OPT IMAL POLYPHASE SORTING

by

Derek A. Zave

STAN-CS-76-543
MARCH 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

BN
Crpgalber






Opti mal Pol yphase Sorting

by Derek A Zave

Conput er Sci ence Depart nent
Stanford University
Stanford, California 94305

Abstract

A read-forward pol yphase nmerge al gorithmis described which performs
the pol yphase nerge starting froman arbitrary string distribution. This
algorithm mnimzes the volume of information noved. Since this volune
is easily conputed, it is possible to construct dispersion algorithns
which anticipate the nerge algorithm Two such dispersion techniques
are described. The first algorithmrequires that the number of strings
to be dispersed be known in advance; this algorithmis optiml. The
second al gorithm makes no such requirenment, but is not always optimnal.
In addition, performance estimates are derived and both algorithms are

shown to be asynptotically optinal.

Keywords and Phrases: Sorting, tape sorting, nerge sorting, polyphase

sorting, tape nerging, optimal merging, optimal polyphase

di spersion, blind dispersion, polyphase dispersion, Fibonacci
nunbers, generalized Fibonacci nunbers, Zeckendorf Theorem
general i zed Zeckendorf Theorem

CR Categories: 5.31, 5.30.

This research was supported in part by National Science Foundation grant
MCS 72-03752 A03, by the Ofice of Naval Research contract Nr Ohk-Lo2,
and by IBM Corporation. Reproduction in whole or in part is pernitted
for any purpose of the United States Covernnent.






1. Lntroduction.

This paper presents a mathematical analysis of the structure of the
pol yphase sort with special enphasis on those properties which are related
to the performance of the sort. This analysis will enable us to construct
a poly-phase sorting algorithm with optimal performance characteristics
W will also construct a near-optimal polyphase sort which is nore suitable
for applications. Finally, we will investigate the asynptotic performance
of both of these algorithns.

Al'though the polyphase sort has been in use for over a decade
conparatively little work has been done in the direction of optimzing
its performance. In an early unpublished paper [7], Sackman and Singer
devel oped methods for predicting the performance of the pol yphase nerge
and showed enpirically that in certain cases that the performance of the
usual method of inplementing the pol yphase sort could be greatly inproved.
| ndependently, Shell [8] devel oped simlar techniques and used them al ong
with some enpirical observations to construct an optimal pol yphase
sorting algorithm D. E. Knuth [5] has al so investigated the opti nal

pol yphase sort and several of his results have been incorporated into

this paper.



2. The Polyphase Merge.

W will begin with a brief discussion of the polyphase merge which
wll serve primarily to introduce our termnology. Further details, as
well as information on internal sorting and string merging, which we wll
not discuss, may be found in the books of Flores [2] and Knuth [5].

Let us suppose that we are given a collection of records containing
various kinds of information and |et us further suppose that sone |inear
ordering has been defined on this collection. To sort the records is to
arrange theminto a sequence which is increasing with respect to the
ordering relation. One nethod of acconplishing this is by means of nerging
First, the collection of records is partitioned into a nunber of smal
groups of records which each sorted to forma "Strimy" of recordsn d
the sorted strings are nerged to form larger sorted strings, and so on
until a single sorted string containing all of the records is forned.

In practice, nerge sorts are enployed when there are nmore records
to be sorted than may be accommodated by a conputer% main storage. G oups
of records are sorted into strings using the available main storage. The
strings are then "dispersed" to some secondary storage nedium such as nass
storage or magnetic tape. The string nerging operations are performed as
transfers of information fromone part of secondary storage to another.

The poly-phase sort is a nmerge sort which is characterized by the
manner in which the dispersed strings are nerged. Let us suppose that
there are T >3tape units which are nunbered from zero to t = T-|

W define the distribution nunbers s? for i =1,...,t and n > 1 by




Si} =1 for 1<ic<t

(2.1) sg = S_I;'I for n >1, and
sB o= gf 1y gt for n>1 and 2<i<t .
i i-1 t - T =

Fromthis definition it is easily show that for n > 1 , we have

n n n
(2.2) §; <8, <. .. <8
Suppose that for sonme n > 1 that s’i +. . .+ SE strings have been

*di spersed to the tapes in the follow ng fashion:

t ape: o12 . . .t

. . n n n
strings: O S8 8. .. 8

W will call this configuration the perfect stage n distribution and the

sum

n_.n n
(2.3) shEs v+

will be called the stage n perfect nunber.

Example 2.1. The following table provides sone values of the distribution

nunbers and perfect nunbers when T =5 (t = 4) :

n 50 sy 53 s, g?
1 1 1 1 1 L
2 1 2 2 2 7
3 2 3 L L 13
L L 6 T 8 25
> 8 12 1L 15 L9
6 15 23 27 29 9k
7 29 L 52 56 181
8 56 85 100 108 349
9 108 164 193 208 673

208 316 372 401 1297

[ SN
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Suppose that we start with the perfect stage n distribution . If
we nerge together one string fromeach of the tapes 1,...,t , then we
will obtain a single string which may be witten to unit zero. If n=1,

then this operation will nerge all of the strings since each tape contains

exactly one string. If n>1, then, in viewof (2.2), we may perform
this operation si times after which we will arrive at the distribution.
t ape: 0 1 2 L t
strings: st 0 sh-gl s o-gt
gs- 1 2 ™S crr By -8y

t ape: 0 1 2 . . .t
strings: Sg-l 0 Si'l . sﬂl&

so that if we renunber the tapes t,0,1,2,...,t-1, then we obtain the
perfect stage n-l1 distribution.

By repeating this process, we obtain the perfect distributions for
stages n-2, n-3 , and so on, until we arrive at the perfect distribution
for stage one. A single merge will then produce the final sorted string.
This nethod of nerging a perfect nunber of strings is called the_polyphase
mer ge.

In practice, the distribution routine rarely produces a perfect
nunber of strings. In order to use the polyphase nerge in this case it is
necessary to include a nunber of "dummy" (enpty) strings in order to fil
out the-total nunber of strings to a perfect number. There are therefore
two choices which have to be made before using the polyphase merge to sort
x strings. First we nmust choose a starting stage nunber n ; any n for

which x < 8% is eligible. Second, we nust decide how the s™-x dummy



strings are to be distributed anong the x strings. Although many

met hods have been proposed for distributing the dunmy strings, nost
authors recomend starting with the smallest possible stage number n ;
we will refer to these approaches collectively as the standard

polyphase sort.

Since the speed of a merge is usually limted by the transfer rate
of the tape units and the speed of the nerge algorithm we see that the
tine required to performthe pol yphase nerge i s approximately proportiona
to the total volume of information that nmoves through the merge. In
order to make this idea precise, we assune that the dispersion routine
produces strings of approximately the sane size; this size will be our
unit of information, the unit string. The size of a string forned by
merging several strings is the sumof the sizes of the input strings and
the size of a dumy string is zero. W say that a string is noved when
that string or any string formed fromit by a sequence of one or nore
nerges becomes one of the inputs for a nerge. The volune of information
moved by the polyphase nerge is then equal to the sum of the products of
the size of each string of the starting distribution and the nunber of tines
that string is noved. In this paper we will show how this volume my be

m ni m zed.



3. The Myvenent Nunbers.

In general, the pol yphase nmerge does not nove all of the s strings
of the stage n perfect distribution the same number of tines. |t js
for this reason that the pol yphase sort is much nore difficult to analyze
than other merge sorting algorithns. However, much useful information is

supplied by the set of novement numbers M?(j) which are defined for

n>1l, 1<i<t, and all integers | by the relations

1
Mi(l) =1 for 1<i<t,
S . .
M. (3) = O for j #1and 1 <i <%,
(5'1) -1
M?_(j) = MIQ (j-1) for n >1, and

M (3) = Mg:i(j) +07N3-1) for n>1land 2 <i <t

Ve claimthat M(j) is precisely the nunber of strings on tape unit i
of-the stage n perfect distribution which will be noved exactly |
times by the poly-phase merge. For this to make any sense it is necessary
that M;(5) be nonzero only if 1 < <n and that s] = Mj(1)+ . ..+M(n) .
We will prove these assertions together by induction on n . Wen
n =1, everything is obvious since each of the tapes 1,...,t of the
perfect distribution contains exactly one string which will be noved by
the poly-phase merge exactly once. Now suppose that n >1 and that
everything has been proved for stage n-I . For M?(j) t o be nonzero we
nust have, by (3.1), N[E-l(j-l) #0 or i >2 and MI;::JL'(J') #0 . These
inequalities inply that 1 <j-I <n-l1 or 1 <j < n-l which both inply
that 1 <j-<n. W may show that s‘i1 = M'g_l(l)+ . ..+M§L‘(n) by summing
the last two formulas of (3.1) over j and by applying the corresponding

equal ity for stage n-1 and the last two fornulas of (2.1). W recall that



the stage n polyphase nerge is perforned by nerging Sﬁi strings from
each of the tapes and then by applying the stage n-1 pol yphase merge.

A string on unit one which will be noved j tines will become part of a
string on the output tape which will be nmoved j-1 tinmes. Since every
string on the output tape contains exactly one string fromunit one and
since the output tape becomes unit t for the stage n-l1 nerge, we see
that unit one nust contain exactly M'E-l(j-l) strings that will be noved
exactly j tinmes. If 2 <i <t , then aj novenent string on unit i
will either be noved to the output tape or will remain on the tape. From
simlar considerations, we see that unit i must contain exactly
ng'l(j-l) + bfil::lL(j) strings which will be noved exactly j times. This

conpl etes the proof.

Exanpl e 3.1. Table 3.1 lists some of the nmoverment nunbers in the case

t =k .

In this paper we will nmake use of quite a few sets of nunbers which

are defined using the novenent nunbers M‘ti‘(j). W [ist the definitions:

MU3) = MI(3) 4 e+ M(S)

S50 M@)o M)

(3.2) @ =@+ M) = S]E) . L+ S()
01(3) =sj@+ . .. +80),
¢'3) =S+ +SN @) =@+ )

n _ _.n
8; = Si(n)
s" =s"(n) = 8] + + 8y



In a nunber of the form 5?(3) the superscript n s the associated
stage nunber, the subscript i is the nunber of a tape unit, and j is
some nunber of novenents. A(j) is fornmed from A?(j) by summing over
i =1,...,t and A? is forned fron1A2Qn by setting j =n. Ina
simlar fashion we may forma® from A? or A%(3) .

Except for the nunbers G?(j) and ¢™(j) , which are used in

connection with the volume function, the various sets of nunbers which
we have defined express some sinple properties of the perfect stage n
distribution:

M?(j) The nunber of strings on unit i which will be noved

exactly j tinmes.

Mn(j) The nunmber of strings which will be noved exactly j tinmes.

sg(j) The nunber of strings on unit i which will be noved at
most j tines.

