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We consider a generalized conjugate gradient method for solving

systems of linear equations having nonsynnnetric  coefficient matrices with positive-

definite symmetric part. The method is based on splitting the matrix into its

symmetric and skew-symmetric parts, and then accelerating the associated iteration

using conjugate gradients, which simplifies in this case, as only one of the two

usual parameters is required. The method is most effective for cases in which the

symmetric part of the matrix corresponds to an easily solvable system of equations.

Convergence properties are discussed, as well as an application to the numerical

solution of elliptic partial differential equations.
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0. Introduction

In a related paper [3] we discuss a generalized conjugate gradient (CG)

iterative method for solving a system of real, linear, algebraic equations

Ax =b , (1.1)

where A is symmetric and positive definite. The method is based on splitting off

from A an approximating symmetric, positive-definite matrix M that corresponds

to a system of equations more easily solvable than is (l.l), and then accelerating

the associated iteration using CG. The method appears to be especially effective

for sparse matrices A arising from the discretization of boundary-value problems

for elliptic partial differential equations. For these cases, naturally arising

selections for M often result in iteration matrices possessing eigenvalue distri-

butions for which CG acceleration is effective.

The CG method has a number of attractive properties when used as an iterative

procedure:

(i) It does not require an estimation of parameters.

(ii) It takes advantage of the distribution of the eigenvalues of the iteration

operator.

(iii) It requires fewer restrictions on the matrix A for optimal behavior than

do such methods and successive overrelaxation.

In this paper we remove the restriction that A be symmetric, and

require only that its symmetric part (A+AT)/2  be positive definite. We derive

the generalized CG method for this case9 taking for the approximating matrix M the

symmetric part of A. We find that the method then simplifies, in that the computa-

tion of only one of the two CG parameters is required.

1. Derivation of the Method

We consider the system of linear equations

Ax =b, (1.1)
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where A is a given n X n real matrix and b is a given real n-vector. We re-

write (1.1) as the system

Mx= Nx+b, (1.2)

where M = MT = (A + AT)/2 is the symmetric part of A, and N = -NT = -(A-AT)/2

is the negative of its skew-symmetric part. We assume that M is positive definite;

Tn [3],we  discuss the solution of equations of the form (1.2) by a generalized CC;

method, for the case in which M is symmetric and positive definite and N is symmetric.

In this paper, we derive the corresponding algorithm for the case in which N is

skew-symmetric.

Our interest is in those situations for which it is a simpler computational

task to solve
Mz = d (1.3)

than it is to solve (1.11,  and for which, in a sense to be described later, M"N is

not too large.

Consider an iteration of the form

where

with

x(k+l) = ,(k-1)
+ (Uk+l %'

( k) + .(k) _ x(k-l)I
J (1.4)

Mz(k) = r(k)
J (1.5)

rlk) = b _ (MwN)xtk) = b _ AX(~) 9

_the residual at the kth step. The quantities ak and Uk+l are scalar parameters.

Many iterative methods can be described by (1.41, e.g., if N were symmetric,

the Chebyshev semi-iterative method and Richardson second order method would be of

this form (cf. [5]). The generalized conjugate gradient method described below,

which is also of this form, has the advantage over those two methods that no apriori

information about the spectral radius of M'lN is needed for estimating parameters.

Furthermore, it takes advantage of the actual distribution of the eigenvalues of

M%

From (1.4) and (1.51, we obtain

ti(k+l) = Mz(k-1) - uk+l(~&(k'  + M(zck-')  - zck))) . (l.f,)

For the generalized CG method, the parameters (s' (Dk+l] are computed so that

z(P)TMz(q)  = 0
for P f q and p, q = O,l,...,n-1  . (1.7)

Since M is an n X n, symmetric,positive-definite matrix, (1.7)  implies that for

some k<n

and hence
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x(k) =x.

That is,the iteration converges in no more than n steps.

We derive the above result by induction. Assume

Z(P)T,(s) = 0 for p # q and p, q = 0, 1, . . . , k.

Since N is skew-symmetric, there holds that for any real n-vector

wTNw = 0 .

From (1.6), we have

Z(k)TM  z(k+l) = Z(k)TM  .(k-1)
- (Lk+l %"

( kITA Zk) + Z(k)TM(Z(k-l > - z(k

'and thus by (1.8) and (1.9),

W

Z(k)TM  Z(k+l)
= 4k+l sz

( (klTM ,(k)  _ Z(k)TM  Z(k)) .

