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Abstract

If each step in an addition chain is assigned a cost equal to the
product of the nunbers added at that step, "binary" addition chains are
shown to mnimze total cost.
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Introduction.

For a positive integer n , by a chain to n we nean a sequence
¢ = ((ap5bq) 5(agsby) s .. .5 (8,0 )) where a_and b, are positive
integers satisfying:

(i) a,+b =n,

(it) for all k , either ak=l or a, =a;+b, for sonme i<k,
with the sane also holding for b
The cost of C, denoted by $(C , is defined by

r
c) = 2 ab
$(C) k:lakk

The m ni mum cost required anong all chains to n is denoted by f(n) .
(In the case of ordinary addition chains $(C) is just equal to r;
e.g., see [1].) A few small values of f(n) are given in Table 1.

n= 1 2 3 4 5 6 178 9 10
f(n) = 01 3 5 9 12 18 21 29 3k

Table 1

The function f arises in connection with determning the optinal

nul tiplication chain for conputing the n-th power of a nunber by ordinary
a

multiplication If a nunber x has d digits, then conputing x X from

a. b,
x 1 and x * requires (aibi)-d2 digitwise nultiplications in general.

Let g be defined by
g(l) =0,
gen) = g(n) +n°
g(2n+1) = g(n)+ o+ 2n

It was conjectured by D. p. MCarthy [2] that f(n) = g(n) for all n .
In this note we prove his conjecture.



Two Properties of g .

W first establish several facts concerning the function g which
wll be used later.

Fact 1. For m,t >0 with modd we have
(1) g(th) -g(Etm-l) = t+m1l
Pr oof . For t =0, (1) follows at once fromthe definition of g .

Assune t >0 . Then

g(em) = g2 m)+ (20 )2

t t-1 t-1

g(2'm-1) = g(2" m-1)+ (2 m-l)2+ 2(2t'1m

)

= g(et'1m|)+ (2)""lm)2 -1

Thus
- t-1
g(2%n) - g(2’n-1) = (2" m) -g(2"Tm-1) +1
and consequently, (1) holds by induction ont . O
Fact 2.
(2) g(n) -g(x) > (n-x)2+ 2x-n for x+2 < n < 2x+1 .
Pr oof . Note that for n = 2x and 2x1 , this is just the definition

of g . The validity of (2) for x = 1,2,3 is imedi ate. W assune by
induction on x that (2) holds for all values less than some x >3 .
The proof of (2) can be nost easily acconplished by splitting it into

4 cases, depending on the parity of n and x .

- Case 1. n=2N, x=2X.
By hypot hesis

2x+2 < 2N < 4X+1

X*1 < N < 2X .



F‘(.)I' N = K+l 2

~

g(2N) - g(ex) = g(x+l) + (1+1)° - g(X) - x°

1]

g(X+1) - g(x) + 2x+1

S 2x+2 = (2x+2 -2%)° + hx-2(x+1).

by Fact 1 and (2) is proved in this case. For N > X+2 , the induction
hypot hesi s applies and

2

g(N) - g(x) + N - x

> (F-X)7 + 2% N+ NP

g(an) - g(2x)

and so (2) wll hold in this case provided

2, .2 .2
)

+ N° - x5 + 2X-N > (2N-2X)2

(N-x + Lx-on .

However, this equality can be rewitten as
(N -2x -1)(ex-N) > O

which certainly holds for X+2 <w < 2X.
The other three cases are simlar and will be omtted.

The Main Result.

Theor em For all n ,

£(n) , &(n)
Proof . It is clear that f(n) < g(n) for all n since the definition
of g(n) determnes a unique chain to n with cost g(n) . Hence, it
wll suffice to showthat f(n) >g(n) . In fact, it will be enough to

establish the follow ng anal ogue of (2) for f
(2") £(n)  f{x) > (@x)° + 2x-n, for x+2 < n < 2wl .

For this inplies

£(2x) - f(x) > x° , f(aml) - £) > x4ex |

and so, by induction,



fex) > F(X) +x° >9(x) +x = g(2x) ,
plextl) > F(X) + X° + 0x > g(x) + x° + 2X = g(2x+l)

From Table 1, (2') certainly holds for x = 1,2,3 . Assune that for
sone X >3, (2') holds for all x < X and all n with x+2 < n < ex+l .
In particular, this inplies f(m =g(m for 1 <m< 2XI| . Suppose N
satisfies X+2 < N<2x@l . |If N< 2X| then in fact,

() - (X > (N-X)2 + 2X-N
hol ds by applying (2') with x = X-I . Hence, we are left with the two

cases N =2X and N = 2x+1 .

(i) N =2X . Suppose the last step in sonme arbitrary chain C

to Nis (a,b) with atb =N and X <b <2X .
Thus,

$(CQ) > f(b) +ab = f(b) + b(2x-b) > f(X) + x°
since the last inequality is imediate for b =X , and follows by
- induction from (1) and (2) for b >x*1 . Since Cwas arbitrary then

£(2X) > f(X) + x°

which is the desired inequality.

(i) N = 2x+1 . Again, assune the last step in some chain C
to Nis (ab) wWth atb = N and x+1 < b < 2x+1.

(a) If b >x+1 then
$(CO > f(b) + b(2X+1-D)

> f(X) + X + 2x
since

)2 + 2X-b

£(b) - F(X) > (b

holds for X+2 <b <-2X-1 by induction and for b = 2X by the preceding
case (i).



(b) If b =x+1then a = X. Consider the step (a',b")
of C for which a'+b' = b . W have

$(c) > f(x) + a'p' + ab

2
£(X) + b'(X+1-b') + X + X

i

F(X) + X5 + 2x

bv

sinc € for 1 <b' <X-1,

b'"(X+1-Db') > X

Hence

£(ex+1) > f(X) + X° + 2X .

This conpletes the induction step and the Theorem is proved. .

Concl udi ng Remar ks.

We should note that the optimal chains to n are not unique. This
is due to the fact that

f(entl) = f(n) + n° + 2n

can be realized in going from n to 2ntl by either

(nyn),(2n,1) with additional cost n-n + 2n.1 = n® + 2n

or

o
(n,1), (n+1,n) With additional cost n.1 + (n+l):n = n~ + 2n.

One might consider generalizations of the problemin which the cost
of a chain C = ((al,bl),...,(a.r,br)) is given by

r
$(C) = L }\(aib) >
A el ¥ "k
where » maps Zxz - R . It would be interesting to know for which i

the "binary representation" chain to nis always optinmal. This is the
case for exanple for A(x,y) = (x+1) (y+1) , but it is not the case for

)\(XJY) = Xty .
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