
SPACE BOUNDS FOR A GAME ON GRAPHS

bY

Wolfgang J. Paul
Robert Endre Tarjan

James R. Celoni

STAN-(X-76-545
MARCH 1976

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

Space Bounds for a Game on Graphs

f
-E

Wolfgang J. Paul .-I**
Robert Endre Tarjan

Computer Science Department Computer Science Department
Cornell University Stanford University
Ithaca, New York lb-850 Stanford, California 94305

James R. Celoni El
Computer Science Department ,

Stanford University
Stanford, California 94305

Abstract.

We study a one-person game played by placing pebbles, according

to certain rules, on the vertices of a directed graph. In [33 it

was shown that for each graph with. n vertices and maximum

in-degree d , there is a pebbling strategy which requires at most

c(d) n/log n pebbles. Here we show that this bound is tight to within

a constant factor. We also analyze a variety of pebbling algorithms,

including one which achieves the O(n/log n) bound.

Keywords: pebble game, register allocation, space bounds, -Turing machines.

f* Research partially supported by DAAD (German Academic Exchange
Service) Grant No. 53O/b2/563/5.

zl Research partially supported by National Science Foundation grant
DCR72-036%A03.

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

1

1. Introduction.

Let G = (V,E) be an acyclic directed graph with vertex set V and

edge set E . If (i,j) is an edge of G , we say i is a predecessor

of j and j is a successor of i . We denote the set of predecessors

of a vertex j by B(j) l
The number of predecessors of a vertex is its

in-degree; the number of successors of a vertex is its out-degree. A vertex

of in-degree zero is a source; a vertex of out-degree zero is a sink. We denote

by .4(n,d) the class of all acyclic. directed graphs G with n vertices,

each having in-degree no more than d . We use c,c1,c2,... to denote

positive constants. We use c(d),cl(d),c2(d),... to denote positive

constants depending on d but not on n . Finally, we let [i,j] 'denote

the set of integers {k: i 5 k 5 j] .

In this paper we study a one-person game played on graphs. The game

involves placing pebbles on the vertices of a graph Ge&(n,d) according

to certain rules. A given step of the game consists of either placing a

pebble on an empty vertex v of G (this is called pebbling v) or

removing a pebble from a previously pebbled vertex. A vertex may be

pebbled only if all its predecessors have pebbles. (As a special case of

this rule, any source may be pebbled at any time.)

The object of the game is to pebble a given vertex of G subject to

the constraint that at most a given number of pebbles are ever on the graph

simultaneously. We may in addition require that this pebbling be accomplished

in the minimum number of steps. We can pebble any vertex of G in n *
steps, using n pebbles, by pebbling the vertices in topological orderf
and never deleting pebbles. We are interested in pebbling methods which

use fewer than n pebbles but possibly many more than n steps.

-I* I.e., if (i,j) EE , then i is pebbled before j [W

The number of pebbles used in the pebble game models the storage

requirements of a computation, in the following intuitive sense. Each

vertex represents a value. This value is computed by applying a particular

operation to the values represented by the predecessors of the vertex.

Sources represent input v-?lues. Each pebble represents a stora.ge location.

Pebbling a vertex corresponds to computing the value represented by the

vertex and storing the value in the location represented by the pebble.

Deleting a pebble from a vertex corresponds to freeing the storage

location represented by the pebble, thus making unavailable the value

represented by the vertex. Should this value be needed at a later time,

it must be recomputed. The pebble game has been used as a model for

register allocation problems [73 and as a tool for studying the relationship

between time and space bounds for Turing machines [l, 31.

Known results concerning the pebble game include the following.

Theorem A. If G~l(n,d) and G has maximum out-degree one (i.e.,

G is a tree), then any vertex of G can be pebbled in time n using

c2(d) log n pebbles [l]. For infinitely many n , there is a graph

Ge&n,2) of maximum out-degree one which requires cl log n pebbles

to pebble some vertex [51.

Theorem B [l]. For infinitely many n , there is a graph G e,&(n,2)

.which requires c&i pebbles to pebble some vertex.

Theorem C [31. If G@(n,d) , then any vertex of G can be pebbled

using _ c.(d) n/log n pebbles.

