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[ NTRODUCTI ON

Recursive definitions are usually considered from two different points ¢

view, nanely

(i) As an algorithmfor conputing a function by repeated substitutions
of the function definition for its name.

(ii) As a functional equation, expressing the required relations between
values of the defined function for various arguments. A function that

satisfies these relations (a solution of the equation) is called a fixedpoint.

The functional equation represented by a recursive definition may have nany
fixedpoints, all of which satisfy the relations dictated by the definition. There
is no a priori preferred solution and therefore, if the definition has nore than

one fixedpoint, one of them nust be chosen. A number of works describing

a |least (defined) fixedpoint approach towards the semantics of recursive

definitions have been published recently (e.g., Scott [8]). Researchers in the
field have chosen the |east fixedpoint as the "best solution" for three

reasons:
(i) It uniquely exists for a wide class of practically applicable recursive
definitions.
(ii) The classical stack inplenentation technique conputes this fixedpoint
for any recursive definition.
(iii) There is a powerful method (computational induction) for proving
properties of this fixedpoint.
However, as a mathenmatical nodel for extracting information from an inplicit
functional quation, the selection of the |east defined solution seens a poor
choice; for many recursive definitions, the |east fixedpoint does not revea
all the useful information enbedded in the definition. |n general, the nore
defined the solution, the nore valuable it is. On the other hand, this argunent
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should be applied with caution, as there are inherently underdefined recursive

definitions. Consider the extrene exanple F(x) <= F(x), for which any partia
function is a solution. A randomy chosen total function is by no neans

superior to the totally undefined |east fixedpoint in this case

The optimal fixedpoint, defined in this paper, tries to remedy this situation.

It is intended to supply the maximally defined solution relevant to the given
recursive definition. Consider, for exanple, the following recursive definition for
solving the discrete formof the Laplace equation, where F(x,y) maps pairs of
integers in [-100,100])x[~100,100] into reals:

Flxy) <= i f x<-100 V x>100 V y<-100 V y>100

—
>
>

e x2+ y2

el s

D

L[F(x-1,y)+F(x+1,y)+F (x,y-1)+F(x,y+1)].

This concise organization of know edge is defined enough to have a unique
total fixedpoint (which is our optimal fixedpoint), but its least fixedpoint

is totally undefined inside the square [-100,100]x[-100,100].

While the notion of the optinmal fixedpoint is theoretically well-defined, its
conputation aspects contain many pitfalls, since the optimal fixedpoints of
certain recursive definitions are non-conputable partial functions. W do not
pursue in this paper the practical aspects of the optinmal fixedpoint approach;
in Manna and Shamir[4,5], and in nmore detail in Shamir[8], we suggest severa

techniques directed toward the conputation of the optimal fixedpoint.

In Part | of this paper, a few structural properties of the set of all fixedpoints

of recursive definitions are proven. The otpimal fixedpoint is then introduced

"in Part II)as the fornmalization of our intuitive notion of the "best solution"

of recursive definitions. The existence of a unique optimal fixedpoint for any



recursive definition, as well as some of its properties, are established. In

Part Il we consider the conputability (from the point of view of recursive

function theory) of the optimal fixedpoint of recursive definitions.

An informal exposition of the main ideas and philosophies of the optinal fixed-

poi nt approach is contained in [ 5]. A nore conplete investigation of the various
fixedpoints (including the optimal fixedpoint) or recursive definitions appears in
[9]. Results which are sonewhat related to this work' have been obtained by Myhill

[6], who investigated ways in which total functions can be defined by systems of

formul aes.

PART |. SOME STRUCTURAL PROPERTIES OF THE SET OF FI XEDPO NTS

In this part we introduce our termnology and prove those structural properties

of the set of fixedpoints of recursive definitions which are needed in Part II.

