SPACE BOUNDS FOR A GAME ON GRAPHS

by

Wolfgang J. Paul
Robert Endre Tarjan
James R. Celoni

STAN-CS-76-54
MARCH 1976

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

a0 BNy

&
g3

[N

Space Bounds for a Gane on G aphs

Wl fgang J. Paul ¥/ Robert Endre Tarjan %/
Conput er Sci ence Depart nent Comput er Sci ence Depart nent
Cornel | University Stanford University

[t haca, New York 14850 Stanford, California 94305

James R Cel oni **/
Conput er Sci ence Depart nent
Stanford University
Stanford, California 94305

Abstract.

W study a one-person game played by placing pebbles, according
to certain rules, on the vertices of a directed graph. In [3]it
was shown that for each graph with n vertices and maxi num
in-degree d , there is a pebbling strategy which requires at nost
c(d) n/log n pebbles. Here we show that this bound is tight to within
a constant factor. W also analyze a variety of pebbling algorithnms,

i ncl udi ng one which achieves the 0(n/log n) bound.

Keywords: pebble gane, register allocation, space bounds, Turing nachi nes.

x/ Research partially supported by DAAD (German Academ ¢ Exchange
Service) Gant No. 530/402/563/5.

Research partially supported by National Science Foundation grant
DCRT72-03663-A03.

Reproduction in whole or in part is permtted for any purpose of the
United States Covernnent.

1. [ntroduction.

Let G= (V,E) be an acyclic directed graph with vertex set V and

edge set E. If (i,j) is an edge of ¢, we say i is a predecessor
of j and j is a successor of i . W denote the set of predecessors
of a vertex j by B(j) . The nunber of predecessors of a vertex is its

I n-degree; the nunber of successors of a vertex is its _out-degree. A vertex
of in-degree zero is a source; a vertex of out-degree zero is a sink. W denote
by &n,d) the class of all acyclic. directed graphs Gwith n vertices,
each having in-degree no more than d . W use c¢,cq,ch ... 10 denot e
positive constants. \& use c(d),cl(d),cg(d),... to denote positive
constants depending on d but not on n . Finally, we let [i,j] 'denote
the set of integers {k:i <k <j}.

In this paper we study a one-person gane played on graphs. The game
i nvol ves placing pebbles on the vertices of a graph Ge%(n,d) according
to certain rules. A given step of the gane consists of either placing a
pebbl e on an enpty vertex v of G (this is called pebbling v) or
renoving a pebble from a previously pebbled vertex. A vertex may be
pebbled only if all its predecessors have pebbles. (As a special case of
this rule, any source may be pebbled at any tine.)

The object of the game is to pebble a given vertex of G subject to
the constraint that at nost a given nunmber of pebbles are ever on the graph
simultaneously. W nmay in addition require that this pebbling be acconplished
in the mnimm nunber of steps. W can pebble any vertex of Gin n
steps, using n pebbles, by pebbling the vertices in topol ogical orderié/
and never deleting pebbles. W are interested in pebbling nethods which

use fewer than n pebbles but possibly many nore than n steps.

¥/ l.e., if (i,3) €E then i is pebbled before j [k].

The nunber of pebbles used in the pebble game model s the storage
requirements of a conputation, in the following intuitive sense. Each
vertex represents a value. This value is conputed by applying a particul ar
operation to the values represented by the predecessors of the vertex.
Sources represent input velues. Each pebble represents a storage |ocation
Pebbling a vertex corresponds to conmputing the value represented by the
vertex and storing the value in the location represented by the pebble.
Deleting a pebble froma vertex corresponds to freeing the storage
| ocation represented by the pebble, thus making unavail able the val ue
represented by the vertex. Should this value be needed at a later tine
it nust be reconputed. The pebble game has been used as a nodel for
register allocation problens [7] and as a tool for studying the relationship
between tine and space bounds for Turing machines [1,3].

Known results concerning the pebble game include the follow ng.

Theorem A If Ge&n,d) and G has maxi num out - degree one (i.e.,
Gis atree), then any vertex of G can be pebbled in time n using
cz(d)log n pebbles [1]. For infinitely many n , there is a graph
G e.&n,2) of maxi mum out-degree one which requires ¢ l og n pebbl es

to pebble some vertex [5].

Theorem B [1]. For infinitely mny n , there is a graph G e%(n,2)

‘which requires c/n pebbles to pebble sone vertex.

Theorem C [3]. If Ge%n,d) , then any vertex of G can be pebbl ed

using -c,(d) n/log n pebbles.

In Section 2we construct, for infinitely many n , a graph
G n) e&n,2) such that G n) requires ¢ n/1og n pebbles to pebble

some vertex. This shows that the bound in TheoremCis tight to within

a constant factor. In Section 3 we give upper bounds for various
-pebbling methods, including a nethod which achieves the 0(n/log n)

bound of Theorem C. In Section & we present sone further renarks.

