpoint8,  and thorsforr  whi  Ie f

is the prop&n’s  ldabt f ixedpoint,  g ia the  program’s  opt imal  flxedpolnt,

The above two proper t is8 imply thit a n y  fixedpoint  o f  P 4  i s  e i t h e r  t o t a l l y

d e f i n e d  o r  t o t a l  Iu undefined, a n d  t h a t  f o r  anu  total  f i x e d p o i n t  h  ,  ai ther h(x)-@

for all x or h(x)rr@  for all x * T h e r e f o r e  w e  d e f i n e  S  ao the met of al I  to ta l
functions which are dverguhere greater than zero, and try to prove that P4 ha8 no

fixedpoint in S .

.
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I n  o r d e r  t o  a c h i e v e  t h i s , we formal  ly  def ine  the  predicate  Qtfl to be always

” f a I se”. The sequence of intermediate predicates we use isr

Qi[fJ i s  t r u e  i f  a n d  o n l y  i f f(x)>i  for  a l l  natura l  numbers  x  .

-.
Step a: By the definition of S , any fcS is everywhere greater than

zero, and therefore (&If] holds.

Step b: Suppose Qitfl  holds for some i and ftS . Then by definition,

f(x)>i  for al l  natural numbers x .  Using this property, we

can simpl ify the expression V[fI (x1 :

?[fl (x1 - if f (x+lb0  t h e n  f(x+l)+l eh 0
- f (x+1)+1.

S i n c e  ,f(x+JM , we  have  Hfl (xbi+l  * Therefore Qk~[~[fll

also holds.

Step c: Suppose that some total function fcS satisfies Qi[fI for all

i . Then for any natural number x , f(x)>i  for al I i , and
this is clearly a contradiction. Therefore any such f also
satisfies Qtfl which is always “false”.

This completes the induction step, and the method thus guarantees that S does not

contain any f ixedpoint of P4 .

Thus far we have introduced the new assertibn  induction method. A8 ment ioned

above, the two classical proof method8 can also be used to prove propertiee  of

the optimal f ixedpoint. We show here an appropriately modified version of the

structural induction method.

The Stkcturat  induction Method

The structural induction method is intended to prove that a f  ixedpoint f  of a

recursive program P has some “pointwise” p r o p e r t y  Q[fl (x1 for al I x in the domain

0 . The main idea is to partit ion Q into Subset8  SO,SI,... such that

00
o= u s,

j=o
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a n d  t o  p r o v e  t h a t  Q[fl (x1 hold8 for al I xrSi u s i n g  i n d u c t i o n  o v e r  t h e  index i .

Thus, one ha8 to show’ that for any i , if Q[fT.o() hold8 for al I

i - l
XC u s,

j 4 . .

t h e n  Q[fl  (xl hold8 f o r  al I XCSi*

This  impl icat ion is  ueually proved by  f ree ly  rep lac ing any occurrence of  f b y

T.tf] (s ince  f  is  a f i x e d p o i n t )  a n d  a p p l y i n g  t h e  i n d u c t i o n  hypothe8is  t o  t h e

resultant expression’. This method can also be ueed to prove properties of optimal

f ixedpoints, but one usually has to apply some addi t ional  speci f ic  r e a s o n i n g

techniques, such as equation solving or case analysis of po88ible valuer,

We illustrate this method with the following program f% over the natural numbers8

PS: F(x) <-a’ if x=0 then 8 else F (x-F (x1 1 .

We would like to prove that the optimal fixedpoint f of P5 satiefies$

Qtfl (x1 : f(x)=@

for any natural number x .

we partition the domain of natural number8 in the follouing wayt

T h e  f a c t  t h a t  Qtfl (8). h o l d 8  ( i . e . , f (8) -8 ) i 8  a  d i r e c t  c o n s e q u e n c e  o f  the

d e f i n i t i o n  o f  P5 .
i-1

Assume that  we have a l ready shown that  Qtfl o<) holds for all x c U S,

ka

( i . e . , for  a l  I  0~~~1-1 1; w e  n o w  p r o v e  t h a t  Q[fl o() hold8 for  a l l  x(Si (i.e., for

x- i  1. S ince f  is  a  f ixedpoint  o f  P5 a n d  i>a , we have;

f(i) - f(i~f(i)I  .

we use case analys is  in  order  to find all the po88ibl8  va lue8  of  f(i) .

One  possible va lue  of f(i) is clearly unde f in ed . In order to check whether f (11
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h a s  a n y  pOSsibi8  def ined value, assume that f(i)-k for some natural number k .

Substituting this value into the definit ion of f(i) , we get: ’

k = f(i) - f(i-f(i))  - f&k) .

we c o n s i d e r  tW0 pO88i  ble caeesz

(a) I f  k - 8  , we obtain the requirement

81 f(i)

a n d  thir v a l u e  i s  c l e a r l y  consistcent  w i t h  o u r  assumption

t h a t  f(i)-k-8 . Thus zero is 0 poeeible value of f(i) .

(b) If k>B , we obtain the raquirsment  that

f&k) > 8 ,

b u t  s i n c e  i>B a n d  k>8 , i-k4 , and this contradicts what
we know (in the induction hypothesis) about the optimal

f ixedpoint:

f(x)=@ f o r  a l l  x  ,  Bsxzi  .

Therefore f(i) cannot have the value k for any k>8 .

W e  have,  thus shown’that the only two pO88ible values of f(i) are tindsfined  and 8 .

By the  def in i t ion  of  the  opt imal  f ixedpoint , we can now deduce  that f ( i I-8 .

Since this holds for any natural number i ) the optimal f ixedpoint is everywhere

defined as zero.

VI: Conclusion

In this paper W8 have presented the optimal fixedpoint approach towards recursive
programs.  Whi  le it is clearly appealing from a theoretical point of view, it has

a drawback in pract  i cc: it may be either impossible or extremely hard to find the
optimal f ixedpoint of some recursive  programs. ‘While w e  Cannot  develop p e r f e c t
implementations, w e  can try (perhaps Using  heuristic techniques) to extract as

much information from the program as pO88ible. Such an implementation wil I yield
the optimal f ixedpoint for Certain ClaSS88  Of reCUrSiV8  programs; it wili c o m p u t e
some intermediate fxp-consistent f ixedpoint for other classes; and in the worst
case wi I I yield the least fixedpoint of the program (as computed by the classical

stack implementation). By insisting on finding a more informative solution of a

recursive program than the least* f ixedpoint, it i8 n a t u r a l  t h a t  ths e f f i c i e n c y  o f
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computation rules is r e d u c e d  a n d  t h e  complexiity o f  p r o o f techniques is
increased.

The development of this neu approach is ati I I undsruay, both in it8 th8cretiCal

. and practical aspects. ,

************m*********

Footnotes

(i) Al I functions in this p r o g r a m  m a p  n a t u r a l  nulnbers  into natural  numbsrs(  thus,

x-1 i s defined to be 8 for x - 8 .

( i i ) The theorem i s proved in flanna  and Shamir I13751,  Theorem 3.

(iii) For a more rigorous statement of this result and its proof see Theorem 5 in

Manna and Shamir 11375).
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