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W consider a generalized conjugate gradient nethod for solving
systens of linear equations having nonsymmetric coefficient matrices with positive-
definite symmetric part. The nethod is based on splitting the matrix into its
symmetric and skewsymmetric parts, and then accelerating the associated iteration
using conjugate gradients, which sinplifies in this case, as only one of the two
usual paranmeters is required. The nethod is nost effective for cases in which the
symmetric part of the matrix corresponds to an easily solvable system of equations.
Convergence properties are discussed, as well as an application to the nunerical
solution of elliptic partial differential equations.
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0. Introduction
In a related paper [3] we discuss a generalized conjugate gradient (cG)
iterative method for solving a system of real, linear, algebraic equations

AX =b (1.1

where A is symetric and positive definite. The nmethod is based on splitting off
from A an approxi mating symmetric, positive-definite matrix M that corresponds
to a system of equations nore easily solvable than is (1.1), and then accelerating
the associated iteration using CG The method appears to be especially effective
for sparse matrices A arising from the discretization of boundary-value problems
for elliptic partial differential equations. For these cases, naturally arising
selections for M often result in iteration matrices possessing eigenvalue distri-
butions for which CG acceleration is effective.
The ¢¢ nmethod has a nunber of attractive properties when used as an iterative
procedure:
(i) It does not require an estimation of parameters.
(ii) It takes advantage of the distribution of the eigenvalues of the iteration
operator.
(iii) It requires fewer restrictions on the matrix A for optimal behavior than
do such nethods and successive overrelaxation.

In this paper we remove the restriction that A be symetric, and
require only that its symmtric part (A+AT)/2 be positive definite. Ve derive
the generalized CG nethod for this case, taking for the approximating matrix M the
symmetric part of A Ve find that the nethod then sinplifies, in that the computa-
tion of only one of the two CG paraneters is required.

1. Derivation of the Method
W consider the system of linear equations

AX =b , (1.1)



where A is a given n X n real matrix and b is a given real n-vector. W re-
wite (1.1) as the system
Mx= Nx + b, (12)

where M= M = (A+a")/2 is the symetric part of A and N = -N = -(a-aT)/2
is the negative of its skewsymetric part. W assume that M is positive definite;
Tn [3],we discuss the solution of equations of the form (1.2) by a generalized CG
method, for the case in which M is symetric and positive definite and N is symetric.
In this paper, we derive the corresponding algorithm for the case in which N is
skew symmetric.

Qur interest is in those situations for which it is a sinpler conputational

task to solve
M =d (1.3)

than it is to solve (1.1), and for which, in a sense to be described later, M-y is
not too large.

Consider an iteration of the form
) + () (k-1),

x(kﬂ') = x(k-l) N ®k+l(akz , (1.4)
wher e
Mz(1:) _ r(k) , (1.5)
wth
A TR M W

the residual at the kth step. The quantities o and @ are scal ar paraneters.

Many iterative nethods can be described by (L.4), e.g., if N were symetric,
the Chebyshev seni-iterative nethod and R chardson second order nethod would be of
this form(cf. [5]). The generalized conjugate gradient nethod described below,
which is also of this form has the advantage over those two nethods that no apriori
information about the spectral radius of M is needed for estimating paranmeters.
Furthermore, it takes advantage of the actual distribution of the eigenval ues of
M.

From (1.4) and (1.5), we obtain

g L)y, (k-1) (k) | (g -1) _ ,(k)yy

+ M (1.6)

~ D1 (akAz

For the generalized CG nethod, the parameters [ak, wk+1] are conputed so that

T
Z(p) Mz(q) .0 for p# q and p» q = O,1y...,n-1 . (x.7)
Since Mis an n X n, symmetric,positive-definite mtrix, (1.7) inplies that for
some k<n

Z(k) ¢

and hence



x(k) =X.

That is,the iteration converges in no nore than n steps.
W derive the above result by induction. Assune

@7, (0 _ _
z Mz =0 for p#qgandp q=0 1, . . ., k (1.8)

Since N is skewsymmetric, there holds that for any real n-vector w

v = 0 . (1.9)

From (1.6), we have

T T T T
L0 ) ()7, (1) ()7 )+ ()% (k1) (k)

Opey (2
*and thus by (1.8) and (1.9),

T T T
LT (k1) Ty L0 W, )y

- By o

T T
Hence by choosing o = 1, we obtain z(k) M z(k+1) =0, Similarly,z(k'l) Mz(k+l)

for the choice

T
z(;1:-1) M Z(k-l)

@ -
BLE el e)) | DT ().