A Basic Definitions

Let pt be a domain of defined values D to which the "undefined elenment"

is added. The identity relation over D+ is denoted by =. The set of all

n
mappi ngs of (D+) into D' is called the set of partial _functions of n argu-

ments over D, and is denoted by PF(Dn).

The binary relation "less defined or equal," £, over various domains

plays a fundamental role in the theory.

Definitions:
(a) For x,y€D+,x§yifxsworx~:-y.
n —
(b) For £, € (D) , XcFit x, cy, for all i,

n
) For fl,f2 € PF(D,n) |, f1 = f2 i f fl(x) c fe(x) for every x € (D)

(d) A function f € PF(D,n) is nonotonic if Xy => £(x) = £(y).

The relation = is a partial ordering of PF(Dn). W shall henceforth use



the standard termnol ogy concerning partially ordered sets. In particular:

Definitions: For any subset S of PF(D,n):

(a) f € S is the least element of S if fC g for any g € S.

(b) £fes is amniml element of S if there is no g € S which satisfies

g f.
(c) f € PF(D,n) is an upper bound of Sif g f for all g € S.

(d) f € PF(D,n) is the |least upper bound (lub) of S if f is the |east

elenment in the set of upper bounds of S.

The notions of the greatest elenent, a nmaxinmal elenent, a |ower bound and

the greatest |ower bound (glb) of S are dually defined.

Definitions:

1

(a) f,g € PF(D,n) are consistent if £(X) # w and g(X) # 0 => f(X)
n
for every X € (D+) .

g (%)

(b) A subset S of PF(D,n) is consistent if every two functions, f,g € S

are consistent.

From the definition it follows that:
(i) A subset S of PF(D,n) has a lub, denoted by lub S, if and only if
S is consistent.
(ii) Every non-enpty subset S of PF(D,n) has a glb, which is denoted by

glb S,

Definitions:
(a) A functional is a mapping of PF(D,n) into PF(D,n).
(b) A functional 7 over PF(D,n) is monotonic if f = g =>r[f]c t[g] for

every f,g € PF(D,n).

(c) A recursive definition is of the form F(x) <= t[F](x), where 7 is a

functional and F is a function variable.



Allthefunctionals we shall deal with in this paper will be nonotonic over PF(D,n).

In practice, there are many types of functionals which are monotonic only over
a certain subset S of PF(D,n). The theory developed in this paper can be
applied to any such restricted functional, provided that S satisfies the
following two conditions:

(i) any consistent subset of S hasalubin S, and

(i) any non-enpty subset of S hasaglbin S

For sinplicity, we do not consider in this part functions over multiple
domai ns (e.g., D’lL X . «eX DI-»D+) or systems of functionals (e.g.,
('rl,. : -,’Tk)). However, all the results can be extended easily to the nore

general cases.

B. Fixedpoints, Pre-fixedpoints, .and Post-fixedpoints

Definition: A function f ¢ PF(D,n) is a fixedpoint, pre-fixedpoint, or

post-fixedpoint of v if f =+[£f], f c1[£f], or [ f] ©f, respectively.

The sets of all fixedpoints, pre-fixedpoints, or post-fixedpoints of t are

denoted by FXP(tr) , PRE(t) or POST(T), respectively.

Clearly FXP(t) = PRE(71) N POST(7). A few useful properties of these sets
for a nonotonic functional t are:

(i) FXP(t) , PRE(7), and POST(t) are closed under the application of .
(ii) If S ¢ PRE(T) is consistent, then lubS € PRE(T).

@i) If S c POST(t) is non-enpty, then glbS € POST(rT).

The nost inportant property of pre- and post-fixedpoints is that they enable

us to uniformy approach a fixedpoint of 7, either by nonotonically ascending



or-by monotonically descending to it. The theoretical background of this

process is contained in the theorem

Theorem 1 (Htchcock and Park): Let (S,<) be a partially ordered set, with
a least element Q , and such that any totally ordered subset has a |ub.
Then for any nonotonic mapping v: S - S, the set of fixedpoints of 7

contains a |east elenent.

