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ABSTRACT

We consider a generalized conjugate gradient method for solving

sparse, symmetric, positive-definite systems of linear equations,

principally those arising from the discretization of boundary value

problems for elliptic partial differential equations. The method

is based on splitting off from the original coefficient matrix a

symmetric, positive-definiteonethat corresponds to a more easily

solvable system of equations, and then accelerating the associated

iteration using conjugate gradients. Optimality and convergence

properties are presented, and the relation to other methods is

discussed. Several splittings for which the method seems particularly

effective are also discussed, and for some, numerical examples

- are given.
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0. INTRODUCTION

In 1952, Hestenes and Stiefel [0] proposed the conjugate

gradient method (CG) for solving the system of linear alge-

braic equations

where A is an n x n,symmetric, positive-definite matrix.

This elegant method has as one of its important properties

that in the absence of round-off error the solution is ob-

tained in at most n iteration steps. Furthermore, the

entire matrix A need not be stored as an array in memory;

at each stage of the iteration it is necessary to compute only

the product A% for a given vector 8.

Unfortunately the initial interest and excitement in CG

was dissipated, because in practice the numerical properties

of the algorithm differed from the theoretical ones; viz. even
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for small systems of equations (n 5 100) the algorithm did

not necessarily terminate in n iterations. In addition, for

large systems of equations arising from the discretization of

two-dimensional elliptic partial differential equations,com-

peting methods such as successive overrelaxation (SOR) re-

quired only O(\r,) iterations to achieve a prescribed accu-

racy Cl]. It is interesting to note that in the proceedings

of the Conference on Sparse Matrices and Their Applications

held in 1971 [2] there is hardly any mention of the CG

method.

In 197'0, Reid [3] renewed interest in CG by giving

evidence that the method could be used in a highly effective

manner as an iterative procedure for solving large sparse

systems of linear equations. Since then a number of authors

have described the use of CG for solving a variety of

problems (cf. lI41, El, WI, 171, C8lL Cu.riou.sly enough,
although CC was generally discarded during the sixties as

a useful method for solving linear equations, except in con-

junction with other methods [Y], there was considerable in-

terest in it for solving nonlinear equations (cf. [lo]).

The conjugate,gradient method has a number of attractive

properties when used as an iterative method:

(i> It does not require an estimation of parameters.

(ii> It takes advantage of the distribution of the

eigenvalues of the iteration operator.

. (iii> It requires fewer restrictions on the matrix A

for optimal behavior than do such methods as SOR.

Our-basic view is that CG is most effective when used as

an iteration acceleration technique6

In this paper, we derive and show how to apply a gener-

alization of the CG method and illustrate it with numerical
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examples. Based on our investigations, we feel that the gen-

eralized CG method has the potential for widespread appli-

cation in the numerical solution of boundary value problems

for elliptic partial differential equations. Additional ex-

perience should further indicate how best to take full advan-

tage of the method's inherent possibilities.

1. DERIVATION OF THE METHOD

Consider the system of equations

45 =b,, (1.1)

where A is an n x n,symmetric, positive-definite matrix

and b, is a given vector. It is frequently desirable to re-

write (1.1) as

% =Nz+s, (1.2)

where M is positive-definite and symmetric and N is

symmetric. In 9 4 we describe several decompositions of the

form (1.2). We are interested in those situations for which

it is a much simpler computational task to solve the system

MZN =$ L3)

than it is to solve (1.1).

We consider an iteration of the form

x(k+l) = ,(k-1) f(J)
N N k+l 'a$

(k)+,(k) _ ,k-1))
N N 1 ii.4)

where
m (k) N - (M-NJ&~) .= cN (1.5)

- Many iterative methods can be described by (1.4); e.g. the

Chebyshev semi-iterative method and the Richardson second

order method (cf. [ll]). The generalized CG method is

also of this form.
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For the Richardson or Chebyshev methods, the optimal

parameters (mk++Q are given as simple, easy-to-compute

functions of the smallest and largest eigenvalues of the

iteration matrix M%Y [ll]; thus good estimates 08 these

eigenvalues are required for the methods to be efficient. The

methods do not take into account the values of any of the

interior eigenvalues of the iteration matrix.