Sn(j) The nunber of strings which will be nmoved at nmost | tinmes.

S? The nunber of strings on unit i

st The total nunber of strings

A set of nunbers A'(j) is said to be a t-array if the followng

relation is satisfied for all integers n and j:

(3.3)  A(j) = A~

S I Y OB

W will call a sumof this forma t-sum Wen a t-array is represented

as a table of nunbers, then we will let j index the rows and n index
the colums. It is clear that the't-array A(j) is conpletely determ ned
by its values on the vertical strip [-t <n <0 (or any other strip of

wdth t ). W wll call this strip the initialization region




Most of the sets of nunbers which we have defined can be expressed
as t-arrays. The t-array approach exposes many of the interesting properties
of these nunbers which are obscured by the original definitions. Since all
of these numbers are defined in ternms of the novement nunbers, we wll
begi n by showi ng that the nmovement nunbers may be defined as t-arrays.

For each i = 1,...,t+ we define the t-array Ari’(j) by speci fying

t hat A;'t(o) =1 is the only nonzero el ement of the initialization

region for A1;<j) . Ve will showthat for all n>1, 1<i <t and
~all j that Ar.ll(;j) = M(j) . It is clear that the only nonzero val ues
in the colums n = -t are A;t(-l) =1 and A;t(O) =-1for 1 <i <t

If we et 6% denote the Kronecker Delta, then for -t < n < 0 we have

N | DN, « i n_Jj n,.n _ 0 jn.d.. .
A(3) = Bdg + B.8Y and A;(3) = & 89-BLEfor 1< i <t

Therefore, for I-t <n < 0, w have

n-1. . _ an=1.3 n .j _ gn o _ ,n,.
A, —(3-1) = 8, 151 * 8480 = 8148 = 49

and for 2 <i<t

- J n-1_3j n-1_j-1 n-1_j-1
8 - 5-1:150 * 8 lso * 5-1:15-1

n-1,. n-1,, n-1
Ai_l(J) + A't (J'l) = Si-t-l

n . Jj _ ,n,.
842 = &) -

]

These relations correspond to the last two fornulas of (3.1) and since they
hold for n and j in the initialization region, they can be extended to
all values of n and j by a sinple induction argument using the
-recurrence relation (3.3). Since the only nonzero values in the col ums
n=1are Ai(l) =1, we see that the nunbers A?(j) al so satisfy the
first two relations of (3.1). W therefore conclude that r/ﬁl‘(j) = a%(3)

1

for all n>1.

10



Bel ow we list the various t-arrays in which we will be interested

and specify the nonzero values in their respective initialization regions:

: i-t —

MI;(J) Mi (0)—1,
M (35) M (0) = 1 for -t <n<o0,

n, . i-t, .y _ .
s;(3) s; (=1 for j >0,

n,. n,. .
5°(3) s(3) = 1 for I-t <n<Oandj >0,
HE) G = for | >0,

n,. n,.\ _ . .
G (J) G(J) = 41 for I-t <n<oandj >0.

It is not difficult to show that these t-arrays satisfy the definitions

given in (3.2).

Exanple 3.2. Table 3.2 shows a portion of the t-array Sx.ll(j) when
i=2and t =4. |Inthis case, the only nonzero el ements of the

initialization region are Sg(j) =1 for j>0.



L. Optimal Merging.

In this section we will examne sone of the properties of the
pol y-phase nerge when it is inplemented using read-forward tape units.

(Read-forward tape units can be thought of as queues in which strings

are witten at the end of the tape and are read from the beginning.)

O particular inportance is the close relationship with generalized

Fi bonacci numbers. These results will be used to construct an opti nal

pol yphase nerge al gorithmwhich has a nunber of desirable characteristics.

From (2.1) it is easily shown that

n-1 + 1

n _ -
Sy = 8¢ o EpHL for 2 <n <t , and
n _ _,n-1 -t
st—st+...+s€ for‘n>t
: _ — _ o«
| f wedeflnan—Ofor n <o, Fo—l, and Fo= 8 for n>1,
then, fromthe above relations, we have
(4.2) F,o=F 1+ . . *F 4
for n >1 . Because of the simlarity of (4.1) to the defining recurrence

relation for the Fibonacci numbers, we will call these nunbers Fn t he

t - Fi bonacci nunbers.

The t-Fibonacci nunbers play a central role in the problem of analyzing
the nmotion of the strings for the read-forward poly-phase nerge. |ndeed,
suppose that the strings have been dispersed according to the perfect stage
n distribution and that the string positions on each tape are nunbered
from zero starting at the front of the tape. |If we performthe polyphase
merge starting with stage n , then the number of times mthat a string
in position p on one of the tapes will be nmoved is conputed by the

following algorithm



Algorithm 4.1 Sinulate String Moti on.

Step 1. Let m=1, Kk = n-1, and q = p .
Step 2. If k = 0, then termnate.

Step 3. If ¢ <F, ,then go to Step 5.
Step 4. Let q = q-F, and go to Step 6.
Step 5. Let m =ml .

Step 6. Let kK

k-1 and go to Step 2.

This algorithmsinply follows the motion of the string as the polyphase

nerge is performed. In particular, k+t1is the stage nunber of the
pol yphase nerge being performed. If q < R = f: sll“l, then the string

will be moved (and mincremented), but its position on the output tape
will be the sane as its position on the input tape. |f quk’then
the string will not be nmoved but its position will be changed to q-Fy

since F, strings will have been renoved fromthe tape. Since we are

k
simlating the poly-phase nerge, we always have q < Fk+l = sf:ﬂ

may al so be shown by induction) so that g = 0 when the algorithm

(this

t er m nat es.
Let us define the sequence S198p9 ++s8 1 @S follows: we |et
sy = 1 if, when performing Algorithm 4.1, we perform Step 4 with k = ;
ot herw se, we |et s.J = 0. oviously, the number of tines that the string
in position p is noved is N-S -85=ceo-s 4 - From the mechanics
of the algorithmand the fact that it termnates with q = 0, we find that
n-|

s.F,
3=1 J J

P =
Since a string can not remain on a tape for t consecutive nerges, we see
that the sequence Sq5+++»8, 1 Cannot cont ain nore than t-1 consecutive

ones.

13



W have shown that p may be represented as a sum of distinct
t-Fi bonacci nunbers in such a way that at nmost t-l consecutive
t-Fibonacci numbers appear in the sum We will now study sone properties
of this type of representation.

W define a _t-seqguence to be a sequence 8178590 of zeros and ones
Wi th the properties that only finitely many ones appear and that no t
consecutive ones appear. It will sometines be convenient to assune that
§,,=0 for m <0 . The length L(s) of a t-sequence s is defined to
be the largest mfor which Sy = 1 or zero if s, = 0 for all m.
If s and s' are t-sequences, then we say that s < s'if for some m
we have sy < 1 (i.e., Sy =0 and sy =1)and s_ = s! for all

n
n>m. It is clear that this defines a linear ordering of the set of

all t-sequences.
A t-sequence s represents a number F(s) in the sense that

F(s) = Z sF

n>1 nn

W have the follow ng theorem concerning such representations:

Theor entl . For each p >0, there exists a unique t-sequence R(p)

for which p = F(R(p)).Furthernore, if p < p', then R(p) < R(p') .
First we require sone |enmmas:
Lenma 4.1. If s is a t-sequence for which L(s) <n , then F(s) < F .

Proof . If L(s) = 0, then F(s) =0 < F for all n >0 . Now suppose
that s is a t-sequence of length m>0 and that the result has been
proved for all t-sequences of length less than m. COearly there nust

be a k >0 with m=t+1 < k <m for which s, = 0. Ve formthe'

1k




t-sequence s' by letting s!J =5 for j < k and sé =0for j >k .

If k=0, then F(s') = 0 <F If k >0, then L(s') <k <m so

.
that by our induction hypothesis we have F(s') < L Consequently, if

m <n , then we have

- t
F(s) = F(S)+Z/S.F3§FK+Fk_'_l+. . .+
j >k
= = d
S BT Ty T Fp S F
Lemma 4.2. If s and s' are t-sequences for which s < s', then
F(s) < F(s") .
Proof . Let mbe the | argest integer for which s <s! . W then have
sm:O and sn:sr'lfor n>m. From Lenma 4.1 it follows that
m |
F(s) = 2 s.,F, = 2 s, F, + 2 s.F
ksl KET G EE Gy k k
<F + 2 sF < 2 s'F_ . F(s') . a
mogom FX T g5y KE

Lemma 4.3. There are precisely F_ t-sequences for which L(s) < n .

Proof. W will use induction on n . Cearly the result is true when
n=1. If n>1, then we may partition the set of all t-sequences s
for which L(s) <n into t classes as follows: for each k with
1L<k<t, w define the k-th class to be the set of all such t-sequences
s which have the property that s, =1 for n-k <j <n (this condition
i's vacuous when k =1 )and s , =0. Assuming that the |emma has been

proved for all n* <n, we wll showthat for each k that the k-th

elements. If n-k <0, then we nust have s, = 1

cl ass contains Fn 0

k
for any s in the k-th class and therefore the k-th class contains

15



Fn-k = 0 elenments, If n-k >0, then forany t-sequence s in the
k-th class, we nmay construct a t-sequence s' by letting %'. = 1:7] for
j <n-k and s!J =0 for j >n-k . It is easily seen that this

construction defines a bijection between the k-th class and the set of all

t-sequences s' for which L(s') < n-k . Since the latter set contains
Fn-k el enents, so does the k-th class. Summing over k , we find that
there are exactly ¥ _,+. . . +F . = F t-sequences s for which

L(s) <n . 0O

Proof of Theorem k.1. It is clear that the nunbers Fn are unbounded.

Therefore, if p >0 1is given, then we can find an n for which p < F o
By Lemma 4.3, there are F, t-sequences of length less than n which by
Lenma 4.1 are napped by F into the nonnegative integers |ess than L
By Lemma 4.2, this mapping is injective and therefore, by pigeonholing,

I s surjective. Consequently, we can find a t-sequence R(p) for which

p = F(R(p)) . Uniqueness and the strict nonotony of the napping R both

foll ow from Lenma 4. 2. O

Remar ks. Theorem 4.1 is an extension of a well known theorem of
Zeckendorf which concerns the representation of integers by suns of

Fi bonacci nunbers. The extension given here is due to Kmuth ([5],
Exerci se 5.4.2-10) al t hough our proof is sonewhat different. Lynch [6]
has generalized this result and has shown how generalized Fi bonacci
numbers nmay be used to control dispersion and nerging in the standard
polyphase sort. There is another extension of Zeckendorf's theorem
which contains the others as special cases. Let r(n) be a positive

integer-valued function of n >1 which has the property that r(n) > 2

16



for infinitely many values of n . W define the r-Fibonacci nunbers £

by fn:O for n<O, fo=l,andfn:f + . .t f for n >1.

n-1 n-r(n
Every positive integer is uniquely represented by a sum of r(— F)i bonccci
nunber s fn with distinct subscripts n >1 which has the property that
i f fm—l""’fmr(nj all appear in the sum then so does fm . A proof
may be constructed along the lines of our proof of Theorem 4.1 although
some care is required when r(n) =1 . Wen r(n) =n for all n >1
then the above result inplies the existence and uni queness of representations
in the binary number system

Let D(p) be the number of ones in the t-sequence R(p) . In the
discussion following Algorithm4.1 we showed that if a string appears in
position p on sonme tape of the perfect stage n distribution, then the
pol yphase merge will nove the string exactly n-D(p) tines. Therefore,
it is of some interest to determ ne those values of p for which D(p)
takes a given val ue.