A formal proof, using a transfinite sequence of approxi mations To\)(Q) whi ch
converges to the least fixedpoint of ¢, appears in Htchcock and Park[1].

An inmmediate corollary of Theorem 1 is:

Theorem 2:  For nonotonic functional r :

(a) FXP(t) contains a least element, denoted by lfxp(r)-.

(b) If f € PRE(t) then the set (f' € FXP(r)|f = £'} contains a
| east el enent.

(c) If f e PosT(r) then the set (f' € FXP(1)|f' © f} contains a

greatest el enent.

Proof :
(a) Imrediate by Theorem 1, taking PF(D,n) as S, — as <, and the

totally undefined function as Q .

(b) Define s .= (f' e PF(D,n) |fc ). Scis partially ordered by
= , and contains f as its least elenent. Since any totally ordered
subset s of S¢ is consistent, lub S exists. Furthernore,
_}E_l_n_Sesfsincef = lub S
The given nonotonic functional ¢ maps PF(D, n) into PF(D,n) . It
is easy to showthat v maps S_. into itself. Therefore, we my

f
6
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consider the nonotonic functional t' mapping Sf into Sf, which is

the restriction of 7 to Sf. Theorem 1 ensures the existence of a
| east fixedpoint for 7', which is exactly the fixedpoint required.

(c) Using the reverse order, i.e., f1<f2 i ff f2|_:_f1, a proof dual to

the proof of part (b) can be obtained. QE.D

Definition: A fixedpoint f of 7 is FXP-consistent if for any f' € FXP(r) ,

f and f£' are consistent. The set of all FXP-consistent fixedpoints of

v is denoted by FXPC(T).

From the definition, it follows that for any nonotonic functional r :
(a) Since lfxp(t) is FXP-consistent, FXPC(t) is non-enpty.
(b) Since any two FXP-consistent fixedpoints are consistent, FXPC(t)is

consistent, and thus |ub FXPC(t) exists.

Theorem 3: For a nonotonic functional T, FXPC(r) contains a greatest

el ement .

Proof: W know that f lub FXPC(T) exists. As a lub of fixedpoints,

1:'5

£, € PRE(7) . Thus, by Theorem2b, the set (f' € FXP(7) | £, C £'}

contains a least element, say o Ve show now t hat £, € FXPC(T), inplying

t hat f2 is the greatest function in FXPC(T) .

Let g be any fixedpoint of +. W would like to prove that f2 and

g are consistent, by showing the existence of a function f5 such that

£, C f5 and g gf5 The set of fixedpoints S = FXPC(7) U {g} is

consistent by the definition of FXPC(r) , and therefore by Theorem 2b

again there exists sone f3 € FXP(1) such thlab Scf

g _:_f5 and lub FXPC(7) C f

3 Thus,

3 Si nce f2 was defined as the |east fixedpoint

7



such that lub FXpC(7) C £, we have f2 c f 5 QED.

C. Maxi mal Fi xedpoints

Definition: A fixedpoint f of a functional + is said to be nmaxinal
if there is no other fixedpoint g which satifies f = g . The set of all

maxi mal fixedpoints of t is denoted by MAX(r) .

Unlike the case of mininmal fixedpoints, a nonotonic functional may have any

nunber of maximal fixedpoints. MAX(t) “"covers" FXP(t) in the sense that:

Theorem4: For nonotonic functional - , if f € PRE(7) then f = g for
some g € MAX(T) .

n
In other words, if £(d)=c for some f & PRE(7), d € (D+) and ¢ €D,

then there must exist g € MAX(r) such that g(d) o c.

Proof: Let Sf= (f" € Fxp(7) |f = f'). By Theorem 2b, S¢ contai ns at

| east one elenment - the least fixedpoint which is nore defined than f.

W now show t hat Sf contains an upper bound for any totally ordered subset.