(1.8)

(1.9)

Hence by choosing cxk E 1, we obtain z (k)TM z(k+l) = o . Similarly,z(k-l)T~(k+l) =o

for the choice

Ok+1 =

Z(k-l)TM  ,(k-1)

Z(k-l)TM  Z(k-l) _ Z(k-l)TN  Z(k) l

(1.10)

We can simplify  (1.10) by noting from (1.6)) with (k+l) replaced with (k),  that

Z(k)TM  $) = qzck'TN z(~-')  ,

so that
-Z(k-l)TNz(k)  = z(k)Tti(k),s,

k'
We obtain

03k+l =

z bdTM z(k)
' + Z(lc-l)TM  ,(k-1)

Then for j 5 k-2, we obtain from (1.6), (LB), and (1.9) that

z(J jTM z(k+l) = z(j)TM  Z(k-l)
- Ok+1

(z(~)~(M-N)~(~)  _ z(j)TM(Z(k-l)-  Z(k) 1)

(1.11)= ulk+lz
(j)‘N z(k) .

But, since for a
J
= 1,

Mz(j+l)
J‘+

+ l&-q ,

there holds
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Z(k)TM z(j+l) = o3
j+l

z(k)TN  z(j) .

‘Yhus , since from (1.6)  the 1.h.s. of (1.12) is zero, we have for j 5 k-2

Z(J)TN Z(k)  = () 9

(1. l2 ‘I

(1*13)

which implies

Z(jJTM  Z(k+l) = o for j 5 k-2 .

The desired result (1.7) then follows by induction.

The generali.zedCGmethod for the splitting M = (A + AT)/2  is summarized

as follows:

Algorithm

L e t  x(O) be a given vector and arbitrarily define x (-1) . For k = O,l,.'..

(1) Solve Mzik) = r(k), where rCk) = b - AX(~).

(2) Compute

-(T)  Compute

Wk+l = l+
z bdTM zk)

Z(k-l)TM  .(k-1) $

(3
=l.

kll

,(k+l) = x(k-l)
+ &k+l

CZ(k) + x(k) _ ,(k-1)) .

In the computation of w~+~, one need not recompute Mz k) since r (k) can be saved

from step (1).

A simple induction argument shows that for all k, there holds

’ < (Uk+l 51)

unlike the case N = NT, for which Wk+l _> 1.

Note that since z (PIT, (9) = 0 for p f q and since by (1.131,

0 for [p-q1 f 1, there holds

Z(P)T&q) = 0 for IP-ql > 1 '

Hemarks  concerning alternative forms of the generalized CG algorithm, which can be

more efficient for actual computation, can be found in [3].

The calculated vectors (z (k))n-1k=. will not generally be M-orthogonal in

practice because of roundoff  errors. One might consider forcing the newly calculated

vectors to be M orthogonal by a procedure such as Gram-Schmidt. However, this
would require  the storage of all previously obtained Vectors.
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Cur basic approach is to permit the gradual loss of orthogonality and with it

the finite termination property of CG. We consider primarily the iterative aspects

of the algorithm. In fact for solving large sparse systems arising from the dis-

cretization  of elliptic partial differential equations,the application of principal

interest for us and for which the generalized CG method seems particularly effec-

tive, convergence to desired accuracy often occurs within a number of iterations

small compared with n.

2. Some Properties of the Method

i
In [3], there are presented some optimality properties, convergence proper-

ties, and eigenvalue relationships for the case in which A is symmetric. We dis-

cuss in this section related matters for the case in which M is symmetric and

positive-definite and N is skew-symmetric.

2.1. From (1.6) with ak = 1 we obtain

Z(k+l) = ,k-1) -u~+~(-M-~&~)  + zck-')) = (1 -UJ
k+l

) zck-') +N~+~M-~-&~ ) , (2.1 >

which may be viewed as a relaxation of an iteration with iteration matrix

L = M-%J  .

We note that L is similar to a skew-symmetric matrix and hence that all the eigen-

values of L are either pure imaginary and occur in conjugate pairs, or are zero.
The eigenvalues of L can be determined directly from the generalized CG

method in the same manner as for the symmetric case. We write (2.1) as

(k+l)

or

1-L
U2

0 1-L

‘“7
0

1-
u3

. . .

. . l-1
(u
n

1
w 0
n-l



K=I- M-+V=I-L.

Then we have, as for the symmetric case,

zck) = [I - KP,_,(K)~z(~),
where

'k-1
(K) = 'il +-1)$

j=o j

is a polynomial in K of degree k-l. Correspondingly, we have

,(k) = x(O) + PkWl(K)  z(O) .

As for the symmetric case , we define the weighted error function

E(x(~)) = $ eckJT(M-N)  eck)  ,

where

e(k) = x - x k) .
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In matrix notation, the above equation can be written as

LZ=ZJ.

Assuming the columns of Z are linearily independent, it follows that

J = Z-lLz  .

It can be shown that the kth principal minor of J yields very good estimates of

the extreme eigenvalues of L, even in the presence of rounding errors. Note that
although the matrix J is not skew-symmetric  it is diagonally similar to such a

matrix.