Let j be a nonnegative integer. W define E(j) to be the small est

nonnegative integer p for which D(p) =) . The follow ng theorem and

the corollary provide methods of conputing E(j) :

Theorem k.2. E0) =0. If j> 0, then E(j) = E(j-1)+ Fj+k wher e

k= L(3-1)/(t-1)] .

Proof. W will prove the theoremtogether with the fact that L(R(E(j))) = ]+k
for | >0 by induction onj . Cearly E(0O) = 0 . Now suppose that

j >0 and define s = R(E(j)) , m=L(s) , and p = E(j) -F . Cearly

DP) =j-1 sothat p > E(j-1) . If we let k = |(§j-1)/(t-1)] , then

we nust have m> j+k for othrrwise s would contain t consecutive ones

or would have less than j ones. It follows that E(j) > E(j-1)+ Fj+k

17



and to prove equality, it is sufficient to show that D(E(j-1)+ F;j+k) =3 .

We assume that everything has been proved for j*<j . If k =0, then

we clearly have

E(j-1) = Fpo+ ot Fj-l

(the sum being zero when j = 1 ) and since j <t we have D(E(j-1)+ Fj+k) =
j =j+k . If k >0, then let j' = k(t-1)+1 .

W al so observe that L(s)
Cearly j*' <j and we have k = L (n-1)/(t-1) s for j' < n <j . From

our induction hypothesis we obtain

E(j-1) + Fj = E(,j'-l)+Fj,+k+ . ..+Fj K.

However, if we let k' = | (3'-2)/(t-1)], then L(R(E(j'-1))) = j'+k'-1 =
J'*k-2 . Since j-j' <t-1 , it follows that the t-sequence s'= R(E(J'-1))
remains a t-sequence if we |et 51'1 =1for j'+k < n<j+k . It follows

at once that D(E(j-1)+ F and that L(s) = j+k .This conpletes

j+k) =]
the proof. d

Corollary 4.1. For j >0 and k defined as before we have

J+k
E(j) = 2 F -1
m=kt

the sum having at nost t terns.

Pr oof . The proof is by induction onj . Wenj =1 we have k = 0
so the above expression is FtFy =1 = 1 = E(1) . Now suppose that the
-corol lary has been proved for all j*<j , in particular, for j'= k(t-1) .

Since L(n-1)/(t-1)) = k for j'<n <j we have fromthe theorem

B(3) = B(3') + F oy .. tFyy

18



Applying the corollary with j*and k' = [ (j'-1)/(t-1)] = k-1 , we

obt ai n
j l+k| kt_l
E(3') = Z F -1 = = F-
m=k't . m=kt-t =
= Fk‘t_l

Since j'+ktl = kt+1 , it follows that

E(J):Fkt+. Pl

Finally, we observe that j+k-kt = 1+ (j-1) =-k(t-1) < 1+ (t-1) =t
so the sum contains at nmost t terns. O

If J>21, then there are infinitely many positive integers p for
which D(p) =) . W have just shown howto find the snallest such p so
now we will show how to find the others. e will do this by constructing
an al gorithm which conputes, given p >0, the smallest p*'> p for
whi ch D(p') = D(p)
R(p) and s' = R(p') . W already know that g < gt jf

Let s

and only if we can find an mfor which s =0, gt -1, and s’ = s
m m ’ k k

fork >m . Consequently, to find the smallest p'> p for which
D(p*') = D(p) , we nust first find a suitable value of m. Cearly the
smal l er the value of mthat is chosen, the snaller the value of p'.
There are three conditions that mnust satisfy: First there is the
condi tion S, = 0 which was given above. Second, we nust have 5, = 1
for sone k <m for otherwise we would have D(p') > D(p) . Third, we
can not have s . =. . . = Smt.; = 1 for otherwi se any sequence s'

ml

W th sr'n=l and sl'{ - Sy for k >m will not be a t-sequence.
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Therefore, let us choose mto be the snallest integer for which

s =0, s :1,andsm+l+...+s

al ways be made since m = L(s)+1 satisfies the requirenments. If we

bl <t-1 . This choice can

define p' by

p' = B(s;+. ..+s8 )+F + 2 sF
1 m=-2 i K >m kK'k

then it is easily verified that p' > p and that D(p') = D(p) and that
it is the smallest integer to have these properties.

In order to use the formula above, it is necessary to know the
representation R(p) of p . The following algorithm conputes p' by
conbining the conversion of p to R(p) (using a technique simlar to
Algorithm 4.1) and the search for m. The algorithmis easily inplenented
on digital conputers since it is fully arithmetic and does not involve

t - sequences.

Algorithm 4.2. Find the smallest p'>p for which D(p') = D(p)

Step 1. Let g = p and k = 0 and choose some mfor which p < L.

Step 2. If Fmgq,then go to Step 4.

Step 3. Let m=ml| . If m=0, then go to Step 10; otherw se
go to Step 2.

Stepk. Let @' =g, m*'=m, and k' =k .

Step 5. If m<t, then go to Step 7.

Step 6. If Q< Fppq - Fppiq then go to Step 7; otherw se, |et

1
@ =0-(F,q-F 4,), M=mt , and k = kt-1 and
go to Step 8.
Step 7. Let q =q-F , nmEm 1, and k = k+l .

Step 8. If m=0, then go to Step 10.

20



Step 9. If F <a, then go to Step 5; otherwise, *go to Step 3.

Step 10. Terminate with p'=p-q’ +F + B(k-k'-1) .

I+l

To understand this algorithm let s = R(p) . If F <0 in
Step 2, then sy = 1 and the values of q , m, and k are saved. The

| check that q > F 4 -F 4.4

misp = lands ... =0. Steps 6and 7 decrement m

in such a way as to bypass ineligible values of m, that is, those for

= + L i
F+. «+F .. determines whether or

not s=. .. =S5
m

\/\hlchsml:lorsmﬂ:OandsmE:...:sm+t:1.Thevar|abIe
k contains the nunber of nonzero val ues of S whi ch have been encount ered.
At conpletion, the last values of g, m, and k saved by Step 4 enable

us to conpute p'.

Exanple 4.1. First we list sone val ues of F and E(n) for the case

t =4 :
n F,  E(n) n F, E(n)
1 1 1 9 188 1339
2 2 3 10 361 3921
3 L 7 1 693 8897
4 8 22 12 1340 18488
5 15 51 13 2582 54126
6 29 97 14 4976 122820
7 46 285 15 9591 255232
8 98 646 16 18489 TW7209

If we let p = 3913 and let s = R(p) , then it is easily shown that

s {o,2,1,1,0,1,1,0,1,1,1,0,1,0,0, ...}

so the representation of p' has the form

s* = {1,1,0,0,1,1,1,0,1,1,1,0,1,0,0, ...}

s

and it follows that p' = 3917 .
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W are nowin a position to examne the problem of optimizing the
pol yphase merge for an arbitrary initial distribution. Suppose that the
di spersion routine wites XppeensXy strings to units 1, .t
respectively, and that the choice is made to performthe pol yphase nerge
starting with stage n . The only requirement on nis that xi < sz
for each i . If this requirement is met, then it is only necessary to
I ncl ude Sf!._l-xi dummy strings on each tape i in order to obtain the
perfect stage n distribution. e have already observed that the nunber
of times that a string is moved depends upon its tape position. Therefore,
the manner of placement of the dumy strings has a direct influence on
the volune of information noved.

It is quite obvious how to arrange the dispersed strings and the
dummy strings so as to mnimze the volune of information noved. On
each unit i , we place M‘;(l) of the dispersed strings in the MIi‘(l)
string positions which will be noved once, Mf;(g) strings into the
positions which will be noved twice, and so on, until we exhaust the %
di spersed strings; we then place dumy strings in the renaining s’il-xi
string positions. In this way we insure that the dummy strings are in the
positions which will be moved the nost.

One practical difficulty with the above approach is the problem of
placing the dummy strings if the dispersed strings are; already on the
tapes. Wth read-forward tape units it is not permissable tO wite
randomy on a tape. For this reason, we will transformthe above approach
into a practical algorithmin which dummy strings do not explicitly appear.

| f Sg._l(j-l) <x; < S?(J) , then, with the above schene, there wll
be some | movenent string positions which contain dispersed strings and

others which contain dumy strings. \& have not said how they are to be
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arranged. W propose placing all of the j movenent dispersed strings in
front of all of the j nmovement dummy strings on each tape. It does
however have the inportant property that the pattern is preserved as the
pol yphase merge is perfornmed. It is not difficult to see that any tine
during the operation of the merge, any k novenment strings of nonzero
length will be in front of any k nmovement dummy strings on the same tape.

Anot her inportant consequence of this choice is that we are able to
calculate the positions of the j novement dispersed strings. Since these

positions p have the property that | = n-D(p) , we see that the first
of these positions is E(n-j) and that the remaining positions are
cal cul ated by repeated application of Algorithm4.2. Since the pattern
is preserved, the same observation holds throughout the polyphase nerge

The al gorithmwhich we will present is controlled by the two arrays
Cli,jland P[J1 (0 <i <t , 1 <j <n) . cli,jlwill contain the
nunber of strings on tape i which will be noved | times and P[j]
contains the next j novenent position on the input tapes. It is also
convenient to have arrays for the nunbers F, and E(m , but we will
not mention these explicitly.

The inputs to the algorithmare the nunbers XppeeerXy of dispersed
strings on tape units 1,...,t and the starting stage nunber n of the
pol yphase nerge to be performed. (The next three sections of this paper
are devoted to the proper choice of these nunbers.) In order to facilitate
i mpl ementation, we will explicitly mention the tape rew nd operations

required.
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Algorithm 4.3

Step 1.

Step 2.

Step 3.

step k.

Step 5.

Step 6.

Step 7.

Step 8.