Let S be such a subset. Since it is totally ordered, it is in particular

consistent and thus |lub S exists. Furthernore, as an lub of fixedpoints,

lub S s a pre-fixedpoint. Using Theorem 2b once more, there is a fixedpoint

£, which is nore defined than lub S, i.e., which is an upper bound of S

By the definition of S and Sf, fle sf and thus S has an upper bound in S ¢

We have thus shown that Sf is non-enpty and contains an upper bound for

any totally ordered subset in it. By Zorn's Lemma, any partially ordered

set having these two properties contains a nmaxinal element. This maximal



element g is clearly a maximal fixedpoint of v, and f © g by the

definition of Sf. QE.D.

As a result of Theoreml4, we obtain

Corollary: For any nonotonic functional 7, MAX(t) in non-enpty.

Proof: Follows by the fact that PRE(t) is non-enpty, since the totally

undefined function Q is always in PRE(T). QE.D

W al so have

Theorem 5: For a nonotonic functional -, if f € PRE(r) and g e MAX(7),

then either f = g or f and g are not consistent.

Proof: By contradiction. Suppose fi¢ g, and f and g are consistent.
Then fl = lub{f,g} exists and , fle PRE(7) . Thus by Theorem 2b there
is a fixedpoint f2 such t hat f1 = f2. Therefore, g f2 , Wwhich
contradicts the maximality of g. QE.D

From Theorem 5 we obtain

Corollary: Any two distinct maximal fixedpoints of T are not consistent.

Proof: If f,g € MAX(t) , then in particular f € PRE(7) and we can thus
apply Theorem5. The possibility f= g in ruled out by the maximality of

f , and thus f and g are non-consistent. QED

PART |1-. THE OPTI MAL FI XEDPO NT

A Definition and Properties

By its definition, an FXP-consistent fixedpoint is a function which agrees

in value with every other fixedpoint of «+ for any argunent. In particular,



if such a fixedpoint has a defined value ¢ at argunent d, then there can
be no fixedpoint of + which has a different defined value c'at d .

This value ¢ is then said to be weakly defined by +at d (it is not

"strongly defined," however, since there may be fixedpoints that are not
defined at all at d ). A fixedpoint which is not FXP-consistent, on the
other hand, represents sone random selection of values from the many which
are possible. It is in this sense that we may say that a recursive definition

really "well defines" only its FXP-consistent solutions.

Among these "genui ne” solutions of 1- , the nore defined the solution, the
more informative it is. Mtivated by this quality criterion, we introduce

our main definition:

Definition: The optinmal fixedpoint of a nonotonic functional t is its

greatest FXP-consistent fixedpoint. It is denoted by opt(r).

Note that Theorem 3 guarantees the existence of the (uniquely defined)
optimal fixedpoint of any nonotonic functional. Using properties of MAX(7) ,

"we can characterize the optimal fixedpoint froma different point of view

Definition: Since MAX(t) is non-enpty, glb MAX(t) always exists, and

is denoted by lmax(T).

As a glb of fixedpoints, 1lmax(r) € POST(7), but it is not necessarily a

fixedpoint.  For exanple, consider the follow ng functional over PF(N,I)\]t
T[F] (x) : if x=0 then F(x) else 0-F(x-1).

The fixedpoints of v are the totally undefined function o, and all the

functions *fi , i=0,1,..., defined as:

\1l N denotes the set of natural nunbers.
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i if x=0
fi(x) E{'

0 otherwise.
It is clear that MAX(r) = {fo,fl,...}. The glb of this set of functions
is:
w 1f x=0
inax (1) (x) ={

D otherw se

This function is not a fixedpoint of v, but is a post-fixedpoint of r.

It descends to the fixedpoint Q by repeatedly applying v to it.

