ADDI TI ON CHA NS WTHMLTI PLI CATI VECOST

by
R. L Graham
A C.C. Yao
F-F. Yao

STAN CS- 76-540
J ANUARY1976

COMPUTER SCI ENCE DEPARTMENT School of Huranities and Sci ences STANFORD UN VERSI TY

by

R. L. Graham */
Bell Laboratories Murray Hill, New Jersey
A. C-C. Yao */
Massachusetts Institute of Technology Cambridge, Massachusetts
and
F-F. Yao */
Brown University Providence, Rhode Island

Abstract

If each step in an addition chain is assigned a cost equal to the product of the numbers added at that step, "binary" addition chains are shown to minimize total cost.

The work on this-paper was done by all three authors while visiting Stanford University, Stanford, California 94306. Partially supported by National Science Foundation grant DCR 72-03752 A02, by the Office of Naval Research contract NR044-402, and by IBM Corporation. Reproduction in whole or in part is permitted for any purpose of the United States Government.

Introduction.

For a positive integer n, by a chain to n we mean a sequence $\mathrm{C}=\left(\left(\mathrm{a}_{1}, \mathrm{~b}_{1}\right),\left(\mathrm{a}_{2}, \mathrm{~b}_{2}\right), \ldots,\left(\mathrm{a}_{\mathrm{r}}, \mathrm{b}_{\mathrm{r}}\right)\right)$ where a_{k} and b_{k} are positive integers satisfying:
(i) $a_{r}+b_{f}=n$,
(ii) for all k, either $a_{k}=1$ or $a_{k}=a_{i}+b_{i}$ for some $i<k$, with the same also holding for b_{k}.
The cost of C , denoted by $\$(\mathrm{C})$, is defined by

$$
\$(C)=\sum_{k=1}^{r} q_{k} b_{k}
$$

The minimum cost required among all chains to n is denoted by $f(n)$. (In the case of ordinary addition chains $\$(C)$ is just equal to r; e.g., see [l].) A few small values of $f(n)$ are given in Table l.

$$
\begin{array}{rllllllllllll}
\mathrm{n} & = & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\mathrm{f}(\mathrm{n}) & = & 0 & 1 & 3 & 5 & 9 & & 12 & 18 & 21 & 29 & 34
\end{array}
$$

Table 1

The function f arises in connection with determining the optimal multiplication chain for computing the n-th power of a number by ordinary multiplication If a number x has d digits, then computing $x^{a_{k}}$ from $\mathbf{x}^{a_{1}}$ and $x^{b_{i}}$ requires $\left(a_{i} b_{i}\right) \cdot d^{2}$ digitwise multiplications in general. Let g be defined by

$$
\begin{aligned}
& g(1)=0, \\
& g(2 n)=g(n)+n^{2} \\
& g(2 n+1)=g(n)+n^{2}+2 n \quad, \quad n \geq 1 .
\end{aligned}
$$

It was conjectured by D. P. McCarthy [2] that $f(n)=g(n)$ for all n. In this note we prove his conjecture.

Two Properties of g.
Wc first establish several facts concerning the function g which will be used later.

Fact 1. For $m, t \geq 0$ with m odd we have

$$
\begin{equation*}
g\left(2^{t} m\right)-g\left(2^{t} m-1\right)=t+m-1 \tag{1}
\end{equation*}
$$

Proof. For $t=0$, (1) follows at once from the definition of g. Assume $t>0$. Then

$$
\begin{aligned}
g\left(2^{t} m\right)= & g\left(2^{t-1} m\right)+\left(2^{t-1} m\right)^{2} \\
g\left(2^{t} m-1\right) & =g\left(2^{t-1} m-1\right)+\left(2^{t-1} m-1\right)^{2}+2\left(2^{t-1} m-1\right) \\
& =g\left(2^{t-1} m-1\right)+\left(2^{t-1} m\right)^{2}-1 .
\end{aligned}
$$

