Stanford Artificial Intelligence Laboratory December 1975
Memo AIM-276

Computer Science Department
Report No. STAN-CS-75-539

A NEW APPROACH TO RECURSIVE PROGRAMS

by

ZOHAR MANNA+ AND ADI SHAMIR#+

Research sponsored by

Advanced Research Projects Agency
ARPA Order No. 2494

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory December 19 7 5
Memo AIM-276

Computer Science Department
Report No. STAN-B-75-539

A NEW APPROACH TO RECURSIVE PROGRAMS

by

ZOHAR MANNA* AND ADI SHAMIR#+

ABSTRACT

In this paper we critically evaluate the classical least-fixedpoint approach towards recursive
programs. We suggest a new approach which extracts the maximal amount of valuable
information embedded in the programs. The presentation is informal, with emphasis on
examples.

xFormerly of the Weizmann Institute of Science, Rehovot, Israel Present Address:Artificial
Intelligence Laboratory, Stanford University, Stanford, California 94305 #«Formerly of the
W eizmann Institute of Science, Rehovot, Israel Present Address:Computer Science Department,
Unjversity of Warwick, Warwick, England

T is research was supported by the Advanced Research Projects Agency of the Department of
Defense under Contract DAHC 15-73-C-0435 . The views and conclusions contained in tais
document are those of the author(s) and should not be interpreted as necessarily representing tae
official policies, either expressed or implied, of Stanford University, ARPA, or theU.S.
Government.

Reproduced in the U.S.A. Available from tAe National Technical /nformation Service, Springfield,
Virginia 22151.

|. Introduction

The classical stack implsmsntation of recursive programs does not always give
results that correspond to our naive intuitive expectations. For instance, one
might expect the program

F (x) <== 8°F (x)
over, say, the natural numbers, to be identical to the program

F(x) <= 8,

8 i nce for any number y, B°y=y. Simi iariy, the program
F(x) <mm if F (x) =0 then @ else 8

would be expected to yield the zero function. Since the testF(x)=Bis
irrelevant, nothing but®canbeproduced as an output. Honever, stack
implementations and the conventional theory of programs dictate that both of
these programs be undefined for allinputs. Users of recursion are so accustomed
to this implementation that they are no longer surprised at this unintuitive
interpretation, and never stop to consider any alternative meanings of recursive
programs.

A recursive program, such as those above, looks like an implticit functional
equation relating the values of the function variable F. Such an esquation may in
general have many possible solution functions (fixedpoints) .Since there is no unique
solution, the semantics of recursive programs, is selected rather than implied.
The classical stack implementation yields one soiution, the least defined fixedpoint
of the program. As we have seen above, the blind selection of the least defined
solution is inadequate, because a recursive program often contain8 more
information than this solution exhibits.

In this paper we suggest the selection of a different and more defined solution,
which always exists and which contain8 as much information as possible,

In Section Il we discuss various possible approaches towards recursive programs,
in an attempt to characterize the “best” one. On the basis of, this discussion ue
introduce our new optimal fixedpoint approach in Sect ion I, which i 8 exemp lifiedin
Section IV. Various tschnlquss for proving properties of optimal fixedpoints are
presented in Section V.

Th is paper is an informal exposition of the optimal fixedpoint thsory, More
formal treatment is given in Manna and Shamir [1978] and Shamir [1976].

I1. Recursive Programs and Their Fixedpoints
Consider, as a typical example, the following recursive program Pl over the
natural numbers [see note {i)):

Pl: F (x,y)<== if x=B8 then y else F(F(x,y-1),F(x-1,y)).

Any solution function to this program must satisfy the relations dictated by the
program, i . 8.,

(a) F(B,y) =y for all vy, and
{b) Fix,y) = F(F(x,y-1), Fix-1,y)) for all x=B8 and ail y.

Let us analyze what functions satisfy these two conditions.

The main part of this Srogram is the functional
T(Fl: if x=@ then y else F(F(x,y-1),F(x-1,y)),

in which the symbol F is considered as a function varigble. Given any partial
function flx,y), the result of substituting f for F yields a neu partial

function, denoted by Tlfl. For example, if us substitute the function
fix,y) = vy

for F(x,y) , we obtain the function

- Tlfl(x,y)=if x=8 then y elsef(fix,y-1), fix-1,y))
=if x-8 then y else f (y-1,y)
- g.

Thus, “the function f(x,y) has the interesting property that f(x,y)=r[f] (x,y),
that is, fis a solution function to the functional equation Fix,y)=?[F](x,y) .
Since f does not change under the app i ication of #,itis said to be a fixedpoint

of the given recursive program.

An entirely different function which is a fixedpoint of the program iss

gix,y) = max(x,y)

Substituting g for Fin . .TIF], we obtain:
7lg) (x,y) = if x=B then y else max(max(x,y-1),max(x-1,y)).
By the def ini ti'on of max, this can be simpi ified to: -

7 lg) (x,y) = if x=B then y else max(x,y-1,x-1,y)
=if X-0 then max(x, y) else max (x, y)
= max(x,y) .

