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INTRODUCTION

Recursive definitions are usually considered from two different points of

view, namely:

(i) As an algorithm for computing a function by repeated substitutions

of the function definition for its name.

(ii) As a functional equation, expressing the required relations between

values of the defined function for various arguments. A function that

satisfies these relations (a solution of the equation) is called a fixedpoint.

The functional equation represented by a recursive definition may have many

fixedpoints, all of which satisfy the relations dictated by the definition. There

is no a priori preferred solution and therefore, if the definition has more than

one fixedpoint, one of them must be chosen. A number of works describing

a least (defined) fixedpoint approach towards the semantics of recursive

definitions have been published recently (e.g., Scott [8]). Researchers in the

field have chosen the least fixedpoint as the "best solution" for three

reasons:

(i) It uniquely exists for a wide class of practically applicable recursive

definitions.

(ii) The classical stack implementation technique computes this fixedpoint

for any recursive definition.

(iii) There is a powerful method (computational induction) for proving

properties of this fixedpoint.

However, as a mathematical model for extracting information from an implicit

functional equation, the selection of the least defined solution seems a poor
_.

choice; for many recursive definitions, the least fixedpoint does not reveal

all the useful information embedded in the definition. In general, the more

defined the solution, the more valuable it is. On the other hand, this argument
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should be applied with caution, as there are inherently underdefined recursive

definitions. Consider the extreme example F(x) <= F(x), for which any partial

function is a solution. A randomly chosen total function is by no means

superior to the totally undefined least fixedpoint in this case.

The optimal fixedpoint, defined in this paper, tries to remedy this situation.

It is intended to supply the maximally defined solution relevant to the given

recursive definition. Consider, for example, the following recursive definition for

solving the discrete form of the Laplace equation, where F(x,y)  maps pairs of

integers in [-lOO,lOO]x[-lOO,lOO] into reals:

F(x,y) <= if x<-100 V x>lOO V y<-100 V y>lOO

then x2+y2

else $[F(x-l,y)+F(xtl,y)+F(x,y-l)+F(x,y+l)].

This concise organization of knowledge is defined enough to have a unique

total fixedpoint (which is our optimal fixedpoint), but its least fixedpoint

is totally undefined inside the square [-lOO,lOO]x[-lOO,lOO].

While the notion of the optimal fixedpoint is theoretically well-defined, its

computation aspects contain many pitfalls, since the optimal fixedpoints of

certain recursive definitions are non-computable partial functions. We do not

pursue in this paper the practical aspects of the optimal fixedpoint approach;

in Manna and Shamir[4,5], and in more detail in Shamir[8], we suggest several

techniques directed toward the computation of the optimal fixedpoint.

In Part I of this paper, a few structural properties of the set of all fixedpoints

of recursive definitions are proven. The otpimal fixedpoint is then introduced

'in Part 1I)as the formalization of our intuitive notion of the "best solution"

3f recursive definitions. The existence of a unique optimal fixedpoint for any
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recursive definition, as well as some of its properties, are established. In

Part III we consider the computability (from the point of view of recursive

function theory) of the optimal fixedpoint of recursive definitions.

An informal exposition of the main ideas and philosophies of the optimal fixed-

point approach is contained in [ 51. A more complete investigation of the various

fixedpoints (including the optimal fixedpoint) or recursive definitions appears in

[Yl  l
Results which are somewhat related to this work'have been obtained by Myhill

El, who investigated ways in which total functions can be defined by systems  of

formulaes.

PART I. SOME  STRUCTURAL PROPERTIES OF THE SET OF FIXEDPOINTS

In this part we introduce our terminology and prove those structural properties

of the set of fixedpoints of recursive definitions which are needed in Part II.

A. Basic Definitions

Let D+ be a domain of defined values D to which the "undefined element" w

is added. The identity relation over D+ is denoted by =. The set of all

mappings of (D')" into D+ is called the set of partial functions of n argu-

ments over D, and is denoted by PF(D,n).

The binary relation "less defined or equal," & , over various domains

plays a fundamental role in the theory.

Definitions:

(a) For x,y e D+ , x 6 y if x E w or x E y.

(b) For Z',y E
+"

(D ) , F 5 7 if xi E yi for all l<i,<n.

(c) For fl,f2 E PF(D,n) , fl & f2 if fl(z)  5 f,(z) for every F E: (D+)n.