In Section 2 we construct, for infinitely many n , a graph

G(n) e&(n,2) such that G(n) requires cl n/log n pebbles to pebble

some vertex. This shows that the bound in Theorem C is tight to within

3

a constant factor. In Section 3 we give upper bounds for various

-pebbling methods, including a method which achieves the O(n/log n)

bound of Theorem C. In Section 4 we present some further remarks.

2. A Lower Bound.

We prove the claimed lower bound by recursively constructing an

appropriate family of graphs. We use the following result of Valiant [8].

For any value of i , there is a graph with cl2i edges, 2
i

sources,
.

and 2i sinks, which has the following property:

For any j E [i,2i] , if S is any subset of j sources and T

is any subset of j sinks, then there are j vertex-disjoint

paths in C(i) from S to T .

The vertices in this graph may have arbitrary in-degree. Replacing

each vertex with in-degree d > 2 by a binary tree with d leaves at most

doubles the number of edges. In the new graph each vertex has in-degree two,

and the graph still has the same property. Thus we have the following lemma.

.
Lemmal. For any value of i there is a graph C(i) ~,&(c2~,2) , with 2i

.
sources and 2i sinks, such that: For any j E [l,2i] , if S is any

subset of sources and is any subset ofj T j

j vertex-disjoint paths in C(i) from S to T .

sinks, then there are

Corollary 1. For any j e [0,2i-l] , if j pebbles are placed on any j

vertices of C(i) , and T is any subset of at least j+l sinks, then
.

at least 2i-j sources are connected to T via pebble-free paths.

Proof. For any j E [0,2i-l] , let j pebbles be placed on C(i) and

let T be any subset of at least j+l sinks. Any subset S of j+l

sources is connected to T via j+l vertex-disjoint paths, at least one

of which must be pebble-free. Thus j is the maximum size of the set

of sources not connected to T by a pebble free path. Cl

Using copies. of C(i) , we recursively define a set of graphs

{G(i): i = 8, 9, 10, . ..) . G(8)
=4cc8) l

We form G(i+l) = (V(i+l),E(i+l))

from two copies of G(i) and two copies of C(i) as follows.. Let 8

G(i) = (V(i),E(i)) have sources S(i) = {s(i,j): j ~[1,2~]1 and sinks

T(i) = {t(i,j): j ~[1,2~]} . Let C(i) have sources

SC(i) = {sc(i,j): j ~[1,2~]] and sinks TC(i) = {tc(i,j): j ~[1,2~]1 .

Let Gl(i) , G2(i) be two copies of G(i) and let C,(i) , C,(i) be

two copies of C(i) . Let S(i+l) = {s(i+l,j): j e[1,2 i+l]] and

T(i+l) = {t(i+l,j): j E [1,2i+1]] be two new sets of vertices. Let

m G(i+l) = (V(i+l),E(i+l)) , where

V(i+l) = S(i+l) UT(i+l) UV,(i) UV,(i) UvCl(i) UVC2(i) , and

E(i+l) = El(i) U E2(i) U ECl(i) U EC2(i)

U ((s(i+l,j) ,t(i+l,j)): j E: [l,2i+1]3

U {(s(i+l,j) f y(i,j)): j E: [Wi13

U {(s(i+l,j+2i), scl(i,j)): j E: [1,2i]3

U C(tc,(bj) , y(i,j)): j E DG-53

U ((-+,j) , s2(hj)).: j E L2ilI

U C(t,(bj) J sc2(bj)): j c DA1
. .

U {(tc2(i, j) J t(i+bj)): j E DA’3

u C(tc,(id Y +,!.-f,tJ.,j+2i)): j E [l,2i]3 .

Figure 1 illustrates G(i+l) .

Let m(i) = IS(i)1 = \T(i)l = 2i . Let n(i) = IV(i)1 . Then

n(8) < c2
8

is the constant- and n(i+l) 5 2n(i)+ (2c+9)ei , where c

given in Lemma 1. It is easy to prove by induction that n(i) 5 ~~'i.2~

for some constant co , and that G(i) EB(n(i),2) .

5

Let cl = 141256 , c2 = 3/256 , c3 = 341256 , and c4 = i/256 .