Optimal Read- Forward Pol yphase Merge.
[Initialization.] Let cl4,5]-=M(3) for 1<j.<n
and 1<i<t . Let c[o,jl =0 for 1.<j<n . Let
m=n and u=0 . Rewnd all of the tapes.
‘[Initialize c.] For each i = 1,...,t find the smallest
j for which X, <cli,1)+...+C[1,3]; let

cli, 3] = xi-c[i,l] . ee=C[i,3-1] and let c[i,k] = O for
j<k<n.

[Test for termnation.] If m >0, then go to Step 4.
Qtherwise, the sort is finished. Rewind all of the tapes.
The sorted records are on tape u'.

[Initialize for stage m.] For j = 1,...,m let

Plj] = E(mj) if cli,j] > O for some i ; otherw se,
let P[j] = Fo1

[Test for the end of a nmerge,] Find the value of |
which mnimzes P[] (1 <j <m) . If P[§]> F_1
then go to Step 9.

[ Merge sonme strings.] Merge one string from each unit

i #u for which c[4,j]1 >0 and wite the resulting
string to unit u .

[Update C .1 If m>1, then increment C[uj-1] by one.
For each i # u for which c[i,j] >0, decrlerrent cli,3]
by one. If each of these decrements results in a value
of zero, then let P[j] = Fa and go to Step 5.

[Update Q.] Using Algorithmbk.2, find the smallest

p > P[j] for which D(p) = D(P[j]) . Let P[jl=pand

go to Step 5.
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Step 9. [End of a nerge.] Let m=ml , u' =u, and
U=u+lmdT. Rewind tapes u and u* and go to

Step 3.

In view of the discussion, this algorithm is reasonably straightforward.
However, we will comment on a few points. The conputations required in
Step 1 can be performed wthout any additional storage by careful use of

the recurrence relations (3.1). Qur use of F._ in Steps 4 5, and 7

1

is accounted for by the fact that Foq1= Sg}l = Sril which is the nunber
of strings produced by the Stage m nmerge; consequently le is the first

position which will not be used for this merge.

Al'though the conputations required by the algorithm are form dable,
they do not really require much time. The bulk of the conputation is
performed in Steps 5, 7, and & which are performed once for each string
that is output. Since a unit string will represent a large fraction of
the storage utilized by the sort, it is clear the time required will be
insignificant when conpared with the time required for merging.

The storage requirements are not nmuch larger than for other polyphase
merge algorithnms. The only extra storage which is not required by other
algorithnms is the storage for the arrays C and P and, possibly, the
arrays containing the nunbers E(n) and F for a suitable range of m.
W remark that the additional storage required for these arrays when
mergi ng 100000 strings, using ten tapes and the dispersion algorithmwe

will describe, should be less than four hundred |ocations.

Renar ks. Shell {8] has described an optimm pol yphase sort which is
sonmewhat different from ours. He describes a nethod of generating the

D(0),D(1),D(2),.. . directly and uses an array based on this sequence
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to control the placenent of the strings and the assunmed placenent of the
dumy strings. Unfortunately, this array becones prohibitively |arge

for large applications. An accountof Shell's work al so appears in [5]

(Section 5.4.2).
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5. The Vol une Function.

Let us suppose that we have x < g% unit strings which we wish to
merge with the stage n pol yphase nerge. Cbviously, in order to
mnimze the volume, we should place the unit strings into the positions
which will be nmoved the |east and the dummy strings into the positions
which will be noved the most. Thus, if s%(3) < x < §%(5+1), then unit
strings should be placed in all of the s%(3) positions which will be
noved j or fewer tines and in x-sn(j) of the j+1 novenent positions

~Wen this is done, the volune of information which will be noved by the

merge is found to be

217 kMY (k) + (3+1) (x - 87(3))

k=1
W will call the value of this expression the volune function and denote
it by Vn(x) . The expression may be sinplified by observing that
n J J
(#+1)s7() - T kMNk) = T (§-k1)M(k)
k=1 k=1
i

o J
508 wm- D
k=1 i=k i=1 k=1

S Pa) = )

i=1

W may now wite

(5.1) VHx) = (31)x - 6°(3)

where Sn(j) <X < Sn(j+l) )

In Section L4, we |ooked at the sinilar problem of optimzing the

stage n polyphase nmerge when it is known that tapes 1,...,t contain

: 27
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x4 “H¢ dispersed strings, respectively. By similar reasoning, the

volume of information noved in this case is
Vix) + el v’t‘(xt)

where each v’_,z(xi) represents the contribution of tape i to the vol une.

This contribution is given by

(5:2)  vi(x) = (3y+1)x, -65(3,)

where j, is chosen to satisfy s’il(;ji) <x < s‘il(ji+1) .
Cbviously we nust have

Vn(x1+ ceet xt) < V;]_(xl) + ‘

W are interested in those distributions XpseenrXy for which we have

equality. Such a distributionis said to be optimal for stage n .

Theorem 5.1. A distribution XpseeesX is optimal for stage n if and

t

only if we can find a j such that s;‘(j) <x, < s';(j+1) for each i

i

Proof . If the condition is satisfied, then optimality for stage n
follows at once from formulas (5.1) and (5.2) and tke fact that
P =ay )

Conversely, suppose that XL % does not satisfy the condition.
W can then find a j and two indices a and b such that x, < SZ(;])
and x> Sﬁ(j) . If we define the distribution ESPRRRE 4 by x! = x4l

1
x = x-1, and x; = x; for i 4ab, then it is clear that

Va(kg) =V(x,) <3 end

V(%) -Vp(x) < g+l
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[t follows that

v’l‘(xi)+ ,vfc‘(xé) <v§(xl) Vfcl(xt)

and therefore X, A J0) can not be optimal for stage n . O

Example 5.1. W let t =4 as in our other exanples and x = 500 .
Fromthe table in Exanple 2.1, we see that the smallest value of n for
which x < g% is 9 . Let us evaluate Vn(x) for this value of n .
Since s%(5) = 338 <x < 534 = s™(6) , we may apply formula (5.1) with

j=5to obtain
Vx) = (#L)x-6%3) = 6-500 -L78= 2522,

This volume is the best possible volune obtainable with the stage 9 merge
no matter how the strings are dispersed. If we let n =10, then a
similar calculation shows that v(x) = 2448 which illustrates how the
choice of a larger stage nunber than the mnimum may inprove the
performance of the polyphase sort. W will discuss this subject in
Section 6.

W will conclude this section with two theorens concerning the vol une

function which will be required later.

Theorem 5. 2. If x<s™, then le(x) -(x) < x .
Proof . V& nmay assune that x >0 . Let j and k be the unique integers
for which

Sn(j) <X < Sn(j+l) and Sm'l(k) < X < Sml(k+l)

From the recurrence relation for t-arrays, we see that Sn(j+l) <_Sn+l(j+2)

so that
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s™L(k) < x < S g+1) < S¥Y(ge)

which inplies that k < j#1 . Fromthe recurrence relation, we also have

(k-1) < k) . Ve may now write

Vx) - v(x)

(e 1)x - (k) - (3+1)x+ G(3)

(k-j)x+ () - ™)

< (k-j)x+ @'(3) -6 (x-1)

(k-j ) x+ (3-xr1)8™(5)

AN

Theorem 5.3.  Suppose that 0 <x <. . . <x and that x, <s; for

each i . If X 0 .., X i1s a permutation of Xpy eeer¥y whi ch has the

property that xi < s’i1 for each i , then we have
V;_’(xl)+ ...+vfcl(xt) < an(x]'_)+ ...+vfb1(x1':)
Proof . First we will prove the result for a sinple interchange. Suppose

n n
that 1 <a <b <t and that x <8 , x <§ ,and 0<x <x . I|f

x, Sy <x then let | and j* be the unique integers for which
Sp(3) <y < sh(a1)  and  sp(3') <y < (D)
Si nce sZ(k) < Sg(k) for all k, it is clear that | > j* and therefore
VO(y+l) - Vp(y) = 31 < #1 = V(y+l) - VR(y) -
"By sunmng over y , we obtain
V(%) =V (x,) < Vi(x) - Vo(x,)
which may be rewitten as
V(x,) + (x) < Va(x) + V(%)
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The general result is proved by permuting the nunbers xi,...,xf'

into Xys Xy by a series of interchanges which successively place the

proper values into positions 1,...,4 and by applying the above result
at each step. |t is clear that we only change the nunbers y, and y,
in positions a <b when y <y, . Also,sinceyaSSZSSg, we

never place a nunber which exceeds S;l into any position i . O
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6.

optimal Di spersion.

I'n much of the literature on polyphase sorting, it is assumed that
the best starting stage nunber when nerging x strings is the smallest
n for which x < s® . This method general Iy gives nice |ooking results
when the usual pol yphase merge algorithns are used. However, when an
al gorithm such as Algorithm 4.3 or the optinmum pol yphase sort of Shell (8]
Is enployed, it is found that better results may be obtained by choosing

larger values of n . Inthis section we will investigate the problem

of finding the value of n which nininizes v(x) .

A good starting point is the follow ng lema on t-arrays:

Lemma 6.1. Let A denote one of the t-arrays M, S, or G. Let
j and d be positive integers and |let n( j,d) denote the snall est
integer n >1 for which a™(j) >Am‘1(j) , then the followng. are true:
(a) If o' >n(3,a), then AY(j) » A*()
(b) If 3*>j , then n(j',a) > n(j,d) .

Proof. It is easily verified that

(6.1) Al't(o) = ... = .AO(O) >0 = Al(O) = Az(o) =
and that for j >1,

(62) 0 < Ay ... = 23 < ANQ)

Tt is clear that n(j,d) always exists since aA%(j) is zero for n

sufficiently large. From (6.1) it follows that
Ay > 4% > ) > 2N > .

so that n(1,1) =1 and (a) is true for n(1,1) .
Ve will now showthat if (a) is true for n(j,1), then it is true

for n(j,d) for j > 1 and for n(j+1,1) . Let d > 1 be given and
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. . . m-él .
let m>1-t be the snmallest such integer for which A(j) > A di(J)

+
It is clear that md > n(j,1) . W will show that AY(j) ZAn d(J)
for n >m. This is certainly true if n >n(j,1) . Aso, if
m< n < n(j,1), then we have

AG) > ALY > &Y > Ay

Since n(j,d) >m, we see that (a) is true for n(j,d) . Fromthe
recurrence relation for t-arrays, we have

An+l(

§+1) -a%(3+1) = A() -4V
Consequently, if we let d =t in the above argument, we see that we may
choose n(j+1l,1) = m+t and that (a) is true for this choice. The validity
of (a) now follows by induction.