Thus g(x,y) is a fixedpoint of the recursive program Pl,
Yet another example of a fixedpoint is the partial function:
l{x,y) = if x-0 then y else undefined .

To show that this-function is indeed a fixedpoint of our recursive program, we
substitute ! in 7, treating undefined as any other value. For this purpose we make
the general assumption that all functions and predicates appearing in T are
“natural ly extended,” in the sense that they are undefined whenever at least one
.of their arguments is undefined. Thus, ue have:

T[] (x,y) =if x=B then y else lll(x,y-1),l(x-1,y))
= 1T xagtheny else
L (if x=@ then y-I else undefined, {(x-1,y))
= if x=0 then Y else | (undefined, | (x-1, y))
=if X-0 then y else ‘
if undefined=8 then !(x-1,y) else undefined
= if x=0@ theny else undefined .

These three functions do not exhaust the set of al | fixedpoints of the program.
An:example of an ‘infinite c1888 of fixedpoints (indexed by the function @ over

the natural numbers) ist

hy(x,y) = if x=8 then y elsea(x).

A function ha(x.u) can be shown to be a f ixedpoint of the program, provided that

the function a(n) satisfies:

a(n)wB@ and ala(n))=a(n) for ail n > 8.

Examples of functions’ satisfying this condition are the identity function, any
non-zero constant function, or the function which assigns to any natural number n

its greatest prime factor.

There are actual ly infinitely many more distinct fixedpoints, the exact
characterization of which is quite complicated. We can thus see that the set of
all fixedpoints of the program may contain many functions with extremely
diversified behavior. All these functions can be considered as "solutions" to the
equation represented by our recursive program.

Some of these f ixedpoints are related by the “less defined or equal” relation. We
say that a function rix,y) is less defined or equal to s(x,y}, or that s{x,y) is more
defined or equal to r{x,y), if for any pair of natural numbers (a,b), if rla,b) is
defined than s(a,b)is also defined and has the same value; thus, either r{a,b)
is undefined or else r(a,bl=s(a,bl. Note that a function rix,y} may be neither
“less defined or equal” nor “more defined or equal” to s{x,y).

This relationintroduces some structure into the set of ail fixedpoints of a
recursive’ program. A fixedpoint is called least (defined) if it is less defined or
equal to any other fixedpoint of the program. Dually, a fixedpoint is called
greatest (defined) ifitis more def ined or equal to any other f i xedpoi nt.

Among the f ixedpoints of the program Pl | the fixedpoint:
l{x,y)= if x=8 then y else undefined

stands out. Since any f ixedpoint of Pl must be defined asy for x=8, itis
clear ly the program’s least f ixedpoint.

Least fixedpoints of recursive programs have long attracted the attention of
computer science, theoreticians for three main reasons (see, e.g., Manna [1974)):

(a) Any recursive program must have a (unique) least
f ixedpoint. Thus the least fixedpoint can be wused to
unambiguousiy define the "meaning" of recursive programs,

(b) The classical stack implementation of recursive programs
computes the least fixedpoint of the program.

(c) There are powerful method8 for proving properties of the
least fixedpoint of programs.

As aresult, theleast fixedpoint was chosen as the “proper” solution of
recursive programs and other fixedpoints were absolutely discarded by researchers
from further consideration. However, we have an important objection to thie
choice; it contradicts the intuitive concept that the more defined the solution,

the more valuable itis. Indeed, there are many recursive programs for which the
least fixedpoint does not contain all the useful information embedded in the
program, information which is contained in more defined fixedpoints.-

Cons ider, for example, the following recursive program P2 for solving the
discrete form of the Laplace equationwhere Fix,y) maps pairs of integers in
{0,100] x[8,108] int o reals:

P2: Fix,y) = If x-8 then 2y
elsei f x-180 then 3y+3e8
else i f y=8 then 3x
else if y-108 then 4x+208
else [F (x=1,y)+F (x,y-1)+F (x+1,y) +F (x,y+1)1/4

This recursive program has exactly two fixedpointst

2y i f x=8
3y+380 if x-100
flx,y) = € 3x i f y=B

4x+208 i fy-108
undefined 0t herw i se

and
glx,y) = 3x+2y+(x.y) /188 f o r Bsx,yslOB

There is no doubt that the second (totally defined) fixedpoint gi{x,y) contains
much more valuable information than the (mostly undefined) function f(x,y).
Moreover, it is quite obvious that any programmer writing such arecursive
program unconsciously thinks about the function g(x,y) as the “solution” of the
functional equation represented by the program, Thus, the arbitrary select ion of
the least ‘fixedpoint as the “proper solution" seems a poor choice in thie case.