(d) A function f E PF(D,n) is monotonic if E & -jr => f(sz) r f5).

The relation c, is a partial ordering of PF(D,n). We shall henceforth use
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the standard terminology concerning partially ordered sets. In particular:

Definitions: For any subset S of PF(D,n):

(a) f E S is the least element of S if fcgforany gCS.

(b) fCS is a minimal element of S if there is no g E S which satisfies

gc f.

(c) f E PF(D,n) is an upper bound of S if g & f for all g E S.

(d) f E: PF(D,n) is the least upper bound (lub) of S if f is the least

element in the set of upper bounds of S.

The notions of the greatest element, a maximal element, a lower bound and

the greatest lower bound (glb) of S are dually defined.

Definitions:

(a) f,g C PF(D,n) are consistent if f(?T) $ w and g(T) F CJ => f(X) 5 g(E)
n

for every ?? E (Df) .

(b) A subset S of PF(D,n) is consistent if every two functions, f,g E s

are consistent.

From the definition it follows that:

(i) A subset S of PF(D,n) has a lub, denoted by lub S, if and only if

S is consistent.

(ii) Every non-empty subset S of PF(D,n) has a glb, which is denoted by

glb s.

Definitions:

(a) A functional is a mapping of WD,n) into PF(D,n).

(b) A functional -T over PF(D,n) is monotonic if f C, g => T[f] C, T[g] for

[F](F), where 7 is ak

every f,g E PF(D,n).

) A recursive definition is of the form F(x) <= T

functional and F is a function variable.
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Allthefunctionals we shall deal with in this paper will be monotonic over PF(D,n).

In practice, there are many types of functionals which are monotonic only over

a certain subset S of PF(D,n). The theory developed in this paper can be

applied to any such restricted functional, provided that S satisfies the

following two conditions:

( >i any consistent subset of S hasalubin S, and

(ii) any non-empty subset of S hasaglbin S.

For simplicity, we do not consider in this part functions over multiple

domains (e.g., DI x . ..x Di-+D+) or systems of functionals (e.g.,

(3'
. . ..T~) ). However, all the results can be extended easily to the more

general cases.

B. Fixedpoints, Pre-fixedpoints, .and Post:fixedpoints

Definition: A function f c PF(D,n) is a fixedpoint, pre-fixedpoint, or

post-fixedpoint of 7 if f E T[f] , f & ~[f] , or T[ f] G f, respectively.

The sets of all fixedpoints, pre-fixedpoints, or post-fixedpoints of 7 are

denoted by FXP(7) , PRE(7) or POST(r), respectively.

Clearly FXP(7) = PRE(7) n POST(T). A few useful properties of these sets

for a monotonic functional 7 are:

(i) FXP(7) , PRE(7) , and POST(T) are closed under the application of 7.

(ii) If S G PRE(T) is consistent, then l&S E PRE(+T).

@ii.) If S c POST(T) is non-empty, then OS E POST(T).

The most important property of pre- and post-fixedpoints is that they enable

us to uniformly approach a fixedpoint of 7 , either by monotonically ascending



or-by monotonically descending to it. The theoretical background of this

process is contained in the theorem:

Theorem 1 (Hitchcock and Park): Let (w) be a partial1y ordered set, with

a least element 0 , and such that any totally ordered subset has a lub.

Then for any monotonic mapping 7 : S + S , the set of fixedpoints of 7

contains a least element.

A formal proof, using a transfinite sequence of approximations 7 (')(;2) which

converges to the least fixedpoint of 7 , appears in Hitchcock and Park[l].

An immediate corollary of Theorem 1 is:

Theorem 2: For monotonic functional 7 :

(4 FXW contains a least element, denoted by lfxp(T).

(b) If f E PRE(7) then the set (f' E FXP(T) 1 f C f'j contains a-

least element.

(c) If f E POST(T) then the set (f' E FXP(7) 1 f' c f} contains a

greatest element.

Proof:

(a) Immediate by Theorem 1, taking PF(D,n) as S , c as $ , and the-

totally undefined function as C?, .

(b) Define Sf E (f' C PF(D,n) 1 f& f'). Sf is partially ordered by

c , and contains f as its least element. Since any totally ordered

subset s of Sf is consistent, lub S exists. Furthermore,

M S E Sf since f C, lub S.