Thus

$$
g\left(2^{t} m\right)-g\left(2^{t} m-1\right)=g\left(2^{t-1} m\right)-g\left(2^{t-1} m-1\right)+1
$$

and consequently, (1) holds by induction on t.
Fact 2.

$$
\begin{equation*}
g(n)-g(x) \geq(n-x)^{2}+2 x-n, \quad \text { for } x+2 \leq n \leq 2 x+1 \tag{2}
\end{equation*}
$$

Proof. Note that for $n=2 x$ and $2 x+1$, this is just the definition of g. The validity of (2) for $x=1,2,3$ is immediate. We assume by induction on x that (2) holds for all values less than some $\mathrm{x}>3$. The proof of (2) can be most easily accomplished by splitting it into 4 cases, depending on the parity of n and x.

Case 1. $n=2 N, x=2 X$.
By hypothesis

$$
2 \mathrm{X}+2 \leq 2 \mathrm{~N}<4 \mathrm{X}+1
$$

ie.,

$$
X+1 \leq N<2 X
$$

For $\mathrm{N}=\mathrm{X}+1$,

$$
\begin{aligned}
g(2 N)-g(2 X) & =g(X+1)+(X+1)^{2}-g(X)-X^{2} \\
& =g(X+1)-g(x)+2 X+1 \\
& \geq 2 x+2=(2 x+2-2 X)^{2}+4 X-2(X+1)
\end{aligned}
$$

by Fact 1 and (2) is proved in this case. For $N \geq X+2$, the induction hypothesis applies and

$$
\begin{aligned}
g(2 N)-g(2 X) & =g(N)-g(X)+N^{2}-X^{2} \\
& \geq(N-X)^{2}+2 X-N+N^{2}-X^{2}
\end{aligned}
$$

and so (2) will hold in this case provided

$$
(N-X)^{2}+N^{2}-X^{2}+2 X-N \geq(2 N-2 X)^{2}+4 X-2 N
$$

However, this equality can be rewritten as

$$
(2 N-2 X-1)(2 X-N) \geq 0
$$

which certainly holds for $X+2 \leq N \leq 2 X$.
The other three cases are similar and will be omitted.

The Main Result.

Theorem. For all n,

$$
f(n) \quad g(n)
$$

Proof. It is clear that $f(n) \leq g(n)$ for all n since the definition of $g(n)$ determines a unique chain to n with cost $g(n)$. Hence, it will suffice to show that $f(n) \geq g(n)$. In fact, it will be enough to establish the following analogue of (2) for f :

$$
f(n) \quad f(x) \geq(n-x)^{2}+2 x-n, \quad \text { for } x+2 \leq n \leq 2 x+1
$$

For this implies

$$
f(2 x)-f(x) \geq x^{2}, f(2 x+1)-f(:) \geq x^{2}+2 x
$$

and so, by induction,

$$
\begin{aligned}
& f(2 x) \geq f(x)+x^{2} \geq g(x)+x^{2}=g(2 x) \\
& f(2 x+1) \geq f(x)+x^{2}+2 x \geq f(x)+x^{2}+2 x=g(2 x+1)
\end{aligned}
$$

From Table 1, (2') certainly holds for $x=1,2,3$. Assume that for some $X>3$, (2') holds for all $x<x$ and all n with $x+2<\ldots<2 x+1$. In particular, this implies $f(m)=g(m)$ for $1<m \leq 2 X-1$. Suppose N satisfies $X+2 \leq N \leq 2 X+1$. If $N \leq 2 X-1$ then in fact,

$$
f(N)-f(X) \geq(N-X)^{2}+2 X-N
$$

holds by applying (2') with $\mathrm{x}=\mathrm{X}-1$. Hence, we are left with the two cases $N=2 X$ and $N=2 X+1$.
(i) $N=2 X$. Suppose the last step in some arbitrary chain C to N is (a, b) with $a+b=N$ and $\mathrm{X} \leq \mathrm{b}<2 \mathrm{X}$.