This example might suggest aturn to the other extreme - considering greatest
fixedpoints rather than least fixedpoints. Unfortunately, there are many programs
for. which there is no such greatest fixedpoint, as program Pl shows: Thereis no
funétion which is more defined than aii the fixedpoints exhibited,

A more modest approach could be the selection of a maximal fixedpoint,i.e., a
fixedpoint which is not less dsf ined than any other fixedpoint. However, there
are difficulties with ‘this choice too. While any recursive program has such a
f ixedpoint, i t may have more than one. This is demonstrated b y programP1, i n
which the functions fix,y), glx,y) and ha(x.yl are al i examples of total, and

therefore maximal, fixedpoints of P1. This indicates that Pl is a n "underdefined"
recurs i ve program - the relations stated between values of F for various
arguments (x,y) are not sufficient to uniquely determine one defined value of the

5

fixedpoint. Thus arandomly chosen maximal fixedpoint is by no means superior to
the least fixedpoint {(x,y) in this case.

An artificial example which illustrates this problem is:
P3: Fi(x) <= F(x)

over, say, the set of the natural numbers. Any partial function over the natural
numbers is clearly a fixedpoint of this extremely "underdefined" program. The
least fixedpoint of P3 is the total Iy undefined function, and every total
function over the natural numbers is a maximal fixedpoint. In such a case, the
least f ixedpoint seems the most appropriate solution, since no other fixedpoint
can be considered a more “valuable” solution of this program.

[11. The Optimal Fixedpoint

Thus far we have objected to the classical least fixedpoint and the proposed
greatest and maximal -fixedpoint approaches to recursive programs. We now suggest
a new approach -- the “optimal fixedpoint approach”. 1t combines the nice
properties of all the above approaches in that the fixedpoint selected always
uniquely exists, and it suppl ies the maximal amount of valuable information
embedded in the program. Thus in the three examples considered so far, the new
approach wi | | select the least fixedpoint in the *“underdef i ned" programs P1 and
P3 , but wi Ilselect the desired total fixedpoint (which differs from the least
fixedpoint) in the Laplace programP2 .

In order to develop the new approach we first introduce the notion of
"consistency". Two functions are said to be consistent if they have identical values

for any argument for which both are defined. For example, let

. (%] if x-0
f,(x} =&undefined if x-i
9 . otherwise
[’ i f x=8
falx) =41 if x-1

undefined otherwise

if x-0
falx) = if x-1

ndefined otherwise

Then §;, and f, are consistent, as are f; and fz. However, fz and f3 are not

consistent, since for X-l both are def insd and have different values. Note that

6

no two of these functions are related by the "less defined or equal” relation.

Two consistent functions can be regarded as being "approximately the same”: One
function may be defined for several arguments at which the other is undefined,
and vice versa; but the two functions cannot have contradictory defined values.
They can be considered as two incomplete representations of the same knowledge,
and one can define a function which is moré defined than both of them, thus being
superior to both partial representations.

We now ‘def i ne afi xedpoint f of a program P to be fxp-consistentiffi e cone latent
with any other fixedpoint g of P. That i 8, whenever f i e defined, eay f (x)=a,
then for any other fixedpoint g , @i ther g{x) is undefined or g{x)=a . Thus the
value a is implicitly defined by the program as the only possible defined
solution at x. Every recur8ive program has at least one fxp-consistent
f ixedpoint, since the least fixedpoint of the program is less defined than (and
thus consistent with) any other fixedpoint of the program. Thus, the classical
least fixedpoint is one of these valuable fixedpoints, but only one of many.

The fxp-consistent fixsdpointe can be considered as the only genuine solutions of
arecurs i ve program, since only they contain uniquely determined valuss.We can
thus concentrate our attention on the subset of fxp-consistent fixedpoints rather
. than on the eet of al i fixedpoints of the program. Inthis restricted set o f
solutions we are natural ly intereeted in maximal |y defined eolutione of. the
program. Whi le the greatest fixedpoint approach wae not applicable to the set of
all fixedpoints of the program, we now fortunately have fees note (ii)]1

Basic Theorem: T he set of all fxp-consistent fixedpoints always contains a (uUnique) greatest element.

Let us now look at the set of fixedpoints from a different point of view.
Previously, we discussed the possibility of selecting a maximal fixedpoint ae the
“proper” solution of the program. This approach wao not applicable, since the
program may have infinitely many such solution8 with no information common to all
of .them, and no one of which eeeme superior to the others. A natural way to
resolve this problem ia to find a fixedpoint which extracts the unanimity among
these maximé& fixedpoints, thus being a satisfactory representative of all of
them. Such a fixedpoint can be obtained by considering the fixsdpointe which are
lees defined than al | the maximal fixedpoints. For theee fixedpointe we again
have (gee note (iii)l:

Basic Theorem: The set of fixedpoints which are less defined than all maximal Sfixedpoints of the
program, has a (unique) greatest element.

We have thus arrived at two possible definitions of the “most desired solution”
of a recursive program, the first by ascending as much as possible from the least
fixedpoint in the set of fxp-consistent fixedpointe, and the second by descending
from the maximal f ixedpointe.

It is quite natural to relate these. two “desired solutions” of a recursive
program. Surprisingly enough, these two fixedpoints always coincide, and we call

the f ixedpoint thus defined the optimal fixedpoint of the program.