The following inequalities are immediate.

c3 m(i)/2 2 c2m(i+l)+l

(1-2c2) > c3

c,m(i) 1 c4m(i+l)+l

cl m(i)/2 2 c2m(i+l)+l

(l-c2) > Cl-

(c3/2 - c2> ,> Cl l

Lemma 2. To pebble at least elm(i) sinks of G(i) in any order,-/
*

starting from an initial configuration of no more than c2m(i) pebbled

vertices, requires a time interval [tl,t2] during which at least c3m(i)

sources are pebbled and at least c4m(i) pebbles are always on the graph.

Proof. By induction on i . Let i = 8 . Consider an initial

configuration on G(8) of no more than three pebbled vertices and suppose

14 sinks are pebbled during time interval [O&J . Any four of these

sinks are connected, via initially pebble-free paths, to at least 253

sources, by Corollary 1. Thus at least one of these sinks, say v , is

connected, via initially pebble-free paths, to at least 64 of the

.sources. When v is pebbled, none of the 64 sources is connected to

v via a pebble-free path. mrthermore the set of sources connected to

v via a pebble-free path can decrease by at most one at each time step.

Let tl-1 be the last time at which 64 sources are connected to v via

i.e., each sink is pebbled at some time, but not all sinks need be
pebbled simultaneously.

6

pebble-free paths. During time interval [tl,t] , 63 2 34 sources of

G(8) must be pebbled, while at least one pebble is always on the graph,

This proves the lemma for i = 8 .

Suppose the lemma is true for i . To prove the lemma for i+l ,

consider an initial configuration on G(i+l) of no more than c2m(i+l)

pebbled vertices and suppose at least c,m(i+l) sinks are pebbled during

time interval [O,t] . We must consider several cases.

Case 1. There exists a time interval [tl,t2] 5 [O,t] during which at

least c3 m(i)/2 sources of Gl(i) are pebbled and at least c2m(i)

pebbles are always on the graph. The subgraph of G(i+l) consisting of

all vertices and edges on paths from the set of sources {s(i+l,j): je[l,2i])
.

to the set of sinks {s,(i,j): je[l,2']1 satisfies Lemma 1 and Corollary 1.

So does the subgraph of G(i+l) consisting of aU vertices and edges on

paths from the set of sources {s(i+l,j+2i): je[l,2i]) to the set of

sinks {s,(i,j): j&,2i]) . Let to be the last time before tl at

whichthereare no more than c2m(i+l) pebbles on the graph. At time to ,

since c3 m(i)/2 2 c2m(i+l)+l , there are at least 2(m(i) -c,m(i+l)) =

(l-2c2)m(i+l) 2 c3m(i+l) sources of G(i+l) connected via pebble-free

paths to the c3m(i)/2 sources of Gl(i) pebbled from tl to t
2

.

During the interval [t0,t2) , at least these sources of G(i+1) must be

pebbled, and at least c2m(i)-1 1 c4m(i+l) pebbles must be constantly

on the graph. Thus the lemma holds in this case.

Case 2. There exists a time interval [tlyt2] 5 [O,t] during which at

least- c3 m(i)/2 sources of G2(i) are pebbled and at least c,m(i)

pebbles are always on the graph. The lemma holds by a proof like that

in Case 1.

Case 3- There exists a time interval [tlyt2] c [O,t] during which-

at least cl m(i+1)/2 sinks of G(i+l) are pebbled and at least

c2m(i) pebbles are always on the graph. During [tl,t2] either

cl m(i+1)/4 sinks in {t(i+l,j): j E [l,2i]3 are pebbled or

cl m(i+1)/4 sinks in (t(i+l,j+2i): j ~[1,2~]1 are pebbled. The

lemma holds by a proof like that in Case 1, using the inequalities

cl m(i+1)/4 2 c2m(i+l)+l , Wc2) 2 c3 Y and c2m(i)-1 2 cq"(i+l) .

Case 4 . None of the previous cases hold. Since Case 3 does not hold,

there must be a time tie [O,t] such that fewer than cl m(i+1)/2 sinks

of G(i+l) are pebbled during EWll and the number of pebbles on

G(i+l) at time tl is no more than c2m(i) . During [tl,t] , at

least elm(i) sinks of G(i+l) are pebbled. Since c1m(i)/2 1

c2m(i+l)+l 1 c2m(i)+l , the number of sinks of G2(i) connected to

these sinks of G(i+l) via pebble-free paths is at least (1-c2)m(i) .