However, we show now that the function 1lmax(t) is closely related to

opt(7) :

Theorem6: For a nonotonic functional 7, pt(T)he greatest el enment

of the set {f'e FXP(r) | f' = lmax(7)}.

Proof: Let us denote by f1 the greatest elenent in the set. By Theorem
2c, the function £, nust exist since lmax(r) € POST(r). W now have to

show that opg(r) £ £; and £, € opt(T)

To show opt(r) E £, Wwe note that by definition, opt(t) 1is consistent

with any naxinmal fixedpoint f of ¢ . By Theorem5, it follows that

opt(T)Sf. Thus,ot(r) is a lower bound of MAX(t), and therefore

]

opt (1) lmax(T) glb MAX(t). Since £ is the greatest elenent of

( f 'e FXP(T)I f! I_:_lmax('r)} we obtain Opt(T) ;fl.

V¢ now show t hat £, ¢ opt(r). By the definition of opt(T) , it suffices
to show that £ € FXPC(t) . Let f be any fixedpoint of 1 . Theorem

inplies that there exists sone £, € MAX(r) such that f ¢ f,. By the

11



definition of f1 , it follows that fl cC f2 . Thus, f2 is an upper
bound of f and £, which inplies that they are consistent. Since this
holds for any f € FXP(7) , £ € FXPC (1) . QED.

The original definition of opt(T) and Theorem 6 suggest that opt (T)

can be "reached” both from below (by ascending from lfxp(t) as high as
possible in FXPC(t) ), or from above (by descending from Max(:) ). This
situation is illustrated by the schematic diagramof Figure 1. |n our graphical
representation, the set (f' € FXP(7) | £ £'} is shown as an upper cone

(Figure 2A) , and the set (f' € FXP(7)|f' = f) is shown as a |ower cone

(Figure 2B).

The followi ng properties of opt(r), for a nonotonic functional 7,

are immediate consequences of its definition and Theorem 6:

(a) If lfxp(t) is a total function, then opt(t) = Lfxp(T).

(b) opt(r) € maxif and only if . has a unique maxinal fixedpoint.

It is clear that a necessary condition for opt(T)(d) = c for sone d €

n
(D+) and ¢ eDis:

(i) f£(d) =w or £(d) = c for all f e Fxp(r), and

(ii) f(d)

However, this condition is not sufficient, as denonstrated in the previous

c for at least one f € FxP(T).

exanpl e:
T[Fl(x): if x=0 then F(x) else 0-F(x-1).
Al'l the fixedpoints of t are either undefined or defined as 0 at x = 1

and there-are fixedpoints which are defined at x = 1, while opt(T)(l1) = .

B. Exanpl es

In this section we illustrate the theory presented in this part with two

12



MAX(T)

FXP(T)-

Fig. 1. The fixedpoints of a recursive program

X 7
\ V4

Fig. 2A Fig. 2B
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funct-ionals. These functionals are nonotonic only over the subset
MON(N,1) of all nonotonic functions in PF(N,1). Since MON(N,l) satisfies
the two conditions nentioned at the end of section |-A we may restrict the

di scussion to the domain MON(N,1) rather than PF(N,I).

Exanple 1: Consider first the nonotonic functional T, over MON(N,1):
¢1[F] (x) if_x=0 _then 1 else F(F(x-1)).

The least fixedpoint of this functional is

1£x (Tl) E.{l if x=0

w otherwise.
W would like to show that OEt(Tl) = fXE(’Tl). For this purpose, it
suffices to find tw fixedpoints fl’fg € FXP('rl) whose val ues disagree

for any positive x. Two such functions are, for exanple:

1 if x €
f,(x) =
1( ) {(,u if x =
and
x+1l if x € N
f =
2(X> {w ifx=qw

Thus both OBC(Tl) and lmax(Tl) cannot be defined for any positive

integer Xx ; since f(w) =w for any f €FXP(¢1),We finally obtain

t hat 925(71) = lmax(Tl) = lfxg(Tl).