By the definition of, the optimal fixedpoint, it follows that any recursive
program has a unique optimal fixedpoint. If the program hae only one fixedpoint
which, is fxp-consistent, the optimal fixedpoint coincides with the classical
least f ixedpoint. On the other hand, if the program has a unique maximal
f ixedpoint, the optimal fixedpoint coincides with. it. In all other cases, the
optimal fixedpoint “floats” somewhere in the set of al I f ixedpointe. We
illustrate this with the following diagram {(see Fig. 1), which eummar i zes some of
the structural properties of the set of fixedpoints of recursive programs. In
this diagram an upper section (Fig. 2A) represents the set of al | fixedpointe
which are more defined or equal to. f 3 similarly, a lower section (Pig. 2B)
represents the set of .allfixedpoints which are lees defined or equal to f . The
"strategicposit ion” of the optimal fixedpoint is clearly visible.

IV. A Detailed Example

Consider the following family of recursive programs over the natural numberss:
Pyt F(x)<==if x=@ then i else j*F(F(x-1)).

We shal | investigate the structure of the set of fixedpoints for a few recursive
pcograme in this family, thus illustrating the behavior of the optimal fixedpoint
approach in various eituatibns. In order to systematically analyze the possible
values of fixedpoints for some x-a , we evaluate the term F(a) by repeatedly
substi tut ing ?[F) for var ioue occurrences of F . Note that we make use of the
fact that F represents a fixedpoint of the program, but not neceeeari Iy the least
fixedpoint or the optimal fixedpoint.

Programs Py

F (x) <m= if x=@ then B else j*F(F (x-1)).

Let us analyze the possible values of F for successive arguments x

The maximal fixedpoints

e

-

\ . ﬁ.LThe opﬁmal fi*edpoiryt

\\ 7 The f xp - tonsistent fixedpoints
= /

The least f ixedpoint
- P

\
-\
y
l

1T

Fig. 1. The fixedpoints of a recursive program .

A 7
N\ /

Fig. 2A

F(8) = If B=B then 8 else j*F(F(B-1))=8

F(1) =if 1=8 then @ else j*F(F(1-1))
= j*F(F(@)) = j*F(8) = j*8 = 8

F(2)=if 2-0 then 8 else j*F(F(2-1))
= j*F(F(1)) = j'F(B) = j'8 = 8

It can be eaei ly shown (by induction) that F(x)=8 for any natural number x , Thus
for any j , the prbgram Pg" has exactly one fixedpointt

f(x) = @8 for any natural number X .

It is clearly the program’s least fixedpoint as well as the program’s optimal
f ixedpoint.

The behavior of the programs changes draet ically when we take i to be 1 rather
than 0 .

Program P | g:

F(x) <m== if x«8 then 1 else 8°F (F(x-1) 3.

The value of F(8) is clearly 1, by a direct applicationof the recursive
definition. For x-l , however, we get:

F (1)=if 1-0 then 1 else B*F(F(1-1))
= B°F(F(B)) = B'F (1)
We now have exactly two possible values for F(1):

"F(1)= undefined or F(1)=8 .

Selecting the first poeeibi lity,F(1) = undefined, we obtain:

F(2) = if 2«8 then 1 else 8*F (F(2-1))
B°F(F(1)) =8'F (undefined)
8* (if undefined-0 then 1 else 8°F (F (undefined-1)))

8° undefined = undefined .

Continuing in this way, we get the fixedpoint:

18

1 if x-0
fix) =¢ ‘
undefined otherwise .

However, if ue .select the second poesibility,F(1)=8, we havo to con t 1 nuo in the
fol lowing way:

F(2) =if 2«8 then 1 else B°F (F(2-1))
= B°F(F(1)) = @°F(8) . @1 = B,
and so on. We thus get the fixedpoint:
1 if X-8
gix) =
otheruiee .
The functions fi{x) and g(x) are clearly the only possible fixedpoints of the

program. Since f(x)is lees defined than g(x) , f(x) ist h e program’s least
f ixedpoint whi leg{x)is the program’s optimal fixedpoint.

Program Py ;:
F(x) <m= i f x=@ then 1 else F(F(x-1)) .
The value of F(8) is necessarily 1 . Evaluating F{1) , ue get:

F(l)=if 1=B then 1 else F(F(1-1))
= F(F(@)) = F(1) ,

and thus any natural number (aswellas the value undefined)is @asolution of this
equation. | f we choose F (1) =undefined, we get (exactly as in program Pi9) the

f ixedpointt
1 if x=8
fix) =

ndefined otherwise .

Since any other fixedpoint of Py;must also be 1 for x-8 , fix)isclearly the

program’s least f ixedpoint.

Suppose we choose F(1)=0 . We then continue ui th:

11

F(2) =if 2=8 then 1 else F (F(2-1))
=F(F(1)) = F(@) = 1

F(3) = if 3=B then 1 else F (F(3-1))
= F(F(2)) = F(1) = B

and so on. We thus get the fixedpoint:

) 1 if x ieeven
gx)
B if x is odd .

