
OPTIMAL POLYPHASE SORTING

bY

Derek A. Zave

STAN-(X-76-543
MARCH 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

c

Optimal Polyphase Sorting

by Derek A. Zave

Computer Science Department
Stanford University

Stanford, California 94305

Abstract

A read-forward polyphase merge algorithm is described which performs

the polyphase merge starting from an arbitrary string distribution. This

algorithm minimizes the volume of information moved. Since this volume

is easily computed, it is possible to construct dispersion algorithms

which anticipate the merge algorithm. Two such dispersion techniques

are described. The first algorithm requires that the number of strings

to be dispersed be known in advance; this algorithm is optimal. The

second algorithm makes no such requirement, but is not always optimal.

In addition, performance estimates are derived and both algorithms are

shown to be asymptotically optimal.

Keywords and Phrases: Sorting, tape sorting, merge sorting, polyphase

sorting, tape merging, optimal merging, optimal polyphase

dispersion, blind dispersion, polyphase dispersion, Fibonacci

numbers , generalized Fibonacci numbers, Zeckendorf Theorem,

generalized Zeckendorf Theorem.

CR Categories: 5.31, 5.30.

This research was supported in part by National Science Foundation grant
MCS 72-03752 AO3, -by the Office of Naval Research contract NR 044-402,
and by IBM Corporation. Reproduction in whole or in part is permitted
for any purpose of the United States Government.

1

1. Introduction.-

This paper presents a mathematical analysis of the structure of the

polyphase sort with special emphasis on those properties which are related

to the performance of the sort. This analysis will enable us to construct

a poly-phase sorting algorithm with optimal performance characteristics.

We will also construct a near-optimal polyphase sort which is more suitable

for applications. Finally, we will investigate the asymptotic performance

of both of these algorithms.

Although the polyphase sort has been in use for over a decade,

comparatively little work has been done in the direction of optimizing

its performance. In an early unpublished paper [7], Sackman and Singer

developed methods for predicting the performance of the polyphase merge

and showed empirically that in certain cases that the performance of the

usual method of implementing the polyphase sort could be greatly improved.

Independently, Shell [8] developed similar techniques and used them along

with some empirical observations to construct an optimal polyphase

sorting algorithm. D. E. Knuth [5] has also investigated the optimal

polyphase sort and several of his results have been incorporated into

this paper.

k

2. The Polyphase Merge.

We will begin with a brief discussion of the polyphase merge which

will serve primarily to introduce our terminology. Further details, as

well as information on internal sorting and string merging, which we will

not discuss, may be found in the books of Flores [2] and Knuth [5].

Let us suppose that we are given a collection of records containing

various kinds of information and let us further suppose that some linear

ordering has been defined on this collection. To sort the records is to

arrange them into a sequence which is increasing with respect to the

ordering relation. One method of accomplishing this is by means of merging.

First, the collection of records is partitioned into a number of small

groups of records which each sorted to form a "string" of records.S e c o n d ,

the sorted strings are merged to form larger sorted strings, and so on,

until a single sorted string containing all of the records is formed.

In practice, merge sorts are employed when there are more records

to be sorted than may be accommodated by a computer% main storage. Groups

of records are sorted into strings using the available main storage. The

strings are then "dispersed" to some secondary storage medium such as mass

storage or magnetic tape. The string merging operations are performed as

transfers of information from one part of secondary storage to another.

The poly-phase sort is a merge sort which is characterized by the

manner in which the dispersed strings are merged. Let us suppose that

there are T > 3 tape units which are numbered from zero to t = T-l .

We define the distribution numbers Sy for i = I,...+ and n > 1 by

3

S1i
=l for l<i<t- -

(24
n-l

ST = St for n >l, and

s; = sy-; + St-l for n>l and 2<i<t .- -

From this definition it is easily show that for n > 1 , we have

(2*2) s"1 < s; ,< . . . -<St� l

Suppose that for some n 2 1 that Sy + . . . + St strings have been

*dispersed to the tapes in the following fashion:

tape: 0 1 2 . . . t

strings: 0 sT
s; . . . St� l

We will call this configuration the perfect stage n distribution

SUITl

(2.3) Sn = s; + . . . + St"

will be called the stage n perfect number.

and the

Exampie 2.1. The following table provides some values of the distribution

numbers and perfect numbers when T = 5 (t = 4) :

n

5
6

7
8

9
10

n
sl

1 1

1 2

2 3
4 6

8 12

15 23

29 44

56 85
108 164

208 316

n
s2

1

2

4

7
14

27

52
100

193

372

1

2

4

8

15

29

56
108

208

401

Sn

4

7

13

25

49

94
181

349

673

1297

4

Suppose that we start with the perfect stage n distribution'. If

we merge together one string from each of the tapes l,...,t , then we

will obtain a single string which may be written to unit zero. If n=l,

then this operation will merge all of the strings since each tape contains

exactly one string. If n>l, then, in view of (2.2), we may perform

this operation S;f times after which we will arrive at the distribution.

tape: 0 1 2 . . . t

strings:
n

sl O SE-s"l .*a SF -s"l

From the formulas (2.1) we see that this distribution is the same as

tape: 0 1 2 . . . t

strings:
n-l

St 0
n-l
s1

n-l
. . . st-l

so that if we renumber the tapes t,o,1,2,...,t-1 , then we obtain the

perfect stage n-l distribution.

By repeating this process, we obtain the perfect distributions for

stages n-2, n-3 , and so on, until we arrive at the perfect distribution

for stage one. A single merge will then produce the final sorted string.

This method of merging a perfect number of strings is called the plyphase

merge.

In practice, the distribution routine rarely produces a perfect

number of strings. In order to use the polyphase merge in this case it is

necessary to include a number of "dummy" (empty) strings in order to fill

out the-total number of strings to a perfect number. There are therefore

two choices which have to-be made before using the polyphase merge to sort

X strings. First we must choose a starting stage number n ; any n for

which x < Sn is eligible. Second, we must decide how the Sn-x dummy

5

strings are to be distributed among the x strings.

methods have been proposed for distributing the dummy

authors recommend starting with the smallest possible

we will refer to these approaches collectively as the

polmhase sort.

Although many

strings, most

stage number

standard

n ;

Since the speed of a merge is usually limited by the transfer rate

of the tape units and the speed of the merge algorithm, we see that the

time required to perform the polyphase merge is approximately proportional

to the total volume of information that moves through the merge. In

order to make this idea precise, we assume that the dispersion routine

produces strings of approximately the same size; this size will be our

unit of information, the unit string. The size of a string formed by

merging several strings is the sum of the sizes of the input strings and

the size of a dummy string is zero. We say that a string is moved when

that string or any string formed from it by a sequence of one or more

merges becomes one of the inputs for a merge. The volume of information

moved by the polyphase merge is then equal to the sum of the products of

the size of each string of the starting distribution and the number of times

that string is moved. In this paper we will show how this volume may be

minimized.

6

3. The Movement Numbers.

In general, the polyphase merge does not move all of the Sn strings

of the stage n perfect distribution the same number of times. It is

for this reason that the polyphase sort is much more difficult to analyze

than other merge sorting algorithms. However, much useful information is

supplied by the set of movement numbers M?(j) which are defined for

n>l, l_<i_<t, and all integers j by the relations

M:(l) =l for l<i_<t,

' M:(j) = 0 for j f 1 and 1 < i <t ,- -

.
q(J) = $-l(j-1) for n >l, and

(3.1)

.
M?J)i = M?:;(j) + My-'(j-1) for n > 1 and 2 < i <t .

We claim that M?(j) is precisely the number of strings on tape unit i

of-the stage n perfect distribution which will be moved exactly j

times by the poly-phase merge. For this to make any sense it is necessary

that M&j) be nonzero only if 1 5 j 5 n and that SF = $(l)+ . ..+~n(n) .

We wiLL prove these assertions together by induction on n . When

n=l, everything is obvious since each of the tapes l,...,t of the

perfect distribution contains exactly one string which will be moved by

the poly-phase merge exactly once. Now suppose that n >l and that

everything has been proved for stage n-l . For q(j) to be nonzero we

must have, by (3.1),
%-'(j-l) + 0 or i 2 2 and g::(j) # 0 . These

inequalities imply that 15 j-l 5 n-l or 1 ,< j 5 n-l which both imply

that 1 < j-< n .- - We may show that ST = q(l)+ . ..+Mn(n) by summing

the last two formulas of (3.1) over j and by applying the corresponding

equality for stage n-l and the last two formulas of (2.1). We recall that

7

the stage n polyphase merge is performed by merging Sy strings from

each of the tapes and then by applying the stage n-l polyphase merge.

A string on unit one which will be moved j times will become part of a

string on the output tape which will be moved j-l times. Since every

string on the output tape contains exactly one string from unit one and

since the output tape becomes unit t for the stage n-l merge, we see

that unit one must contain exactly $-'(j-1) strings that will be moved

exactly j times. If 2 5 i 5-t , then a j movement string on unit i

.will either be moved to the output tape or will remain on the tape. From

similar considerations, we see that unit i must contain exactly

$%-1) + <~~(j, strings which will be moved exactly j times. This

completes the proof.

Example 3.1. Table 3.1 lists some of the movement numbers in the case

t=4.

In this paper we will make use of quite a few sets of numbers which

are defined using the movement numbers e >i j . We list the definitions:

S!$j) = $0) + . . l + q(j) ,

(34 Sn(j> = Mn(l> + . . . + Mn(j) = SF(j) + . . . + St(j) ,

G!&j) = S?(l) + . . . +'S?(j) ,

G%) = Sri(l) + . . . + Sri(j) = G:(j) + . . . + G:(j) .

In addition, we have already defined

S; = S;(n)

Sn = Sri(n) = Sf: + . . . + St .

8

In a number of the form A:(j) the superscript n is the associated

stage number, the subscript i is the number of a tape unit, and j is

some number of movements. An(j) is formed from A!?(j) by summing over

i =l,...,t and A; is formed from A;(j) by setting j = n . In a

similar fashion we may form An from A: or A"(j) .

Except for the numbers G;(j) and C?(j) , which are used in ,

connection with the volume function, the various sets of numbers which

we have defined express some simple properties of the perfect stage n

distribution:

<(1. 3 The number of strings on unit i which will be moved

exactly j times.

M”(j) The number of strings which will be moved exactly j times.

$(j) The number of strings on unit i which will be moved at

most j times.

S”(j) The number of strings which will be moved at most j times.

S; The number of strings on unit i .

sn - The total number of strings.

A set of numbers An(j) is said to be a t-array if the following

relation is satisfied for all integers n and j:

(3.3)’ An(j) = A"-l(j-1) + . . . + AnNt(j-l) .

We will call a sum of this form a t-sum. When a t-array is represented

as a table of numbers, then we will let j index the rows and n index

the columns. It is clear that the't-array An(j) is completely determined

by its values on the vertical strip l-t < n 5 0_ (or any other strip of

width t). We will call this strip the initialization region.

9

Most of the sets of numbers which we have defined can be expressed

as t-arrays. The t-array approach exposes many of the interesting properties

of these numbers which are obscured by the original definitions. Since all

of these numbers are defined in terms of the movement numbers, we will

begin by showing that the movement numbers may be defined as t-arrays.

For each i = l,... ,t we define the t-array A:(j) by specifying

that Aiot(0) = 1 is the only nonzero element of the initialization

region for
A!☺$ l We will show that for all n 11 , l< i <t and- - -

G all j that A:(j) = M?(j) . It is clear that the only nonzero values

in the columns n = -t are Ait = 1 and Ait = -1 for 1 < i <t .-

If we let 8: denote the Kronecker Delta, then for -t < n < 0 we have- -
.

