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ABSTRACT
V& consider a generalized conjugate gradient nethod for solving
sparse, symmetric, positive-definite systems of |inear equations
principally those arising from the discretization of boundary val ue
problens for elliptic partial differential equations. The nethod
is based on splitting off fromthe original coefficient matrix a
symretric, positive-definiteonethat corresponds to a nore easily
sol vabl e system of equations, and then accelerating the associated
iteration using conjugate gradients. Optimality and convergence
properties are presented, and the relation to other methods is
di scussed.  Several splittings for which the nmethod seems particularly
effective are also discussed, and for some, nunerical exanples

“are given.
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0. I NTRODUCTI ON

In 1952, Hestenes and Stiefel [0] proposed the conjugate
gradient method (cg) for solving the system of |inear alge-
braic equations

Ag =1,

where A is an n X n,symmetric, positive-definite matrix.
This elegant nethod has as one of its inportant properties
that in the absence of round-off error the solution is ob-
tained in at nmost n iteration steps. Furthernore, the
entire matrix A need not be stored as an array in nenory;
at each stage of the iteration it is necessary to conpute only
the product Az for a given vector gz.

Unfortunately the initial interest and excitenent in CG
was dissipated, because in practice the nunerical properties
of the algorithm differed fromthe theoretical ones; viz. even



for small systens of equations (n < 100) the al gorithm did

not necessarily termnate in n iterations. In addition, for
| arge systens of equations arising from the discretization of
two-dimensional elliptic partial differential equations,com-
peting methods such as successive overrel axation (SOR) re-
quired only o(yn) iterations to achieve a prescribed accu-
racy [1]. It is interesting to note that in the proceedings
of the Conference on Sparse Matrices and Their Applications
held in 1971 [2] there is hardly any nention of the CG

net hod.

I'n 1970, Reid [3] renewed interest in CG by giving
evidence that the method could be used in a highly effective
manner as an iterative procedure for solving large sparse
systens of linear equations. Since then a nunber of authors
have described the use of CG for solving a variety of
problens (cf. (4], [5], (61, [7], [8]). curiously enough,
although CC was general |y discarded during the sixties as
a useful method for solving |inear equations, except in con-
junction with other nethods [9], there was considerable in-
terest in it for solving nonlinear equations (cf. [10]).

The conjugate gradient net hod has a nunber of attractive
properties when used as an iterative nethod:

(1) I't does not require an estimation of paraneters.

(ii> 1t takes advantage of the distribution of the
ei genval ues of the iteration operator.

(iii> It requires fewer restrictions on the matrix A
for optimal behavior than do such methods as SOR

Qur-basic view is that CGis nost effective when used as
an iteration acceleration technique6

In this paper, we derive and show how to apply a gener-
alization of the CG nmethod and illustrate it wth numerical
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exanples. Based on our investigations, we feel that the gen-
eralized CG nethod has the potential for w despread appli-
cation in the numerical solution of boundary value problens

for elliptic partial differential equations. Additional ex-
perience should further indicate how best to take full advan-
tage of the method' s inherent possibilities.

1. DERIVATION OF THE METHOD
Consi der the system of equations

Ax = b , (1.1)

where A is an n X n,symmetric, positive-definite matrix
and b is a given vector. It is frequently desirable to re-
wite (1.1) as

Mg = Nx + ¢ , (1.2)

~

where Mis positive-definite and synmmretric and N is

synmmetric. In § 4 we describe several deconpositions of the
form (1.2). W are interested in those situations for which
it is a nuch sinpler conputational task to solve the system

Mz = d (1.3)

~

than it is to solve (1.1).
W consider an iteration of the form

5(k+1) . l{(k-l) o (ak%(k) +}£(1~v.) _ (k1))

wher e

p (1.4)

2

g 8 = ¢ s ) (1.5)

" Many iterative methods can be described by (1.4); e.g. the
Chebyshev semi-iterative method and the Richardson second
order method (cf. [11]). The generalized CG method is
also of this form



For the Richardson or Chebyshev nethods, the optinal
par amet er s Q%uﬂfok) are given as sinple, easy-to-conpute
functions of the smallest and |argest eigenvalues of the
iteration matrix M'lN[ll];thus good estimates of these
ei genval ues are required for the methods to be efficient. The
met hods do not take into account the values of any of the
interior eigenvalues of the iteration matrix.