If we take F(1)=1 | we obtain:

F(2) = if2=8then 1 else F(F(2-1))
=F(F{1))=F(1)= 1 ,

and so on. We thus ohtain the fixedpoint:

h{x) = | for any natural number x

If we take F(l)= 2 | we get:

F(2) = if2=0 then 1 else F (F (2-1))
= F(F(1)) = F(2)

and again we may choose anydesired value for F(2) (including the value
undefined)

It- is possible to continue this detailed analysis and find infinitely many more
fixedpoints of P;;. But in order to characterize the optimal fixedpoint of this

program it suffices to consider just one more fixedpoint:

- k{x) = x+1 for any natural number x .
Since the optimal fixedpoint should be less defined than both maximal fixedpoints
hix) an d k{x) , it cannot be defined for any x>8 (for any such x both h(x) and
k(x) are defined and h(x)#k(x)) . Therefore the program’s optimal f ixedpoint
coincides in this case with the program’s least fixedpoint f(x).
Program Py

F (x) <== if x=8 then 1 else 2'F(F (x-1)).
12

As before, al | f ixedpoints of Py,are defined @8 1 for x-0 . For x=1 we have

F(l) = i f 1=0 then 1 else 2°F(F(8)) = 2°F(1) .

We have arrived at an equation (for thevalueof F(1)) which has exactly tuo
solutions:

F (1) = undefined or F (1) . 8,

If we decide to take the value F(1) = undefined, ve again get the fixedpoint:

1 If x-e
fix) =
undefined otheruise

which is the program’8 least fixedpoint.

Choosing the other possibility,i.e.,F(1)=8 we get:
F(2) = 2°F(F(1)) = 2°F(8) = 2 |

F(3) = 2°F(F(2)) = 2°F(2) = 4

and final lfys:

F(4) = 2°F(F(3)) = 2°F(4) . |,
The values ‘for F(2)and F(3) uere implied, once we chose F(1)=8 . But for F(4) ,
we again havd to choose betusen the t w 0 poesible solutions of the squation,
namely,

F (4) = undefined o r F(4)=0 .

| f we. choose F (4)=undefined, then an argument similar to the one used previously
shous that for any x>4 | F (x) =sundefined. Thus we have the f ixedpo | nt

| if x-0

- 8- if x-1

gix) = € 2 i f x=2

4 if x-3
‘undcﬂncd otheruise

However, if we choose F({4)=8 , we must continue as follows
F(5) = 2°F(F(4)) = 2°F(B) = 2
F(B) = 2°F(F(5)) = 2°F(2) = 4

F(7) = 2'F(F(6)) = 2°F(4) = 8 ,

and so on. The periodic function thus obtained is defined for any natural number

X as:

] if x=0
%) if x=143i

hix) = \2 if x=2+3i Y i=0,1,2,...
4 if x=3+3i

Tosum up, the recursive program P;p has exactly three fixedpoints, each

generated by a differ&it selection of a solution to the above esquations:

i\ if X-8
f (x) =

ndefined otheruise

| i f x=08

(2] i f x=l
gix) = {2 if x=2

4 if X-3

undefined other w i se

! if x=8

(%] if x=143i
hix) =< 2 if x-2+3i}i-8.1,2,...

4 if x=3+3i

Note that f is less defined than @ and g is less defined than

h

The only

maximal fixedpoint of this program is h , and thus It is also-the program’s

optimal fixedpoint.

Program P\ 3:

F (x) <== if x«@ then 1 else3*F(F (x-1)).

As before, F(@)=1 , and there are exactly two possible values for F(1)s

14

F(1) = undefined arF{l)=8 .
The f'irdt possibi | ity leads to the same least fixedpoint as before:
1. i f x=8-
fx) = i
undefined otherui se
The second possibility leads to:
F(2) m 3*F(F(1))=3'F@) = 3,
F(3) = 3°F(3) .

Here we have the same choice once more,

F(3) = undefined or F(3) =8

If we choose F (3) =undefined we get the fixedpoint

| if X-0
8 i f x=l
gix) = §3 if X-2

undefined otherwise
However, if we choose F{3)=8 we continue with
F(4) = 3*F(F(3)) = 3°F(8) = 3

F(5) = 3°F(F(4)) = 3°F(3) = B

and so on, and we obtain the third possible fixedpoint:

I if x-8
h(X) - 0 |fx-1+2i i-a’lpZ.ooo
3 i f x=242103

The optimal fixedpoint of Pjgis clearly hix) .
Program P4:

F(x) <m= if x-0 then 1 else 4°F(F(x-1)) .

15

This program behaves entirely differently from the cases considered previously.
For x-0 , we still get F(8)al . For X-| , we gets

F(1) = 4*°F(F(9)) = 4°F(1) |,
and we have the same choice as before,
F(l) = wundefined or F (1)=8 .

If we take F(1)=8 , we continue with:

F(2) = 4°F(F(1)) = 4°F(8) = 4 |

and therefore:

F(3) = 4°F(F(2)) = 4°F(4) = 16°F(F(3))

Here we encounter a new problem! We do get an equation for the value of F(3),
but F(3) is contained in another occurrence of F on the righthand side of the
equation. Since we do not know the global behavior of this function, we cannot
simply solve this equation. However, based upon results in number theory, I t can
be shown that any fixedpoint of this program must be undefined for x23,

Therefore, the program P;4 has exactly two fixedpoints:

1 if X-8
fix) = ¢
undefined other-u i se
and
1 i f X-0
8 i f x=1
gix) =4 if X-2

undefined otherwise .