' A:(j) = $:6; + 6!& and A;(j) = ~?JJ~ n j for l_< i <t .- K$o

Therefore, for l-t ,< n ,< 0 , we have

andfor 2<i<t- -

These relations correspond to the last two formulas of (3 .l) and since they

hold for n and j in the initialization region, they can be extended to

all values of n and j by a simple induction argument using the

-recurrence relation (3.3). Since the only nonzero values in the columns

n = 1 are A:(l) = 1 , we see that the numbers An&j) also satisfy the

first two relations of (3.1). We therefore conclude that q(j) = A:(j)

for all n >l .

10

Below we list the various t-arrays in which we will be interested

and specify the nonzero values in their respective initialization regions:

.qw. M;-t(0) = 1 ,

MY0 l?(o) = 1 for l-t 5 n ,< 0 ,

Siet(j) = 1 for j ,>O ,

S”(j) S"(j) = 1 for l-t L n 5 0 and j 2 0 ,

G!&j) Gimt(j) = j+l for j _>O)

Gn(j> Gn(j) = j+l for l-t ,< n ,<O and j 20 .

It is not difficult to show that these t-arrays satisfy the definitions

given in (3.2).

Example 3.2. Table 3.2 shows a portion of the t-array SF(j) when

i= 2 and t = 4 . In this case, the only nonzero elements of the

initialization region are =l for j>O.

4. Optimal Merging.

In this section we will examine some of the properties of the

poly-phase merge when it is implemented using read-forward tape units.

(Read-forward tape units can be thought of as queues in which strings

are written at the end of the tape and are read from the beginning.)

Of particular importance is the close relationship with generalized

Fibonacci

polyphase

From

numbers. These results will be used to construct an optimal

merge algorithm which has a number of desirable characteristics.

(2.1) it is easily shown that

St" = St
n-l + 1

. . . + St+1 for 2 <n-

St" = St
n-l+ n-t

. . . + St for n >t
/

If we define Fn = 0 for n < 0 , F. = 1, and

then, from the above relations, we have

(4.1) Fn = Fn 1+ . . . + Fnt

for n >l .- Because of the similarity of (4.1)

relation for the Fibonacci numbers, we will call

t-Fibonacci numbers.

to the defining recurrence

these numbers Fn the

The t-Fibonacci numbers play a central role in the problem of analyzing

<t , and-

.

Fn = st" for n >l,

the motion of the strings for the read-forward poly-phase merge. Indeed,

suppose that the strings have been dispersed according to the perfect stage

n distribution and that the string positions on each tape are numbered

from zero starting at the front of the tape. If we perform the polyphase

merge starting with stage n , then the number of times m that a string

in position p on one of the tapes will be moved is computed by the

following algorithm;

fllgorithm 4.1 Simulate String Motion.

Step 1. Let m = 1, k = n-l, and q = p .

Step 2. If k = 0 , then terminate.

Step 3. If q < Fk 3 then go to Step 5.

Step 4. Let q = q-Fk and go to Step 6.

Step5. Let m=m+l.

Step 6. Let k = k-l and go to Step 2.

This algorithm simply follows the motion of the string as the polyphase

merge is performed. In particular, k+l is the stage number of the

polyphase merge being performed. If q < Fk = SE = Sk+11 , then the string

will be moved (and m incremented), but its position on the output tape

will be the same as its position on the input tape. If q 2 Fk ,, then

the string will not be moved but its position will be changed to q-Fk

since
Fk strings will have been removed from the tape. Since we are

simulating the poly-phase merge, we always have q < F k+l
H-1= St Wis

may also be shown by induction) so that q = 0 when the algorithm

terminates.

Let us define the sequence s1,s2,...,sn 1 as follows: we let

'3
= 1 if, when performing Algorithm 4.1, we perform Step 4 with k = j ;

otherwise, we let s. = 0 .
J

Obviously, the nwnber of times that the string

in position p is moved is n-s
1
-s
2-"'-Sn-l ' From the mechanics

of the algorithm and the fact that it terminates with q = 0 , we find that

n-l
p = c s.F. .

j=l JJ

Since a string can not remain on a tape for t consecutive merges, we see

that the sequence sl,...,sn 1 cannot contain more than t-l consecutive

ones.

13

We have shown that p may be represented as a sum of distinct

t-Fibonacci numbers in such a way that at most t-l consecutive

t-Fibonacci numbers appear in the sum. We will now study some properties

of this type of representation.

We define a t-sequence to be a sequence s1,s2,... of zeros and ones

with the @roperties that only finitely many ones appear and that no t

consecutive ones appear. It will sometimes be convenient to assume that

Sm =0 for m_<O. The length L(s) of a t-sequence s is defined to

be the largest m for which sm = 1 or zero if sm = 0 for all m .

If s and s' are t-sequences, then we say that s < s* if for some m

we have sm < s' (i.e., s
m m =0 and sm =l) and sn = sn for all

n > m . It is clear that this defines a linear ordering of the set of

all t-sequences.

A t-sequence s represents a number F(s) in the sense that

F(s) = 2 snFn .
n>l

We have the following theorem concerning such representations:

Theorem&l. For each p 10 , there exists a unique t-sequence R(p)

for which p = F(R(p)) l Furthermore, if p < p' , then R(p) < R(p*) .

First we require some lemmas:

Lemma 4.1. If s is a t-sequence for which L(s) <n , then F(s) < Fn .

Proof. If L(S) = 0 3 then F(s) = 0 < Fn for all n >O . Now suppose

that s is a t-sequence of length m >0 and that the result has been

proved for all t-sequences of length less than m . Clearly there must

be a k 20 with m-t+1 < k <m for which sk = 0 . We form the'

14

t-sequence s* by letting s! = s. for j < k and sj = 0 for j 1 k .
3 J

If k=O, then F(s') = 0 <Fk . If k ~0 , then L(P) <k <m so

that by our induction hypothesis we have F(P) < Fk . Consequently, if

m<n, then we have

F(s) = F(s') + c s.F. < Fk+ FHl+ . . . + Fm
j>k JJ

= Fm t+l+ .*. + Fm = Fmtl ,< Fn s u

Lemma 4.2. If s and s' are t-sequences for which s < s' t then

F(s) < F(9) 9

Proof. Let m be the largest integer for which sm < sm . We then have

Sm = 0 and sn = sn for n >m . From Lemma 4.1 it follows that

m-l
F(s) = c s F = c skFk + c s F

k>l kk k=l k>m kk

< Fm + kcm �$k ,< ktl s;zFk = F(s�) l
u

Lemma 4.3. There are precisely Fn t-sequences for which L(s) < n .

Proof. We will use induction on n . Clearly the result is true when

n=l. If n>l, then we may partition the set of all t-sequences s

for which L(s) <n into t classes as follows: for each k with

l_<k_<t, we define the k-th class to be the set of all such t-sequences

s which have the property that s. =
J

1 for n-k < j < n (this condition

is vacuous when k = 1) and sn k = 0 . Assuming that the lemma has beenm

proved for all n'- < n , we will show that for each k that the k-th

class contains Fn k elements. If n-k < 0 y then we must have so = 1

for any s in the k-th class and therefore the k-th class contains

15

Fn-k = 0 elements, If n-k ,>O j then for any t-sequence s in the

k-th class, we may construct a t-sequence s* by letting s! = s. for
3 J

j <n-k and s!
3
= 0 for j 1 n-k . It is easily seen that this

construction defines a bijection between the k-th class and the set of all

t-sequences s* for which L(s*) < n-k . Since the latter set contains

Fn-k
elements, so does the k-th class. Summing over k , we find that

there are exactly Fnml+ . . . + FnWt = Fn t-sequences s for which

L(s) <n . Cl

Proof of Theorem 4.1. It is clear that the numbers Fn are unbounded.

Therefore, if p > 0 is given, then we can find an n for which p < Fn .

By Lemma 4.3, there are Fn t-sequences of length less than n which by

Lemma 4.1 are mapped by F into the nonnegative integers less than Fn .

By Lemma 4.2, this mapping is injective and therefore, by pigeonholing,

is surjective. Consequently, we can find a t-sequence R(p) for which

p = F(R(p)) . Uniqueness and the strict monotony of the mapping R both

follow from Lemma 4.2. 0

Remarks. Theorem 4.1 is an extension of a well known theorem of

Zeckendorf which concerns the representation of integers by sums of

Fibonacci numbers. The extension given here is due to Knuth ([5],

Exercise 5.4.2-X)) although our proof is somewhat different. Lynch [6]

has generalized this result and has shown how generalized Fibonacci

numbers may be used to control dispersion and merging in the standard

@y-phase sort. There is another extension of Zeckendorf's theorem

which contains the others as special cases. Let r(n) be a positive

integer-tiued function of n >l which has the property that r(n) > 2

16

for infinitely many values of n . We define the r-Fibonacci numbers fn

bY fn =0 for n<O, fo=l, and fn = f
n-l

+ . ..+ f
n-r(n)

for n >l .

Every positive integer is uniquely represented by a sum of r-Fibonccci

numbers fn with distinct subscripts n ,>l which has the property that

if fm-,'...,f
m-r(m) all appear in the sum, then so does f

m . A proof

may be constructed along the lines of our proof of Theorem 4.1 although

some care is required when r(n) = 1 . When r(n) = n for all n 21

then the above result implies the existence and uniqueness of representations

in the binary number system.

Let D(p) be the number of ones in the t-sequence R(p) . In the

discussion following Algorithm 4.1 we showed that if a string appears in

position p on some tape of the perfect stage n distribution, then the

polyphase merge will move the string exactly n-D(p) times. Therefore,

it is of some interest to determine those values of p for which D(p)

takes a given value.

Let j be a nonnegative integer. We define E(j) to be the smallest

nonnegative integer p for which D(p) = j . The following theorem and

the corollary provide methods of computing E(j) :

Theorem 4.2. E(0) = 0 . If j > 0 , then E(j) = E(j-l)+ Fj+k where

k = L (3-1)/b-1) J .

Proof. We will prove the theorem together with the fact that L(R(E(j))) = j+k

for j >O by induction on j . Clearly E(0) = 0 . Now suppose that

j > 0 and define s = R(E(j)) , m = L(s) , and p = E(j) -Fm . Clearly

D(P) = j-l so that p 2 E(j-1) . If we let k = L(j-l)/(t-1)J , then

we must have m > j+k for othrrwise s would contain t consecutive ones-

or would have less than j ones. It follows that E(j) 2 E(j-l)+ Fj+k

17

and to prove equality, it is sufficient to show that D(E(j-l)+ F
j+k) = j '

We assume that everything has been proved for jr < j . If k = 0 , then

we clearly have

aj-1) = Fl+ . . . + F
j-l

(the sum being zero when j = 1) and since j <t we have D(E(j-l)+ Fj+k) = j .

We also observe that L(s) = j = j+k . If k >O , then let jr = k&l)+1 .

Clearly jr ,< j and we have k = L(n-l)/(t-1) J for jr < n < j . From- -

our induction hypothesis we obtain

E(j-l)+ Fj+k = E(j*-l)+Fj*+k
+ . ..+F

j+k l

However, if we let k* = L(j*-2)/(t-l)J, then L(R(E(j*-1))) = j*+k*-1 =

j*+k-2 . Since j-j* <t-l , it follows that the t-sequence s* = R(E(j*-1))

remains a t-sequence if we let
"A = 1 for j*+k 5 n < j+k . It follows

at once that D(E(j-l)+ Fj+k) = j and that L(s) = j+k l This completes

the proof. Cl

Corollary 4.1. For j >0 and k defined as before we have

.i+k
E(j) = -z Fm-1

m=kt

the sum having at most t terms.