The CG method, on the other hand, needs no a priori-
information on the extremal eigenvalues and does take into

account the interior ones, but at a cost of increased compu-

tational requirements for evaluating mk+l and s. In $ 3,

we describe a technique to provide directly fram the CG

method good estimates for the extreme eigenvalues of the

iteration matrix.

From equations (1.4) and (1.5), we obtain the relation

fi(k+l)=Mz(k-l)
N N -~k+l(a,(M-N)~'k'+M(z(ir-l'-z'k')).  (1.6)

For the generalized CG method the parameters (s,"~+~)

are camputed so that

Cl*71

for p f q and p, q=O,l,...,n-1.

Since M is n x n positive-definite, (1.7) implies that for

some k<n

and hence

,k)
N =x,. (1.8)

That is, the iteration converges in no more than n steps.
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Then if

We derive the above result by induction. Assume

,(P)
T

N
,w = 0N

for p f q am3 p,q = O,l,..., k.

%
= ,k)Tebd,  k)T(M-N) (k)
N N E 53 9

there holds

and if

then

(1.9)

z(k-l)T,,(k)
N N

z(k-l)Tti(k-l)
N N

z(k-l)T&+l) = o
N .N

(1.10)

-1

) (1.11)

We can simpli~ the above expression for ak+l as follows.

From (1.6) we obtain

Q(M-N)E(~--~) + M(z(~-~) - gck-') > ),

and then from (1.9)

z(k)TNzk-~) = Z(k)T,(k)
N N m /('Dkak-l) '

Since

Z(k-l)TNz(k)
h

= z bdTNz (k-1)
N N J

it follows
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Fran (1.6), for j < k-l

But,

m (j+l) =.m (3 -1) _ w
N N j+l(OLj(M-Np + M(p) - ,(j))) ,

so that

,(k)TNz(j) = o .N

Thus, since N = NT,

z(j)Tmk+l) = o for
N N j < k-l .

Hence by induction we obtain (1.7) and (1.8).

The generalized CG method is summarized as follows.

Algorithm

Let 5(0) be a given vector and arbitarily define
( 1)

⌧,-  l For k = 0, 1, ,a*

(1) Solve ME(~) = 2 - (M-N)z(~) .

_(2) Compute
zk)Tz(k)
N N
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(5
=l.

(3) Compute

X
(k+l) = x(k-l

N
> ( (k) + x(k) _ xk-l
+u)k+l%?i  H N

)\
I l

Note that the algorithm can be viewed as an acceleration

'fk:;T *$$yi;&)
first order iteration (mk+l E 11,

is =x, %- . As with other higher order methods, the

storage requirements of the algorithm are greater than those

of the underlying first order iteration being accelerated.

The algorithm presented above is given primarily for

expository purposes. For actual computation, the following

equivalent form can be more efficient in terms of storage[3].

Algorithm (alternative form)

Let x, (0) be a given vector and arbitrarily define
Q(-1)

l For k = 0, 1, . . . -

(1) s o l v e  Ktk) = g - (M-N)xck) .

(2) Compute-

bk = k>_l

$k) = Z(k)N + bkEck-”  .
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(3) Compute

t.

In the computation of the numerators of ak and bk one

need not recompute Mz(k) , since it can be saved from step

(1). Also, instead of computing the right hand side of step

(1) explicitly at each iteration, it is often advantageous to

compute it recursively from

[s - (M-l!?)x_(kCL)l, [z- (M-N)&~)]-~~(M-N)Q(~) , (1.12)

which equation is obtained from step (3). The quantity

- (M-N)E(~) appearing in (1.12) may be saved from the computa-

tion of akm Similar remarks hold for the algorithm in its

first form as well. There is evidence that the use of (1.12)

is no less accurate than use of the explicit computation

(see [18], [3] for particular examples).