, 2.2 As in &2 of [3], define

(2.2)

For -the present case, (2.2) becomes

*(⌧ck))  = i .(k)TMe(k)  l

/

Assuming that (M-N) is nonsingular, we obtain, using

z(o) = Ke(')

and

/ .(k)

the expression
= [I - ~k-l(dl e(P) ,
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E(xck)) = $ e(')'[I  - KPk l:K)]T M[I - KPk-l\K)]  e"" .

.
'['he result fol;  the symmetric case, that the polynomials Pk-l\Kj generz.:.ed

by CC; minimize E(x \kl > over the choice of all polynomials of degree k-l, does

not hold here in general. Widlund [7] has shown, however, that there does hold

E(xck))  <_ max(1 + hi) E(y)
3

(2.4

for any y of the form

Y = x(O)  + Sksl(K) z(O) ,

where Skml(K) is a polynomial in K of degree k-l. Here ih., j =: 1,2,...,n, are the
J

eigenvalues of L.

We remark that, as for the symmetric case, the generalized CG method converges

in only p steps if K has only p < n distinct eigenvalues. This same result

holds also if K has a larger number of distinct eigenvalues but e (0) lies in a

subspace  generated by the eigenvectors associated with only p of these eigenvalues.

2.3. Let us consider the polynomials Sk 1 (K) generated by the Richardson_

second order method, for which W = 1 and 0k+l
SW, a

For this case, (1.4) with s = l1 becomes

x(k+l) = ,(k-1) + cu(z(k)  + ,(k) _ ,(k-1)) J

and we have

e(k) = [I - KSkBl(K)]  e(O) = Tk,(u(L > e(O) .

We seek a value of 0 for which the spectral radius of Tk ,(L) is a minimum.

Denote by o(X) the spectral radius of a matrix x: By using an argument

fixed parameter, for k 2 1.

similar to that given in [4, pp. 18-241,  it can be shown that for

there holds

where
P(Tk W, CL)) >_ rdT 0-J)  9

k,G

p(T ,(I,)) = ek 1 + L,82  k
k,w 1+e2

(2.5)

and
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'Co carry out the Richardson second order method we would need to have an

estimate of P(L). It is interesting to note that here also 0 ( 0 L 1. As for
CG, underrelaxation is preferred for the case of skew-symmetric N.

2.4. One can use for y in (2.4) the optimal kth Richardson second-order

iterate to obtain an asymptotic error estimate for the generalized CG method.

Doing so yields, with the use of (2.5) and (2.61,

E(x(k)) < C82k 1 + 1-e2  k-
1 + e2

E(x(')) ,

where C is a constant independent of k.

3* An Example

To illustrate the metnod,  we give here a simple example for which one can

easily estimate the spectral radius of L. Consider the problem

-Au + uux = f(x,y) (x,Y) E R

u = g(x,y) (x,y) E aR 7

where 0 is a constant and H is the unit square 0 y x,y < 1. We discretize
on a uniform mesh of width h, using for A the standard five-point, approximation

.' t
h and for ux at the point i,j the approximation (U - 1J i 1

u(x,y) at x = ih, y = jh.
i+l,j - ,< j )/(2h),  where

JJ
ij

corresponds to

We consider solving the discrete problem by the algorithm of 81, for which

and

D

D 0
N = .

0 .
D

, where

M=-*h

D
-u=-
2h

0 1

-1 0

.
.

-0

1 0
' .

. . .
l . 1

-1 0



9

- A fast direct method (cf. [l]> can be used in this case for the solution of the

system of equations MZ (k) ~ p* (Of course, a fast direct method could be used,

without iteration, to solve the entire problem for this simple example.)

To estimate the rate of convergence, we wish to determine the extremal

eigenvalues of L = M-l??,  that is

Ncp = ihM9 . (3.1)

For the corresponding differential operators, the equivalent eigenproblem is

Ucp = ih(cp
X xx+cpKY)

(x,y) E R
(3.2)

rp= 0 hy) E aR Y

'for which one readily finds, by separation of variables, the eigenvalues to be

A = +
ii,1 -

27rhL

J
2 2+ 1

3 = 1, 2, . . . . I = 1, 2, . . . .

The first eigenvalues Al 1 provide the uniform .estimate  for the spectral radius
Y

P(L),

for which

P(L)  = hImax 2 -&I4 (3.3)

Direct computation of the eigenvalues of (3.11, which is somewhat more cumbersome

than for (3.21, shows (3.3) to be good asymptotically to within O(h2) as h -+O.

We remark that for the symmetric problem with Uux replaced by Uu, and the

splitting M = -ah and N = 41, the estimate corresponding to (3.3) is 121

hl z [u1/(27r2,  . Numerical experiments illustrating the behavior of the

modrf?ed CG method on related examples can be found in [71.
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