Thus,

$$
\$(\mathrm{C}) \geq \mathrm{f}(\mathrm{~b})+\mathrm{ab}=\mathrm{f}(\mathrm{~b})+\mathrm{b}(2 \mathrm{X}-\mathrm{b}) \geq \mathrm{f}(\mathrm{X})+\mathrm{X}^{2}
$$

since the last inequality is immediate for $b=X$, and follows by - induction from (1) and (2) for $b \geq X+1$. Since C was arbitrary then

$$
f(2 X)>-f(X)+X^{2}
$$

which is the desired inequality.
(ii) $N=2 X+1$. Again, assume the last step in some chain C to N is (a, b) with $a+b=N$ and $X+1 \leq b<2 X+1$.
(a) If $b>X+1$ then

$$
\begin{aligned}
\$(\mathrm{c}) & \geq \mathrm{f}(\mathrm{~b})+\mathrm{b}(2 \mathrm{X}+1-\mathrm{b}) \\
& >\mathrm{f}(\mathrm{X})+\mathrm{X}^{2}+2 \mathrm{x}
\end{aligned}
$$

since

$$
f(b)-f(X) \geq(b-X)^{2}+2 X-b
$$

holds for $\mathrm{X}+2 \leq \mathrm{b} \leq-2 \mathrm{X}-1$ by induction and for $\mathrm{b}=2 \mathrm{X}$ by the preceding case (i).
(b) If $b=X+1$ then $a=X$. Consider the step ($\mathrm{a}^{\prime}, \mathrm{b}^{\prime}$)
of C for which $a^{\prime}+b^{\prime}=b$. We have

$$
\begin{aligned}
\$(C) & >_f(x)+a^{\prime} b^{\prime}+a b \\
& =f(X)+b^{\prime}\left(X+1-b^{\prime}\right)+X^{2}+X \\
& \geq f(X)+X^{2}+2 x
\end{aligned}
$$

sinc e for $1<b^{\prime} \quad<X-l$,

$$
b^{\prime}\left(x+1-b^{\prime}\right) \geq x .
$$

Hence

$$
f(2 X+1) \geq f(X)+X^{2}+2 X
$$

This completes the induction step and the Theorem is proved.

Concluding Remarks.

We should note that the optimal chains to n are not unique. This is due to the fact that

$$
f(2 n+1)=f(n)+n^{2}+2 n
$$

can be realized in going from n to $2 n+1$ by either

$$
(\mathrm{n}, \mathrm{n}),(2 \mathrm{n}, \mathrm{l}) \text { with additional cost } \mathrm{n} \cdot \mathrm{n}+2 \mathrm{n} \cdot \mathrm{l}=\mathrm{n}^{2}+2 \mathrm{n}
$$

or

$$
(\mathrm{n}, \mathrm{I}),(\mathrm{n}+1, \mathrm{n}) \text { with additional cost } \mathrm{n} \cdot 1+(\mathrm{n}+1) \cdot \mathrm{n}=\mathrm{n}^{2}+2 \mathrm{n} .
$$

One might consider generalizations of the problem in which the cost of a chain $C=\left(\left(a_{1}, b_{1}\right), \ldots,\left(a_{r}, b_{r}\right)\right)$ is given by

$$
\$_{\lambda}(c)=\sum_{k=1}^{r} \lambda\left(a_{k}, b_{k}\right),
$$

where λ maps $Z \times Z \rightarrow R$. It would be interesting to know for which λ the "binary representation" chain to n is always optimal. This is the case for example for $\lambda(x, y)=(x+1)(y+1)$, but it is not the case for $\lambda(x, y)=x+y$.

References

[I] Knuth, D. E., The Art of Computer Programming, Volume II, Seminumerical Algorithms, Addison-Wesley, Reading, Mass. (1969).
[2] McCarthy, D. P., "An Optimal Algorithm to Evaluate x ${ }^{n}$ over Integers and Polynomials Module M," to appear in Mathematics of Computation.