The CG method, on the other hand, needs no a priori
information on the extremal eigenvalues and does take into
account the interior ones, but at a cost of increased conpu-
tational requirenents for eval uating © and ak.ln § 3,
we describe a technique to provide directly from the CG
met hod good estimates for the extrene ei genval ues of the

iteration matrix.
From equations (1.4) and (1.5), we obtain the relation

g g D) (o g O e 00y )

For the generalized CG nethod the paraneters {ak¢n
are computed so that

T
Z"(p) M‘%(q)

k+ l}

=0 (1.7)

for p # g and p, q=0,1,...,n-1.

Since M is n X n positive-definite, (1.7) inplies that for
sone k < n

(k)

Z =
~

H{e)

and hence

LBy (1.8)

~

That is, the iteration converges in no nore than n steps.



W derive the above result by induction. Assune

:
S LR VALC U (1.9)

~

for p # q and p,q = 0,1,..., k.

Then if
_ é(k)TMz(k)/i(k)T(M-N)i(k) ’ (1.10)
there hol ds
g(k)TME'(Hl) -0,
and if z(k‘l)Tmz(k) -1
G T\ T % i(k-l)TMz (k-1) (49
then

T
i(k-l) e 1) _ o

- ~

W can simplify the above expression for ®4q @S foll ows.
From (1.6) we obtain

() _,, (k-2) (k-1)

Mg, - (o, (M-N)g (k) le1) )5

+M£

Mz

~

and then from(1.9)

T T
E.(k) N’z"(k-l) - z~(k) Mi(k)/(wkak-l) .

Si nce

T
g (1) g, () ()"

~ ~ ~ ’

it follows



£ () g () -t

O 2 1
D

oy ﬁ(k-l)TMz(k-l) Xk

~

1

(l)k+l =

Fran (1.6), for j < k-I

T

T
z(j) ME(k+l) _ akwk+l£(J) Ng(k) .
But,
MzN(j+1) =szj -1) “’j+1(°‘j (M_N)g(j) N M(i(j-l) ) ﬁ(j))) ’
so that
T
.%(k) NQ(J) _ o
, _ T
Thus, since N= N7,
T
E(j) Mg(kﬂ) =0 for j <k-I .

Hence by induction we obtain (1.7) and (1.8).
The generalized CG nethod is sunmarized as foll ows.
Al gorithm
Let 5(o)
5(‘1). For k =

be a given vector and arbitarily define
0,1, ...
(1) Solve Mg(k) =¢c - (M-N);g(k) :

(2) Conpute




(k)T (k) -1

1
¢ —_— bl (k> 1) )
My (k-l)T (k-l) “k -

S

® = =1.

(3) Conpute

(kr1) )i(k-l) va (g

Note that the algorithm can be viewed as an acceleration

) , (&) (k-1),

of the u.nderlym first order iteration (wk+l = 1),
(k+1) _ %k

x . As with other higher order methods, the

storage reqwrerrents of the algorithm are greater than those

of the underlying first order iteration being accelerated.
The algorithm presented above is given primrily for

expository purposes. For actual conputation, the follow ng

equi valent form can be nore efficient in ternms of storage[3].