The given monotonic functional 7 maps PF(D,n) into PF(D,n) . It

is easy to show that 7 maps
sf

into itself. Therefore, we may
\
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consider the monotonic functional 7' mapping Sf into S
f'

which is

the restriction of 7 to Sf. Theorem 1 ensures the existence of a

least fixedpoint for 7' , which is exactly the fixedpoint required.

(c) Using the reverse order, i.e., fl 4 f2 iff f2 E fl , a proof dual to

the proof of part (b) can be obtained. Q.E.D.

Definition: A fixedpoint f of 7 is FXP-consistent if for any f' E FXP

f and f' are consistent. The set of all FXP-consistent fixedpoints  of

I- is denoted by FXPC(7).

From the definition, it follows that for any monotonic functional 7 :

(a) Since lfxp(.r)  is FXP-consistent, FXPC(7) is non-empty.

(b) Since any two FXP-consistent fixedpoints are consistent, FXPC(7) is

consistent, and thus lub FXPC(7)  exists.

Theorem 3: For a monotonic functional 7 , FXPC (7) contains a greatest

element.

Proof: We know that
fl -

z lub FXPC(7) exists. As a lub of fixedpoints,

fl E PRE(7). Thus, by Theorem 2b, the set (f' E FXP(7) 1 flE f')

contains a least element, say f
2'

We show now that f2 E FXPC(7), implying

that f
2

is the greatest function in FXPC(7) .

Let g be any fixedpoint of 7 . We would like to prove that f2 and

g are consistent, by showing the existence of a function
f3

such that

f2 G f3 -and g L f3 l

The set of fixedpoints S = FXPC(7) U (g) is

consistent by the definition of FXPC(I-) , and therefore by Theorem 2b

again there exists some f3 E FXP(T) s u c h  t h a tlub S c, f
3

. Thus,

g c, f3 and lub FXPC(7) r f
3

. Since f2 was defined as the least fixedpoint
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such that .lub FXPC(7) E f2 , we have f2 c f
3 Q.E.D.

C. Maximal Fixedpoints

Definition: A fixedpoint f of a functional q- is said to be maximal

if there is no other fixedpoint g which satifies f c g . The set of all

maximal fixedpoints of 7 is denoted by MAX(T) .

Unlike the case of minimal fixedpoints, a monotonic functional may have any

number of maximal fixedpoints. MAW "covers" FXP(7) in the sense that:

Theorem 4: For monotonic functional I- , if f e PRE(I-) then f c g for

some g f MAX(T) .

In other words, if f(a) = c for some f E PRE(7), a E (D+)n and c E D,

then there must exist g E MAX(T) such that g(J) q c.

Proof: Let Sf= (f' E FXP(7) 1 f c f'). By Theorem 2b, Sf contains at

least one element - the least fixedpoint which is more defined than f.

We now show that
sf

contains an upper bound for any totally ordered subset.

Let S be such a subset. Since it is totally ordered, it is in particular

consistent and thus lub S exists. Furthermore, as an lub of fixedpoints,

lub S is a pre-fixedpoint. Using Theorem 2b once more, there is a fixedpoint

fl
which is more defined than lub S, i.e., which is an upper bound of S.

By the definition of S and S f, flc Sf and thus S has an upper bound in Sf.

We have thus shown that Sf is non-empty and contains an upper bound for

any totally ordered subset in it. By Zorn's Lemma, any partially ordered

set having these two properties contains a maximal element. This maximal
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element g is clearly a maximal fixedpoint of 7 , and f s g by the

definition of Sf. Q.E.D.

As a result of Theorem 4, we obtain

Corollary: For any monotonic functional 7 , MAX(T) in non-empty.

Proof: Follows by the fact that PRE(7) is non-empty, since the totally

undefined function fl is always in PRE(?). Q.E.D.

We also have

Theorem 5: For a monotonic functional 7 , if f G PRE(7)  and g G MAX(T),

then either f F g or f and g are not consistent.

Proof: By contradiction. Suppose f& g, and f and g are consistent.

Then fl s lub(f,g] exists and g r= ff PM(T) l Thus by Theorem 2b there

is a fixedpoint f
2

such that fl c f2. Therefore, g t f2 , which

contradicts the maximality of g. Q.E.D.