. The calculated vectors I&k) 3
nk=O will not generally

be M-orthogonal in practice because of rounding errors. One

might consider forcing the newly calculated vectors to be

M-orthogonal by a procedure such as Gram-Schmidt. However,
4

this would require the storage of all the previously obtained

vectors.

-4

Our basic approach is to permit the gradual loss of

orthogonality and with it the finite termination property of

a;. We consider primarily the iterative aspects of the algo-

rithm. In fact, for-solving large sparse systems arising from

the discretization of elliptic partial differential equations,



the application of principal interest for us and for which the

generalized CG method seems particularly effective, conver-

gence to desired accuracy often occurs within a number of

iterations small compared with n.

2. OPTIMALITY FBOl?ERTIRS

From (1.6), we obtain

.(k+l)
N

= &k-l) -w,,,(cyk(I-M-+!T)&k)+,(k-l)-&k)).  (2.1)

Define

K=I - M-lN . (2.2)

We have z(l) = (I - Q.~K)&') ., and there follows by induction

that
z(!+l)
N = [I - KP,(K)l&O) (2.3)

where

(2.4)

We denote

(2.5)

and from (2.1) we have for k = 2, 3, .*. , &

p, h ) = u)k+l 'l-"kh )pk-1 (A ) - bk++ )pk-2 (A) + sak+l 9
and

PO(A) = ao, pl(h) = ~2b!o+a!
/

The coefficients IBl'Vj j=O can be generated directly.

From (2.3) andthe relation ,(a+1) = z(o) + I&+1)- &O))
N N I

there follows
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x0+1) = x(o)
N N + P,(K)JO) .

Then if

z = [H(oJ,Kz(oJ,  . . . ) Kp] , (2.6)

x,
(a+11 = xci

N + zp . (2.7)

Consider the weighted error f'unction:

(ecl))T(M-~) (x, - x_(a+l)) . (2.s)

Assuming that (M-N) is nonsingular, we obtain, using

Jo) >-X 7
the relations

E(x(pcl)) L- 1
25
WT

'N (I-KP,(K))T  M(M-NJ-l M(I-KPI(K))&')

=2-L e("'T(I-KP1(K))T(M-N)(I-KPI(K))e(0),  (2.9)

where

g(O) (0)=x,-x .

Equivalently, we can use (2.7) and re-write (2.8) as

=$(K ry-lz(O)
> l

(2.10)

The quantity E(z (e+l))
is minimized when we choose &0

so that

(j-f&" = hN'
where -

G = ZT(M-N)Z, h, = ZTMz(') .



Let

K=

Then using arguments

A-(Id/A  . (K) .
mln

similar to those given in [u], the

following can be shown:

(A) (2.11)

(R) The generalized CG method is optimal in the class of all

algorithms for which

x(l+l)
=X

(0)
N + P,(K)&').

That is, the approximation x, (a+11 generated by the

generalized CG method satisfies

E(I$'+") =min -

pQ

2' &"'T(I-KP1(K) )T(M-N)(I-~P,(~))e'o'  ,

where the minimum is taken with respect to all poly-

nomials P of degree 1.

Recal: that we have assumed that M and (M-N)

are positive definite and symmetric. Thus the eigenvalues

of K = (I-M% are all real and K is similar to a di-

agonal matrix. Hence, if K has only p c n distinct

eigenvalues, there exists a matrix polynomial
!I?

(K) so that

&p(K) = 0 .

In this case, E~(&p') = 0 and hence

x(p) = xN N)



so that the iteration converges in only p steps. The same

result also holds if K has a larger number of distinct

eigenvalues but i(0) lies in a subspace generated by the

eigenvectors associated with only p of these eigenvalues.