Toprove (b), let j >1 and let n = n(j+1,d) . Fromthe recurrence

relation for t-arrays, we have

%
0 > aA™o(51) - AR(5+1) = ?1 (AT E ) LA ()

so that A*E(3) > A™9K(5) for sone k with 1<k <t . If
n-k >1, then n-k > n(j,a) so that n > n(j,d) . If n-k <0, then
we must have n+td-k > n(j,1) so that

a'3) z ARG > AT > AT

and therefore' n(j,d) =1<n . W have therefore shown that

n(j+1,d) > n(j,d) and (b) foll ows. ]

" The lemma is particularly useful in the followi ng form
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Corollary 6.1. Let A denote one of the t-arrays M, S, or G, then

the following are true:
(a) T¢ A%(3) < A% (3) for some l1<n<n andj >1, then
B <A™ (1) for all gt >

(o) 1f A%(3) > A% (3) for some L <n <n'and j >1, then
By > AT ) for all jtowith1<j' <

Proof. Toprove (a) let d = n'-n. Certainly n <n(J,d) so it
follows that n < n(3',a) for all j*>j and the result follows from
the definition of n(j',a) . This also proves (b) since (b) is the

contrapositive of (a). O

Theorem6.l. |If n <n' and v*(x) > V* (x) for some x < s, then

there exists a j <n for which G'(j) <Gn'(j). Furthernore, if

x<y§Sn, t hen Vn(y) > Vn'(y).

Proof. Cdearly x >0 . Let Jand k be the unique integers for
whi ch

P3) <x < g% and ST (W) < x < 8 ()
VW observe that j < n . By assunption

(#1)x - A3) = P > V&) = (e)x -6 (k)
whi ch reduces to

(3 < M+ (j-K)x .
In order to prove that ¢*(j) < G' (i) we will show that

n, . n'

(x<® (D=6 0 ¢y

then there is nothing to prove.
If j >k, then we have

s (1) = &' () -a® () .

Me

(J-k)x <
1=kl
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Simlarly, if j <k, then
_1? ] ] n'
(j-K)x = -(k-j)x < - Z " (1) = @ (3) -6 (x) -
i=3j+1
Now suppose that there is a snallest y with x <y_<_Snf0r
whi ch V2 (y) <_Vn'(y) . Let j' and k' be the unique integers for
whi ch

sT(3") <y < sP(3'+1) and  s* (k') <y < s (r+1)
Since V(y-1) > V* (y-1) , we find that

§+L = Vy) - V-1 < V@) - vV (3-1)

k'+1

fromwhich it follows that j* < k'. on the other hand, since
Gn(j) < Gn'(j) , we can find an m<j for which Sn(m) < Sn'(m) )
By (a) of Corollary 6.1, we see that sh(m') < sn'(m') for all m'>m .

Since j'+1 > >m, it follows that
1 ?
y < s%(3L) < 8" (34 < st (x') < y

which is inpossible. This conpletes the proof. O

corollary 6.2. Let N(x) be the smallest integer n which mnimzes

V‘n(x) , then N(x) is an increasing function of x .

Proof . Suppose that N(x) > N(x+l) for sonme x and let a = N(x) and
b = N(x1) . Since b <a, we nust have Va(x) < Vb(x) . Al'so, since
x+l < sb <s*, it follows from Theorem 6.1 that v (x+1) < P/ (x+1) which

inplies that N(x+1) # b . a

Renar ks. Most of-these results were first proved by Knuth ([5], Exercise
5.4.2-14), however, our proof of Theoremé.1l is somewhat different. Shell

[8] has observed Corollary 6.2 enpirically.
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In the remainder of this section, we will solve the probl em of
determning the range of values of x for which N(x) takes a given
value. W will begin by examning sone of the nore subtle properties

of the nunbers Gn(j) .

Lemma 6. 2. For each t >2, there exists a nunber n, with the property
t hat Gn(j)<Gml(j) for sone j withl<j <n, if and only if

n>n . Inparticular n2:8, n3:5,nh=1+, and n, =3 for t>5 .

Proof. If Gn(j)<Gn+l(j')for some j with 1<j <n, then we can
find a 3' <j for which sP(3) < Sn+l(j') . By (a) of Corollary 6.1
we find that Sn(k) < Sn+l(k) for k >j > j'and consequently

Gn(n-l) < Gn+l(n-l) . It follows at once that such a j exists if and
only if G®n-1) < ¢®*(n-1) . Furthermore, if this inequality holds
for n, it holds for m#l since, by (a) of Lemma 6.1, we have

Gn-k(n-l) < Gn-k+l

(n-1) for kK = 1,...,4 and it follows fromthe
recurrence relation for t-arrays that

me oy gl

G &tm) = ™ tm-1) - 1) > 0 .
The following table will serve to verify the values given for n, !
n -1 n n n .+l
t
t G ° (a2 6 (a2 G (n-1) G = (n-1)

58 56 109 1

3 20 20 48 56

N 1 11 32 40

>5 t-1 t-2 bt -5 5t=9

Lemma 6.3 For each n > n let J, denote the smallest integer |
for which G'(]) <Gn+l(j) . \" then have

< 3l o<

in S Jnna Inet
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Pr oof . First we will showthat j <3, . Assume that for sone

T < d™Bx) . v may wite

/

k<3 oowe have ™

) -6P(x) = Px-1) - (k1)
= (@) - @ e1))
+ (GP(x-1) - tx-1))

. @) - (D))

. . . n+2 n+l :

The first parenthesized termis equal to G (k) -G (k) and is therefore
positive. The second termis nonnegative since k < 3y Si nce

GMl(k) < Gn+2(k) it follows fromthe recurrence relation for t-arrays
n."'l-m(

that C k-1) < Gmg'm(k-l) for some mwith 1 <m<+t. From(a)

n-t+1

of Lemma 6.1 it follows that Gn—t(k-l) <G (k-1) so the | ast

parenthesi zed term is nonnegative. V¥ have therefore shown that
G (k) < Gn+l(k) whi ch contradicts the minimality of Iy
Si nce Gn(jn) < Gn+l(,jn) , We may show as in the proof of Lemma 6.2
t hat Gn+l( jn+l) < Gn+2( jn+l) and therefore j ,; < Il Finally,
si nce Gn+t(jmt) < Gmtﬂ(jmt) . it follows that
t-k . nHt+l-k | _ .
cal (Jmt-l)<G (Jmtl) for some k with 1<k <%t.
N . . - 1 D
Consequently, J < Jopper S It L - This conpletes the proof.
Lerma 6.4. Define the nunbers N, by N, =19, I\I5 =6, and N, = ng
for t >b4.1f n >N, and j >0, then

267(3) < ¢(3+1) + & H(3-1)

Proof . W will show that the above inequality holds for all but finitely
many values of n >1 and j >0 . The condition on n is sufficient

to exclude these exceptions. W define the t-array D0 by



D%(3) = ™(3+1) + ™ H(3-1) - 267(s) .
It is not difficult to verify that the nonzero el enents of the

initialization region for D are
p°(3) = (¢-1)3 -t for j >1 and
p(-1) = 1 for I-t <n <0

V¢ observe that Do(l) =-11is the only negative elenment for the
initialization region. Tables 6.1(a), 6.1(b), and 6.1(c) each display

a portion of the t-array Dfor t >4, =3, andt =2, respectively.
By inspecting these tables, it is clear that there are no negative val ues
of p™(3) wWith n >0 other than those displayed. Since the negative

entries only appear in the colums for which n <N , it follows that

p*(3) > 0 when n >N, . ]
Theorem 6.2.  If n >N and if we define
_.n ntl, .
¢, =6y - (3,1,

then the followng are true:

(8) 8%(3) < e < s(ID)

n
™15

w1,
(®) 87 7(Jp,-1) < e, < 8 o

n
() vVe) = Ve
(d) Plegd) > vVie 1) if o <8,

(e) c, < 1
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Pr oof . From the definition of j we know that Gn(:ln-l) > Gn+l(3'n'l) :
W therefore have .

n,. S « n . n+l, |

5°(3n) =6 (3) - (3,70 < 67( 3) - 6T 5 -1)

)

_ n+1 ml n+l, .
=c, <G () -6 (G, =8 (3,

From Lenma 6.4
n,, n+l, .
oy = G () -6 TG, ) < @) -6, = SR
Al'so from Lenma 6. 4,
1,. ml, . ml, . . ntl,
s (3,70 = ¢ (3,70 - 6 (2 < Gn(gn) -G (Y =c .

This conpletes the proof of (a) and (b).

From (a) and (b) we have

Vn( cn)

(35 De, - G(3,)

3G (3p) = (31 (5 -1)

Ipey G = e

which is (c). Toprove (d) we first observe that from (a) and (b) we
have Vn+l(cn+l) —Vn+l(cn) = j, and Vn(cn+l) —Vn(cn) > 3t i f e, < st .

From (c) it follows that
Vn(cn+1) -vm'l(cn.+l) > 1+ vn(cn) -ij'(cn) =1 .

By Lenma6.3 we have j, so by (a) and (b)

S I

n+l(

ntl, .
¢ < 8770 £ 8 () < epiy

n

which is (e). This conpletes the proof. O

Corollary 6. 2. c,-®a n -,

Proof . This follows from(e) and the fact that ¢, is an integer. O
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For each t >2, we define the sequence LysDysees @S fol | ows:

— o —
If t>5,thenwelet L =5 for n<nN and L, =c for n >N.
n

If t=2,then we let L, =8 for n <15 ,Ljg = 2513 , L7 = 5954,

I,g =6527, and L, =c for n >N, =19 .

Theorem 6.3. The sequence LysLgseee is strictly increasing and has

the property that Vn+1(x) > V(x) if and only if x < L -

Pr oof . First we will show that the sequence is strictly increasing. W

~already know that s" < s> for all n >1and that ¢ <, for

all n >N, . These observations |eave us with only a few special cases

to consider.
When t >3, we nust show that when n = N-1, we have
s =L <L,q=c, 5 - Wen t > 5 we may show from the appropriate
2 .
t-arrays that S° = 2t-1 and cs = 3t-2 SO that n, < 1I,, since
_ _ -3 _ - o =
Nt=5.W1ent =4, vvehaveNt-hand L3-S =13<22 =c¢, =1L.
For t = 3, wehaveNt:6and L5285=3l<32=c6=L6. For the
remaining special case t = 2, we have Ll5 -5t - 1597 < 2575 = Lig »
Lig <Lj7 < Ljg , and Lyg = 6527 < 10488 = ¢1g = Lyg -

To prove the second part of the theorem it is sufficient, in view
of Theorem 6.1, to show t hat vml(Ln) > vn(Ln) for all n >1 and that

le(Ln+1) < Vn(L-n+1) whenever L < s . If n<n_, then

t!
Gn+l(j) for all j with 0 <j <n, so by Theorem 6.1, we have

When

G'(3) >
V‘ml(Ln) _>_Vn(Ln) . V& also note that 1 = s® for n< n, .
n >N, then everything follows from Theorem 6.2. Since n, = N, for

t >4, this proves the result for t >4 . To extend the result to the
case t = 3, we observe that in this case we have L5 =S and

VS(LS) = 107 <108 = V6(L5) .
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Wen t = 2 , there are a nunmber of special cases to consider. First

we note that L = s" for 8 <n <15 . By direct conputation, we may
verify that

8 _ 9

Vi(Lg) = 331 < 343 = V(L)

V9(L9) 600 < 614 = VJ'O(L9) ,

Vlo(Llo) = 1075 < 1092 = Vn(Llo) )

v3(1,) = 3360 < 3396 = V(L

12) 2

vo(L,) = 5878 < 5901 = V(1)

V() = 10225 < 10200 = V(1)
vl5(L15) = 17700 < 17726 = Vl6(L15) ,
Vo, ) = so3k2 < 30343 = V(1) |
V(L) = k890 = Vo),

V(1) = 85819 < 85820 = V(1) .