Proof. The proof is by induction on j . When j = 1 we have k = 0

so the above expression is Fo+Fl-1 = 1 = E(1) . Now suppose that the

-corollary has been proved for all jr < j , in particular, for jf = k(t-1) .

Since L(n-1)/&l)] = k for jr < n ,< j we have from the theorem

E(j)
= E(j*) + F

j l+wl + l l m + Fj+k �

18

Applying the corollary with jr and k* = L(j'-l)/(t-1)J = k-l Y we

obtain

j *+k* kt-1
E(j*) = c F-l=

m=k*t "f
c F-l

m=kt-t m

= Fkt-1 .

Since j*+k+l = kt+l , it follows that

E(j) = Fti + . . . + ~~~~-1 .

Finally, we observe that j+k-kt = l+ (j-l) -k&-l) < l+ (t-l) = t

so the sum contains at most t terms. 0

If j>l , then there are infinitely many positive integers p for

which D(p) = j . We have just shown how to find the smallest such p so

now we will show how to find the others. We will do this by constructing

an algorithm which computes, given p > 0 , the smallest p* > p for

which D(p*) = D(p) .

Let s = R(p) and s' = R(p*) . We already know that s<s' if

and only if we can find an m for which s = 0 ,
m %l

=l, and s'=s
k k

fork >m . Consequently, to find the smallest p' > p for which

D(P') = D(P) Y we must first find a suitable value of m . Clearly the

smaller the value of m that is chosen, the smaller the value of p' .

There are three conditions that m must satisfy: First there is the

condition s
m = 0 which was given above. Second, we must have s

k
= 1

for some k <m for otherwise we would have D(p*) > D(p) . Third, we

can not have SW1 7 . . . = swt-1 = 1 for otherwise any sequence s'

with s*
m =' and "i = 'k for k >m will not be a t-sequence.

19

Therefore, let US choose m to be the smallest integer for which

e Sm= 0 , s~-~ = 1 , and sWl+ . ..+ stit-l <t-l . This choice can

always be made since m = L(s)+1 satisfies the requirements. If we

define p* by

c
p’ = E(sl+ . ..+ s~-~) + Fm + kym 'kFk

then it is easily verified that p* > p and that D(p*) = D(p) and that

it is the smallest integer to have these properties.

In order to use the formula above, it is necessary to bow the

representation R(p) of p . The following algorithm computes p* by

c combining the conversion of p to R(p) (using a technique similar to

Algorithm 4.1) and the search for m . The algorithm is easily implemented

on digital computers since it is fully arithmetic and does not involve

Q t-sequences.

Algorithm 4.2. Find the smallest p* >p for which D(p*) = D(p) .

Step 1. Let q = p and k = 0 and choose s(xlle m for which p < Fm .

Step 2. If Fm5s, then go to Step 4.

Step 3. Let m = m-l . If m = 0 , then go to Step 10; otherwise

go to Step 2.

step 4. Let q* = q , m* = m , and k* = k .

Step 5. If m<t, then go to Step 7.

Step 6. If q < Fml - Fm-t+l y then go to Step 7; otherwise, let

9 = q - (FWl-Fm-t+l) , m = m-t , and k = Ht.1 and

go to Step 8..

5, StepTo Let q=q-F,, m=m-1, and k=k+l.

Step 8. If m = 0 , then go to Step 10.

20
c

Step 9. If F,sq, then go to Step 5; otherwise, *go to Step 3.

Step 10. Terminate with p* = p-q* +Fm,+l+E(k-kr-l) .

To understand this algorithm, let s = R(p) . If Fm 5 q in

Step 2, then sm = 1 and the.values of q , m , and k are saved. The

check that q 1 Ftil-Fm-t+l = Fm+ . ..+ Fm-t+2 determines whether or
.

not s = . . . = s
m m-t+2

= 1 and smt+l = 0 . Steps 6 and 7 decrement m

in such a way as to bypass ineligible values of m , that is, those for

which s
m-+1 = 1 or smtl = 0 and sti2 = . . . = smtt = 1 . The variable

k

At

us

contains the number of nonzero values of s which have been encountered.m

completion, the last values of q , m , and k saved by Step 4 enable

to compute p* .

Example 4.1.

t=4:

n

7
8

First we list some values of Fn and E(n) for the case

1 1 9 188 1339
2 3 lo 361 3921
4 7 11 693 8897
8 22 12 1340 18488

15 51 13 2582 54126

29 97 14 4976 122820

46 285 15 9591 255232

98 646 16 18489 747209

n
Fn E(n)

If we let p = 3913 and let s = R(p) , then it is easily shown that

S = {0,1,1,1,0,1,1,0,1,1,1,0,1,0,0,...]

so the representation of p* has the form

S’ = (1,1,0,0,1,1,1,0,1,1,1,0,1,0,0,...]
0

and it follows that p* = 3917 .

21

i

We are now in a position to examine the problem of optimizing the

polyphase merge for an arbitrary initial distribution. Suppose that the

dispersion routine writes xl,...,xt strings to units 1, . . ., t ,

respectively, and that the choice is made to perform the polyphase merge

starting with stage n . The only requirement on n is that xi < SF

for each i . If this requirement is met, then it is only necessary to

include SF-xi dummy strings on each tape i in order to obtain the

perfect stage n distribution. We have already observed that the number

of times that a string is moved depends upon its tape position. Therefore,

the manner of placement of the dummy strings has a direct influence on

the volume of information moved.

It is quite obvious how to arrange the dispersed strings and the

dummy strings so as to minimize the volume of information moved. On

each unit i , we place g(l) of the dispersed strings in the $(l)

string positions which will be moved once, g(2) strings into the

positions which will be moved twice, and so on, until we exhaust the xi

dispersed strings; we then place dummy strings in the remaining $-xi

string positions. In this way we insure that the dummy strings arein the

positions which will be moved the most.

One practical difficulty with the above approach is the problem of

placing the dummy strings if the dispersed strings are' already on the

tapes. With read-forward tape units it is not permissable to write

randomly on a tape. For this reason, we will transform the above approach

into a practical algorithm in which dummy strings do not explicitly appear.

If Sy(j-1) <xi < SF(j) , then, with the above scheme, there will

be some j movement string positions which contain dispersed strings and

others which contain dm strings. We have not said how they are to be

22

arranged. We propose placing all of the j movement dispersed strings in

front of all of the j movement dummy strings on each tape. It does

however have the important property that the pattern is preserved as the

polyphase merge is performed. It is not difficult to see that any time

during the operation of the merge, any k movement strings of nonzero

length will be in front of any k movement dummy strings on the s&ne tape.

Another important consequence of this choice is that we are able to

calculate the positions of the j movement dispersed strings. Since these

, positions p have the property that j = n-D(p) , we see that the first

of these positions is E(n-j) and that the remaining positions are

calculated by repeated application of Algorithm 4.2. Since the pattern

is preserved, the same observation holds throughout the polyphase merge.

The algorithm which we will present is controlled by the two arrays

C[i,j] and P[j] (0 ,< i St , 1 < j < n) . C[i,j] will contain the- -

number of strings on tape i which will be moved j times and P[j]

contains the next j movement position on the input tapes. It is also

convenient to have arrays for the numbers F
m and E(m) , but we will

not mention these explicitly.

The inputs to the algorithm are the numbers xl,...,xt of dispersed

strings on tape units l,... ,t and the starting stage number n of the

polyphase merge to be performed. (The next three sections of this paper

are devoted to the proper choice of these numbers.) In order to facilitate

implementation, we will explicitly mention the tape rewind operations

required.

23

*Algorithm 4.3 Optimal Read-Forward Polyphase Merge.

Step 1. [Initialization.] Let C[i,j].=I+@j) for l<j <n- -

and l<i<t. Let C[O,j]=O for l<j<n. Let- - - -

m = n and u=O. Rewind all of the tapes.

Step 2. '[Initialize C.] For each i = l,...,t find the smallest

j for which xi fC[i,l]+...+C[i,j] ; let

e

C[i,j] = xi-C[i,l] . ..- C[i,j-l] and let C[i,k] = 0 for

j<k+.

Step 3. [Test for termination.] If m >O , then go to Step 4.

Otherwise, the sort is finished. Rewind all of the tapes.

The sorted records are on tape u* .

step 4. [Initialize for stage m .] For j = l,...,m let

NJ1 = E(m-j) if C[i,j] > 0 for some i ; otherwise,

let P[j] = Frnml l

Step 5. [Test for the end of a merge,] Find the due of j

which minimizes P[j] (1 ,< j rm) . If P[j] 2 Fmml ,

then go to Step $
L i

Step 6. [Merge some strings.] Merge one string from each unit

i b u for which C&j] >O and write the resulting

string to unit u .

Step 70 [Update C .] If m >l , then increment C[u,j-l] by one.

For each i# u for which C[i,j] >O , decrement C[i,j]\ .

by one. If each of these decrements results in a value

of zero, then let P[j] = Frnml and go to Step 5.

Step 8. [Update Q .] Using Algorithm 4.2, find the smallest

p > ~[j] for which D(p) = D(P[j]) . Let P[jl = P ad

go to Step 5*

c 24

Step 9. [End of a merge.] Let m = m-l , ur = u , and .

u = u+lmodT . Rewind tapes u and u* and go to

Step 3.

In view of the discussion, this algorithm is reasonably straightforward.

However, we will comment on a few points. The computations required in

Step 1 can be performed without any additional storage by careful use of

the recurrence relations (3.1). Our use of Fmol in Steps 4, 5, and 7

m-lis accounted for by the fact that Fm 1 = St = sy which is the number

of strings produced by the Stage m merge; consequently F
m-l is the first

position which will not be used for this merge.

Although the computations required by the algorithm are formidable,

they do not really require much time. The bulk of the computation is

performed in Steps 5, 7, and 8 which are performed once for each string

that is output. Since a unit string will represent a large fraction of

the storage utilized by the sort, it is clear the time required will be

insignificant when compared with the time required for merging.

The storage requirements are not much larger than for other polyphase

merge algorithms. The only extra storage which is not required b? other

algorithms is the storage for the arrays C and P and, possibly, the

arrays containing the numbers E(m) and Fm for a suitable range of m .

We remark that the additional storage required for these arrays when

merging 100000 strings, using ten tapes and the dispersion algorithm we

will describe, should be less than four hundred locations.

Remarks. Shell [8] has described an optimum polyphase sort which is

somewhat different from ours. He describes a method of generating the

D(O) Y D(1) Y D(2) Y l . . directly and uses an array based on this sequence

25

to control the placement of the strings and the assumed placement of the

dummy strings. Unfortunately, this array becomes prohibitively large

for large applications. An account of Shell's work also appears in [5]

(Section 5.4.2).

26

50 The Volume Function.

Let us suppose that we have x ,< Sn unit strings which we wish to

merge with the stage n polyphase merge. Obviously, in order to

minimize the volume, we should place the unit strings into the positions

which will be moved the least and the dummy strings into the -positions

which will be moved the most. Thus, if S"(j) ,< x 5 S"(j+l) , then unit

strings should be placed in all of the S"(j) positions which will be

moved j or fewer times and in x-Sri(j) of the j+l movement positions

' When this is done, the volume of information which will be moved by the

merge is found to be

5 kMn(k) + (j+l)(x-Sn(j)) .
k=l

We will call the value of this expression the volume function and denote

it by Vn(x) . The expression may be simplified by observing that

j 3
(j+l)S%) - c kMn(k) = c (j-k+l)Mn(k)

k=l k=l

. .