We remark also that Statement (B) implies CG is optimal

for the particular eigenvector mix of the initial error 2 (0) ,

taking into account interior as well as extremal eigenvalues.

As will be discussed in the next section, the extremal eigen-

values are approximated especially well as CG proceeds, the

iteration then behavingasif the corresponding vectors are

not present. Thus the error estimate (2.11), which is based

on the extremal eigenvalues,tends to be pessimistic asymptoti-

cally. One often observes, in practice (see 5 5), a super-

linear rate of convergence for the CG method.

-3. EIGENVALUE  COMPUTATIONS

The CG method can be used in a very effective manner for

computing the extreme eigenvalues of the matrix K = I-M-+!?.

We write (see (2.1))

Z(k+l) = (k-1)
k - "b+l("lrK&kJ + ,(k-1J - ECk) >, (3dN

as

Kz(k) = 'k-l%
(k-l) + akgO + bk+lk

(k+l)
Y

or

“0 co
bl a1 c1 0

. . .
. . .

. . .
C

0
n-2

b a
n-l n-l



thus defining ak9 bk, and eke In matrix notation, the above

equation can be writt'en as

Kz=zJ. (3.2)

Assuming that the columns of Z are linearly independent,

there follows from (3.2) that

K = ZJZ'l ,

hence the eigenvalues of K are equal to those of J. As

pointed out in 52, if K has repeated eigenvalues or if the

vector z (0) is deficient in the direction of some eigen-

vectors of K, iteration (3.1) will terminate in k < n steps.

The process described by (3.1) is.essentially the Lanczos

algorithm [ 131. It has been shown by Kaniel [14] and by Paige

[15] that good estimates of the extreme eigenvalues of K

often can be obtained from the truncated matrix

Jk =

bl al - c1
. l .

0

. .
0

'k-2
. .

bk-l "k-l

where k is considerably less than n. This result holds

even in the presence of round-off error [16].

It was pointed out in 61 that the equation describing

the CG method is of the same form as that describing the

Chebyshev semi-iterative method and Richardson second order

method, but that a knowledge of the extreme eigenvalues of K
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is required for obtaining parameters for the latter two

methods. Thus one could construct a polyalgorithm  in which

the CG method is used initially to obtain good approximations

to the solution and to the extreme eigenvalues of K, after

which the Chebyshev semi-iterative method (say) is used,

thereby avoiding the additional work of repeatedly calculating

CG parameters. This technique has been used in an effective

manner by O'Leary [171.

4. CHOICE OF M

For the splitting M = I, N = I-A one obtains the basic,

unmodified CG algorithm, for which

5
(k) = ,(k) =kppLxN (k)

is simply the residual at the thk step. Since the rate of con-
vergence of the generalized CG method, as given by the esti-

mate (2.111, decreases with increasing

K=h-(K)/A .
min (K),

it is desirable to choose a splitting for which K is as

small as possible. If A= L + D f U, where D consists of

the diagonal elements of A and L(U) is a strictly lower

(upper) triangular matrix, then it is reasonable to consider

the choice

M=D, N = -  (L+U).

This M, which is equivalent to a resealing  of the problem,

is one for which (1.3) can be solved very simply for z. It

has-been shown by Forsythe and Straus [19] that if A is

two-cyclic then among all diagonal matrices this choice of

M will minimize K. -

In many cases, the matrix A can be written in the form



A =
5 F

0FT %

Y (4.3)

where the systems

are easy to solve,and for such matrices, it is convenient to
choose

using  (4.3), we can write the system (1.1) in the form

T (4.4b)

(0)
Let the initial approximation for x-1 be x-1 , and obtain
(0)
+

as the solution to (4.4b) so that

(0)
Iv2 = b+ - FTx ('I

-1
.