Si nce lfxg('rl) and _QPL(Tl) are the least and greatest elenents of FXPC(’Tl),

1fx2(¢1) is clearly the only element of FXPC(‘Tl).

The functions f1 and f2 above are nmaximal, since they cannot be extended

at x =w. It is quite an instructive exercise to characterize all the

maxi mal fixedpoints of 7 For exanple, it can be easily shown that any

1

maxi mal fixedpoint other than f2 is a total, ultimately periodic function

14



over- N

Exanple 2: Let us consider now the functional defined over the sane

T2 )
domai n:

TQ[F](X) : if x=0 then 1 el se 2F(F(x-1)).

One can easily show that 1fxp(r,) = lfxp(r,) . The fixedpoint opt (,)
cannot be obtained by the technique used in the previous exanple, since no
appropriate fixedpoints £ and £, can be found. As a matter of fact, this

functional has exactly three fixedpoints:

lifx=0
£.(x) =
1( ) {w otherwise.
1ifx=0
Oifx=1
fg(x) =42 if x =2
L if x =3
@ otherwise !
ﬁ ifx=0 |
) if x = 3i+l)
fB(X) =\U2 if x= ip 1=0,1,2,...
4 if x = 3i43
wif X =g
These fixedpoints are related by £, & £, c f3, and therefore
1fng72> = fl
opt = =
opt(7y) = Lmax(r,) = £y

MAX(1,) = (]

FXPC(TE) = FXP(TQ) = {fl’fQ’fj} .

PART I111. THE COMPUTABILITY OF OPTIMAL FI XEDPO NTS.

In this part we state several results concerning the conputability of optinal
fi xedpoints over the natural nunbers. In our constructions we shall use
systens of functionals T = (Tl,...,-rk), where each Ty i's a nonotonic

functional mapping any k-tuple (f : .,fk) of partial functions into a partial

1°
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function Ti[fl,...,fk]. Thus, ¥ maps any k-tuple {L1\...’fk) of partia
functions {ntothe k¢UDk3(Tl[fls---,fk],---,Tk[fl,---,fk]); it represents

a system of recursive definitions of the form

LR .0 BELY

F(®) <=1 [Fy, .. Bl (R |

A fixedpoint of T is now defined as a k-tuple (fl,...,fk) mapped by

to itself. W shall be interested in the conputability of the function

Al

f1 appearing as the first element in such a tuple (this function is usually

called the main function; the others are called the auxiliary functions)

All the definitions and results contained in parts | and Il of the paper can

be extended easily to this general case.

We first show that the collection of optimal fixedpoints of recursive definitions

over the natural numbers contains(as main functions) all the partial conputable

fuhctions:

Theorem7: Any partial recursive function ©; over the natural numbers is
the optimal fixedpoint of some effectively constructable system of recursive

definitions.

Proof: Any partial recursive function can be conputed by a counter machine
with two counters (cf. Hopcroft and Ullman [2], page 98). Such a machi ne

can be sinmulated by a system of recursive definitions in the follow ng way.

The input value is stored in variable x and with each counter ¢, (i=1,2)
1

O’

is associated a variable xﬁ. The main recursive definition which initializes

the counters is
Fl(x) <= FQ(X,O,O).

The function variables F_,...,F

X X correspond to the states Aoy - oy of

16



the counter machine. The i—t_h(ize) recursive definition is either of the
form

F, (xo,x ,x2) <= if x,=0 then x, else F (xo,xl,x )

or of the form (for j=1,2)
Fi<x0’x1’x2> <=if x, -O then F (xo,xl,xg’) else F (X‘O’xl’ 2),
where the indexes n,m are chosen according to the state to which the counter
machine transits when it is in state q,, and counter c, has the respective
+ J

value (zero or non-zero). Each transformed variable x' or x” stands for ejther

x+1 or x-l, according to the operation done on the counter or the input value

upon transition.