From Theorem 5 we obtain

Corollary: Any two distinct maximal fixedpoints of 7 are not consistent.

Proof: If f,g fz MwT) 9 then in particular f E PRE(7) and we can thus

apply Theorem 5. The possibility fcg in ruled out by the maximality of

f , and thus f and g are non-consistent. Q.E.D.

PART II-. THE OPTIMAL FIXEDPOINT

A. Definition and Properties

By its definition, an FXP-consistent fixedpoint is a function which agrees

in value with every other fixedpoint of 7 for any argument. In particular,
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if such a fixedpoint has a defined value c at argument d, then there can

be no fixedpoint of 7 which has a different defined value C' at '?i .

This value c is then said to be weakly defined by 7 at 2 (it is not

"strongly defined," however, since there may be fixedpoints that are not

defined at all at 2 ). A fixedpoint which is not FXP-consistent, on the

other hand, represents some random selection of values from the many which

are possible. It is in this sense that we may say that a recursive definition

really "well defines" only its FXP-consistent solutions.

Among these "genuine" solutions of I- , the more defined the solution, the

more informative it is. Motivated by this quality criterion, we introduce

our main definition:

Definition: The optimal fixedpoint of a monotonic functional 7 is its

greatest FXP-consistent fixedpoint. It is denoted by opt(T).

NoJe that Theorem 3 guarantees the existence of the (uniquely defined)

optimal fixedpoint of any monotonic functional. Using properties of MAX(I-) ,

'we can characterize the optimal fixedpoint from a different point of view.

Definition: Since Mf!wd is non-empty, glb oh-) always exists, and

is denoted by lmax(+

As a glb of fixedpoints, Imax E POST(T), but it is not necessarily a

fixedpoint. For example, consider the following functional over \1PF(N,l) -:

T[FI (x) : -if x=0 then F(x) else OeF(x-1).

The fixedpoints of T are the totally undefined function fl , and all the

functions -fi , i=O,l,...,  defined as:

\1; N denotes the set of natural numbers.
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.

It is clear that MAX(T) = (fo,fl,...). The glb of this set of functions

is:

lmax(T)(x) =Iw if x=o
0 otherwise

This function is not a fixedpoint of -r , but is a post-fixedpoint of 7.

It descends to the fixedpoint R by repeatedly applying 7 to it.

However, we show now that the function lmax(T) is closely related to

oJt(T) :

Theorem 6: For a monotonic functional 7 , is the greatest elementopt(T)

of the set [f' E FXP(7) I f' c lmax(7)).- -

Proof: Let us denote by fl the greatest element in the set. By Theorem

2c, the function fl must exist since lmax(7) E POST(T). We now have to

show that 092&b) c fl and flc opt(T) .

To show C+(T) & fl , we note that by definition, g&d i s consistent

with any maximal fixedpoint f of 7. By Theorem 5, it follows that

*(I-) g f .  T h u s ,  opt(T) is a lower bound of MAX(T) , and therefore

Opt(T) c, lmax(T) z & w(T) l Since fl is the greatest element of

( f  ‘. E FXP(7) 1 f' & haX(T)] w e  o b t a i n  O p t ( T )  C_ flm

We now show that fl L opt(T) l
By the definition of opt(T) , it suffices

to show that fl E FXPC(7) . Let f be any fixedpoint of 7 . Theorem 4

implies that there exists some f2 E MAX(T) such that f L f2. By the
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definition of
fl '

it follows that fl& f2 . Thus, f2 is an upper

bound of f and fl , which implies that they are consistent. Since this

holds for any f c FXP(7) , fl E FXPC(T). Q.E.D.

The original definition of opt(T) and Theorem 6 suggest that opt(T)

can be "reached" both from below (by ascending from lfxp(T) as high as

possible in FXPC(T) ), or from above (by descending from MAX(T) ). This

situation is illustrated by the schematic diagram of Figure 1. In our graphical

representation, the set (f' E FXP(T) 1 fC f'] is shown as an upper cone

(Figure 2A) , and the set (f' c FXP(7) I f' c f) is shown as a lower cone

(Figure 2B).

The following properties of s(T) , for a monotonic functional 7 ,

are immediate consequences of its definition and Theorem 6:

(a) If lfxp(T) is a total function, then opt(T) 3 lfxp(T).

(b)- opt(~) E MAX(T) if and only if 7 has a unique maximal fixedpoint.