This implies that

and hence by (1.10)

a0 = 1 Y

and thus



+ z(O
-1

(0)
"r

(1)A short calculation shows that zl = 2 and hence al = 1.

Using (1.6), a simple inductive argument then yields that for

3 = 0, 1, 2, . . .

2
E z(2j+lJ = o

1, A#1
(2 )

A.9 %
j = g . (4.5)

This result was first observed by Reid [O] for the case in

which
Ml and

%
are diagonal, i.e., in which the matrix

A has "Property A" and is suitably ordered. Other cases for

elliptic boundary value problems in which matrices of the form

(4.3) arise will be discussed in $ 5. For these cases con-

vergence can be rapid because K has only a few distinct

eigenvalues, even though K is not especially small.

Various other splittings of the matrix A can occur

quite naturally in the solution of elliptic partial differ-

ential equations. For example, if one wishes to solve

-au + u(x,y>u = f (x,y> E R

u = g (x,y> E 8R ,

where R is a rectangular region,it is convenient to choose

M as the finite difference approximation to a separable

operator, such as the Helmholtz operator -A + C, for wh-ic+l

fast direct methods can be used [23]. A numerical example fbr

this case is discussed in 5 5. If one wishes to solve a

separable equation, but on a nonrectangular region S, tlrlen

by extending the problem to one on a rectangle R in whid Z

is embedded, M can be chosen as the discrete approximation to

the separable operator on R, for which fast direct methods



can be used. Such a technique provides an alternative to the

related capacitance matrix method [25] for handling such prob-

lems. Forms of this method utilizing CG, but ih a different

manner than here, are described in [26] and [27].

Several authors [4], [20], [21] have used CG in combina-

tion with symmetric successive overrelaxation (SSOR). For

this method the solution of the equation Mzz (k) =s- (M-N)% (k)

reduces to the solution of

(D+coL) D-~(D+WJ)Z(~) = w(2a)r(k)

where D, L, and U are as described previously in this sec-

tion (although D may be block diagonal), E (k) =b -&k),

and 03 is a parameter in the open interval (0,2;. iSOR is

particularly effective in combination with CG because of the

distribution of the eigenvalues of K (cf. [22]).

Meijerink and van der Vorst [7] have proposed that the

following factorization of A be used:

so that

A = FFT + E,+

M = FFT, N-= -E .

The matrix F is chosen with a sparsity pattern resembling

that of A. This splitting appears to yield a matrix K with

eigenvalues that also are favorably distributed for CG. A

block form of this technique recently developed by Underwood

[24 ] achieves a more accurate approxtiate  factorization of

A with less computer storage and about the same nwaber of

arithmetic operations per iteration.

Generally, in addition to the requirement that (1.5) be

-"easy" to solve, M should have the following features if the

generalized Cd algorithm is to be computationally efficient.

For rapid convergence one seeks a splitting so that
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(i! M-'N has small or nearly equal eigenvalues

or (ii) M-lN has small rank.

Oftena choice for M satisfying these restrictions comes

about naturally from the inherent features of a given problem.

�> l NUMERICAL EXAMPLES

For the first example, we consider the test problem dis-

cussed in [23]

where &,y>

0 < xyy c 1.

where dx,y)

-div(a(x,y)&  = f (x,y) E R

u - g (x,y> EaR,

= [l + $ (x4 f y4)12 and R is the unit square

After a transformation the problembecomes

-aw + G(x,y)w = a-1/2f. (x,y> E R

w = a112g

(5.1)
(x,y> C aR,

r- 6(x2 + y2)/a l/2 . As in [23] we discretize

(5.1) -on a uniform mesh of width h, using for ~1 the

standard five-point approximation nh' and we choose the

splitting

M = A f N =-n, + CI

with C=O=U
min or C=3=-;(o.

max
+u ).