W al so have

vO(L, 1) = 30357 > 30356 = vMT(1 1)

48965 > UB963

i
]

7 (1,41) o)

Vo1, g+1) = 85835 > 85834 - V'(L,gt)

whi ch conpl etes the proof of the theorem O

Two consequences of this theorem are easily proved.

Corollary 6. 3. N(x) is the smallest integer n for which x <L .
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Coronary 6.4. 1f v'(x) < ¥ (x), then v (x) < V" (x) for all

n'* >n .

—

Remark.  Corollary 6.4 answers in the affirmative a conjecture of Knuth

([5], Exercise 5.k.2-15).

Tabl e 6.2 provides the val ues ofu L. for t =2,...,7 and
n=1,...,19 . Since such a table is easily prepared, we are able to

provide a very sinple dispersion algorithm

Algorithm 6.1. Optimal Polyphase Sort for x Strings.

Step 1. Find the smallest n for which x <1 .
Step 2. Choose a j for which s§*(3) < x < s™(j+1) .

Step 3.  Find integers x “es Xy for which x = x;+ . ..+x_ and

i 1 t

s’i’(j) < x < s’i’(j+1) for i = 1,...,t .
Step 4. For each i = 1,...,t wite X, strings to tape i
Step 5. Use Algorithm4.3 to performthe polyphase Nerge on the

distribution x )Xy starting at stage n .

l,co.

Remarks.  Since Steps 2 and 3 of the above algorithmand Steps 1 and 2 of

Al gorithm4.3 both require tables of the numbers M'i’(j) , sone of the operations
of these steps can be conbined. The above al gorithm shoul d be conpared with
Shell's optimum di spersion algorithm (8] which is directed by a table of
nunbers closely related to the nunbers L, - The functions vg(x) share

many of the properties of the function v*(x) and nost of the results of

this section can be carried over to these functions. Unfortunately, the
analogues Of the nunbers j, are in general different for each i ;

otherwi se the next section would not have to have been witten.
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7. Blind Dispersion

In practice, it is very difficult to predict the number of strings
that a dispersion routine will provide. However, A gorithm 6 .1 requires
that this nunmber be known before the strings are witten to the tapes.

This brings us to the problemof blind dispersion, that is, dispersion

without knowing the nunber of strings in advance
W Dbegin by observing that no solution to the blind dispersion
problemwll in general be optimal. Indeed, solutions which require
rearrangi ng the contents of the tapes will require additional string
motion which will result in a solution which is at best optimal
Therefore, let us consider a solution in which the strings stay on the
tapes once they are witten. Let us suppose that t = 2 and that we have

0

di spersed st = strings optimally. Since N(14k) = 10 and

Vlo(lhh):: 1075 < 1088 = vll(lhh) , it is clear that the only optinal

distribution is for stage 10 when there are S}O = 55 strings on tape i
one and S%O = 89 strings on tape two. Let us see what happens when we

add another string. Since N(1k5) =11 and Vll( 145) = 1100 < 1143 = vle(lhs),
the best distribution of 145 strings is one which is optimal for stage 11.

-10 -4
> < 9% =85 (6)-1 , we see

However, since §£ > 52 = 511(8)+1 and 8
that there is no way of arriving at a distribution which is optinal for
stage 11 by adding one string to our original distribution. This

pat hol ogy was first discovered by D. E. Knuth.

It is not difficult to see that any blind dispersion technique which
rearranges the contents of the tapes can be transforned into an equival ent
(or perhaps better) method in which the rearranging is performed after al

of the strings have been dispersed. The effectiveness of such a technique
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depends on how cl ose the distribution, prior to rearranging, is to an
optimal distribution. W remark that one kind of rearrangenent which
incurs no extra cost is that of renunbering the tape units. Theorem 5.3
shows that a monotone distribution provides the best renunbering possible.
However, since the distributions which we will consider wll be nonotone
or can be nmade nonotone, we will have no use for this technique.

In the remainder of this section, we will construct a nearly optinal
blind dispersion technique which requires no tape rearrangenent. This
dispersion technique can be used by itself or in conjunction with some
rearrangement al gorithm

Supposethat n >N, . Ve define n{n) to be the largest integer

m for which 3y = 3, From Lenma 6.3 we see that m(n) < mt and

t hat I, = jn for n <m <m(n) . For i = 1,...,t we define
By = min{Si(3)) | n < mg< m(ap+1]
and
B =B +. . . tB.
Theorem 7. 1. For n > N we have
(a) B?SBriHl for 1<i<t ;
(b) By <By<. .. <B;
(c) s’i‘(jn-l) < B? < S?(,jn) for 1<i<t ;

(a) s’i**l(jn-l) < B’i‘ < s’i"'l(;jn) for 1<i<t ;

- (e) Bn5¢n<Bn+t.

[

Remark.  Statenments (c) and (d) inply that the distribution B’ll,. A

IS optimal for both stage n and stage n+l .
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Before we prove the theorem we require a |ema:

Lenma 7. 1. | f n >N, then for i = 1,...,t we have
SI]'"'l(. -l) < Sn(. )
i \Wp™ = Pildp
Pr oof . We will begin by showing that for n > 1 we have
. ntl, n,. ntl, .
(7-1) S?(j) -8« ~(3-1) > & (§-1) -6 (3-1)

with only finitely many exceptions. W& define the t-arrays A, for

i = 1,...,t and D by

a23) = s5) -7 ()
p(3) = &30 -671(s5-)

It is not difficult to verify that the nonzero el ements of the initialization

regions for the t-arrays Ay - nhy are

Akt ) =1 for L<i<t and J>0 |

i ()

Ai"t'l(j) = -1 for 1<i <t and Jj>1 ,
A(?(j) = -1 for 1<i<t and | >2, and
1

AY(0) = A(l) =1

Also, the nonzero el enents of the initialization region for the t-array D
are

p0() =t -(t-1)j  for j >1 .
Tables 7.1(a) to 7.1(g) each display portions of the t-arrays A;-D for

various ranges of t and i . By inspection, we see that the only

negative entries outside of the initialization region are those displayed.

Except in the case t =i = 2, we see that (7.1) holds for all n >N,

45



and i = 1,...,4 . Fromthe definition of J, + We see t hat

ntl, .
(3

G(3,-1) > 67 (3 -1) and therefore by (7.1) we have sj(i ) > STl(jn-l) ,

In the exceptional case we have n = N =19 and j19
verify directly that s:2L9(15) = 6050 > 5270 = sgo(lh) . Thi s completes

= 15 so we nay

the proof. O

Proof. of Theorem 7.1. If J then m(n) = m(n+tl) so that (a)

n - jn+l !
is obvious. If this is not the case, then by Lemma 6.3, we must have

Ipey = dgtl SO t hat si (,3 ) < si (jml) . Aso, since m(ntl) < ntt
we see that s. (jn) < Si(jml) for m2 < k. < m(nt1)+1 ;: this foll ows
fromthe fact that s (j) is atermof the t-sum which conputes
sl.;(jml) . Ve have therefore shown that .B;! < srfl(:Jn) < B’fl » Which
Is (a). Statement (b) follows at once fromthe fact that
S(j) <. .. <8 for all n>landj >1.

To prove (c) and (d) we first observe that the definition of B?
implies that B < si(;j ) and Bi <s (J) It is also clear that
sr.l(j oD < sg(jn) and S (;1 -1) < 8§ (Jn) . From Lemma 7.1, we have

S,

ml
;g

j-1) < si(g ) . Finally, by reasoning similar to that used in the
above paragraph, we have s?(jn-l) < Sl;(Jn) for ntl < k < m(m+1) and
IrPl(;jn-l) < SI;(jn) for M2 < k <m(n)+1 if m(n) > n . Fromthese
inequalities, it follows at once that s;_‘(jn-l) < Bri1 and that

nJ'I(,jn-l) < B? whi ch conpletes the proof of (c) and (d).

By (c) we have B' < §°(j) <e, . If welet n'=map1, then it

is clear that I = 371 dpr 1 T 3 and n' < mt . Therefore, by
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(a) and (c) we have

n', . n', . n' ntt
Cn < cnt_l <8 (Jn'-l) = 8 (Jnt'l) < B < B

whi ch establishes (e) and conpletes the proof of the theorem g

From the theorem two inportant properties of the distributions

n

Bys . . .,B_E are apparent. First, we may arrive at the distribution

BTl,,k,.,Bf'l by sinply adding strings to the distribution Bg,. : .,Bf:.
Second, if we are dispersing for stage n and we reach the distribution
Brll,. . .,chl , then we may begin dispersing for stage n+tl since the

distribution is optimal for both stages. Cearly we can base a blind
di spersion algorithm on these properties of the nunbers Bri1 . However,
since we will be making several refinements, it is of value to exam ne
the general structure of such an algorithm

W define a quota schene for polyphase dispersion to be a famly of

nonnegative integers Qn,Q?_,. : .,Q,rtl, n =1,2,... which have the follow ng

properties forn>1 and 1<i<t:

n n n n+l n n+l
Qn5Q31+...+chl,andQn—ocoasn—'oo.

Following is the dispersion algorithmwhich is directed by the quota

scheme. The counters x X

AR
been"witten to tapes 1,...,t . Upon conpletion, the values of

contain the nunbers of strings which have

Xps.eesXy and n are the parameters for initializing A gorithm 4.3.
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Algorithm7.1 Quota-Directed Polyphase Di spersion,

Step 1. Let n =1 and xi:yi:Ofor I = 1yeeeyt .

Step 2. If there are no nore strings to disperse, then termnate
t he algorithm.

Step 3. If x;+...+x, =q", then let N =ntl and
V==t T 0 and repeat this step.

Step 4. Choose sone i for which X, <y [f this choice can
not be made, then go to Step 6.

Step 5. Wite a string to tape unit i , let x, = x+L and go

i
to Step 2.
Step 6. Find the smallest j for which x; < s?(,j) for some i

Let y, = min(Q},s;(5) for i =1, ...t . Goto Step k.