It is clear that a necessary condition for opt(T)(d) - c for some x E

(D3" and c E D is:

(i) f(;i> f w or f(z) = c for all f E FXP(7), and

(ii) f(d) - c for at least one f E FXP(T).

However, this condition is not sufficient, as demonstrated in the previous

example:

T’[ F] (x) : if x=0 then F(x) else O*F(x-1).

All the fixedpoints of 7 are either undefined or defined as 0 at x = 1

and there-are fixedpoints which are defined at x z 1, while opt(T)(l) = w.

B. Examples

In this section we illustrate the theory presented in this part with two
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FXP(+

a

Fig. 1. The fixedpoints of a recursive program

Fig. 28Fig. 2A
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funct-ionals. These functionals are monotonic only over the subset

MON(N,l) of all monotonic functions in PF(N,l). Since MON(N,l) satisfies

the two conditions mentioned at the end of section I-A, we may restrict the

discussion to the domain MON(N,l) rather than PF(N,l).

Example 1: Consider first the monotonic functional 71 over MCN(N,l):

Tl[F] cx> e - -: if x=0 then 1 else F(F(x-1)).

The least fixedpoint of this functional is

lfxp(Tl) =

We would like to show that opt(Tl) E lfxp(Tl). For this purpose, it

suffices to find two fixedpoints fl,f2 E FWTl) whose values disagree

for any positive x. Two such functions are, for example:

flb4 - (1ifxEN
u,ifxrw

and

f2(X)  q"":y,"
w .

Thus both opt(Tl) and Imax cannot be defined for any positive

integer x ; since f(w) = w for any f E FOP, we finally obtain

that Opt(Tl)  z Imax = lfXp(T1).

Since lfxp(T1) and opt(.rl) are the least and greatest elements of FXPC(+ 9

lfXP(Tl) is clearly the only element of FXPC(T~).

The functions
fl

and
f2

above are maximal, since they cannot be extended

at x s p&) .- It is quite an instructive exercise to characterize all the

maximal fixedpoints of 71 . For example, it can be easily shown that any

maximal fixedpoint other than f
2

is a total, ultimately periodic function
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over- N.

Example 2: Let us consider now the functional 72 , defined over the same

domain:

T~[F] (x) : if x=0 then 1

One can easily show that

else 2F(F(x-1)).

ifxp(T2) E lfx$) . The fixedpoint opt(T2)

cannot be obtained by the technique used in the previous example, since no

appropriate fixedpoints fl and f2 can be found. As a matter of fact, this

functional has exactly three fixedpoints:

fl(x) f

ifxr0
0 if x = 3i+l

f3(x) 2 r 2ifxs 3iii2 1 i=o,1,2,...
4 if x f 3i+3
w if x = (u

These fixedpoints are related by f1t f*& f3 9 and therefore

lfxp(T2) - fl

&.(T2) s lmax(T2) = f3

Mm2) = if,3

FXPC(r2) = FXP(T~) = (fl,f2,f3) .

PART III. THE COMPUTABILITY OF OPTIMAL FIXEDPOINTS.

In this part we state several results concerning the computability of optimal

fixedpoints over the natural numbers. In our constructions we shall use

systems of functionals -=7 ( 7 ,***,T1 ,), where each Q is a monotonic

functional mapping any k-tuple (fl, . . ..f.) of partial functions into a partial
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funct.ion  Ti[fl,...,fk]. Thus, ? maps any k-tuple (I 1 ' Vfk) of partial

functions jinto &$9 k-tuple (~l[fl,...,fk]~...sTk[h19...,fk]); it represents

a system of recursive definitions of the form

FL(:) <=  T&,  l l l ,Fkl c;;)..
Fk(:) <: Tk[Fl,...,Fk](X)  .

A fixedpoint of 7 is now defined as a k-tuple (f
1
,...,f,) mapped by

7 to itself. We shall be interested in the computability of the function

fl
appearing as the first element in such a tuple (this function is usually

called the main function; the others are called the auxiliary functions).

All the definitions and results contained in parts I and II of the paper can

be extended easily to this general case.

We first show that the collection of optimal fixedpoints of recursive definitions

over the natural numbers contains(as main functions) all the partial computable

fufictions:

Theorem 7: Any partial recursive function ai over the natural numbers is

the optimal fixedpoint of some effectively constructable system of recursive

definitions.