Thus at least (1-c,)m(i) 1 elm(i) sinks of G2(i) are pebbled

during [tlyt] , starting from an init%al configuration of no more

than - c,m(i) pebbled vertices. By the induction hypothesis there is

a time interval [t2, 3 -t] c [tlyt] during which C34 9 sources of

G2(i) are pebbled and c4m(i) pebbles are always on 50) l

Since Case 2 does not hold, there must be a time t4 E[t2,t3]

such that fewer than c
3
m(i)/2 sources of G2(i) are pebbled during

[tpt41 and the number of pebbles on G(i+l) at time t4 is no more

than -c2m(i) . During [t,,t,] at least c3 m(i)/2 sources of G2(i)

are pebbled. At time t4 , since c3 m(i)/2 - c2m(i) 2 elm(i) , at

least c,m(i) sinks of Gl(i) are connected via pebble-free paths to

these sources of G2(i) . During [t4,t3] these sinks of Gl(i) must

8

be pebbled, starting with no more than c2m(i) pebbled vertices. By

the induction hypothesis there is a time interval [t 5) 6t I c b,dJ,l

during which c3m(i) sources of Gl(i) are pebbled and c4m(i)

pebbles are always on Gl(i) .

Since Case 1 does not hold, there must be a time t7 e[t ,t
5 6

] such

that fewer than c3 m(i)/2 sources of Gl(i) are pebbled during

[t5,t71 and the number of pebbles on G(i+l) at time t
7

is no more

than c2m(i) . During [t,,t,] at least c3 m(i)/2 sources of Gl(i)

are pebbled. At time t7., since c3 m(i)/2 >, c2m(i+l)+l 1 c2m(i)+l ,

at least (1-2c2)m(i+l) 2 c3m(i+l) sources of G(i+l) are connected

via pebble-free paths to these sources of Gl(i) . Thus, during

[t7,t6] c [t5,t6] c [t2yt3] at least c3m(i+l) sources of G(i+l)-

are pebbled and at least c4m(i)+ c4m(i) = c4m(i+l) pebbles are always

on the graph. This completes the proof. 0

Theorem 1. For infinitely many n , there is a graph G e&r@) such

that pebbling some vertex in G requires c
5
n/log n pebbles.

Proof. For n = n(i) , i = 8, 9, 10, let G = G(i) l Since

pebbling all sinks of G(i) from an initial configuration of no pebbled

vertices requires c4m(i) pebbles, there must be some sink whose

. pebbling requires c4m(i) pebbles. (0therwise, the procedure of

pebbling the sinks one after another using a minimum number of pebbles

for each sink, and removing all pebbles after each sink is pebbled, would
.

pebble all sinks using fewer than c4m(i) pebbles.) Since n(i) 5 2coi21

and m(i) = gi , the number of pebbles required is c5 n(i)/log n(i)

for some constant c5. Cl

9

3. Upper Bounds.

In this section we derive upper bounds

required by various pebbling methods. Let

which removes all pebbles from vertices in

upon the following algorithm, which pebbles

on the number of pebbles

remove (set S) be a procedure-

s l Most of our results depend

vertices in a "depth-first" manner.

e depth-first pebble (& G, e v, e S);

bs

for u EB(v) do3ou not pebbled then-
depth-first pebble (G, u, BTUS);

pebble v;

remove (V-(W(v)));

end:

The following lemma is implicit in [3].

Lemma 3. If G = (V,E) e &(n,d) has the property that any path to v

has no more than I vertices, then depth-first pebble (G,v,$) pebbles

v using no more than (d-1)(1-1)+2 pebbles.

Proof-. By induction on the length 1 of the longest path to v . If v

is a source, the procedure uses _1 < (d-1)*0+2 pebbles. Suppose the

lemma is true for I and let the longest path to v have length a+1 .

Then the procedure uses max((d-l)+(d-l)(I-1)+2, d+l) = (d-1)1+2

pebbles. 0

- The following more general method uses "permanent" pebbles, which

once placed on the vertices of a set P , are never removed.

10

procedure permanent pebble (graph G, vertex v, set P);-
begin

ZueP in topological order $o- depth-first pebble (G,u,P);

depth-first pebble (G,v,P);

end;-

Lemma 4. If lP\ = k and if G = (V,E) e&(n,d) has the property that

any path to v which avoids vertices in P contains no more than k'

vertices, then permanent pebble (G,v,P) pebbles v using no more than

k+(d-l)(R-1)+2 pebbles.