Informal |y, this algorithm disperses for stage n keeping x, < Q:
for each i until X+ . eetx S Q" and then begins dispersing for
stage mt1 . \Wen the algorithmis dispersing for stage n, the strings
are witten in such a way as to mnimze the growh of v‘i(xl)+ .ot vfc‘(xt) :

Since the choice of i made in Step 4 is arbitrary, the distribution

Xy eeesX,  MRY be uncertain when the algorithmswitches fromstage nto
stage ntl . For this reason, the first value of j chosen for stage

ntl by Step 6my vary thereby causing the volume of the sort to vary.
Thi s uncertainty disappears if q° = Q’1’+ : ..+Q,€ or if it is known that
when we switch fromstage n to stage ntl , then the distribution is
optimal for stage ml . Indeed, in the first case the distribution is
conpletely known and in the second case we know that | is the smallest
integer for which X+ eetx < Sml(j) . The quota scheme which we

t
will consider has one or the other of these properties for each n .
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Wien the quota schenme has these properties, then Algorithm7.1 may
be transforned into a simpler table-directed al gorithm The tabl es have
the entries rlflfq ,51,...,31(1_' for Kk >1 and are constructed as follows:
We initialize the counter k to zero and performA gorithm7.1 with an
unlimted supply of strings; after each tine that Step 6 is performed,
we increnment k by one and | et |}1<: n, qk:Qn, and qi;_ =V for

each i . The sinplified algorithm follows:

Algorithm 7.2 Sinplified Quota-Directed Polyphase Di spersion.

Step 1. Letkzlandxl:...:xt:o.

Step 2. If there are no nore strings to disperse, then termnate
the algorithm

Step 3. | f x1+"‘+xt:qk’ then let k = k+1 .

Step 4. Choose sonme i for which Xy < qji_(. If this choice can
not be made, then let k = k1 and go to Step 3.

Step 5. Wite a string to unit i , |et X, = x4l and go to

Step 2.

At termnation, the paranmeters for the pol yphase nerge algorithmare
o and I Since the required tables nmay be prepared in advance,
this algorithmprovides a very conpact nethod of dispersing for the
pol yphase sort. For nost applications, the nmaxi num value of k should
never exceed forty.
W will now present the rules for constructing the quota scheme for

the-blind polyphase dispersion algorithm
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¢ oon n, . ,
1. If n>N, and if Bi<si(3n)for some i , then we |et
Q" = B and Qf; = BI; for is=1,...,% .
2. 1f n >N, and if B? = Sril(jn) for each i , then we let
n _ . N, - ml, ., n+l
Q = m1n(Si(Jn+l), 85 (Jn), By )

for i =1,...,4 and we |et

Q" = min(c_,Qy+ . ..+Q) .

3. [f t >3and 1 <n <N_, then we |et

t
Qn = s and Q? = SIi1 for i = 1yeee,t .

L. If t=2 and n <N, = 19 then we |et

t
Qn = s" and Q? = S;l for n <L and i = 1,...,%
and, in addition, we |et
= oo, @ -mes L Q= 1 = s
16 1
Q = 816(15) = 986 , Q;'6 = 826(15) = 1596 ,

1383 Q,;J - S;"?(lh) - olhe2

Qi8 = s18(16) - 2567, Q;B = 328(16) = L4163

17 18
Ry = 87 (13)

]

. To show that these rules define a quota scheme, we will being by show ng

that for n >N, , we have

nt+l

- 2 o g™ and BI;SQ,!ilSBi for i = 1,...,%.

B <Q <

These relations are obvious when Rule 1 is applied. If Rule 2 is applied

i nstead, we have, from Theorens 6.2 and 7.1,
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n _ .n,. n ntl _—

B, = Si(gn) < Q; < B for i = 1,...,4 and
n __n n n n ntl

B —S(jn)SQ SQt. . . +Q <B

For t >3, we nust show that when n = N, -1, that we have s < Qn+l
and S_:._l SQ,-_ 1 for i =1,...,t . Jearly, it is sufficient to show

t hat S‘;SBI;for each i . For ¢+ =3, we have N, = 6 and

6 6
S;)__—_- 7<12=]3l‘,sg=]'L<19=B2 s s§=13<27=]3

W N

Simlarly, for t = 4 we have Nt=l+and

3 4

8§ =2<3 =By , Sg=5<5=Qg ’
I

s§=l+<6=135 s si=1+<7=Qi*L

For t > 5, we have N, =3 and using the t-array representation, it
may be shown that G"(2) = 2t+ (n-1)(t-1-n/2) for 1 < n <t from which

it follows that G5(2) < vee <Gt'l(2) = Gt(2) so that n(3) = t-2 since

Jz =2 . ksing t-arrays, we may also show that si(e) <. .. < 5;(2) for
each i so that S?(e) < 82(2) = Bz for each i . The proof that

Rul e kalso contributes to a quota schene is straightforward once we

observe that when t = 2 we have

15 _ _ 19 _ 19 _
s1 = 610 , S, = 987 , By = 3588 , B = 6050 .

W have al ready seen how the nunbers B" and B?,...,Bg can be
used to describe blind polyphase dispersion so Rule 1 requires no
explanation. Rule 2 represents a refinenent in which Q" is pushed
to the largest value not exceeding ¢, for which we can switch from
stage n to stage mtl with a distribution which is optimal for both
stages. Rule 2 will be used for each n for which Iy = 3L

n

Rules 3 and 4 sinply fill out the quota schene for small values of n .
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The special assignments in Rule 4 were chosen subjectively to insure
reasonably good perfornance.

If we are dispersing using the quota schene just described, it is
clear that when the nunber of strings x is large, then we will swtch
stages with a distribution which is optimal for both stages. Consequently,
the volume of the sort will be VN'(X)(x) for sonme integer N'(x) when X
is sufficiently large. Since Q" e forn>N , it is clear that
N'(X) > ... Onthe other hand, since c, <Bn""c 5Qn+t , e see that
N (X) < N(x)+t .

The blind pol yphase sort which we have described is al most as good
as the optinal polyphase sort of Al gorithm 6.1, when the number of strings
s in the range of the size of nost applications (say, |less than a thousand),
the two sorts are al nost always equivalent. Wien the nunber of strings
is large, it can be shown that the two algorithns are equival ent infintely
often. Indeed, this happens for Sn(jn) strings every tine that
jn+l = jn+l . In the next section we will show that the two al gorithns
are also asynptotically equivalent.

Exanple 7.1. Table 7.2 displays a portion of the sinplified quota scheme

for the case t = L .
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8.  Asymptotic Perfornmance.

In this section, we will study the performance of the algorithms
whi ch we have described when the nunber of strings is large. There are
two volunmes which we are interested in estimating. First there is the

vol une of the optinal polyphase sort of Section 6,

V(X) = VN(X)(X) >
and, second, there is the volume of the blind polyphase sort, when x is

large, this is

Vi) . )
W will show that when x is large that both of these volunes are

asymptotically equal to

x| og, X+ %xlogt log, X+ o( x)
The reader who is not famliar with asynptotic methods may find [1] or
the first chapter of [L] to be helpful.

Qur startingpoint is an interesting connection between the nmovenent
nunbers and the theory of probability. Let Y1s¥05 . be independent
random vari abl es which each take on the values 1,2,...,t with equal
probability t'l . Sinple calculations will show that each vy has an

2

expectation u = (t+1)/2 and a variance ¢ = (te-l)/12 . For positive

integers m and k we define

(8.1) p(m,k) = prob(y;+ . ..+y, =M

Lemma 8.1. For n >1 and j >1, we have M‘;(j) = tjp(n,j) .

Proof . Let q(z) = ZHzo+ . . tgd for the real variable z . W wll

begin by show ng that
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(8.2) = M@ = a@)?

nzl

Since the only nonzero values of M (1) are M)(1) = 1 when 1 <n <t

we see that (8.2) is true when | =1 . Furthermore, given (8.2) and the

fact that M:-k(,j) =0 when n< k, we may wite

t
T = T T gTy)"

n>1 n>1 k=1
t
o Z\ Zk E =k )zn-k
k=1 nzll’Q 4
t k : +1
= Z 74(2)] = a(z)?
k=1

so that (8.2) follows by induction. Fromthe formof q(z) , we see that

®in q(z)j is precisely the nunber of ways that n

the coefficient of z
may be written as the ordered sumof | integers, not necessarily distinct,
chosen fromthe set {1,2,...,4} . Since this nunber is precisely
tjp(n,,j) . the proof is conplete.

Techniques for estimating probabilities of the form(8.1) are well
known.  For our purposes, the best such approximation follows froma

theorem of c. G. Esseen which is given on page 2kl of [3]:

-s%/2 Q(s) Q. (s) Qi(s) Q,(s)
e 1 1 2 3 L 1
Pl = oV 2x (kl/a " k i /2 * K2 * 72 * O(EE)

where we have witten s = (m-pk)/o/K and where Q,(8) » Qy(s) QB(s) s

QL;(S) are polynomals in which the coefficients depend only on the nmonents
of vy which, in turn, depend only on ¢t . It turns out that all of the

centralized noments of ¥y of odd order are zero. This |eads to some

sinplifications; jn particular Ql(s) = Qj(s) = 0 and Q,Q(s) t akes on
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the sinplified form c(s]*- 65° + 3) in which c depends only on t .

Using the estimtes
2
s /2
a(s) = 3e+0(sP+ "),

2
=72 q(s) = o))

we obtain the approximtion

| N 8
1 1 2 3 1 s
P = onen (kl/2 (L-s/) e jE) ! O(ks/z ' ]&:'S-/2 ' k5/2)

which may be witten in the form

8

\2
1 1 1 - (m-pk 1+ (m-pk
p(m,k) = ; + 3¢ - +0 _K_TL)_) )
’ o\or (klﬁ x/? ( 207 )) ( k7! @

To sinmplify subsequent calculations, we will use the synbol Pn(z) to

represent generically an n-th degree polynomal in z in which the
coefficient of z" is positive and in which all of the coefficients
are functions only of t . Two distinct appearances of the symbol in
the text need not represent the sane polynomal. Wth this convention,

we now have
8
1 1 1+ (m-pk
(8.3)  plmk) = - e, (m - k) + 0 —A7LL)
’ oo w22 ¢ k! 2

Lemma 8.2. W have

) j \8
(8-)4') \/:]'-'t-JMn‘(j) = B _ _]_' Pg(n-uj)+0(l+ n-uj )
aVor Y

25



From the [ast, two formulas of (3 .1), we have

M(3) = D) + e+ TH(ge)

Pr oof .

so that

M9 = 8T+ EDTEGD +  eE(ge)

Therefore, by Lemma 8.1, (8.3), and the facts that

1 _ 1 1
Gu¥E T T T O( 35;2) ,
1 I SN B
T N C PR

we have
. t . .
£ ]) = D (sl M (A1)
i=1

t
b D (t-2+1)p(n-1,3-1)