= fi
ii b?(k) l

= fi
6 ti(k)

k=l i=k i=l k=l

= Sri(i) = Gn(j) .
i=l

We may now write

(54 v"(x) = (j+l)x - Gn(j)

where S"(j) ,< x ,< S"(j+l) .

In Section 4, we looked at the similar problem of optimizing the

stage n polmhase merge when it is known that tapes l,...,t contain

27

x1 Y l l l ,⌧t dispersed strings, respectively. By similar reason-, the

volume of information moved in this case is

where each <(xi) represents the contribution of tape i to the volume.

This contribution is given by

(5.2) = (ji+l)Xi�-Gy(☺i)

where ji is chosen to satisfy So -<xi 5 St(ji+l) .

Obviously we must have

v”cx +...1 +⌧.☺ ,< q⌧l,+ l -+v$⌧t) l

We are interested in those distributions xl,...,xt for which we have

equality. Such a distribution is said to be optimal for stage n .

Theorem 5.1. A distribution xl,.,.,xt is optimal for stage n if and

only if we can find a j such that S;(j) 5 xi 5 Sy(j+l) for each i .

Proof. If the condition is satisfied, then optimaljty for stage n

follows at once from formulas

Gn(j) = Gf$ j) + l .+G;(j) .
Conversely, suppose that

(54 and (5.2) and the fact that

x1, . . ., xt does not satisfy the condition.

We can then find a j and two indices a and b such that xa < S:(j)

and yo > Q3) l If we define the distribut&on \X;,...,X~ by xa = x,+1 ,

x$ = xb-1 , and xi = xi for i f: a,b , then it is clear that

28

It follows that

9 1)
x' + . l l + <(⌧c, < <(⌧1) + 0. l + ☺t�(⌧t)

and therefore x
1� l l l f⌧t can not be optimal for stage n . 0

Example 5.1. We let t = 4 as in our other examples and x = 500 .

From the table in Example 2.1, we see that the smallest value of n for

which x < Sn is 9 . Let us evaluate Vn(x) for this value of n .

Since Sn(5) = 338 <x < 534 = ~~(6) , we may apply formula (5.1) with

3 = 5 to obtain

v"(>X = (j+l)x-Gn(j) = 6*500-478 = 2522 .

This volume is the best possible volume obtainable with the stage 9 merge

no matter how the strings are dispersed. If we let n = 10 , then a

similar calculation shows that v"(x) = 2448 which illustrates how the

choice of a larger stage number than the minimum may improve the

performance of the polnhase sort. We will discuss this subject in

Section 6.

We will conclude this section with two theorems concerning the volume

function which will be required later.

Theorem 5.2. If x< sn 9 then p'(x) -?(x) < x . /

Proof. We may assume that x ~0 . Let j and k be the unique integers

for which

Sri(j) < x 5 S"(j+l) and 8+'(k) < x < Sn+'(k+l) .

J3om the recurrence relation for t-arrays, we see that S"(j+l) < S- *'(j+2) ,

so that *

29

8+1(k) < X 5 Sn(j+l) ,< S*l(j+2) .

which implies that k < j+l . From the recurrence relation, we also have

Gn(k-1) 5 G*'(k) . We may now write

Pyx) -v”(x) = &1)x-G*'(k) - (j+l)x+ Gn(j)

= (k-j)x+ Gn(j) -G*'(k)

5 (k-j)x+ Gn(j) -Gn(k-1)

< (k-j)x+ (j-k+l)S"(j)

Theorem 5.3. Suppose that 0 s xl ,< . . . 5 xt and that xi 5 Si for

each i . If Xi, l ..,Xi is a permutation of xl3 .m.,xt which has the

property that xi ,< 52 for each i j then we have

Proof. First we will prove the result for a simple interchange. Suppose

that 1 < a <b <t and that xa-sb", xb.Sz,and Osxa<xb. If<

XaIY<$Z then let j and jc be the unique integers for which

s:(j) ,< y < St(j+l) and $Q) 1~ < +.)'+l) .

Since St(k) ,< S:(k) for all k , it is clear that j 2 jr and therefore

-By summing over y , we obtain

which may be rewritten as

Qxa) + (.pJ ,< f+J + gxa, :

30

The general result is proved by pemuting the numbers Xi>...,x'
t

into x,, . . ., xt by a series of interchanges which successively place the
li

proper values

at each step.

in positions

never place a

into positions l,... ,t and by applying the above result

It is clear that we only change the numbers ya and yb

a <b when yb < ya . AlsoI since ya 5 Sz 5 S$, we

number which exceeds 52 into any position i . cl

31

I

c

6. Optimal Dispersion.

In much of the literature on polyphase sorting, it is assumed that

the best starting stage number when merging x strings is the smallest

n for which x 5 Sn . This method generally gives nice looking results

when the usual polyphase merge algorithms are used. However, when an

algorithm such as Algorithm 4.3 or the optimum polyphase sort of Shell [8]

is employed, it is found that better results may be obtained by choosing

larger values of n . In this section we will investigate the problem

.of finding the value of n which minimizes v"(x) .

A good starting point is the following ~~ITUTB on t-arrays:

Lemma 6.1.. Let A denote one of the t-arrays M , S , or G . Let

j and d be positive integers and let n(j,d) denote the smallest

integer n ,>l for which An(j) >Awd (j) , then the following. are true:

(a) If n* 2 n(j,d) J. then n'A rP+d .(j) 2 A w .

(b) If jt > j) then n(j',d) > n(j,d) .

L Proof. It is easily verified that

(6.~) Al-t
(0) = . . . = .A'(O) > 0 = A'(0) = A2(0) = . . .

and that for j 21,
c

(64 0 < A- (3) = . . . = A'(j) s A'(j) .

It is clear that n(j,d) always exists since An(j) is zero for n

sufficiently large. From (6.1) it follows that

A'(l) > A2(l) ,> A3(l) 1 A4(l) 2 . . .

so that n(l,l) = 1 and (a) is true for n&l) .

We will now show that if (a) is true for n(j,l) , then it is true

for n(j,d) for j > 1 and for n(j+l,l) . Let d > 1 be given and

32

d.
(J) .m+

let m >l-t be the smallest such integer for which Am(j) > A

n+d
It is clear that m+d > n(j,l) . We will show that An(j) 2 A

.
(J)

for n >m . This is certainly true if n 1 n(j,l) . Also, if

m 5 n < n(j,l) , then we have

An(j) 2 Am(j) > Atid
ntd.

,>A (J) .

Since n(j,d) urn , we see that (a) is true for nbd) l
From the

recurrence relation for t-arrays, we have

Atil(j+l) -An(j+l) = An(j) -Anmt(j) .

Consequently, if we let d = t in the above argument, we see that we may

choose n(j+l,l) = mt-t and that (a) is true for this choice. The validity

of (a) now follows by induction.

TO prove (b), let j 21 and let n = n(j+l,d) . From the recurrence

relation for t-arrays, we have

t

0 > Atid(j+l) - An(j+l) = C (Arrtdmk(j) _Anwk(j))
k=l

so that An-k(j) >Atidok(j) for some k with 15 k St . If

n-k > 1 ,- then n-k 2 n(j,d) so that n > n(j,d) . If n-k 5 0 , then

we must have n+d-k > n(j,l) so that

A'(j) 2 Anmk(j) > AMdwk(j) > Atid

and therefore' n(j,d) = 15 n . We have therefore shown that

n(j+l,d) 1 n(j,d) and (b) follows. Cl

- The lemma is particularly useful in the following form:

33

Corollary 6.1. Let A denote one of the t-arrays M , S , or G , then

the following are true:

(a) If An(j) < A"'(j) for some 15 n < n' and j 2 1 , then
n'

An(jf)_<A (j') for all j'zj .

(b) If An(j) > An'(j) for some 1 <n < n' and j 21, then
n'

A"(j') ,> A (3') for all j' with 15 j' ,< j l

Proof. TO prove (a) let d = n'-n . Certainly n < n(j,d) so it

follows that n < n(j ',d) for all j' > j and the result follows from

the definition of n(jf,d) . This also proves (b) since (b) is the

contrapositive of (a). 0

Theorem 6.1. If n <n' and p(x) > v"'(x) for some x ,< Sn , then

there exists a j <n for which G"(j) < Gn'(j) . Furthermore, if

x<yssn) then Vn(y) > v"'(y) .

,
Proof. Clearly x >0 . Let j and k be the unique integers for

t
L

I

which

Sri(j) <x 5 S"(j+l) and Sn'(k) < x 5 Sn'(k+l) .

We observe that j < n . By assumption

/
1 L (3+1)x - Gn(3) = p(x) > v"'(x) = (l&)x -Gn'(k)
,

which reduces to

Gn(j) < Gn'(k)+ (j-k)x .

n1
In order to prove that Gn(j) C G (j) we will show that

(j-k->⌧ ,< Gn(j) -Gn�(Lc) l If j = k, then there is nothing to prove.

If j > k , then we have
.

Wk)x ,< 5 sn’(i) = o"'(j) -Gn'(k) w
i=Hl

34

Similarly, if j < k , then

(j-k)x = - (k-j)x < - $ Sn'(i) = #l'(j) -Gn'(k) g
i=j+l

Now suppose that there is a smallest y with x <y ,< S" for

which v"(y) < Vn'(y) . Let jr and k* be the unique integers for-

which

s"(j*) <y ,< S"(j*+l) and Sn'(k') < y ,< Sn'(k'+l) .

Since Vn(y-1) > v"'(y-1) , we find that

jr+1 = p(y) - ?(y-1) < v”’ (y) - v”’ (y-1) = k’i-1

from which it follows that jr < k* . On the other hand, since

Gn(j) < Gn'(j) , we can find an m ,< j for which Sri(m) < Sn'(m) .

By (a) of Corollary 6.1, we see that Sn(m*) < Sn'(mf) for all m' >rn .

Since j'+l > j 2 m , it follows that

y 5 S"(j*+l) ,< S"l(j*+l) ,< Sn'(kf) < y

which is impossible. This completes the proof. 0

corollary 6.2. Let N(x) be the smallest integer n which minimizes

v"(x) , then N(x) is an increasing function of x .

Proof. Suppose that N(x) >N(x+l) for some x and let a = N(x) and

b = N(x+l) . Since b <a, we must have V"(x) < Vb(x) . Also, since

x+15 s
b

< sa ,
b

it follows from Theorem 6.1 that Va(x+l) < V (x+1) which

implies that N(x+l) + b . 0

Remarks. Most of-these results were first proved by Knuth ([5], Exercise

5.4.2~14), however, our proof of Theorem 6.1 is somewhat different. Shell

[8] has observed Corollary 6.2 empirically.

35

In the remainder

determining the range

value. We will begin

of the numbers Gn(j)

Lema 6.2. For each

that Gn(j) < G*'(j)

of

of

bY

.

t

this section, we will solve the problem of

values of x for which N(x) takes a given

examining some of the more subtle properties

2% there exists a number n+, with the property

for some j with 15 j < n , if and only if

n>nt. Inparticular n2 = 8, n3 = 5, n4=4, and nt=3 for t>5.