Proof. When depth-first pebble (G,u,P) is called by permanent pebble ,

any pebble-free path to u contains no more than R vertices, since

every vertex in P on a path to u has been pebbled previously. The

bound follows from Lemma 3. Cl

Erdijs, Graham, and Szemere'di [2] have proved that in

directed graph of n edges there is a subset P of cln

vertices such that every path which avoids P has length

c2n log log n/log n . (Furthermore they provide an easy

any acyclic

log log n/log n

at most

way to find such

a subset P .) Their result combines with Lemma 4 to give the following

theorem.

Theorem 2. If G = (V,E) el(n,d) and P c V is properly chosen, then-

permanent pebble (G,v,P) uses at most cdn log log n/log n pebbles.

To come closer to the Theorem C bound, we must use an algorithm

. somewhat more complicated than permanent pebble . We defer discussion

of this algorithm to the end of the section.

- Theorem 1 and Lemma 4 also yield:

Corollary 2 [2]. -For infinitely many n there is a graph G ~7(n,2)

such that every subset P of the vertices of G with the property "Every

path which avoids P has length at most IPI If has at least cln/ log n

vertices.

11

We now give good methods for pebbling two special classes of

graphs. We call G = (VYE) E e-b 4 a level graph if V can be

partitioned into levels L(l),L(2) ,...,L(m) such that if (v,w) eE

and vEL(i) , then w~L(i+l) . Let G be a level graph and let k

be any positive integer. Call level i large if \L(i)(> k and small-

otherwise. Let (i(j): l_< j 5 1) be the set of indices of small

levels, in increasing order. Let i(0) = 0 , i(a+l) = m+l , and L(0) = fl .

Let veL(j) be any vertex and let 1' be the integer such that

i(P) < j and i(P+l) 2 j .

The following algorithm efficiently pebbles v .

e level pebble (e G, Es L, s i, e v, w 1');

*

Ej :=leI' do-
s

EueL(i(j)) do-

depth-first pebble (G, u, L(i(j-1)) UL(i(j)));

remove (L(i(j-1)));

(?I&;

depth-first pebble (G,v,L(i(P)));

Lemma 5. Procedure level pebble pebbles any vertex of a level graph

G = (V,E) E: &(n,d) using no more than 2k+ (d-l) i pebbles.

Proof. During the pebbling process, no more than two small levels ever

contain pebbles simultaneously. Thus at most 2k-2 pebbles are ever on

small levels. The number of levels between two small levels is at most z ,

since there are at most large levels. Thus the number of pebbles used in an

outermost call of depth-first pebble is at most (d-1) %+2, and the total

number of pebbles used is at most 2k+ (d-l) ; . i7

/
12

Theorem 3. If Ge&n,d) is a level graph, any vertex of G can be

pebbled using 2/8(d-1)n pebbles.

Proof. Immediate from Lemma 5, choosing k = &d-l) n/2 . 0

The bound in Theorem 3 is tight (to within a constant factor which

depends on d), because

graphs.

the graphs Cook used to prove Theorem B are level

The class of m-tape Turing machine graphs 4(n,m) is the subset of

&w+l> containing graphs G = (V,E) of the following type.

V = C(iyjl(i)y -4,(i)): 1 < i < n , j,(l) = 1 for all k ,- -

and j,(i+l) E (j,(i)-1, j,(i) , j,(i)+11 for all i < n

and all k) ;

m
U

k=l
CWyill(i’), l J,(W , (M,(i), l J,(i>>):

‘* t
1 = max{a < i: j,(1) = j,(i)))

U (((i,j,(i),~~~,j,(i)) , (i+l,jl(i+l),...,jm(i+l))): 1 ,< i < n) .

The pebble game on m-tape Turing machine graphs was used in [1,3]

as a tool for relating the time and space requirements of Turing machines.