=t
-1 t t
t t-itl
= T (t-i+l) - 2 Po(n=-pj+i+
ov2xj i=(l ) 1-1 2 2 TH 2
8
1+ (n-pj
+O( 372 )
which is easily reduced to the form(8.4). 0
Lemma 8.3. W have
. 2 Ry(n - pd N
(8.5) V3 t79a(5) - —& t o o - ) vof Trln-uj) 22
o2 (t-1) j j
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Pr oof . From our definitions we have

a"(3)

I
Mo
wn

o
—
.
-
i
n Mo

J j-
T (Gerl)MU(k) = D (eel)MP(j-k)
k=1 k=0
Using this fornula and Lemma 8.2, we obtain
. j-1 .
t79¢N D = T 7Y ()M (k)
k=0

j
k

Aoz

(n - ud + pk)
7K (1) | —2 = Pkl ~ ) +
oVer (3072 (w2 )

-l . 8
0 Z t-k K+l 1+ (n -u,J+p,k)
' (k A S

In order to sinplify the above approxi mation, we need to be able to
estimate suns of the form
j -1 a

S(a,b) = L —E 78
k=0 (j-k)

for. a =0,1,...,9 and b = 1/2,3/2,5/2 . Let us wite m= |Vj-1.
If j is sufficiently large, then we wll have ka<(3/2)k for all
k >mand a = 0,1,...,11 . From the binonial expansion, it is clear

that for k <m, we have

5
1b =—lf>'+ 251+0( ;2)
(j-k) J J J

[t is also clear that
2 a, -k
Z k%Y = s(a)+o((3/26)")
k=0

wher e
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m a at+l J=1 a &
s(a,d) = 2 5.5+ b.:;_l £+ T .k 5 b
k=0 \ j 3 k=m+l (j-k)

m a+?2
+ol = kbl-2 17K
k=0 j

=s%)+b?ﬂ”+o(OMwm+?ﬁ)

since the second sumis o((3/2t)™) and the last sumis 0(1/jb+2) :
Since (3/28)" is 0(1/jb+2) for each b , we may replace the above

error estimate by o(l/jb+2) . The conclusion of this lemma now fol | ows

fromthe facts that

s(0) = t/(t-1) and  s(1) = t/(t-1)% O

‘Corollary 8. 1. If n-pj = 1) , then

. 3
3 ) - T o)
ov2x (t-l)2 :
Pr oof . This is a sinple consequence of the lenma. O

Corollary 8. 2. Let 3, be defined as in Section 6, we then have

n-uj, = A1) .

Pr oof . W recall that 3y is the smallest integer j for which
Gn(j) < Gn+l(j) . From the estimte (8.5), we obtain
. P, (n - p.,_']) s 8
G436 - @) = 2 j N O(1+ (nzua)
J
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Wth e understood to be the Py appearing above, |let a be the real
number which satisfies ®;(n-pa) =0 . If j >Tal+l, then clearly
Pl(n-p.j) is less than sone negative quantity which is independent of

n and if j < |aj-1, then Pl(n - wj) is larger than sonme positive
quantity which is independent of n . For j in the range

Laj -1 <j <Tlal+l, we have n-yuj =o(1) and the error estimte above
becones 0(j'2) so the first termof the estimate domnates. It follows

that j lies within this range for large n and the proof is conplete.

Theorem 8. 1. v(x) = x log, X + %‘-x log, log, X+ o( x)

Proof. Let c, = Gn(jn) -Gn+l(j n—l) be defined as in Section 6. From

Corollarys 8.1 and 8.2 it is easily shown that

— t -1
(8.6 it P = e v oaZh

If x is sufficiently large, then for n = N(x) we have ¢ g <X <e .

Let | be the unique integer for which Sn(j) <x < sn(j+1) . From

Theorem 6.2, it is clear that Jpa1~t < <3, Using the formla

v(x) = (3+Dx -6 (3)

we nmay wite

(8.7) V(X) -x log, x = x(j+1-log, x) -G"(3) .

From (8.6) we have
log, ¢, = 3, - 5108 3 + A

and therefore, since 0 <j -, <1,
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j+l-log, x < j+|-|0gt 1
= §+1-3 + = log 4, + O(1)
n" 7 % Jn1

< jn+l-jn+%logt jn + 1)

3 1og, 3, + A
Simlarly
j+l-logt X > j+l-logt cn = %logt jn + 0(1)
and we have shown that
(8 .8) j+1-log, x =-2“1-log,c ,jn+0(l)
conparing Corollary 8.1 and (8.6) we see that

(3) = o(e o(x) .

n-l) =

From (8.8) and the fact that 3,2 < <3, . we have

;]I'lllogt X = 1+ O(j;l log, Jp)
so that
log, I, -log, log, X = O(,j;l log, J,) = (1)
Putting everything together, (8.7) becones
V(x) -x log, X = §1x log, 3, + Q x)
= %xlogtlogtx+o(x)

and the proof is complete. [J
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Corollary 8.3. V' (x) = X log, x + -%x log, log, X + o( x)

Pr oof . In Section 7 we showed that N(x) < N'(x) < N(x)+t . From

Theorem 5.3, it follows that
0 <) - v(x) = W e T @) < (N (x) -nE)x < (5-1)x
so that v'(x) -V(x) = Q(x) and the result follows fromthe theorem [

It is well known (see Section 5.4.4 of [5]) that the best possible
volune for a nerge sort which perforns p-way nerges is x logP x+0(x) .
For this reason, a tape sort with T tape units has an optimm vol ue of
X logn_q X * o(x) since such a sort can performat most T-1 -way nerges.
A tape sort with T tape units which has a volume asynptotic to

X IOgT_l x is said to be asynptotically optimal. Theorem 8.1 and

Corol lary 8.3 imply that both the optimal polyphase sort and the blind

polyphase sort are asynptotically optinal.

Renarks. The optimal polyphase sort appears to be the first known exanple
of an asynptotically optimal read forward tape sort. Qher exanples will
appear in [9]. Several asynptotically optimal read backward sorts are
known (see, for exanple, Section 5.4.4 of [5]) but these sorts have vol umes
of the form x logT_l x+0(x) which is smaller than the vol une we have
derived for the optinal polyphase sort. One wonders if the vol une

X | og, X+ % X | ogt log, X + o(x) can be inproved upon for read forward
s;)rts or whether it represents sone theoretical mninum A sinplified

sel f-contained anal ysis of the optimal polyphase sort, which is probably

suitable for students, appears in [10].
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9. Concluding Remarks.

Two questions concerning the optimal polyphase sort remain open for
investigation. First there is the problemof estimating the amount of
tine the algorithmspends waiting for tapes to rewind and second there
is the problem of optimzing the read backward pol yphase sort.

The rewind tine is significant since both the blind and the optinal
pol yphase sorts performlarge nunbers of tape rewind operations. O course
we may suppose that the total anount of rewi nding corresponds to the vol une
"of information noved. However, the pol yphase nerge rew nds two tapes
sinul taneously so it is conceivable that a highly unbal anced situation
may arise in which one of the two tapes being rewound woul d be considerably
| onger than the other. This nmight cause the total rewind wait tine to
vary fromthe volume of the merge to twce that volune.

In the read backward pol yphase sort, the tape units act as stacks
so the direction in which a string is witten is reversed when the string
is noved. Therefore, strings which will be noved an odd nunber of times
must be witten in the opposite direction fromstrings which will. be
witten an even nunber of times. For this reason, strings are no |onger
interchangable so the dispersion routine must concern itself with the
details of placing the dumy strings.

In this paper, we have limted the discussion to the traditional
pol yphase nerge in which the appoi ntment of the output tapes is cyclic.
The polyphase nmerge, however, is just a special case of the class of
single-output read-forward merge algorithms. Some information about these
techni ques can be found in the exercises for Sections 5.4.2 and 5.k.k of [5].

It is known for exanple that in certain special cases, the optinmal polyphase
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sort can be beaten by other nethods of merging. In([9] it is shown that
a large class of single-output read-forward nerge algorithms also give

rise to asynptotically optimal sorting algorithns.
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My (3)

M3 (3)

My (3)

M (3)

Movenment Nunbers for £t = 4 .

Table 3.1.
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12

25
37
43

17
22
25

Ly

23

.

(3) for t

n
Sp

Table 3.2.
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Table 6.1(a). Proof of Lema 6.4 (t > 4)

n= 0 1 2 3 4 5
] =0 0 3 2
1 1 0 3 5
2 1 -1 -1 2 8
3 3 1 0 -1 0 y
4 4 o] -1

Tabl e 6.1(b). Proof of Lemma 6.4 (t = 3)
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k= S

[
B ow

[EETE
o o1

[N TN
oo

=
O

t =2 t =3
2 3

3 5

5 9

8 17

13 31

21 54

34 95

55 172

89 279
144 534
233 819
377 1634
610 2400
987 4958
1597 7028
2573 14952
3954 20582
6527 44898
10488 60297
Table 6. 2. L,

for

108
243
358
455
1196
1562
4033
5378
6455
18560
22875
64188
80858

2<t<T7T and 1 <n<19 .
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ct
I

5

5
9
13
28
ho
60

153
215
268
778
1033
1248
3909
4969
5840
19408
23917

27556
95802

ct
I
(o)}

97
282

385
480
554
1995
2485
2900
10577
13096
15335
17028
69843

147
167
639
791
92l
1016
4396
5250
5978
6498
30163
35027



j =0 0 1
1 1 0 1
2 1 t-2 1

Table 7.1(a). ProofoflLemma7.1 (t >L4, i=t)

Table 7.1(b). ProofoflLemma7.1 (t >3, i =1)

g,O i -t it 0 12

10

0
1 r'-l 1 0 ... -1 1 1
2 -110 - t-3 -1 20

Table 7.1(c). Proof of Lemma 7.1 (t >4 ,1<i <t)
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n= 2 -1 0 1 2
j =0 0 1 0
1 -1 1 1
2 | 1 1 0 1 1
Table 7.1(d). ProofofLemn7.1 (t =3, 1i=2) .
n= 1 0 1 2 3 L >
=0 0 1
1 -1 0 1 1 1
2 -1 1 -1 0 2 3
3 -1 3 0 -1 0 1 5
i -1 5 2 2 2 -1 0
Table 7.1(e). ProofoflLemma7.1 (t =3, i =3) .
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13
21

22
30

10
13
13

34
36

23
28

21

17
22
23
21

10
13
13
14
14
34
44
44

71

26

75
100

34
44
44
79
100

15

30

37

108
322

37

27
57
17

71

2h1
243
338
358
423

92
101

128

78

151
151

oL
9k
100
100
266

50

128

50

10
10

178
178
394

144
144
345

50

455
472
1156

50
151

11

10

13
14
15
16
17
18
19
20
21

22

Sinplified Quota Scheme for t =4 .

Table 7.2.
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