Since f is less defined than g, f is the program’s least fixedpoint and g is the
program’e optimal (and. maximal) fixedpoint. In contrast to programs P!,O’Pl,z and

P,,a, the optimal fixedpoint Is not a total function, even though it isstill more

defined than the least fixedpoint.

Final ly, we consider

16

Program P ; s:

F (x) <==if x=@ then 1 else 5'F (F (x-1)) .

For x=8 we c | ear | y have F (B) -1 . For x=1 we have, @8 usua !, the choice between
F (1) -undefined and F(1)=8. If we take the second possibility, ue getF(2) =5, The
difficulty arises when considering the possible values of F(3):

F(3) = 5'F(F(2)) = 5'F(5) = 25°F(F(4)) = 25'F(5°F(F(3))) .

This equation is too difficult to be immediately solved.

Based upon cons | dsrat ions uhich are beyond the scope of thispaper, e
can find the fol lowing two fixedpoints of Pygt

| if X-0
gy (x) =48 i f x=142i
5 _ ifx-2+25} i=8,1,2,.4.
and
! if x=9
] if x=143i
gp(x) =45 if x=2+3i i=8,1,2,...
5 if x=3+3i

The optimal f ixedpoint must be less defined than both of these two total (and
therefore maximal) fixedpoints, 8o it can be defined only at argument8 of the
form x=148i an d x=246i , for i=8,1,2,... . However, the function thus obtained is
not a fixedpoint of the program (e.g., try x-7). [t can be shown that the only
two fixedpoints of Pyg uhich are less defined than this function are:

{1 if x-0
f(x) -
undefined otherwi se
and
1 if X-8
%) i f xs=l
hix) = {5 if X-2

undefined other u i se

The function f(x) is clearly the program’8 least fixedpoint. The fixedpointh(x)
i s fxp-consistent, since all it8 values are uniquely determined by the equations.

Since the optimal fixedpoint must be either f{x) or hix} , and the more dsf ined
function h(x) is fxp-consistent, h(x) is the program’s optimal fixedpoint.Note

17

the similarity between the optimal fixedpoints of Pyq4 and Pyg~ both are defined
only for X-0 x=l and x=23 in Pjq4 this is due to the lack of possible

f ixedpoints, whi lo in Pyg it is due to their multiplictty.

One could continue to check al | programs Puuith j greater than 5. However, we

believe that the preceding examples sufficiently illustrate the variety of
possible cases in the new optimal fixedpoint approach. It is especial ly
interesting to note that al though the least fixedpoint of al | programs Puis the
same, the sets of al | fixedpoints, as Well as the optimal fixedpointe, of these
programs differ widely. We summarize this situation in Fig. 3, where we exhibit
the sets of fixedpoints of programs Pjgto P;g . The least fixedpoint of any such

program is represented by the louest dot, while the optimal f ixedpoint is
represented by the dot surrounded by a circle.

In the example8 considered so far, various techniques were used to find the
correct value of the optimal fixedpoint. Some of these techniques are easi ly
mechanizable, uhi le others require deep mathematical knowledge. Unlike the least
fixedpoint of a recursive program, the optimal fixedpolnt need not be a
computable function. Thus there cannot be a “complete” computation rule which
always computes the optimal fixedpoint, but we can still hope to find good
computation technique8 ‘uhich are applicable to large subsets of commoniy used
programs. The examples discussed in this section give the flavor of a few such
techniques.

V. Proof Techniques

Inthis section weillustrateseveral techniques forproving properties of
optimal f Ixedpoints. We wish to show that optimal fixedpoint f of a given
recursive program P has some property Q{flwithout actually computing the
f.ixedpoint. The property Q is a functional predicate, uhich may characterize the
overall behavior of f . For example, Qlf] can state that f is @ total function,
or that f equals some given function gy or that f is monotonically increasing
over some ordered domain, etc.

General ly speaking, there are three elements involved in the process of proving
properties of fixedpointst A function f , a domain D, and a desired property Q.
Any one of these three elements can be used as the basis for induction,

The two classical method8 for proving properties of least fixedpoints use
induct ion on the function and on the domain, In the computational induction met hod

(deBakker and Scott [1963]), one first proves the property Q over B for a very
simple function fg, and then successively treats better approximations f; of .

18

§'l1q o} © |4 swoiboud 8y} Jo sjulodpaxiy jo jos ay 40 9_22:5 oyl ‘¢ big

pauljapun 3sja

| d@ﬂH 0=X JI n.._& ¢._& n”._& N._& o
(03 OO By | m g — g

pauljep SIOM

SUOIJOUNy [DJO} BY | -~ \\\ _ ——®—— — —©——

In the structural induction method (Bursta || EI9691) one uses i nduc tion over the
elements of the domain D, leaving f and @ unchanged.