Proof. If Gn(j) < G*'(j) for some j with l,< j <n , then we can

find a jr ,< j for which Sn(jf) < Sncl(jf) . By (a) of Corollary 6.1

we find that Sri(k) 5 SW'(k) for k 2 j 2 jt and consequently

Gn(n-1) < G*'(n-1) . It follows at once that such a j exists if and

only if Gn(n-1) < Gml(n-l) . Nrthermore, if this inequality holds

for n , it holds for n+l since, by (a) of Lemma 6.1, we have

Gnok(n-1) < Gnok"(n-l) for k = l,...,t and it follows from the

recurrence relation for t-arrays that

Gti2(n) -Gicl(n) = G*'(n-1) -Gn-t+l(n-l) > 0 .

The following table will serve to verify the values given for nt :

n -1 n +l
t G t (nt-2) ntG bt-2)

nt
G (nt-l> G t (nt-1)

lemma 6.3 For each n 2 nt) let jn denote the smallest integer j

for which G"(j) < GM'< j) . We then have

58 56 lo9 xl.4

20 20 48 56
ll u 32 40

t-1 t-2 4t-5 5-t-9

jn ,< j,, 5 jn+l ,< 3,t l

36

Proof. First we will show that jn 5 jn+, . Assume that for some

k < jn we have GM1 (k) < GM2(k) . We may write
/

Gn+l(k) -Gn(k) = Gn(k-1) -Gn-t(k-l)

= ($+'(k-1) -Gn-t+l(k-l))

+ @(k-l) -Gn+'(k-1))

+ (Gn-t+l(k-j) - Gnot(k-1)) .

The first parenthesized term is equal to crrc2(k) -Gn+'(k) and is therefore

positive. The second term is nonnegative since k < jn . Since

Gn+'(k) < Gm2 (k) it follows from the recurrence relation for t-arrays

that G*l-m(k-l) < G*2-m(k-l) for some m with 15 m 5-t . From (a)

of Lemma 6.1 it follows that Gn-t(k-l) < Gnot+'(k-l) so the last

parenthesized term is nonnegative. We have therefore shown that

Gn(k) < G*'(k) which contradicts the minimality of jn .

n+l .
Since Gn(jn) < G (J)

til(jn+l) < Gti2(jn+y)

, we may show as in the proof of Lemma 6.2

that G and therefore jn+l-< jn+l . Finally,

since Gn+t(j,t) < G*t+l(j,t) , it follows that

tit-k .
(J&-l)

ntt+l-k ,
G < G (J tit-l) for some k with 1~ k ,<t .

Consequently,
jn 5 jmtmk 5 $,.&� l

This completes the proof. c1

. Lemma 6.4. Define the numbers Nt by N2 = 19 , N3 = 6 , and Nt = nt

for t 2 4 l If n ,>Nt and j 20 , then

2Gn(j) ,< Gn(j+l)+ Gn+l(j-l) .

Proof. We will show that the above inequality holds for all but finitely

many values of n _>l and j ~0 . The condition on n is sufficient

to exclude these exceptions. We define the t-array D by

37

D%> = Gn(j+l)+Gml(j-1) -2Gn(j) .

It is not difficult to verify that the nonzero elements of the

initialization region for D are

Do(j) = (t-1)j -t for j 21 and

D"(-1) = 1 for l-t $3 10 .

We observe that Do(l) = -1 is the only negative element for the

initialization region. Tables 6.1(a), 6.1(b), and 6.14~) each display

a portion of the t-array D for t 2 4 , t = 3 , and t = 2 , respectively.

By3nspecting these tables, it is clear that there are no negative values

of Dn(j) with n 20 other than those displayed. Since the negative

entries only appear in the columns for which n < Nt) it follows that

Dn(j), 2 0 when n>Ntg cl

Theorem 6.2. If nLNt and if we define

C
n = Gn(jn) -Gtil(jn-1) ,

then the following are true:

(4 S”(j,) 5 cn 5 S"(j,+l))

(b) Sml(jn-l) ,< cn < Swl(j,> ,

(4 v”(c,> = ~?c,) >

(d) Vn(cn+l) > ?+'(c,+l) if cn < sn ,

(>e cn<Ctil '

38

Proof. From the definition of jn we know that $(j,-1) 2 Gn"(jn-1) .

We therefore have /

sn(j,) = Gn(jn) - G%,-1) ,< G"(j,) - Gtil(j,-1)

= Cn < G*'(j,) -GH1(jn-1) = S*'(j,) .

From Lemma 6.4

C
n = Gn(jn) -G?j,-1) ,< G"(j,+l) -G"(j,) = S"(j,+l) .

Also from Lemma 6.4,

s*l(jn-l) = Gtil (3 n-1) - GmT(jn-2) 5 Gn(jn) - Gwl(jn-l) = cn .
I

This completes the proof of (a) and (b).

From (a) and (b) we have

v”(c,) = (j,+l>c, - Gn(j,)

= j,G%,) - (j,+l)G*'(j,-1)

= jc -Gn n = v"fl(cn)

which is (c). TO prove (a> we first observe that from (a) and (b) we

have Jlfl(c,+l) -pl(cn) = jn and Vn(cn+l) -?(cn) 2 jn+l if cn < Sn .

From (c) it follows that

fl(cn+l) -vn+l(cn+l) > l+F(cn) -F+l(c) = 1 .
n

. BY Lemma 6.3 we have jn 5 jtil so by (a) and (b)

Cn < StilCj,) 5 Sml&+,) < Cm1-

which is (e). This completes the proof. 0

Corollary 6.2. cn + m as n --) 00 .

Proof. This follows from (e) and the fact that cn is an integer. c3

39

For each t 12 , we define the sequence L&,.** as follows:

If t_>3, then we let Ln = S" for n < Nt and Ln = cn for n 2 Nt l

If t=2, then we let Ln = Sn for n 5 15) L16 = 2573 J L17 = 3954 t

L18 = 6527 , and Ln = cn for n zN2 = 19 .

Theorem 6.3. The sequence Ll,L2,... is strictly increasing and has

the property that p
1(x) 2 v"(x) if and only if x 5 Ln .

Proof. First we will show that the sequence is strictly increasing. We

1 already know that sn < SW1 for all n 11 and that cn < cntl for

all nLNt. These observations leave us with only a few special cases

to consider.

When tz3, we must show that when n = Nt-1 , we have

Sn =Ln <Lrrel= ctil. When t ,> 5 we may show from the appropriate

t-arrays that S2 = 2t-1 and c3 = 3t-2 so that Ln < Lwl since

Nt=3. When t = 4 , we have Nt = 4 and L3 = S3 = 13 < 22 = c4.= L4 l

For t = 3 , we have Nt = 6 and L5 = S 5 = 31 < 32 = c6 = L6 . For the

L 2-5remaining special case t = 2 , we have 15 = = 1597 < 2573 = L16 9

L16 <L17 < L18 ' and L18 = 6527 ~10488 = cl9 = ~~~ .

To prove the second part of the theorem, it is sufficient, in view

of Theorem 6.1, to show that p
1(L,) > Vn(Ln) for all n ,>l and that

J"l(Ln+l) < Vn(Ln+l) whenever Ln < Sn . If n < nt , then

Gn(j) 1 Gtil(j) for all j with 0 5 j <n , so by Theorem 6.1, we have

We also note that Ln = Sn for n < nt . When

">Nt 9 then everything follows from Theorem 6.2. Since nt = Nt for
F., t_>4, this proves the result for t 2 4 . To extend the result to the

i case t = 3 , we observe that in this case we have L = S5 and
L 51

I
v5@,)

6= 107 <108 = v (Lo) l

i

40

When t = 2 , there are a number of special cases to consider. First

we note that Ln = Sn for 8 < n < 15 .- - By direct computation, we may

verif'y that

v8 =(9 331 < 343 = vg(+3) 9

V9(Lg) = 600 < 614 = so@,) t

+"(L,) = 1075 < 1092 = +TL,)

v%,) = 1908 < 1935 = JJ=(Q

v=(i,) = 3360 < 3396 = I+'(L~~)

$3(L13) = 5878 < 5901 = $4(L13)

94(L14) = 10225 < 10240 = $5(L141 Y

$5(L151 = 17700 < 17726 = +TL15) .,

ti6(L16) = 30342 < 30343 = v17(L16) ,

~7@17) = 4-8950 = *8(L17))

?8(L18) = 85819 < 85820 = $9(L18) .

We also have

P(L&+l) = 30357 > 30356 = ti7(Ll@

+Q7 L17+1) = 48965 > 48963 = $(8 L17+u

+Q8 L18+1) = 85835 > 85834 = $9(L18+1)

which completes the proof of the theorem. 0

Two consequences of this theorem are easily proved.

Corollary 6.3. N(x) is the smallest integer n for which x ,< Ln .

41

Coronary 6.4. If V"(X) ,< p'(x)) then v"'(x) < v"'+'(x) for all

Remark. Corollary 6.4 answers in the affirmative a conjecture of Knuth

([5], Exercise 5.4.2-15).

Table 6.2 provides the values of L- for t = 2,...,7 and

n = l,...,lg . Since

provide a very simple

such a table is easily prepared, we are able to

dispersion algorithm.

Algorithm 6.1. OptimaJ Polyphase Sort for x Strings.

Step 1. Find the smallest n for which x ,< Ln .

Step 2. Choose a j for which Sri(j) 5 x 5 S"(j+l) .

Step 3. Find integers xl,...,xt for which x = xl+ . ..+xt and

SF(j) 5 xi 5 SF(j+l) for i = l,...,t .

Step 4. For each i = l,...,t write xi strings to tape i .

Step 5. Use Algorithm 4.3 to perform the polyphase merge on the

distribution xl,...,xt starting at stage n .

Remarks. Since Steps 2 and 3 of the above algorithm and Steps 1 and 2 of

Algorithm 4.3 both require tables of the numbers q(j) 9 some of the operations

of these steps can be combined. The above algorithm should be compared with

Shell's opf~imum dispersion algorithm [8] which is directed by a table of

numbers closely related to the numbers Ln . The functions c(x) share

many of the properties of the function J‘(x) and most of the results of

this section can be carried over to these functions. Unfortunately, the

analogues of the numbers jn are in general different for each i ;

otherwise the next section would not have to have been written.

7*

that

that

This

Blind Dispersion.

In practice, it is very difficult to predict the number of strings

a dispersion routine will provide. However, Algorithm 6 .l requires

this number be known before the strings are written to the tapes.

brings us to the problem of blind dispersion, that is, dispersion

without knowing the number of strings in advance.

We begin by observing that no solution to the blind dispersion

problem will in general be optimal. Indeed, solutions which require

rearranging the contents of the tapes will require additional string

motion which will result in a solution which is at best optimal.

Therefore, let us consider a solution in which the strings stay on the

tapes once they are written. Let us suppose that t = 2 and that we have

dispersed S
10

= 144 strings optimally. Since N(144) = 10 and

vlO(l44) = 1075 <1088 = vyl44) , it is clear that the only optimal

10distribution is for stage 10 when there are S, = 55 strings on tape
A

one and SF = 89 strings on tape two. Let us see what happens when we

add another string. Since N(145) =.ll and $l(145) = 1100 ~1143 = $'((145) ,

the best distribution of 145 strings is one which is optimal for stage 11.

10 il
However, since Sl > 52 = Sl (S)+l 10 11and S2 < 96 = S2 (8)-l , we see

that there is no way of arriving at a distribution which is optimal for

stage 11 by adding one string to our original distribution. This

pathology was first discovered by D. E. Knuth.

It is not difficult to see that any blind dispersion technique which

rearranges the contents of the tapes can be transformed into an equivalent

(or perhaps better) method in which the rearranging is performed after all

of the strings have been dispersed. The effectiveness of such a technique

43

depends on how close the distribution, prior to rearranging, is to an

optimal distribution. We remark that one kind of rearrangement which

incurs no extra cost is that of renumbering the tape units. Theorem 9.3

shows that a monotone distribution provides the best renumbering possible.