W can simplify (1.10) by noting from (1.6), with (k+1) replaced with (k), that

L, ) mkz(k)TN IS
o LD )T
V¢ obtain
(ALY "
® 1 z Mz x L
LI e D) D) %k

Then for j < k-2, we obtain from (1.6), (1.8), and (1.9) that

T T T
2 ler) ()7, (1) ‘”k+1(z(j) (u-n)z &) _ z(j)TM(z(k-l)_ )

T
AL O (1.11)

k+1

But, since for aj =L

g G*L) _ , (5-1) wj+1(_Nz(j) . 071y

there holds

(1.10)



T . .
z(k) M z(J+l) = wj+1 z(k) N z(J) ‘ Q.12
"us , since from (1.8) the l.n.s. of (L.12) is zero, we have for j < k-2
T
z(‘j) Nz(k)=0 , (1.13)

which inplies

AT
z(J) M z(kﬂ) =0 for j < k-2 .

The desired result (1.7) then follows by induction.
The generalized CG method for the splitting M= (A + AT)/e is sumarized
as follows:

Al gorithm
Let x(O) be a given vector and arbitrarily define X('l)‘ For k = 0,1,...
(1) Solve Mzkk) = r(k), wher e r(k) =b - Ax(k).
(2) Conpute
RECOL R
(Dk+1 - 1+ T o 9 k>1
L1 (k-1) Tk
® =1
“(3) Compute
(kt1) _  (k-1) ( ) + () (k-1)y
X = X + Tkl z X - X
: (k) (k)
In the conputation of ®, 2 ONe need not reconpute Mz since r can be saved

fromstep (1).
A sinple induction argument shows that for all k, there holds

0<w,, <1,

unlike the case N =NT, for which o . > 1

k+1
T
Note that since z(p) Mz(q)

(q)

=0 for p # q and since by (1.13),

T
z(p) Nz o for |p-ql # 1, there holds

T
2@ 0 20 or peal > 1
Remarks concerning alternative forms of the generalized CG algorithm which can be
nmore efficient for actual conputation, can be found in [3].

The calculated vectors [z(k)}ﬁ;cl) will not generally be Morthogonal in

practice because of roundoff errors. One night consider forcing the newy calcul ated

vectors to be M orthogonal by a procedure such as GamSchnidt. However, this
woul d require the storage of all previously obtained vectors.
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Qur basic approach is to pernit the gradual loss of orthogonality and with it
the finite termnation property of OG & consider primarily the iterative aspects
of the algorithm In fact for solving large sparse systens arising from the dis-
cretization Of elliptic partial differential equations,the application of principal
interest for us and for which the generalized CG nethod seens particularly effec-
tive, convergence to desired accuracy often occurs within a nunber of iterations

smal | conpared with n.

2. Some Properties of the Method

In [3], there are presented sone optimality properties, convergence proper-
ties, and eigenvalue relationships for the case in which A is symetric. W dis-
cuss in this section related matters for the case in which Mis symmtric and
positive-definite and N is skewsymetric.

2.1, From (1.6) with o = 1 we obtain

) z(k'l) +u>k+lM'lNz(k), (2.1)

L L) (k-1) -mk+l(-M'lNz(k) + 50y = "%

which may be viewed as a relaxation of an iteration with iteration matrix

L=wly.
W note that L is sinilar to a skewsymetric matrix and hence that all the eigen-
values of L are either pure imaginary and occur in conjugate pairs, or are zero.

The eigenvalues of L can be determined directly from the generalized cg
method in the sane manner as for the symetric case. W wite (2.1) as

1z ) l_wl zmdj+w1 , L)
k+1 ) k+1
or
Lu(m)zu)“,”zupm]= ) L
0 1_UT
2 O
1 0 1 -55-
3
1
o 0
o) (1) (n-1,, 2
= |z ) yeeesZ }1]
1
®3




In matrix notation, the above equation can be witten as

Lz=2Z].
Assuming the colums of Z are linearily independent, it follows that

3 =247 .

It can be shown that the kth principal minor of J yields very good estimates of

the extreme eigenvalues of 1, even in the presence of rounding errors. Note that
al though the matrix J i S not skew-symnmetricitis diagonally sinmilar to such a

mat ri x.

, 2.2 As in 8 of [3], define
K=I-MW=1-1.

Then we have, as for the symmetric case,

Z(k) = [| - KPk_l(K)]z(O))

wher e
k-1
p = 2 plslgd
j=o0 7
is a polynomal in K of degree k-1. Correspondingly, we have
(k) _ _(0) (0)
x = xR K2
As for the symmetriccase K we define the weighted error function
), 1 &7 (k)
E(x") = 5e (M-N) e ’ (2.2)
wher e
) o ()
For -the present case, (2.2) becones
T
E(x(k)) - %-_ e(k) Me(k) .