The evaluation of the least fixedpoint of this system of recursive definitions
is done by repeatedly replacing a term Fi(xo’xl’x2> by the appropriate term
F (x xl,x Y or F (XO’X/i’X”> thus simulating the state transitions of

the counter machine. The process stops if and when a term Fi(xo’xl’xe) is
replaced by the term Xy (according to a definition of the first type), and

the current value of X, is taken as the result of computation.

Due to the sinple nature of these recursive definitions, their optinmal
fixedpoint coincides with their |east fixedpoint (the main function in which
is mi). To show this, define for any natural nunber ¢ the follow ng
k-tuple of functions (fi,...,f;):

¢ if evaluation of Fl(x) I's non-termnating

c" —
£y (x) 2{\( if evaluation of F

l(x) term nates with val ue vy,

and simlarly, for ix2:

. if evaluation of F,(x s X1 5%, ) is non-terninating
£€(x % %) E{" ' ' %o 2 | |
itto* 712 y if evaluation of Fi(xO’xl’XE) terminates with value vy.

For any c, the k-tuple <f(1:""’f1i> so defined is a fixedpoint of the

system It is a maximal fixedpoint by its totality. The optiml fixedpoint

17



is |ess defined than (f?,...,fﬁ) for all ¢, and thus
f£,(x) cannot be defined if the evaluation of Fl(x) i s non-terninating.

QED.

Theroem 7 shows that any function which can be defined as the main function in
the least fixedpoint of an effective recursive definition (i.e., any partial
recursive function) can also be defined as the main function in the optinal
fixedpoint of a (perhaps different) effective recursive definition. The
converse, however, is not true. To show this, it suffices to consider the
following sinple functional over the natural nunbers:

T[F] (x): if F(x) 1 then h(x) else 0,

where h(x) is the halting function, defined as:
1 if x) i s defined
h( x) E{ (Px( )
w if g (x)is undefined.
The function h(x) is conputable, as are all the other base functions which
appear in the definition. In order to find the optimal fixedpoint of r,
we analyze the possible values of F(x) for any x (there is absolutely no
relation between values of F for different argunents x). The val ue of
F(x) can always be w or 0, as a direct substitution shows. The value 1
is possible only if h(x) =1. Any maximal fixedpoint of 7 is a conposition
of values 0 and 1 (only if legal) for the various argunents x. The
optimal fixedpoint is then defined as O whenever only 0 is a possible
value, while it is @ whenever both 0 and 1 are possible values. Thus
i f ‘Dx<x) i s defined
ot () () ={_ | |
- 0if q;x(x) i s undefined,

and this "inverted halting function" is non-conputable.

In order to seehow non-conputable an optimal fixedpoint nay be, we

prove:
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Theorem 8: Let f(xl,...,xn) be a total predicate over the natural nunbers,\l
which is the main function in the optimal fixedpoint of sone system of recursive

definitions (TS,..-,Tk). Then there is a system of recursive definitions
(Tl’Tg’TB". *grk) SUCh that

Q.P_"-.(‘rl)(xg,---,xn) =@ x1€N)[f(xl,...,xn)].

Proof: The two additional recursive definitions ™ and T, are given by:

2
Fl(x ,...,xn) <= FQ(O,xg,...,xn)
F2(x1,x ,...,xn) <= if F3(x r’é""’xn) > 0 then 1 else 2-F2(x1+1,x2,...,xn).
The first definition sinply initializes the search conducted by the second
definition for a value of X, for which Fj(xl’xz"' . ,xn) IS non-zero (true).
Such a sequential search is legal, because we assune that in the optinal
f i xedpoint FS(i(’XZ""’xn) represents a total function. |f this search is
successful, F2(0,x2,...,xn) fwhich is the value returned by the main definition

T1> is 2 to the power of the first such x, found, and this value is

1

clearly non-zero.