However, since the distributions which we will consider will be monotone

or can be made monotone, we will have no use for this technique.

In the remainder of this section, we will construct a nearly optimal

blind dispersion technique which requires no tape rearrangement. This

*dispersion technique can be used by itself or in conjunction with some

rearrangement algorithm.

Supposethat n->Nt . We define m(n) to be the largest integer

m for which jm = jn . From Lemma 6.3 we see that m(n) < ntt and

that jm = jn for n srn rm(n) . For i = l,...,t we define

BY = min{St(j,) \ n ,< m 5 m(n)+11

and

Bn = B; + . . . + Bz .

for l_<i_<t ;

Theorem 7.1. For n 2 Nt we have

(a) By 5 By1

(b) By ,< B; < . . . 5 B; ;

(c) Sr(j,-1) ,< Bi 5 @,) for lli,<t ;

(a) S!f%n-l) ,< Bf ,< ST'(j,) for lsist ;

- (e) Bn ,< cn < Bmt .

Remark. Statements (c) and (d) imply that the distribution $Y
n

. . ..Bt

is opbima.l for both stage n and stage ntl .

44

r

Before we prove the theorem we require a lemma:

Lemma 7.1. If n 2 Nt , then for i = l,...,t we have

S~�(jn-l) ,< Sf&$.☺ l

Proof. We will begin by showing that for n > 1 we have

(7-l) S?(j) -Sml(j-1) > Gn(j-1) -Gml(j-1)1 i

with only finitely many exceptions. We define the t-arrays Ai for

i = l,...,t and D by

A!&0 = S:(j) -S"'(j-1)

D"(j) = #(j-l) -Gtil(j-1) .

It is not difficult to verify that the nonzero elements of the initialization

regions for the t-arrays Al, . . ., 4t are

i-t .
Ai (J) =l for l<i<t and j_>O ,

Ai-t-l .
w = -1 for l.< i <t and j,>l Y

A:(j) = -1 for l<i<t and j 12 , and

= A;(l) =l.

Aho, the nonzero elements of the initialization region for the t-array D

are

Do(j) = t -(t-1)j for j 21 .

Tables 7.1(a) to 7.1(g) each display portions of the t-arrays Ai-D for

various ranges of t and i . By inspection, we see that the only

negative entries outside of the initialization region are those displayed.

Except in the case t = i = 2 , we see that (7.1) holds for all n 2 Nt

45
#

and i = l,...,t . From the definition of jn , we see that

Gn(jn-1) 2 Gml(jn-1) and therefore by (7.1) we have Si(j,) 2 Srl(jn-1) .

In the exceptional case we have n = Nt = 19 and j
19

= 15 so we may

verify directly that Sig(15) = 6050 > 5270 = S34) . This capletes

the proof. 0

Proof. of Theorem 7.1. If jn = jn+l , then m(n) = m(n+l) so that (a)

is obvious. If this is not the case, then by Lemma 6.3, we mmt have

.
JIl+l = jn+l so that SiYj,) 5 Sffl(☺wl) l Also, since m(nt1) ,<n+t ,

we see that Sin+l(jn) 5 S:(J,1) for n+2 < k < m(n+l)+l ; this follows- -

from the fact that Sy'(j,) is a term of the t-sum which computes

We have therefore shown that .Bf 5 Si*'(j,) 5 BT1, which

is (a). Statement (b) follows at once from the fact that

S:(j) 5 . . . 5 s,"(j) for all n ,>l and j 21 .

To prove (c) and (d) we first observe that the definition of By

implies that BF ,< Si(j,) and B; #(j,) . It is also clear that

S~~~n-l) ,< S&J and Syl(jn-1) 5 Sf;fl(j,) . From Lemma 7.1, we have

S”l(jn-l) 5 S!$,) . Finally, by reasoning sjmilar to that used in the

above paragraph, we have Sy(j,-1) 5 St(j,) for ntl < k < m(n+l) and- -

SF'&-1) 5 S:(j,) for n+2 < k <m(n)+1 if m(n) > n . From these- -

inequalities, it follows at once that Sy(j,-1) ,< Bi and that

Sy'(jn-1) 5 By which completes the proof of (c) and (d).

By (c) we have B" ,< Sn(jn) 5 cn . If we let n* = m(n)+1 , then it

is clear that j,, = jn+l , jnf 1 = jn , and n* < n+t . Therefore, by

46

(a) and (c) we have

n* n*
Cn < 'nt-1 < S (jnt-l> = S (j,& < B

n* <Bn+t
- -

which establishes (e) and completes the proof of the theorem. 0

From the theorem, two important properties of the distributions

B;YBt"
are apparent. First, we may arrive at the distribution

II+1
Bl

II-+1
Y l . vBt

by simply adding strings to the distribution B;YI$.

Second, if we are dispersing for stage n and we reach the distribution

J$Bt , then we may begin dispersing for stage n+l since the

distribution is optimal for both stages. Clearly we can base a blind

dispersion algorithm on these properties of the numbers By . However,

since we will be making several refinements, it is of value to examine

the general structure of such an algorithm.

We define a quota scheme for polyphase dispersion to be a family of

nonnegative integers Q",Q$&tn , n = 1,2,... which have the following

properties for _n>l and l,<ist:

Qf L S; , Q; 5 QT’ Y Qn _<Qtil I

Qn ,< QT + . . . + Qt , and Qn 4 03 as n 3 03 .

Following is the dispersion algorithm which is directed by the quota

scheme. The counters xl,x+. contain the numbers of strings which have

been'written to tapes l,...,t . Upon completion, the values of

⌧-1, l �9X* and n are the parameters for initializing Algorithm 4.3.

47

Algorithm 7.1

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Quota-Directed Polyphase Dispersion,

Let n = 1 and xi = yi = 0 for i = l,...,t .

If there are no more strings to disperse, then terminate

the algorPthm.

If xl+...+xt =Qn, thenlet n =n+l and

y1 = "* = yt = 0 and repeat this step.

Choose some i for which xi <yi . If this choice can

not be made, then go to Step 6.

Write a string to tape unit i , let xi = xi+1 , and go

to Step 2.

Find the smallest j for which xi < SF(j) for some i .

Let. Yi = min(Q$S~(j)) for i = 1, . . ., t . Go to Step 4.

n
Informally, this algorithm disperses for stage n keeping xi 5 Qi

for each i until xl+ . ..+xt = Qn and then begins dispersing for

stage n+l . When the algorithm is dispersing for stage n , the strings

are written in such a way as to minimize the growth of <(xl)+ . ..+ <(x+,) .

Since the choice of i made in Step 4 is arbitrary, the distribution

x~'*-,x~ may be uncertain when the algorithm switches from stage n to

stage ntl . Ear this reason, the first value of j chosen for stage

n+l by Step 6 may vary thereby causing the volume of the sort to vary.

This uncertainty disappears if Qn = Qr+ . ..+< or if it is known that

when we switch from stage n to stage ntl , then the distribution is

optimal for stage *l . Indeed, in the first case the distribution is

completely known and in the second case we know that j is the smallest

integer for which xl+ . ..+xt < Sntl(3) . The quota scheme which we

will consider has one or the other of these properties for each n l

48

When the quota

be transformed into

scheme has these properties, then Algorithm 7.1 may

a simplertable-directed algorithm. The tables have

k k k k
the entries n ,q ,ql,..~,qt for k >l and are

We initialize the counter k to zero and perform

unlimited supply of strings; after each time that

constructed as follows:

Algorithm 7.1 with an

Step 6 is performed,

kwe increment k by one and let n = n , qk = Qn Y
k

and qi =yi for

each i . The simplified algorithm follows:

,Algorithm 7.2

Step 1.

Step 2.

Step 3.

Step 4.

Step 5*

Simplified Quota-Directed Polyphase Dispersion.

Let k = 1 and x1 = . . . = xt = o .

If there are no more strings to disperse, then terminate

the algorithm.

k
If xl+...+xt = q , then let k = Hl .

Choose some i
k

for which xi < qi . If this choice can

not be made, then let k = k+l and go to Step 3.

Write a string to unit i , let xi = xi+1 , and go to

Step 2.

At termination, the parameters for the polyphase merge algorithm are

nk and x1, . . .,
xt ' Since the required tables may be prepared in advance,

this algorithm provides a very compact method of dispersing for the

polyphase sort. For most applications, the maximum value of k should

never exceed forty.

We will now present the rules for constructing the quota scheme for

the-blind polyphase dispersion algorithm.

49

1.

2.

3.

4.

If nzNt and if By < ST(j,) for some i , then we let

Qn = Bn and Q; = B; for iv= l,...,t .

If n zNt and if Bf =

Q; = min(Sy(jn+l) ,

for i = l,...,,t and we

S!$j,) for each i , then we let

Sy'(j,) , By?

let

Qn = min(cn,&:+ . ..+c%. .

If t 2 3 and l_<n <Nt , then we let

Qn = Sn and Q; = S; for i = l,...,t .

If t= 2 and n<Nt = 19 then we let

Qn = Sn nand Q:=Si for n 515 and i = l,...,t

and, in addition, we let

Q
16

= L16 = 2573 , Q17 = 3845 , Q18 = $3 = 6527 ,

16
Ql = $915) = 986 , Qk6 = si6(15) = 1596 ,

17
Ql = $8(13) = 1383 , Qi7 = sk7(14) = 2462 ,

18
Ql = si8(16) = 2567 Y Qi8 = si8(16) = 4163 .

. To show that these rules define a quota scheme, we will being by showing

that for n 2 Nt , we have

Bn 5 Qn ,< B@-I. and B; 5 Q; ,< By1 for i = l,...,t l

These relations are obvious when Rule 1 is applied. If Rule 2 is applied

instead, we have, from Theorems 6.2 and 7.1,

50

B; = Sy(jn) ,< Qy 5 By' for i = l,...,t and

Bn = sn(j,) 5 Qn 5 Q;+ . . . + Q; < Bml .

For t 2 3 , we must show that when n = Nt-1 ,

II+1and Sy -<Qi for i = l,...,t . Clearly, it
n n

that we have Sn ,< Qml

is sufficient to show

that Sl,< By for each i . For t = 3 , we have I$ = 6 and

5Sl = 7 < 12 = B; , S; 6==<lg=B2 , S; 6= 13 < 27 = ~~ .

Similarly, for t = 4 we have Nt = 4 and

3
sl

4=2<3=Bl, S; =3<5=Q;,

S3
3
=4<6=~;, sz =4<7=Q; .

For t 2 5 , we have Nt = 3 and using the t-array representation, it

may be shown that Gn(2) = 2t+ (n-1)(&l-n/2) for 1 < n <t from which- -

it follows that G3(2) < a=. <Gt-1(2) = Gt(2) so that m(3) = t-2 since

j3=2. Using t-arrays, we may also show that E?(2) < . . . t5 Si(2) for

each i so that S:(2) ,< S;(2) = B: for each i . The proof that

Rule 4 also contributes to a quota scheme is straightforward once we

observe that when t = 2 we have

S151 = 610 , Sk5 = 987 , Big = 3588 , Big = 6050 .

We have already seen how the numbers Bn and BF,...,Bt can be

used to describe blind polyphase dispersion so Rule 1 requires no

explanation. Rule 2 represents a refinement in which Qn is pushed

to the largest value not exceeding cn for which we can switch from

stage n to stage n+l with a distribution which is optimal for both

stages. Rule 2 will be used for each n for which j,, = jn+l .