While these two general methods, appropriately modified, can also be used to
prove properties of the optimal fixedpoint in some cases, we suggest a new
induction method (called assertion induction) whichuses the property @ am the basis
for induction. Even though this third type of induction ha8 been totally ignored
in the least fixedpoint approach, it turns out to be a very useful technique in
the optimal fixedpoint approach.

What we actually prove in the assertion induction method is that any fixedpoint ¢
of the program belonging’ to some given subset S of partial function8 ham the
property Q(fl] . The fact that the optimal fixedpoint g possesses the desired
property is derived either as a special case lifge S), or as a result of some
further argumentation (based on the definition of g as the greatest f ixedpoint
which is fxp-consistent).

Note that S may contain functions which are not fixedpoints of the program, and
these functions need not have the property @. The assertion induction method
only shows that al | functions in S which are fixedpoints of the program have

proper ty @ . The role of the subset Sis to rule out certain unwanted fixedpoints
Which do not have the desired property Q.

T he Assertion Induction Method

Given: A recursive program P :F(x) <se TIFl1(x), a property QF] | and a subset$S
of partial functions.

Coal: To prove that Qlf) holds for any fixedpoint f of P such that feS.
Method: Find a sequence of predicates G(F], i=8,1,2,... such that:

.(a) Qy{f] holds for any feS .

(b) If Q;{flholds for some feSand TIfleS , then O, [TIf])
holds.

(¢) For any feS , if Q{f] holds for all i , then QIf}] aieo
holds.

This method can be justified by the following argument: By part (@), any
fixedpoint feS ha8 property Qglfl . By part (b}, if a function f€S ham property

28

Q,[f) , and Tlfl¢S, then 7lfl ha8 property Oy [r[fl] . But if f is a fixedpoint,
then f=r[f]1 80 T7[f)¢S, and f has property Q,y[f] . By induction, any fixedpoint
feShast h e properties Q;(f] for i=8,1,2,... . Thus, part (climplies that f hae
property Q[f] . Note that since f is replaced by T[fl in the induction step, any

f which is not a fixedpoint of ? is not guaranteed to have all the propertiesQ; .

We illustrate this method with the foilouing recursive program over the natural
numbers:

P4: F(x) <== if F(x+1)>0 then Fix+1)+1 else 8 .

The least fixedpoint of this program is everyuhere undefined. e would | ike to
prove that the optimal flxedpoint of this program is the constant function

f (x)=@ for any natural number x .

We first prove two~ propertiee of the fixedpointe of P4uhich enable us to
properly choose the subset S of partial functionat

(i) Forany fixedpoint f of P4 and for any natural number x ,
flx+1) is undefined if and onty If f{x)is undefined.

To show this, assume that f (x+1) is undefined; then clearly TIfl1(x) = if f (x+1)>8
then f (x+1) else B cannot be defined. Since f(x)=T[fl1(x), f(x)is also undefined.

On the other hand, if, f(x+1)is defined, then ?[fl(x) is also defined, and since
f (x)=[f](x) , fix)is defined.

(it) Forany fixedpoint f of P4 and for any natural number x,
- flx+1)=0 if and only if flx)=0 .

Th i e can be shoun in exactly the same way a8 in part (i) above.

Thesé two, properties characterize two possible fixedpaints of the program P4 : ¢
which i a everywhere undefined and g which i severywhere zero. Our aim now i ® to
show that the recursive program ha8 no other fixedpoints, and thereforewhile f
is the progrém'ale’asi fixedpoint, gis the program’s optimal fixedpoint.

The above two proper t ies imply that any fixedpoint of P4 is either totally
defined or total |y undefined, and that for any total fixedpoint h , either h(x)«8
for all x or h{x)#@ for all x .« Therefore we define S as the set of al | total
functions which are everywhere greater than zero, and try to prove that P4 has no
fixedpoint in S .

21

In order to achieve this, we formal ly define the predicate Q[f] to be aluays
"false". The sequence of intermediate predicates we use isr

Q,(f) is true if and only if fOd>ifor all natural numbers x .

Step a: By the definition of S , any feS is everywhere greater than
zero, and therefore Qplf] holds.

Step bs Suppose Q;[f) holds for some i and feS . Then by definition,
f(x)>i for all natural numbers x . Using this property, we

can simpl ify the expression TIfl{x):

Tf]l (x) =if f(x+1)>8 then f(x+1)+1 else 8
- f (X+1)+1.

Since fl(x+1)>i, we have Plfl(x}>i+l. Therefore Q[T [f]]

also holds.

Step c: Suppose that some total function feS satisfies Q;[f] for all

i . Then for any natural number x , f{x)>ifor al |t , and
this is clearly a contradiction. Therefore any such f also
satisfies Qlfl which is always “false”.

This completes the induction step, and the method thus guarantees that S does not
contain any fixedpoint of P4 .

Thus far we have introduced the new assertion induction method. As mentioned
above, the two classical proof method8 can also be used to prove properties of
the optimal f ixedpoint. We show here an appropriately modified version of the
structural induction method.