/

Assuming that (M-N) is nonsingular, we obtain, using

(o)

z = Ke

(o)

and
M -1 ke ,(K)] e(P) |
the expression



("

(k))— e [I-KP

; T yi \0) \
E(x = (¥)1° M - KP, _ \K)] e . (2.3

N

k1 1

The result for the symmetric case, that the polynomals Pk—l\K\' generated

by G nininize E(xm) over the choice of 2ll polynomials of degree k-1, does
not hold here in general. Wdlund [7] has shown, however, that there does hold

E(x(k))gmax(l+)\§) E(y) 2.4
J
for any y of the form
y=x s 020
wher e Sk_l(K) is a polynomial in K of degree k-1. Here |hJ i =1,2,...,n, are the

ei genvalues of L.

VW remark that, as for the symetric case, the generalized CG nethod converges
inonly p steps if K has only p < n distinct eigenvalues. This same result
holds also if K has a larger number of distinct eigenvalues but e© iesina

subspace generated by the eigenvectors associated with only p of these eigenval ues.

2.3, Let us consider the polynonials Se-1

second order nethod, for which © =1 and o,
For this case, (1.4) with o‘kEl becones

K} generated by the Richardson
w, a fixed parameter, for k> 1.

(

z(k) + (k) x(k-l)) ) K> 1

LD (k1) LB S 1,

and we have
e® 1 - ks, _, (K)] (0 = Ty (L) 0

W seek a value of ® for which the spectral radius of Tk,w(L) is a mnimm
Denote by p(X) the spectral radius of a matrix X. By using an argunent

simlar to that given in [4, pp. 18-24], it can be shown that for

~ 2

w =
1+ 1+ 21

there holds
p(Tk o (D)) > p(Tk &(L)) ,
wher e ?
K 1-6°
p(r (L)) = @ 1+>=k (2.5)
k,® 1+6

and



(& ~
o cLLy - /(l - ) . \2",»

1+ 1+ o071

"Co carry out the Richardson second order nethod we would need to have an
estimate of P(L). It is interesting to note that here also 0 <« w - 1. Ag for
CG underrelaxation is preferred for the case of skewsymmetric N

2.4, One can use for y in (2.4) the optimal kth Richardson second-order
iterate to obtain an asynptotic error estimate for the generalized CG nethod.

Doing so yields, with the use of (2.5) and (2.6),

r
2
E(x(k)) icer 14+ 1-6 E(x(o)) ,
1 + 62
where C is a constant independent of k.
3. An_ Exanple
To illustrate the metnod, we give here a sinple exanple for which one can

easily estimate the spectral radius of L. Consider the problem

By +oou = flx,y) (x,y) € R

g(x,y) (X)y) € OR ,

u

where ¢ is a constant and kR is the unit square 0 < x,y < 1. W discretize
on a uniform mesh of width h, using for & the standard five-point, approxination

dfor i i i mat i -
an u, at the point i,J the approximation (Ui+l,j Ui—l,(] )/(2n), where

"h
Uij corresponds to ulx,y) at x =ih, y = jh.
% consider solving the discrete problem by the algorithm of 81, for which
M= -0,
and

N = . , where D =

NIQ'




-

" Afast direct method (cf. [1}) can be used in this case for the solution of the
system of equations Mz(k): r(k), (O course, a fast direct method could be used,
without iteration, to solve the entire problem for this sinple exanple.)

To estimate the rate of convergence, We Wi sh to determine the extremal
ei genval ues of L = My, that is

Np = iAMp . (3.1)

For the corresponding differential operators, the equivalent eigenproblem is

Uq)x = i)\((pxx + pr) (x,y) € R

(3.2)
Q= 0 (X,y) € oR 3

"for which one readily finds, by separation of variables, the eigenvalues to be

Ay, =t ————, L2 .0 =20

st
’ or/ + 2

The first eigenval ues )\1 ™ provi de the uniform estimate for the spectral radius
)
o(L),

p(r) = Al = —3,§-|G|, (3.3)

for which -1

~ 2lol @
8 = T 1+ l+?

Direct conputation of the eigenvalues of (3.1), which is somewhat more cunbersome

than for (3.2), shows (3.3) to be good asynptotically to within 0(n®) as h -o0.
We remark that for the symmetric problemwth ou replaced by Uu, and the
splitting M = -4 and N = -0T, the estimate corresponding to (3.3) is (2]

]x'lmax = (ol/(Eve)“. Nunerical experinents illustrating the behavior of the
modified CG nethod on rel ated exanples can be found in [7].
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The pos sibility of using GG on nonsynmetric matrices in the manner presented
here first occurred to us while listening to a presentation by T. Manteuffel of iz
dissertution research [6]. W wish to thank 0. Wdlund for naking available to us
his results to nppear in [7] and to thank both 0. Wdlund and T. Karasalo for their
helpful conmments. This work was supported in part by the Energy Research and
Devel opment  Administration and by the National Science Foundation.
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