Proof: Any partial recursive function can be computed by a counter machine

with two counters (cf. Hopcroft and Ullman [2], page 98). Such a machine

can be simulated by a system of recursive definitions in the following way.

The input value is stored in variable x0, and with each counter ci (i=1,2)

is associated a variable x..
1

The main recursive definition which initializes

the counters is

Fl(x) <= F2(x,0,0) .

The function variables
F2 Y***¶ Fk correspond to the states

q2'
. . ..qk of
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the counter machine. The i-th

form

(Q2) recursive definition is either of the

FJXo’X1’X2) <= if x0=0 then x1 else Fm(xb,x;,xG),

or of the form (for j=l,2)

Fi(x0,x1,x2)  <= if x.=0 then ",(x&x&$) else Fm(xn
- J o'x';'~;,'

where the indexes n,m are chosen according to the state to which the counter

machine transits when it is in state q4, and counter c, has the respective

value (zero or non-zero >

x+1 or x-l, according

upon transition.

.I. J

. Each transformed variable x' or x" stands for either

to the operation done on the counter or the input value

The evaluation of the least fixedpoint of this system of recursive definitions

is done by repeatedly replacing a term Fi(X0,X1Yx2) by the appropriate term

F&‘+;) or Fm(x~,X/;,x~), thus simulating the state transitions of

the counter machine. The process stops if and when a term Fi o,xl,x2)(x is

replaced by the term
x1

(according to a definition of the first type), and

the current value of x
1

is taken as the result of computation.

Due to the simple nature of these recursive definitions, their optimal

fixedpoint coincides with their least fixedpoint (the main function in which

is ui). To show this, define for any natural number c the following

k-tuple of functions (fy,...,fE):

f;(x) J
if evaluation of Fl(x) is non-terminating

Y if evaluation of F (x) terminates with value y,
1

and similarly, for il;r:

f~(xo'xl,x2)  = (’ if evaluation of Fi(x0,xl,x2) is non-terminating

y if evaluation of Fi(x0,xl,x2) terminates with value y.

For any c, the k-tuple (fy,...,fE) so defined is a fixedpoint of the

system. It is a maximal fixedpoint by its totality. The optimal fixedpoint
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if,,-,f,) is less defined than (f',...,f')
1 k

for all c, and thus

flb4 cannot be defined if the evaluation of Fl(X> is non-terminating.

Q.E.D.

Theroem 7 shows that any function which can be defined as the main function in +

the least fixedpoint of an effective recursive definition (i.e., any partial

recursive function) can also be defined as the main function in the optimal

fixedpoint of a (perhaps different) effective recursive definition. The

converse, however, is not true. To show this, it suffices to consider the

following simple functional over the natural numbers:

TCFI (x) : if F(x) 1 then h(x) else 0,

where h(x) is the halting function, defined as:

1
h(x) = c if y,(x) is defined

w if v,(x)  is undefined.

The function h(x) is computable, as are all the other base functions which

appear in the definition. In order to find the optimal fixedpoint of 7,

we analyze the possible values of F(x) for any x (there is absolutely no

relation between values of F for different arguments x). The value of

F(x) can always be w or 0, as a direct substitution shows. The value 1

is possible only if h(x) E 1. Any maximal fixedpoint of 7 is a composition

of values 0 and 1 (only if legal) for the various arguments x. The

optimal fixedpoint is then defined as 0 whenever only 0 is a possible

value, while it is u) whenever both 0 and 1 are possible values. Thus

if w,(x) is defined

0 if ax(x)  is undefined,

and this "inverted halting function" is non-computable.

In order to see how non-computable an optimal fixedpoint may be, we

prove:
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Theorem 8: Let f(xl,...,xn) ube a total predicate over the natural numbers,

which is the main function in the optimal fixedpoint of some system of recursive

definitions (7 ,...,T~).
3

Then there is a system of recursive definitions

( T1,7~,73S  l l *9 kI- > such that:

optCT1)(x2,***, xn) - @ xl~N)[f(xl,-~,xn)l.

Proof: The two additional recursive definitions 71 and ~2 are given by:

Fl(X2’“” xn) <= F*@,x*‘*‘*‘xn)

F* (y* ,...,xn) <= if F
3 1 2
(x ,x ,...,xn) > 0 then 1 else 2*F2(xl+l,x2,...,xn).