Al gorithm (aEI t)ernative form
o)

Let x be a given vector and arbitrarily define
oV For k=0 1,
(1)solve Mg(k) = ¢ - (u-mx K
(2) Conpute
T
i(k) Mz(k)
b, = k>1
k T ? o
g(k'l) Mz (k-1)
bO =0,
R(k) _ £(k) N ka(k-l) ‘



(3) Conpute

T
%(k) M£(k)
& T T ’
R(k) (M_N)R(k)
}Nc(kﬂ) _ %(k) . akR(k)

In the conputation of the numerators of 8y
need not reconpute Mg(k)‘ since it can be saved from step
(1). Also, instead of conputing the right hand side of step
(1) explicitly at each iteration, it is often advantageous to
conpute it recursively from

and bk one

) (k+1) (k)

[¢ - (M-N)x 1=1[¢- (M-N)x ]-ak(M-N)R(k) : (1.12)

whi ch equation is obtained fromstep (3). The quantity

(M—N)g(k) appearing in (1.12) may be saved from the conputa-
tion of 8, Simlar remarks hold for the algorithmin its
first formas well. There is evidence that the use of (1.12)

is no less accurate than use of the explicit conputation
(see [18], [3] for particular exanples).

The cal cul ated vectors {gﬁd 3£=o will not generally
be Morthogonal in practice because of rounding errors. (One
m ght consider forcing the newy calculated vectors to be
M orthogonal by a procedure such as Gam Schmdt. However,
this would require the storage of all the previously obtained
vectors

Qur basic approach is to permt the gradual |oss of
orthogonality and with it the finite termnation property of
CG. W consider primarily the iterative aspects of the algo-
rithm In fact, for-solving large sparse systems arising from
the discretization of elliptic partial differential equations



the application of principal interest for us and for which the
generalized CG nethod seens particularly effective, conver-
gence to desired accuracy often occurs within a nunber of
iterations small conpared with n.

2.  OPTIMALITY PROPERTIES
From (1.6), we obtain

LD U (o (I 004 (1) 00y (g g

~

Define
K=1-M. (2.2)
W have g(l) = (I - aOK)g(O), and there follows by induction
t hat
E.(Hl) - [l - KPE(K)]i(O) (2.3)
wher e
P, (K) = _é S (2.4)
J=0
V¢ denote
p,(A) = jﬁéo ag”xj (2.5)

and from (2.1) we have for k =2, 3, ..., ¢

p W) =0 (oarlp ) 0) -l 1 o O +ae,, ,
and

po(?\) = gy pl(k) = we(ao+°‘1'°‘o°‘17‘) .

.rﬁ“]fzo can be generated directly.

From (2.3) and the relation z(4*1) = &(O) + K(}g(ﬁl)- :,5(0)),

The coefficients (B

there follows



§(l+l) _ L‘(O) P 0z

Then if
Z = [‘%(O),K’%(O), cee Kfa(O)] ) (2.6)

L) (o), 75 (1) (2.7)

~ ~

Consi der the weighted error function:

(t+1?)=% (£+1), )y

E(x (x - x Tu-m) (x

Assuming that (MN js nonsingular, we obtain, using

(0) )

K(x - %

w
It

b

the relations

B( (2+1) - ]_._
(x ) 5z

~

T
(0) (I-KPE(K))T M(u-y) M(I-KP, (K))Q(O)

(1K, (1) (et) (z-1, (1)) (@, (2.9)
wher e

=%-X

Equivalently, we can use (2.7) and re-wite (2.8) as

(£+1) -

(2.10)
The quantity E(§(1+l)) is mninzed when we choose &(f)
so t hat

GQ(I)=12',

wher e
G= 2’ (u-m)z, n = 22O

10
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Let

Then using arguments sinilar to those given in [12], the
foll owing can be shown:

E(x(l"‘l)) 2(£+l)
() — o < 4 =2 : (2.11)
E(x'™) VK + 1

(B) The generalized CG method is optimal in the class of all
algorithms for which

£+1) (o)

L) L 0) Pl(K)g(O).

~

That i's, the approximation ;5(”1)
generalized CG method satisfies

generated by the

T
) =ni n % 3(0) (1-xP, (k) )T(M-N)(I-KPZ (K))g(O) :
Py

E(§(£+l)

where the mninumis taken with respect to all poly-
nom al s F} of degree ¢.

Recall that we have assuned that Mand (MN)
are positive definite and symetric. Thus the eigenval ues
of X = (I-M'IN) are all real and Kis simlar to a di-
agonal matrix. Hence, if K has only p < n distinct
ei genval ues, there exists a matrix polynom al QP(K) so t hat

QP(K) =0 .