The Structural induction Method

The structural induction method is intended to prove that a f ixedpoint f of a
recursive program P has some "pointuise" property G[fl(x) for al | x in the domain
D . The main idea is to partition B into subsets Sg,5;,... such that

D= U S,
j=0

22

and to prove that QUfl{x) hold8 for al | xe€S; using induction over the indexi .

Thus, one ha8 to show’ that for any i , if Q[fl.{x) hold8 for al I

then Qlfl(x) holds for al | xeS;

This implication is usually proved by freely replacing any occurrence of f by
r(f] (since f is a fixedpoint) and applying the induction hypothesis to the

resultant expression’. This method can also be used to prove properties of optimal
f ixedpoints, but one usually has to apply some additional specific reasoning
techniques, such as equation solving or case analysis of possible valuer,

We illustrate this method with the following program PS5 over the natural numbers:

PS: F(x) <= if x=B then 0 else F (x-F (x)) .

We would like to prove that the optimal fixedpoint f of PSsatisfies:
Qlfl (x) : f(x)=8
for any natural number X .

We partition the domain of natural number8 in the follouing ways

So=18) Sy={l} Spm=i2} ...

The fact that QLfl1(8) hold8 (i.e., f(@)=B)ig a direct consequence of the
definition of PS5 .

i-1
Assume that we have already shown that Q{fl(x) holds for all x € U S

j=8

(i.e., for al |1 Bsxsi-1); we now prove that QUfl{x) holds for all xeS;(i.e., for

x-i). Since f is a fixedpoint of PS5 and i>8 , we havet
£0i) = £(i-fF(i))
We use case analysis in order to find all the possible value8 of f(i).

One possible value of f{i) is clearly undefined. In order to check whether f (i)

23

has any possible defined value, assume that f(i}l=k for some natural number k.
Substituting this value into the definition of f{i) , we get: '

k = f(i) = f(i-f(i)) = f(i-Kk)
We consider twopossible cases:
(a) If k-8 , we obtain the requirement
8 = f(i)

and this value is clearly consistent with our assumption
that f(i)=k=@ . Thus zero is apossible value of f(i).

(b) If k>@ , we obtain the requirement that

fli-k)> 8
but since i>@ and k»>8 ,i-k<i , and this contradicts what
we know (in the induction hypothesis) about the optimal
f ixedpoint:

f(x)=8 for all x , Bsx2i .
Therefore f(i) cannot have the value k for any k>8.

We have thus shown’that the only two possible values of fli) are undefined and 8 .
By the definition of the optimal fixedpoint, we can now deduce that f (i)=8 .
Since this holds for any natural number i , the optimal fixedpoint is everywhere
defined as zero.

V1. Conclusion

In this paper we have presented the optimal fixedpoint approach towards recursive
programs. Whi le it is clearly appealing from a theoretical point of view, it has
a drawback in practi cc: it may be either impossible or extremely hard to find the
optimal f ixedpoint of some recursive programs. While w e cannotdevelop perfect
implementations, we can try (perhaps using heuristic techniques) to extract as
much information from the program as possible. Such an implementation wil | yield
the optimal fixedpoint for Certain classes Of recursive programs; it will compute
some intermediate fxp-consistent fixedpoint for other classes; and in the worst
case wi | | yield the least fixedpoint of the program (as computed by the classical
stack implementation). By insisting on finding a more informative solution of a
recursive program than the least” f ixedpoint, it is natural that the efficiency of

24

computation rules is reduced and the complexiity of proof techniques is
increased.

The development of this neu approach is 8tl | | undsruay, both in itstheorstical
and practical aspects.

HAAAAAKAKAKAAAAARKKHKKK
Footnotes

(i) Al I functions in this program map natural numbers into natural numbers; thus,
x-1is defined to be 8 for x-8.

(ii) The theorem i s proved in Manna and Shamir [18975]), Theorem 3.

(iii) For a more rigorous statement of this result and its proof ses Theorem Sin
Manna and Shamir (1975].

Acknowledgement. We are indebted to Nachum Dershowitz, Steve Ness and Richard
Waldinger for their critical reading of the manuscript.

References

1. BURSTALL (1369] .
Burstal | , R. M. Proving Properties of Programs by Structural Induction.
ComputerJ., Vol. 12, No. 1 (Feb.1969), pp. 41-48.

2. DeBAKKER and SCOTT [1969].
DeBakker, J. W. and Scott, 0. A Theory of Programs.
Unpubl i shed memo (Aug. 1363).

3. MANNA (1974].
Manna, Z. Mathematical Theory of Computation.
McGraw-Hi | 1, N.Y. (1974).

4. MANNA and SHAMIR (19751,
Manna, Z. and Shamir, A. The Optimal Fixedpoint of Recurrive Programs.
Proc. of the Sympostum on Theory of Computing, A I buquerque, New hex i co (May 1975) .

5. SHAMIR [1976].
Shamir, A. The Fixedpoints of Recursive Programs.
Ph.D. Thesis, Applied Mathematics Dept., WeizmannInstitute of Science, Rehovot,
lerael (1976). ‘

25