Rules 3 and 4 simply fill out the quota scheme for small values of n .

51

The special assignments in Rule 4 were chosen subjectively to insure

reasonably good performance.

If we are dispersing using the quota scheme just described, it is

clear that when the number of strings x is large, then we will switch

stages with a distribution which is optimal for both stages. Consequently,

the volume of the sort will be vN"")(x) for some integer N*(x) when x

is sufficiently large. Since Qn ,< cn for n ,>Nt , it is clear that

N'(x) 2 N(⌧) l On the other hand, since cn <B
nt‘t

SQ
n+t , we see that

N? (x) < N(x)+t .

The blind polyphase sort which we have described is almost as good

i as the optimal polyphase sort of Algorithm 6.1, when the number of strings

is in the range of the size of most applications (say, less than a thousand),

the two sorts are almost always equivalent. When the number of strings

is large, it can be shown that the two algorithms are equivalent infintely

often. Indeed, this happens for S"(j,) strings every time that

.
Jn+l = jn+l . In the next section we will show that the two algorithms

are also asymptotically equivalent.

Example 7.1. Table 7.2 displays a portion of the simplified quota scheme

for the case t = 4 .

52

8. Assmptotic Performance.

In this section, we will study the performance of the algorithms

which we have described when the number of strings is large. There are

two volumes which we are interested in estimating. First there is the

volume of the optimal polyphase sort of Section 6,

v(x) = vN’“‘(x) ,

and, second, there is the volume of the blind polyphase sort, when x is

large, this is

V�(⌧) = vN��+X) l

We wiU. show that when x is large that both of these volumes are

asymcptotically equal to

x l o x + 1
Qt 2xlogtlogt x+ o(x) .

The reader who is not familiar with asymptotic methods may find [1] or

the first chapter of [4] to be helpful.

Our startingpoint is an interesting connection between the movement

numbers and the theory of probability. I&?-t YlJY2J l **
be independent

random variables which each take on the values 1,2,...,t with equal

probability t -1 . Simple calculations will show that each yi has an

expectation ~1, = (t+1)/2 and a variance o2 = (t2-1)/12 . For positive

integers m and k we define

(8J) p(m,k) = prob(yl+ . ..+Yk = m) .

Lemma 8.1. For n ,>l and j >l , we have <()3 = tjp(n,j) .

Proof. Let q(z) = z+z2+ . ..+zt for the real variable z . We will

begin by showing that

53

(84 C $(j)z” = q(z)’ .
n>l

Since the only nonzero values of
4)(1 are g()1 = 1 when 1 <n <t ,

we see that (8.2) is true when j = 1 . Furthermore, given (8.2) and the

fact that = 0 when n 5 k , we may write

C <(j+l)Z = C
n>l

4; $-"(j)z"
nil k=l

t
= c zk c
k=l n_>l

$Ok(j > znok

t
=‘c kz q(z)j = ,(z)j+l
k=l

so that (8.2) follows by induction. From the form of q(z) , we see that

the coefficient of zn in q(z)j is precisely the number of ways that n

may be written as the ordered sum of j integers, not necessarily distinct,

chosen from the set El 2Y ,**.t t3 l
Since this number is precisely

QkWl , the proof is complete.

Techniques for estimating probabilities of the form (8.1) are well

known. For our purposes, the best such approximation follows from a

theorem of C. G. Esseen which is given on page 241 of [3]:

p(m,k) =
e-s2/2

J&-

where we have written s =. b-d/d and where Q1(S) Y Q2(s) Y Q3(s) Y

Q4(5) are polynomials in which the coefficients depend only on the moments

of Yi which, in turn, depend only on t . It turns out that all of the

centralized moments of yi of odd order are zero. This leads to some

simplifications; in PLIrTtic- Q1(s) = Q3(s) = 0 and e,(s) takes on

54

the simplified form c(s
4

- 6s2+ 3) in which c depends only on t .

Using the estimates

2
ems I2 = 1 - 4; s2 + o(s) ,

Q2(s) = 3c+o(s2+ s4) ,

we obtain the approximation

p(m,k) = -

which may be written in the form

p(m,k) = -jL(&+&(3c~~))+o(~~) l

To simplify subsequent calculations, we will use the symbol pn(z) to

represent generically an n-th degree polynomial in z in which the

coefficient of 2 is positive and in which all of the coefficients

are functions only of t . Two distinct appearances of the symbol in

the text need not represent the same polynomial. With this convention,

we now have

(8.3) p(m,k) = up=& - -& q” - $1 + 0 (W) ’

Lemma 8.2. We have

(8.4) fit-jMn-(j) = L - 5 aJ,(n-pj)+O
u 2nr

(I+ y8) .

55

Proof. From the last, two formulas of (3 .l), we have

so that

M"(j) = t$-'(j-l)+ (t-l)go2(j-l)+ . ..+qot(j-1) .

Therefore, by Lemma 8.1, (8.3), and the facts that

we have

t-j#(j)
t

= C (t-i+l)t-j I$-i(j-l)
i=l

= t-l
t
C (t-i+l)p(n-&j-l)
i=l

t-l t
= / C (t-i+l) -

&xj i=l - it1

which is easily reduced to the form (8.4). 0

Lemma 8.3. We have

(8.5) 6 t'j$(j) = 11 - -
t2

o&T (t-l)2 j

56

Proof. From our definitions we have

.

Gn(j) = 5 S"(j)

.

= 5
k
X I?(i)

k=l k=l i=l

. j-l
= h (j-k+l)M?k) = c (k+l)#(j-k) .
k=l k=O

Using this formula and Lemma 8.2, we obtain

t-'Gn(j) =
j-l
c t-j(k+l)Mn(j-k)

k=O

j-l
= c tok(ktl) I-

P2b - pj + pk)

k=O - - (j-k)3/2)

j-l
c tok(k+l)

k = O

In order to simplify the above approximation, we need to be able to

estimate sums of the form

j-l ka
S(a,b) = c

k=O (j-k)b
tok

for. a = 0,1,...,9 and b = l/2,3/2, 512 . Let us write m = L/j]-1 .

If j is sufficiently large, then we will have ka < (3/Z) k for all

k >m and a = 0,1,...,ll . From the binomial expansion, it is clear

that for k <m , we have

1 1 bk

(j-k)b = jb
-+jb+l+O

.

It is also clear that

E kat-k
= s(a)+O((3/2t)m)

k=O

where

57

s(a) = fi katok .
k=O

We therefore have

s(a,b) = .t, ($+ b$;l)t-k+ k;;l (j;)b t-k

since the second sum is 0((3/2t)m) and the last sum is O(l/jH2) .

Since (3/2t)m

error estimate

from the facts

s(o)

‘Corollary 8.1.

is O(l/jM2) for each b , we may replace the above

by O(l/jM2) . The conclusion of this 1-a now follows

that

= t/(t-1) and s(l)

If n-pj = O(1) , then

3
fi to'c"(j) = d!L- " +

adz (t-Q2

Proof. This is a simple consequence of the lemma.

= t/(t-l)2

0 IL(J3 l

. cl

0

CoroUary 8.2. Let jn be defined as in Section 6, we then have

n_-pjn = O(1) .

Proof. We recall that jn is the smallest integer j for which

Gn(j) < GM'(j) . From the estimate (8.5), we obtain

6 toj(G*'(j) - G"(j)) =
Pl(n - d)

j

58

With Pl understood to

number which satisfies

pl(n-pj) is less than

n andif j_<LaJ-1, then

be the pl appearing above, let a be the real

= 0 . If j ,> ral+l , then clearly

some negative quantity which is independent of

quantity which is independent

LaJ -1 < j < [al+1 , we have- -

becomes O(jo2) so the first

PJn - pj) is larger than some positive

of n . For 3 in the range

n - pj = o(1) and the error estimate above

term of the estimate dominates. It follows

that jn lies within this range for large n and the proof is complete. a

Theorem 8.1. v(x) =x10 x +
1

Qt ~XlOgt logt x+ o(x) l

P r o o f . Let cn = Gn(j) -c"'(j -1) be defined as in Section 6. Fromn n

Corollarys 8.1 and 8.2 it is easily shown that

.

(8.6) l/jntoJn cn = PaG & + O(jr;l) .

If x is sufficiently large, then for n = N(x) we have c~-~ < x 5 cn .

Let j be the unique integer for which S"(j) <x 5 Sn(j+l) . From

Theorem 6.2, it is clear that jn-l-ls j ,< jn . Using the formula

v(x) = (j+l)x -Gn(j)

we may write

. (8.7) V(X) -x 10~ x = x(j+l-10~ x) -Gn(j) .

From (8.6) we have

1
10~ cn = jn - 2 logt jn + O(1)

and therefore, since 0 < j- n-jn-l 5 IL 9

59

j+l-logtx < j+l-lo
gt 'n-1

= j+'-jn+ 22r 10% jnml + 00)

,< &+1-j,+ 2ll,gt jn + O(1)

= 1~10~ jn + O(1) .

Similarly

j+l-10gt _x > j+l-logt cn = $ 10% jn + O(1)

and we have shown that

(8 4
1j+l-logt x =+ogt jn + O(1) .

comparing Corollary 8.1 and (8.6) we see that

G% > = O(Cnol) = o(x) .

From (8.8) and the fact that j,-2 < j s jn , we have

-1
jn 10% x = l+O(j,-' 10% 3,)

so that

10% jn -10% 10% x = O(jillogt j,) = O(1) .

Putting everything together, (8.7) becomes

1V(x)-~10% x = Fxlogt jn+ O(x)

1= F x 10% 10% x + o(x)

and the proof is complete. D

60

Corollary 8.3. V'(x) = x logt x +

Proof. In Section 7 we showed that

Theorem 5.3, it follows that

1
F x logt logt x + o(x) .

N(x) < N*(x) < N(x)+t . From

0 ,< V’(x) - v(x) = ~'(x+x) -flex)(x) ,< (N'(x) -N(x))x 5 (t-1)x

so that V*(x) -V(x) = O(x) and the result follows from the theorem. Cl

It is well known (see Section 5.4.4 of [5]) that the best possible

volume for a merge sort which performs p-way merges is x logp x+0(x) .

For this reason, a tape sort with T tape units has an optimum volue of

x logTo x + o(x) since such a sort can perform at most T-l -way merges.

A tape sort with T tape units which has a volume asymptotic to

x lo
&r-l x is said to be asymptotically optimal. Theorem 8.1 and

Corollary 8.3 imply that both the optimal polyphase sort and the blind

ply-phase sort are asymptotically optimal.

Remarks. The optimal polyphase sort appears to be the first known example

of an asymptotically optimal read forward tape sort. Other examples will

appear in [g]. Several asymptotically optimal read backward sorts are

known (see, for example, Section 5.4.4 of [5]) but these sorts have volumes

of the form x logT1 x+0(x) which is smaller than the volume we have

derived for the optimal polyphase sort. One wonders if the volume

x l o x + 1
_ &c 2 x logt logt x + o(x) can be improved upon for read forward

sorts or whether it represents some theoretical minimum. A simplified

self-contained analysis of the optimal polyphase sort, which is probably

suitable for students, appears in [lo].

61

9. Concluding Remarks.

Two questions concerning the optimal poQ@ase sort

investigation. First there is the problem of estimating

remain open for

the smount of

time the algorithm spends waiting for tapes to rewind and second there

is the problem of optimizing the read backward polyphase sort.