It has been conjectured that

en/log n pebbles to pebble

adapting a proof of Paterson

Turing machines [6].

there are graphs in s(n,l) which can require

some vertex. We disprove this conjecture by

for space-efficient simulation of one-tape

Let G = (V,E) e T(n,l) . For any j , let

H(j) = ((i,j,(i)) eV: j,(i) = jj . For any S c V , let

width(S) = max{\j,(i) -j,(i')\: (i,j,(i)) , (i',j,(i')) ES) . For any S c V ,

13

there must be some ;j such that max(\Jl(i)-j \: (i,,jmL(i)) c S) <? width(S)+1-

and \H(j)(,< 3n/width(S) . Removal of the vertices in H(j) splits S

into two parts, Sl = ((i,j,(i)) ES: j,(i) < j] and

S2 = {(i,j,(i)) ES: j,(i) > j) . Any path in G which contains a vertex

in S1
and a vertex in S2 must contain an intervening vertex in

H(j) l

The following recursive algorithm efficiently pebbles a vertex v

in G = (V,E) E 7(n,l) .

Bone-tape pebble (e G, e S, s v);

if width(S) < k then- -

E (i,j,(i)) ES in topological order

bs

pebble (i,j,(i));

let (i~,j,(i~)) be the vertex (if any) in S with

largest if < i and j,(P) = j,(i);

remove pebble from (i',j,(i'));

end;-

remove (S-{VI);

end-

else

begin

set Sly S2;-

find j such that max(Ijl(i)-jl: (i,j,(i)) ES] 5 5 width(S)+1.

and lH(j)/ 5 %/width(S);

sl := {(i,j,(i)) ES: j,(i) < j);

14

s2 := ((&j,(i)) ES: j,(i) >j);

E (iJ,(i>> E H(j) in topological order do-

benin

if (i-l,jl(i-1)) &$-then one-tape pebble-

(Wly (i-U,(i-1)))

else if (i-l,j,(i-1)) cS2-NV one-tape pebble

(G,Spy(i-l,jl(i-l)));

pebble (i,j,(i));

end;--

one-tape pebble (G, Sly v>
~&~~EvES~ zone-tape pebble (G,S2,v);

mnove (S - (V)) ;

end one-tape pebble;-

15

Lemma 6. Procedure one-tape pebble pebbles any vertex of a graph

G = (V,E) E ?'(n,l) using y + k pebbles.

Proof. Let p(n,x) denote the number of pebbles used by one-tape

pebble (G,S,v) when G = (V,E) E T(n,l) and S c V has width(S) = x .-

Then

p(n,x) ,< k if x <k, and

P(n,x) _<P(n, 1$x])+ G if xrk .

Let x be suchthat x<k, Then.
_< $ 3n +k

i=l
c >

3 ix2
< 3n
- 3

7-T2 x

j-l
c
i=O

9n-<k+k for any positive j .

The maximum number of pebbles required to pebble any graph in T(n,l) is

9nno more than p(n,n) 5 k + k . 0

Theorem 4. If GU'(n,l) , any vertex of G can be pebbled using 6G

pebbles.

Proof. Immediate from Lemma 6, choosing k = 3&. Cl

Cook's graphs can be embedded in one-tape Turing machine graphs with

an increase of only a constant factor in the number of vertices. Thus

the Theorem 4 bound is tight to within a constant factor. By modifying

the construction of Section 2, we can show that two-tape Turing machine

16

graphs require cn/ (log n)
2 pebbles in the worst case, and tie believe

but cannot prove that this lower bound can be improved to en/log n .

The last result of this section is an algorithm, based on

the proof of Theorem C in [3], which efficiently pebbles any

vertex of an arbitrary graph. The algorithm is recursive and operates on

a graph G in the following manner. If G is small, the vertices of G

are pebbled in topological order without removing pebbles. If G is large,

G is split into two parts, Gl and G2 , of roughly the same nxuriber of

edges, such that no edges run from G2 to Gl . If a vertex in Gl is

to be pebbled, the method is applied recursively to Gl . If a vertex in

G2 is to be pebbled and the number of edges from Gl to G2 is small

(i.e., less than a/log 1 , where 1 is the number of edges in G), then

the vertices in Gl with successors in G2 are permanently pebbled by

applying the method recursively to Gl and all pebbles except the

permanent ones are removed. Then the vertex in G2 is pebbled

by applying the method recursively to G2 . If a vertex in G2

is to be pebbled and the number of edges from Gl

to G2 is large, the algorithm is applied recursively to G2 . Whenever

the next vertex v to be pebbled in G2 has some predecessors ul,...,uk

in Gl y the algorithm is applied recursively to Gl to pebble ul,~..,uk

and all pebbles in Gl but the ones on ul,...,uk are removed. After v

is pebbled, all pebbles are deleted from Gl , and the method continues on G2 l

This algorithm is given more precisely below. The parameter Qp is

the partition of the vertex set V of G created by nested recursive

calls of the procedure. Set T gives a set of vertices which, once

pebbled, are not to be unpebbled during the current recursive call of the

procedure. Integer k is some suitable positive constant. The procedure

call best pebble (G, (V~,v,$) will pebble vertex v in graph

G = (V,E) e ,&(n,d) .