In this case, E(:;(p)) = 0 and hence
(p)

X =X



so that the iteration converges in only p steps. The sane
result also holds if K has a larger nunber of distinct
ei genval ues but g(O) lies in a subspace generated by the
ei genvectors associated with only p of these eigenval ues.

W remark also that Statenent (B) inplies CGis optimal
for the particular eigenvector mx of the initial error 2(0)‘
taking into account interior as well as extremal eigenval ues.
As will be discussed in the next section, the extremal eigen-
val ues are approximated especially well as CG proceeds, the
iteration then behavingasif the corresponding vectors are
not present. Thus the error estimte (2.11), which is based
on the extremal eigenvalues,tends to be pessinistic asynptoti -
cally. ne often observes, in practice (see §5), a super-

linear rate of convergence for the CG method.

3. EIGENVALUE COVPUTATI ONS

The CG nethod can be used in a very effective nmanner for
conputing the extrene eigenvalues of the matrix K = 1-M 1.
Ve wite (see (2.1))

E‘(k+]_) ) Q(k—l) ) ‘”k+1(°‘kK%(k) + i(k-l) ) i(k) ), (3.1)
as
K£(1<) _ ck_1£(|<-|) N ak£(1<) . bk+1§.(k+l)’
or

-- K[i(O):z(l),- . ,&(n-l)]

(o) (1) (n-l)] a. c

[E, Z el

]




t hus defining 87 by and c
equation can be written as

K In matri x notation, the above

KZ = ZJ . (3.2)

Assuming that the colums of Z are linearly independent,
there follows from (3.2) that

K = zJ2°%

hence the eigenvalues of K are equal to those of J. As
pointed out in §2, if K has repeated ei genvalues or if the
vect or Z(O) is deficient in the direction of sone eigen-
vectors of K, iteration (3.1) will ternminate in k < n steps.

The process described by (3.1) is essentially the Lanczos
algorithm([13]. It has been shown by Kaniel [14] and by Paige
[15] that good estinmates of the extreme eigenval ues of K

often can be obtained from the truncated matrix

b, & ¢ O

L k2
0 ..

k-1 "k-|

where k is considerably less than n. This result holds
even in the presence of round-off error [16].

It was pointed out in §1 that the equation describing
the CG nethod is of the sane formas that describing the
Chebyshev sem-iterative nethod and R chardson second order
method, but that a know edge of the extreme eigenval ues of K



Is required for obtaining parameters for the latter two

met hods. Thus one could construct a polyalgorithm in which
the CG nethod is used initially to obtain good approximations
to the solution and to the extrene eigenval ues of KX, after
whi ch the Chebyshev sem -iterative nethod (say) is used,

t hereby avoi ding the additional work of repeatedly calculating
CG paraneters. This technique has been used in an effective
manner by O Leary [17].

4. CHOCE OF M

For the splitting M= 1, N = |-A one obtains the basic,
unnmodi fied CG algorithm for which
L) ), ()

~ ~ ~

Is sinply the residual at the kth step. Since the rate of con-
vergence of the generalized CG nethod, as given by the esti-

mate (2.11), decreases with increasing

it is desirable to choose a splitting for which k is as

smal| as possible. If A= L + D+ U were D consists of
the diagonal elements of A and L(U) is a strictly |ower
(upper) triangular matrix, then it is reasonable to consider

the choice
M=D, N=- (L+1U).