The rewind time is significant since both the blind and the optimal

polyphase sorts perform large numbers of tape rewind operations. Of course

we may suppose that the total amount of rewinding corresponds to the volume

'of information moved. However, the polyphase merge rewinds two tapes

simultaneously so it is conceivable that a highly unbalanced situation

may arise in which one of the two tapes being rewound would be considerably

longer than the other. This might cause the total rewind ,wai.t time to

vary from the volume of the merge to twice that volume.

In the read bacbard polyphase sort, the tape units act as stacks

so the direction in which a string is written is reversed when the string

is moved. Therefore, strings which will be moved an odd number of times

must be written in the omsite direction from strings which will. be

written an even number of times. For this reason, strings are no longer

interchangable so the dispersion routine must concern itself with the

details of placing the dummy strings.

In this paper, we have limited the discussion to the traditional

polyphase merge in which the appointment of the output tapes is cyclic.

The polmhase merge, however, is just a special case of the class of

single-output read-forward merge algorithms. Some information about these

techniques can be found in the exercises for Sections 5.4.2 and 5.4.4 of [5].

It is known for example that in certain special cases, the optimal polyphase

62

sort can be beaten by other methods of merging. In [g] it is shown that

a large class of single-output read-forward merge algorithms also give

rise to asymptotically optimal sorting algorithms.

63

Acknowledgments

This paper would have been a pale shadow of itself had I not

encountered a preprint of the first half of [5]. Professor Knuth also

read an early draft of the paper and made several valuable suggestions.

This research was conducted while I was employed at Sperry UNIVAC in

Roseville, Minnesota, and began as a study of possible sorting

procedures for the DMS ll.00 Schema Description (DDL) translator which

I was then implementing. I am indebted to Mr. E. H. Moulton for many

valuable conversations and to Mr. A. G. Reiter, Dr. H. C. Gyllstrom, and

M. D. Thompson, for allowing me to pursue this subject when I should have

been doing something else.

64

References

The references given below consist of only those books and papers

which are referenced in the text. An extensive bibliography on computer

sorting has been prepared by R. L. Rivest and D. E. Knuth which appears

in Computing Reviews, vol. 13, no. 6 (June lg2), pp. 283-289.

ml

PI

c31

141

c51

161

171

Ku

191

[lOI

de Bruijn, N. G., Asymptotic Methods in Analysis, North-Holland,

Amsterdam, 1970, 200 pp.

Flores, I., Computer Sorting, Prentice-Hall, Englewood Cliffs, N. J.,

1969, 237 PP.

Gnedenko, B. V., and Kolmogorov, A. N., Limit Distributions for

Sums of Independent Random Variables, Addison-Wesley, Reading,

Mass., 1954, 264 PP.

Knuth, D. Em, Fundamental Algorithms, The Art of Computer Programming 1,

Addison-Wesley, Reading, Mass., 1968, 634 pp.

Knuth, D. Em, Sorting and Searching, The Art of Computer Programming 3,

Addison-Wesley, Reading, Mass., 1973, 722 pp.

Lynch, W. Cm, "The t-Fibonacci Numbers and Polyphase S~rting,~~

Fibonacci Quarterly, 8 (1970), pp. 6-22.

Sackman, B. S., and Singer, T., "A Vector Model for Merge Sort

Analysis, Fart I, Folyphase Merge Sort," unpublished paper presented

at the ACM Sort Symposium (November ig62), 28 pp.

Shell, D. L., "Optimizing the X&phase Sort," Comm. ACM, 14, ll

(November lgl), pp. 713-719, Corrigendum, Comm. ACM 15, 1

(January 1972), p. 28.

Zave, D. A., "A Note on Merge Sort Analysis," (in preparation).

Zave, D. A., "A Simplified Analysis of the Optimal Polyphase Sortyt

-(in preparation).

65

j
.q(J) M;(j) .

g(J)

n=l 1 1 1 1

n=2 1

2.

0

1

1

1

1

1

1

1

n=3 1

2

3

0

1

1

0

2

1

n=4 1

2

3
4

n=5 1

2

3
4

5

Table 3.1. Movement Numbers for t = 4 .

66

j .n= -3 -2 -1 0 12 3 4 5 6 7

0 0 1 0 0

1 0 1 0 0

2 0 1 0 0

3 0 1 0 0

4 0 1 0 0

,5 0 1 0 0

6 0 1 0 0

7 0 1 0 0

0 0 0 0 0 0 0

1 1 0 0 0 0 0

1 2 2 2 2 1 0

1 2 3 5 7 8 7

12 3 6 IL 17 23

12 3 6 12 22 37

12 3 6 12 23 43

12 3 6 12 23 44

Table 3.2. S!!Jj) for t = 4 .

67

n = 0 1 2 3

j =0 0 t

1 -1 0 t

2 t-2 -1 -1 t-1
.

Table 6.1(a). Roof of Lenma 6.4 (t 2 4) .

n = 0 1 2 3 4 5 6

j =0

1

2

3

4

0 3 2

-1 0 3 5

1 -1 -1 2 8

3 1 0 -1 0 y

4 o -1 8

Table 6.1(b). proof of Lemma 6.4 (t = 3) .

68

n
=

.o
1

2
3

4
5

6
7

8
y

10
IL
L

12
13

14
15

16
17

18
19

I
t

j.

=
0 1 2 3 4 5

b

6 7 8 9 10 XL 12 13 14

0 -1 0 1 2 3

2
1

0
0

0
'

0
2

3

1
0

0

-1
-
1

2

5

4

1
0

0
-
1

-
2

1

7
9
5

1
1

1

-
1

-
3

-
1

8

1
6

14
6

2
3

2
o

-4
-4

7
24

30
20

3
5

5
5

2
-4

-8
3

31
54

50

8
10

10
7

-2
-
u

-5
34

85
10
4

18
20

17
5

-1
4

-1
7

29
11
9

18
9

38
37

22
-9

-3
1

12
14
8

30
8

75
59

13
-4
0

-1
9

16
0

45
6

13
4

72
-2
7

-5
9

14
1

61
6

20
6

45
-8
6

82
75
7

25
1

-4
1

-4
83
9

21
0

-4
5

83
5

T
a
b
l
e

6.
1(
c)
.

pr
oo
f
o
f

L
-

6
.
4

(
t

=

2
)

.

n t=2 t 3= t=4 t 5= t=6 t=7

5
6

7
8

9
10

11

12

13
14

15
16

17
18

19

2

3

5
8

13
21

34

55

89
144

233

377
610

987

1597

2573

3954

6527
10488

3

5 7

9 13

17 22

31 34

54 75

95 108

172 243

279 358

534 455

819 1196
1634 1562

2400 4033

4958 5378

7028 6455

14952 18560

20582 22875

44898 64188

@w7 80858

4 5 6 7

9 11 13

13 16 19
28 19 23

42 52 2 6

60 72 87

153 97 ll4

215 282 147
268 385 167

778 480 639

JO33 554 791
1248 1995 921

3909 2485 1016

4969 2900 4396

5840 10577 5250

19408 13096 5978

23917 15335 6498

27556 17028 30163

95802 69843 35027

Table 6.2. Ln for 2_<tL7 and lLn_<lg.

70

n = -1 0 12 3

3 =o

1

2

Table 7.1(a). ProofofLemma7.1 (tL4, i=t) .

0 1

-1 0 1 1

-1 t-2 -1 0 1

n = 1-t . . . 0 1

j =o 1 . . . 0

1 1 '..* -1 1

Table 7.1(b). ProofofLemma7.1 (t13, i=l) .

n = i-t-l i-t . -. . 0 12 3-~--
r -1 1 0

---j =o 0 1 0 . . . 0

1 -1 1 0 . . . -1 1 1

2 . . . t-3 -1 LO 21

Table 7.1(c). Proof of Lemma 7.1 (t 2 4 j l< i <t) .

71

n = -2 -1 0 1 2

j = 0 0 1 0'

1 -1 1 -1 1

2
I

-1 1 0 -1 1

Table 7.1(d). ProofofLema7.1 (t=3, i=2) .

n = -1 0 1 2 3 4 5 6

j =0

1

2

3
4

I
0
-1

-1

-1

-1

1

0 1 1 1

1 -1 0 2 3

3 0 -1 0 1 5

5 2 2 2 -1 0 6

Table 7.1(e) . ProofofLemma7.1 (t=3,i=3) .

72

n

=

-1

o

1
2

3

4

5

6

7
8

y

10

u

1
2

$3

1
4

1
5

1
6

1
7

1
8

19

j
=

0 1 2 3 4 5' 6 7 8 9 10 SL I2 13 14

0

0

0

0

0
'
0

-
1
1
0

0

0

0

0

-
l
o

0
1
0

0

0
0

0

O
-
1

0
1

1
0

0

0

1
1

0

-
1
-
l

1

2
1

0
0

2

2

2

1
-
l

-
2

0
3

3

1
0

3

4

4

3

o
-
3

-
2

3

6

4

1

7

8

7

3
-
3

-
5

1
9

10
5

1
5

1
5

1
0

0
-
8

-
4

10
19

15

3
0

2
5

lo

-
8

-1
.2

6
29

5
5

3
5

2
-
m

-6

90
37

-3
.8

32
7

34 35
63

-2
6

29
y8

19
-4
4

3
12
7

14
6

-2
5

-4
1

13
0

I2
1

-6
6

89

T
a
b
l
e

7.
1(
f)
.

Pr
oo
f

of

Le
mm
a
7.
1

(t

=

2
,

i
=

1)

.

n
=

-
1
0
1
2

3
4
.
5

6
7

8
y

10
11

12
13

14
15

16
I

17
18

19
20

j
=

0 1 2 3 4' 5 6 7 8 9 10 ll 12 13 14 15

0
1

-
1

0

-
1

0

-
1

1

-
1

2

-1

3 4

0

0

0

0

0

1
1

0
0

0
0

-
1

1
2

1
0

 0

0

-
1
-
l

0

3

3

1
0

0

0

0

-
2

-
1

3

6
4
1

o

1

2

0

-
2

-
3

2

9
m

5
1

2

4

3

2
-
2

-
5

-1

u

19
15

6

6

6

o

-
6

7

5

-
7

10
30

34
21

12

1
3

1
2

5

-
7

-1
3

4
40

.6
4

55

2
5

2
5

1
7

-2
-2
0

-9
44

10
4

ll
y

50
42

15
-2
2

-2
9

35
14
8

22
3

92
57

-7
-5
1

6
18
3

1
4
9

5
0

-
5
8

-
4
5

1
9
9

-8

37
1

18
9

55
6

-1
03

14
4

74
5

19
1

-1
11

41
89
9

80
-7

0
93
0

j

T
a
b
l
e

7.
1(
g)
.

P
r
o
o
f
o
f
L
e
m
a
7
.
1

(
t
=
2
,
i
=
2
)

.

. .
-

i

i

L

c

L

k nk
k

ql

1 1 4 1 1 1 1

2 2 7 1 2 2 2

3 3 9 1 2 2 2

4 3 13 2 3 4 4

5 4 21 3 5 6 7
6 4 22 4 6 7 8

7 5 30 4 7 9 10

8 5 34 4 8 IL 13

9 6 36 4 8 ll 13

10 6 71 10 17 21 23
11 6 75 13 22 26 28

12 7 100 13 23 30 34

13 7 108 14 27 37 44

14 8 322 14 27 37 44

15 8 241 34 57 71 79
16 8 243 44 77 92 100

17 9 338 44 78 101 115
18 9 358 50 94 128 151

19 10 423 50 94 128 151
20 10 455 50 100 144 178
21 ll 472 50 100 144 178
22 ll 1156 151 266 345 394

Table 7.2. Simplified Quota Scheme for t = 4 .
c

75