17

-best pebble (&G, partition J, vertex v, set T);-
bs

find SQP such that v&3;

if R < k then-
begin

E ueB(v) do if u not pebbled Bbest pebble (G,S,U,TUB(V));- -
pebble v;

remove (V- (T U Iv)));

end-
else

divide S into Sl , S2 such that (u,w) EE and 1163~

implies weS2 and a/2 -d < I((u,w): u&Sl)l ,< a/2+ d;-

if I[(u,w): ueSl,- WES2)) < a/log R

begin

set C;

Cy= (u I~(u,w) with ueSl, weS2);

for WC do if u not pebbled then

- besrpzle (G,BP-(S] UKS2],u, NC);

best pebble (G,J-(S]U {Sl,S2],v,TUC);

remove (V - (T U(v)));

end

else best pebble (G,$-(S)U {Sl,S2], v,T);

end end best pebble;- -

Theorem 5. Procedure best pebble pebbles any vertex of a graph

G = (V,E) E &(n,d) using c(d) n/log n pebbles.

Proof: Let q(m) be the maximum number of pebbles used by best pebble

to pebble any vertex in any graph with m or fewer edges and maximum

in-degree d . Then

18

s(m) 5 k if m<k,-

q(m)cmax{q($+d)+c, 2c@+d-&)} if m>k.

It is easy to show by induction that q(m) ,< c m/log m for a suitable

positive constant c . The theorem follows. c]

4. Remarks.

Theorem 1 gives a lower bound of en/log n for the number

of pebbles necessary to pebble every graph in ,&(n,2) . This result

implies that the upper bound in Theorem C is tight to within a constant

factor. The result also shows that the space-efficient simulation for

multi-tape Turing machines given in [3] cannot be improved without using

new techniques.

Many questions about the pebble game remain unanswered and several

application areas remain to be explored. For instance, how much time must

one sacrifice to achieve a given savings in pebbles? How many pebbles

can be saved while preserving a polynomial running time? How much time

can be saved while preserving a en/log n pebble bound?

A possible application area lies in the derivation of lower bounds

on the time necessary for various computations. For instance, suppose

we wish to prove a lower bound of cn log n on the size of a Boolean

circuit necessary to do some computation. If we can prove that any

circuit either has size cln log n or requires simultaneous storage

of cn2 intermediate results, the bound follows from Theorem C.

Acknowledgment. For helpful and inspiring discussions we thank

Professors V. Claus and K. Mehlhorn.

19

References

[l] S. A. Cook, "An observation on time-storage trade off,"

Proceedings of the Fifth Annual ACM Symp. on Theory of Computing

(1973)Y 29-33.
[2] P. Erd%, R. L. Graham, and E. Szemeredi, "On sparse graphs with

dense long paths," STAN-CS-75-504, Computer Science Department,

Stanford University (1975).

[3] J. Hopcroft, W. Paul, and L. Valiant, "On time versus space and

related problems," Sixteenth Annual Symp. on Foundations of

Computer Science (1975), 57-64.

. [4] D. Knuth, The Art of Computer Programming, Vol. 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass. (1~68)~ 258-265.

[5] M. S. Paterson and C. E. Hewitt, "Comparative schematology,'f

Record of Project MAC Conf. on Concurrent Systems and Parallel

Computation (1970)~ 1~9-128.

[6] M. S. Paterson, "Tape bounds for time-bounded Turing machines,"

Journal of Comp. and Sys. Sci. 6 (l972), 116-124.

[7] R. Sethi, "Complete register allocation problems," Proceedings of

the Fifth Annual ACM Symp. on Theory of Computing (1973), 182-195.

[8] L. Valiant, "On non-linear lower bounds on computational complexity,'f

Proceedings of the Seventh Annual ACM Symp. on Theory of Computing

(1975)Y 45-53.

20

S(i+l)

connections

T(i+l)

Figure 1. G(i+l) .

21