This M which is equivalent to a rescaling of the problem
is one for which (1.3) can be solved very sinply for z. It
has- been shown by Forsythe and Straus [19] that if Ais
two-cyclic then among all diagonal matrices this choice of
M will minimze K =

In many cases, the matrix A can be witten in the form

14



A= ’ (4.3
where the systens
Mgt el ME g

are easy to solvesand for such matrices, it is convenient to

Using(4.3), we can wite the system (1.1) in the form

Mll's'l + % = p’l (’-l-.h&)

—'T i MM —_— P . .
Fx, *+ M%, = - (h.4p)

Let the initial approximtion for % be ﬁfo? and obtain
§é0) as the solution to (4.4b) so that
(0) _ T (0)

WX Th-FH
This inplies that

.%.2(0)=9’
and hence by (1.10)

CXO':]-:

and thus



()

A short cal cul ation shows that z = 0 and hence a = 1.
Using (1.6), a sinple inductive argunent then yields that for
=0, 1, 2
pit1 i
a; =1, zl(J )=Q’ EQ(QJ)'-‘Q- (4.5)

This fesult was first observed by Reid [8] for the case in
whi ch M and M, are diagonal, i.e., in which the matrix
A has "Property A" and is suitably ordered. Qher cases for
elliptic boundary val ue problems in which matrices of the form
(4.3) arise will be discussed in § 5. For these cases con-
vergence can be rapid because K has only a few distinct
ei genval ues, even though « is not especially small.

Various other splittings of the matrix A can occur
quite naturally in the solution of elliptic partial differ-

ential equations. For exanple, if one wishes to solve
-au + o(x,ylu = f (x,y) € R
u=g (x,y) € OR ,

where R is a rectangul ar region,it i S convenient to choose
Mas the finite difference approximtion to a separable
operator, such as the Helmholtz operator -A + C, for which
fast direct nmethods can be used [23]. A nunerical exanple for
this case is discussed in §5. |f one wishes to solve a
separable equation, but on a nonrectangular region S, then

by extending the problemto one on a rectangle R in which o
I s enbedded, M can be chosen as the discrete approxination to
the separable operator on R for which fast direct nethods

1¢



can be used. Such a technique provides an alternative to the
rel ated capacitance matrix nethod [25] for handling such prob-
lens. Forms of this method utilizing CG but in a different
manner than here, are described in [26] and [27].

Several authors [4], [20], [21] have used CG in conbi na-
tion with symretric successive overrelaxation (SSOR). For
this nethod the solution of the equation Ntz(k)=g- (M-N)x
reduces to the solution of
...]_(

(k)

(k) )r(k)

(D+wL) D™ (DwU)z " = w(p-w

where D, L, and U are as described previously in this sec-
tion (although D may be bl ock diagonal), g(k)=b~-A~x(k),
and w is a paraneter in the open interval (0,2). SSOR is
particularly effective in conmbination with CG because of the
distribution of the eigenvalues of K (cf. [22]).

Meijerink and van der Vorst [7] have proposed that the

followi ng factorization of A be used:

A= FFT + E,

so that

M=FTT, N=<E .

The matrix F is chosen with a sparsity pattern resenbling
that of A.  This splitting appears to yield a matrix X with
ei genval ues that also are favorably distributed for CG A

bl ock formof this technique recently devel oped by Underwood
B4 ] achi eves a nore accurate approximate factorization of

A with less conputer storage and about the sane number of
arithmetic operations per iteration.

Generally, in addition to the requirenent that (1.5) be
-"easy" to solve, Mshould have the following features if the
generalized cG algorithmis to be conputationally efficient.
For rapid convergence one seeks a splitting so that



(i) vIN has small or nearly equal eigenval ues

or (ii) MM has smll rank.
Oftena choice for Msatisfying these restrictions comes
about naturally from the inherent features of a given problem

5.  NUMERI CAL EXAMPLES

For the first exanple, we consider the test problem dis-
cussed in [23]

-div(a(x,y)yu) = f (x,y) € R
u-g (x,y) €OR,
where a(x,y) =[1 + % (ot +y "J12 and Ris the unit squar e
0 < X,y < 1. After a transformation the probl enbecones

-1/2

“hw + o(ylw = am o (x,y) € R

(5.1)
w =al/2g (x,y) € OR,

where o(x,y) = 6( X+ v /al/g‘ As in [23] we discretize

(5.1) -on a uniformmesh of width h, using for & the
standard five-point approxi mation A and we choose the
splitting

M=A+N=-Ah+CI

W th C=o=crm.n or C=5=%(cnax+am'n)’

In [23] Chebyshev accel eration was used, which requires
an estimate of the ratio of the extremal eigenvalues of the
iteration matrix. Here we use the nodified CG al gorithm of

18



)
§ 1. For an initial guess wo

g corresponding to the solution w = o[ (x-1/2)% + (y-1/2)°1,
the results are given in Table 1 for h = 1/64. The results
obtained for h = 1/32 were essentially identical, as the
iteration is basically independent of h for this problem
(see [23]).