min

In [23] Chebyshev acceleration was used, which requires

an estimate of the ratio of the extremal eigenvalues of the

iteration matrix. Here we use the modified CG algorithm of



$ 1. For an initial guess W (0) s Q and choice or' 1‘ :tn4

g corresponding to the solution w = 2[(x-l/2)"+ (y-l/&,

the results are given in Table 1 for h = l/64. The results

obtained for h = l/32 were essentially identical, as the

iteration is basically independent of h for this problem

(see [23lL

Note that the Chebyshev method is sensitive both to the

value of C and to the accuracy of the eigenvalues from

which the parameters are calculated. The parameters used for

the middle column were based on Gerschgorin estimates

from the Rayleigh quotient, which gave a ratio of largest to

smallest eigenvalue about three times too large. The CG

method appears to be less sensitive to the value of C. After

several iterations CG begins to converge more rapidly than

does the optimal Chebyshev method, which behavior is typical

of the CG superlinear convergence property discussed in $ 2.

This example is one for which rapid convergence results ‘be-

cause the eigenvalues of M'!N are small.

terati

1

2

3

4

5

6

II Chebyshev (from [23]) II 0:;

II C =0 I C =3

.on
exact

eigenvalues

s&4(-6) ~(-6)

approximate
eigenvalues

C =3

exact
leigenmlue

1.6(-2)

7.4(-4)

l.l(-5)

2.7(-7)

4*3(-Y)

1.2(-10)

C =o

4.5(-2)

2.6(-3)

3.0(-5)

5.7(-7)

5.1(-9)

4.u-11)

C=3

1.6(-2)

6.7(-4)

l.O(-5)

l.l(-7)

8.2(-10

5.7h-2

TABIX 1
Maximum error vs. iteration number for first example
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We give as the second example

-Au = f (x,y) E T

u=g (x,y> E aT

where T is the domain shown in Fig. 1. For a uniform square

mesh of width h, and 0 < R < (2h)" a whole number, so that

all boundary segments are mesh lines, the coefficient matrix

A for the standard five-point discretization and natural

ordering has the form (4.3).

I

- 1h,l)

Tl

d4
b,d

FIGURE 1

T-shaped domain

%
and %

correspond to the mesh points

, 1+2&h)

in each of the two

squares, T1 and T I2
and F to the coupling between them.

F has non-zero entries in only p = 21 - 1 of its rows.

According to the discussion following (4.3) we choose



Ml O
M =(+j0 M2

and for initial approximation

Then for the generalized CG algorithm, there holds s = 1

and that zl and z+ are alternately zero, thereby reducing

computational and storage requirements. We use a fast direct

Poisson solver for the systems involving Ml and M2.
(0)The results for LJl uniformly distributed random num-

bers in be) and f(x,y) and g(x,y) such that u=x2+y2

is the solution are given in Table 2. Here the average error

per point, the two norm of the error divided by the square

root of the number of interior mesh points, is given for each

of the test problems.

For this example, the eigenvalues of M
-1
N are not

especially small in magnitude, however since M'lN has rank

of only 2p, convergence is obtained in only a moderate number

of iterations. For Case I and Case II the last row represents

full convergence to machine accuracy subject to rounding

errors, as would be expected since 2p = 14 for these cases.

21
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h

3

P
- - - -
iteration

1

2

?

L

5

10

15

Case I' Case II Case III

l/32 l/@+ l/64
L 4 8

7 7 15

ave. error/pt ave. error/pt ave. error/pt

8.58(-2) 3.7062) 1.08(-1)

%05(-2) 3.13(-2) Y.82(-2)

1.30(-2) 6.66(-3) 4.94(-2)

3*35(-3) 2*53(-3) 1.80(-2)

X71(-4) 6.03(-4) 4.28(-3)

2.65(-7) 5~3(-8) 7*35(-5)

1.14(-13) 5.60~~13) .4.71(-8)

TABLE 2

Average error per point vs. iteration number

We wish to thank wren Stein of the Los Alamos Scientific
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