The first definition simply initializes the search conducted by the second

definition for a value of x1 for which F3(x1,+. . . ,xn) is non-zero (true).

Such a sequential search is legal, because we assume that in the optimal

f ixedpoint F (x x3 1 ’ 2 ,*..‘XJ represents a total function. If this search is

successful, F2(0,~,-,xn)  bhich is the value returned by the main definition

?)
is 2 to the power of the first such x1 found, and this value is

clearly non-zero.

If no such value x1 can be found, we claim that the only two possible values

of fixedpoints for F2(O’X2”“J5J are w and 0. The fact that these are

possible values is shown by direct evaluation. Suppose now that there is some

other possible defined value c. This value should satisfy c ,= 2x1.F2(xl+l,...,x
n

)

for any natural number x1* If c>o, this cannot hold if x 1 is sufficiently

large, no matter what the value of F2(xl+l,...,xn)  is. Thus by the

definition of the optimal fixedpoint, ~(~~)(x~,...,x~)  3 0 in this case.

Q.E.D.

We can now prove:

Theorem 9: Any (total) predicate f(xl,...,xn) in the arithmetic hierarchy of

D We assume that the truth value false/true of the predicate is determined
by a zero/non-zero value of f.
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predicates over natural numbers can be defined as the main function in the optimal

fixedpoint of some system of recursive definitions.

Proof: Any such predicate f can be expressed by (see, for example,

Rogers [ 71)

f(xi+l,...,xk) ' (3xi)(~"Xi-l) "*(m3x1)[~j(xL) . . . , X~,xi+l,~~~,xk)l,1

or by

f(X i+l ,...,Xk)  : (- 3xi)("3xi-l) "~(-3Xl)[CD.(X‘J ~‘“‘YxiYxi+~)‘“’ \)I )

where

~j(xlY"'Yxk) is a recursive predicate.

These two forms can be constructed in the following way. First a system

which defines the recursive function cp.(x
3 1

Ye*', Xk) is constructed (by its

totality, one need not use the method described in Theorem 7 - any system of

recursive definitions which yields 0.
J

as least fixedpoint also yield it as

optimal fixedpoint). Then the pair of recursive definitions described in

Theorem 8 is added for each existential quantifier, from right to left.

The only change one should make in each pair in order to handle the negation

sign is to change the predicate F3 (xl ' . . ..x.)x into F3(xl,...,xn)=O; thus

we search for values which do not satisfy the previous existential condition.

Finally, if‘a form of the second type above should be constructed, the following

main recursive definition is added:

FO(X) <= if Fl(X)  > 0 then 0 else 1,

and the resultant predicate Fl(?) is thus inverted in Fo($.

The proof that the procedure described above constructs a system of recursive

definitions yielding the predicate f(si) as the main function in the optimal fixed-

point is a stlaight-forward  generalization (by induction) of Theorem 8. Q.E.D.
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Once we have constructed recursive definitions for all the predicates in

the arithmetic hierarchy, we can also construct recursive definitions for

all the partial functions whose graph -\I is a predicate of the arithmetic

hierarchy.

Theorem 10: If f(G) is a partial function with graph g(G,y) in the

arithmetic hierarchy, then there exists a system of recursive definitions

such that the main function in its optimal fixedpoint is fC3*

Proof: By Theorem 9, there exists a system of recursive definiti'ons

( T3 '*..,7n) for which the main function in the optimal fixedpoint is the

(total) function d%Y) l
The following two recursive definitions 71 and

72 are added to the system (7 1 serves as the main definition):

Fl(‘ji)<=  F2(;E,0)

F~(&Y)<= if F3F,y) > 0 then y else F2(&y+l).

The proof that FL(X) really yields the desired partial function is a mixture

of elements from the proofs of Theorems 7 and 8. The recursive definition

72
conducts a search (initialized by 0) for a value y which satisfies

F3(x,y)  > 0 (i.e., for which g(z,y) is true). If a value y is found, it

is taken.as the result of computation. Otherwise, due to the simple form of

72' any constant value c can serve as a value for a fixedpoint, and thus the

main function in the optimal fixedpoint is undefined. Q.E.D.

\L The graph t&Y) of a partial function f(G) is a predicate defined by:

In particular,
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