Note that the Chebyshev nethod is sensitive both to the
value of C and to the accuracy of the eigenval ues from
which the paraneters are calculated. The paraneters used for
the mddle colum were based on Gerschgorin estimates
from the Rayleigh quotient, which gave a ratio of largest to

= Q and choice or' f and

smal | est eigenvalue about three tines too large. The CG
nethod appears to be less sensitive to the value of C. After
several iterations CG begins to converge nore rapidly than
does the optinmal Chebyshev nethod, which behavior is typical
of the CG superlinear convergence property discussed in § 2.
This exanple is one for which rapid convergence results ‘be-
cause the eigenval ues of MN are small.

Chebyshev (from [23]) CG
C=0 Cc=3 C=3
exact appr oxi mat e exact
teration|lei genval ues | ei genval ues [eigenvalues|| C = 0 [ C = 3

1 1.6(-2) [[4.5(-2)|1.6(-2)
2 T.4(-4) [[2.6(-3)[6.7(-}4)
3 1.1(-5) |[3.0(-5)|1.0(-5)
L 2.7(-7) ||5.7(-7)|1.1(-7)
5 2.4 (-6) 1.1(-6) 4.3(-9) |[[5.1(-9)[8.2(-10
6 1.2(-10) [|4.4(-11)|5.7(-12

TABLE 1
Maxi num error vs. iteration nunber for first exanple



W\ give as the second exanple

-Au = f (x,y) €T

Il

u=g (x,y) € oT

where T is the domain shown in Fig. 1. For a uniform square
mesh of width b, and 0 < £ < (21)™ & whole nunber, so that
all boundary segments are nesh lines, the coefficient matrix
A for the standard five-point discretization and natura
ordering has the form (4.3).

(% + 2h, 1+2fh)

(1,1)

(0,0)
FI QURE 1

T-shaped domain

My and M, correspond to the mesh points in each of the two
squar es, Tl and Ty > and F to the coupling between them
F has non-zero entries inonly p =21 -1 of its rows.

According to the discussion following (4.3) we choose

20



B

and for initial approximtion

U
(0) ~1

1 T (0)
(b, - F g )

M
Then for the generalized CG algorithm there holds e = 1
and that z, and z, are alternately zero, thereby reducing
conputational and storage requirements. V& use a fast direct
Poi sson solver for the systens involving My and M_.

2
The results for gl(O) uniformy distributed random num

bers in (0,2) and f£(x,y) and g(x,y) such that u=x°+y°
is the solution are given in Table 2. Here the average error
per point, the two norm of the error divided by the square
root of the number of interior mesh points, is given for each
of the test problens.

For this exanple, the eigenvalues of MIN are not
especial ly small in magnitude, however since uIN has rank
of only 2p, convergence is obtained in only a noderate nunber
of iterations. For Case | and Case Il the last row represents
full convergence to machine accuracy subject to rounding
errors, as would be expected since 2p = 1k for these cases.
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Case |' Case |1 Case |11

h 1/32 1/64 1/6k

4 L L 8

P 7 7 15

iteration ave. error/pt  ave. error/pt ave. error/pt
1 8.58(-2) 3.70(-2) 1.08(-1)
2 7.05(-2) 3.13(-2) 9.82(-2)
= 1.30(-2) 6.66(-3) 4.94 (-2)
4 3.35(-3) 2.53(-3) 1.80(-2)
5 2.71(-4) 6.03(-k) 4.28(-3)
10 2.65(-7) 5.13(-8) 7.35(-5)
15 1.14(-13) 5.60(-13) 4.71(-8)
TABLE 2

Average error per point vs. iteration nunber
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