2. A Lower Bound.

W prove the claimed | ower bound by recursively constructing an
appropriate famly of graphs. W use the following result of Valiant [8].
For any value of i , there is a graph with cl2jL edges, 2i sour ces,
and 2% i nks, which has the follow ng property:

For any | « [i,ei} , if Sis any subset of | sources and T

is any subset of j sinks, then there are j vertex-disjoint

paths in C(i) fromSto T .

The vertices in this graph may have arbitrary in-degree. Replacing
each vertex with in-degree d > 2 by a binary tree with d | eaves at nost
doubl es the nunber of edges. In the new graph each vertex has in-degree two,

and the graph still has the same property. Thus we have the followi ng |emma.

Lemma 1. For any value of i there is a graph C(i) e.&(cel,z) , with 2'
sources and 2% sinks, such that: For any j e [1,2i] , I1f Sis any
subset of j sources and T is any subset of j sinks, then there are

j vertex-disjoint paths in C(i) fromSto T .

Corol lary 1. For any j e [0,21-1] , if | pebbles are placed on any |
vertices of C(i) , and T is any subset of at least j+1 sinks, then

at | east 21-;] sources are connected to T via pebble-free paths.

Proof . For any | ¢ [O,Ei-l] , let j pebbles be placed on C(i) and
et T be any subset of at |east j+1 sinks. Any subset S of j+l1
sources is connected to T via j+1 vertex-disjoint paths, at |east one
of which nust be pebble-free. Thus j is the maxinum size of the set

of sources not connected to T by a pebble free path. O

Using copies. of C(i) , we recursively define a set of graphs

{Gi): i =89, 10, . ..) . a&(8) =1+C(8) W form g(i+l) = (V(i+l),E(i+l))

fromtwo copies of i) and two copies of C(i) as follows.. Let -
(i)
T(i)
SC(i) = {se(i,3):] e[l,2i]} and sinks TC(i) = {te(i,3):] e[l,gi]})

(V(i),E(1)) have sources S(i) = {s(i,j): | € [l,ei]} and si nks

{t(i,3):] e[l,Ei]}. Let C(i) have sources

Let Gl(i) , Gg(i) be two copies of Qi) and |et Cl(i) : Ce(i) be
two copies of C(i) . Let s(i+l) = {s(i+l,3):] e[1,2i+l]} and
T(i+l) = {t(i+1,3):] « [l,2i+l]} be two new sets of vertices. Let

" G(i+l) = (v(i+l),E(i+l)) , where

V(i+l) = s(&+1)UT(i+1) UV, (1) UV,(1) UVC (1) UWC,(1) , and

E(i+) = B (1) UEy(i) U BC (1) U EC,(4)
U {(s(5+1,3) » 8(3#1,5)): | e [1,277])

U {(s(+2,3) , s (4,4)): j e [1,271)
U {(s(i#1,3+2Y) , se (4,0)):] e [L,271)
U {(bey(4,3) , 5.(5,0)) ¢ j e [1,271]
U {(6(5,5) , 5p(859))¢ j € [1,271)
U {(by(153) 5 s(5,3)) 1 € [1,271)
U L(tey(dy 3) 5 6(3+1,3)) 1 j € [1,27])
U {(bey(1,3) 5 40aet, +20)): | e (1,271 .

Figure 1 illustrates @g(i+l) .

Let n(i) = |s(d)] = |z(@)| =2" . Let n(i) = |v(2)| . Then

n(8) < 2® and n(i+1) < 2n(i) + (2c+9)2" | where ¢ is the constant

given in Lemma 1. It is easy to prove by induction that n(i) < co'iz1

for some constant ¢, , and that Gi) e&(n(i),2) .

Let c, = 14/256 c, = 3/256 cg = 34/256 , and c) = 1/256 .
The following inequalities are immediate.

cs mi)/2 > c2m(i+l-)+l

(l-2c2) > cs

cgm(i) > chm(i+1)+1

c, mi)/2 > cgm(i+l)+l

Lemma 2. To pebbl e at | east clm(i) sinks of Qi) in any order, ¥
starting froman initial configuration of no nore than cem(j_) pebbl ed
vertices, requires a time interval [tl,tg] during which at |east cim(i)

sources are pebbled and at |east chm(i) pebbl es are always on the graph.