If no such value x;, can be found, we claimthat the only two possible values

1
of fixedpoints for Fg(o,xg,...,xn) are w and 0. The fact that these are
possi bl e values is shown by direct evaluation. Suppose now that there is sone
other possible defined value c. This value should satisfy ¢ = oX1 'Fe(xl+1"“’xn)
for any natural nunber X" If e >0, this cannot hold if X1 is sufficiently
large, no matter what the val ue of F2(x1+l,...,xn) is. Thus by the

definition of the optinmal fixedpoint, gp_g_(rrl) (XE""’xn) =0 in this case.

QE.D.

We can now prove:

Theorem 9: Any (total) predicate f(xl,...,xn) in the arithmetic hierarchy of

\l W assunme that the truth value false/true of the predicate is deternined
by a zero/non-zero value of f.

19



predi cates over natural nunbers can be defined as the main function in the optimal

fixedpoint of sonme system of recursive definitions.

Proof: Any such predicate f can be expressed by (see, for exanple,

Rogers [T])

f(xi+l,...,xk) : (Hxi)(~gxi_l) “'(Nﬂxlﬂwj(xl,""xi’xi+1""’xk>]’
or by

f(xi+1,...,xk) o~ Hxi)(rv '.E{xi_l) ...(~:§{xl)[cpj(xl,...,xi,xi+1,...,xk)],
where

cpj(xl,...,xk) is a recursive predicate.

These two forms can be constructed in the following way. First a system
whi ch defines the recursive function :pj(xl,...,xk) is constructed (by its
totality, one need not use the nethod described in Theorem 7 - any system of
recursive definitions which yields mj as least fixedpoint also yield it as
optimal fixedpoint). Then the pair of recursive definitions described in
Theorem 8is added for each existential quantifier, fromright to left.

The only change one shoul d make in each pair in order to handl e the negation

sign is to change the predicate F : .,xn)>O into F3(x1,...,xn)=o; t hus

5%
we search for values which do not satisfy the previous existential condition.
Finally, if‘a form of the second type above should be constructed, the following
main recursive definition is added:

FO(E) <= if F,(x) > 0 then 0 else 1,

and the resultant predicate Fl(i) is thus inverted in Fo&)'

The proof that the procedure described above constructs a system of recursive
definitions yielding the predicate £(x) as the main function in the optimal fixed-

point is a stmight-forward generalization (by induction) of Theorem 8. QE. D
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Once we have constructed recursive definitions for all the predicates in
the arithnetic hierarchy, we can also construct recursive definitions for
all the partial functions whose graph\l is a predicate of the arithnetic

hi erar chy.

Theorem 10: If £(x) is a partial function with graph g(x,y) in the
arithnetic hierarchy, then there exists a system of recursive definitions

such that the main function in its optimal fixedpoint is f£(x).

Proof: By Theorem9, there exists a system of recursive definitions
(T5""’Tn) for which the main function in the optimal fixedpoint is the

(total) function g(x,y). The following two recursive definitions L and

T, are added to the system (71 serves as the main definition):

2
F, (%)<= F, (x,0)
F,(x,y)<= if F;(%,y) > 0 then y else F, (x,y+1).
The proof that F1(§) really yields the desired partial function is a mxture
of elenents fromthe proofs of Theorens 7and 8. The recursive definition
T conducts a search (initialized by 0) for a value y which satisfies
Fj(;,y) >0 (i.e., for which g(x,y)is true). If a valuey is found, it
IS taken as the result of conputation. Qherwi se, due to the sinple form of
T,» @ny constant value ¢ can serve as a value for a fixedpoint, and thus the
main function in the optimal fixedpoint is undefined. QED.

\l The graph g(x,y) of a partial function f£(x)is a predicate defined by:

- _ (true if £(X)=y, ytw
8(x,y) = {fTee if £(x)Ey, ytw
In particular, if f£(x) is undefined then g(x,y) is false for all y# w.
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