Proof. By induction oni . Let i =8 . Consider an initial
configuration on G(8) of no nore than three pebbled vertices and suppose
14 sinks are pebbled during time interval [0,t] . Any four of these
sinks are connected, via initially pebble-free paths, to at |east 253
sources, by Corollary 1. Thus at |east one of these sinks, say v, is
connected, via initially pebble-free paths, to at |east 64of the
‘sources. Wien v is pebbled, none of the 64 sources is connected to

v via a pebble-free path. Furthermore the set of sources connected to

v via a pebble-free path can decrease by at nost one at each tine step.

Let tl-l be the last tinme at which 64sources are connected to v via

Y i.e., each sink is pebbled at some time, but not all sinks need be
pebbl ed sinul taneously.

pebbl e-free paths. During time interval [tl,t] , 63 >34sources of
G(8) nust be pebbled, while at |east one pebble is always on the graph.
This proves the lemma for i = 8.

Suppose the lemma is true for i . To prove the lemma for i+l ,
consi der an initial configuration on G(i*1) of no more than c m(i+1)
pebbl ed vertices and suppose at | east clm(i+l) sinks are pebbl ed during

time interval [0,t] . W nust consider several cases.

Case 1. There exists a time interval [t;,t,] c [0,t] during which at
least Cs m(i)/ 2 sources of Gl(i) are pebbled and at | east cgm(i)

pebbl es are always on the graph. The subgraph of G(i+l) consisting of

all vertices and edges on paths fromthe set of sources {s(i+1,j): je[l,2i]}
to the set of sinks {sl(i,j): je[l,2i]} satisfies Lemma 1 and Corollary 1.
So does the subgraph of Gi+l) consisting of all vertices and edges on
paths fromthe set of sources {S(i+l,j+21): je[l,Ei]} to the set of

si nks {sl(i,j): je[l,Zi]} . Let to be the last tinme before tl at

whi cht hereare no nore than cem(i+l) pebbles on the graph. At tinme t
since c5 mi)/2 > cem(i+l)+l , there are at |east 2(m(i) -cgm(i+l)) =

(1-20’2)m(i+l) > cm(i+l) sources of G(i+1l) connected via pebble-free

3
paths to the c5m(i)/2 sour ces of Gl(i) pebbled from+t, to t,
During the interval [to’tz] , at least these sources of G(i*l) nust be
pebbl ed, and at |east cem(i)—l > chm(i+l) pebbl es nust be constantly

on the graph. Thus the [emma holds in this case.

Case 2. There exists a time interval [t;,t,] c [0,t] during which at
| east - cs m(i)/2 sources of G,(i) are pebbled and at |east cgm(i)
pebbl es are always on the graph. The lemm holds by a proof |ike that

in Case 1.

Case 3. There exists a tine interval [t;,%,] ¢ [0,t] during which
at | east ¢y m(i+1)/2 sinks of G(i+1l) are pebbled and at | east
cem(i) pebbl es are always on the graph. During [tl,tg] ei t her

¢y m(i+1l) /% sinks in {t(i*1L,3):] « [l,2i]} are pebbled or

¢, m(i+1)/% sinks in {6 (ir1, 7+2%) : j e (1,211} are pebbl ed. The

| emma hol ds by a proof like that in Case 1, using the inequalities

c, m(i*l)/% > e m(i+1)+1 , (1-2c,) > Cs 5 and cgn(i)-1 > c)m(i+1) .

1 2

case 4. None of the previous cases hold. Since Case 3 does not hold,
there nust be a time t; e [0,t] such that fewer than c; m(i+1l)/2 sinks
of Qi+l) are pebbled during [O,tl] and the nunmber of pebbles on
G(i*l) at time t; is no nore than e m(i) . During [t,,t], at

| east clm(i) sinks of @(itl) are pebbled. Since c, m(i)/2 >

1
cem(i+l)+l > c2m(i)+1 , the number of sinks of Gz(i) connected to
t hese sinks of G(i*l) via pebble-free paths is at |east (l-ce)ni(i) .
Thus at |east (1-c2)m(i) > clm(i) si nks of Gg(i) are pebbl ed
during [tl,t] , starting from an initial configuration of no nore
t han ‘cgm(i) pebbl ed vertices. By the induction hypothesis there is
atime interval [tg,t 3] c [tl,t] during which c5m(i) sources of
Gz(i) are pebbl ed and chm(i) pebbl es are al ways on Gg(i) .
Since Case 2 does not hold, there nust be a tine tu é[te,t3]
such that fewer than c3 mi)/2 sources of G2(i) are pebbl ed during
[tg,th] and the nunber of pebbles on G(i+l) at tine th iS no nore
t han ~c2m(i) . During [th’tB] at | east Cs m(i)/2 sources of Gg(i)
are pebbled. At tine t, , since ey mi)/2 - ceom(i) > clm(i) , at

| east clm(i) si nks of Gl(i) are connected via pebble-free paths to

t hese sources of Gg(i) . During [th’tB] t hese sinks of Gl(i) nmust

be pebbled, starting with no nore than cgm(i) pebbl ed vertices. By
the induction hypothesis there is a tine interval [t5,t6| c [th’tB]
during which c5m(i) sources of Gl(i) are pebbl ed and cum(i)
pebbl es are always on Gl(i) :

Since Case 1 does not hold, there nmust bhe a tinme t7 e[ts,t6] such

that fewer than cs m(i)/2 sources of Gl(i) are pebbl ed during

[t,).,t] and the number of pebbles on G(i+l) at tine t7 IS no nore

7
t han cgm(i) . During [t7,t6] at | east Cs m(i)/ 2 sources of Gl(i)
2m(:'L)+l ,

at |east (1-202)m(i+l) > c5m(i+l) sources of @i+l) are connected

are pebbled. At tine t s since e; n(i)/2 > em(+1Hl > e

via pebble-free paths to these sources of Gl(i) . Thus, during
[t7,t6] c [ts’t6] c [te’tB] at | east c5m(i+l) sources of Qi +l)
are pebbled and at |east chm(i)+ chm(i) = chm(i+l) pebbl es are al ways

on the graph. This conpletes the proof. O

Theorem 1. For infinitely mny n , there is a graph G <&(n,2) such

that pebbling sone vertex in G requires c5 n/1og n pebbles.

Proof. For n=mn(i) , i =8910, let G= i) .Since
pebbling all sinks of Qi) froman initial configuration of no pebbled
vertices requires chm(i) pebbl es, there nust be sone sink whose
pebbling requires chm(i) pebbl es. (Otherwise, the procedure of
pebbling the sinks one after another using a mni mum nunber of pebbles
for each sink, and renoving all pebbles after each sink is pebbled, would
pebble all sinks using fewer than chm(i) pebbles.) Since n(i) < 2c012i
and m(i) = ot , the nunber of pebbles required is ¢s n(i)/log n(i)

for some constant cS . d

3. Upper Bounds.

In this section we derive upper bounds on the nunber of pebbles
required by various pebbling nethods. Let renove (set S) be a procedure
which removes al|l pebbles fromvertices in . . Mst of our results depend

upon the following al gorithm which pebbles vertices in a "depth-first" manner.

procedure depth-first pebble (graph G, vertex v, set §);
for u eB(v) do if u not pebbled then
depth-first pebble (G u, B(v)US);
pebbl e v;
remove (V-(WV)));

The following lema is inplicit in [3].

Lenma 3. If G = (V,E) ¢ &n,d) has the property that any path to v

has no nore than £ vertices, then depth-first pebble (G,v,8) pebbles

v using no nore than (d-1)(£-1)+2 pebbl es.

Proof-. By induction on the length £ of the longest path tov . If v
is a source, the procedure uses < (d-1)-0+2 pebbl es. Suppose the
lemma is true for ¢ and let the longest path to v have length +1 .
Then the procedure uses max{(d-1)+(a-1)(£-1)+2, a+1} = (d-1)1+2

pebbl es. O

~ The followi ng nore general nethod uses "permanent" pebbles, which

once placed on the vertices of a set P, are never renoved.

10

procedure permanent pebble (ma vertex v, set P);
for uep in topol ogi cal order do dept h-first pebble (G,u,P);
depth-first pebble (G,v,P);

end;

Lenma 4. |f |P| =k and if G = (V,E) e.&(n,d) has the property that
any path to v which avoids vertices in P contains no nore than ¢

vertices, then permanent pebble (G,v,P) pebbles Vv using no nore than

k+(d-1)(2-1)+2 pebbl es.

Proof . Wien depth-first pebble (G,u,P) is called by pernanent pebble ,

any pebble-free path to u contains no nore than { vertices, since
every vertex in P on a path to u has been pebbled previously. The

bound follows from Lenmma 3. O

Erdds, Graham and Szemerédi [2] have proved that in any acyclic
directed graph of n edges there is a subset P of ¢ n log log n/log n
vertices such that every path which avoids P has |ength at nost
cnlog log n/log n . (Furthernore they provide an easy way to find such
a subset P .) Their result combines with Lemma 4 to give the follow ng

t heorem

Theorem 2. If G = (V,E) e&(n,d) and P c Vis properly chosen, then

per manent pebble (G,v,P) uses at nost cdn log log n/log n pebbles.

To cone closer to the Theorem C bound, we nust use an al gorithm

. sonewhat more conplicated than permanent pebble . W defer discussion

of this algorithmto the end of the section.

- Theorem 1 and Lemma L4 al so yield:

Corollary 2 [2]. For infinitely many n there is a graph G e7(n,2)
such that every subset P of the vertices of Gwith the property "Every
path which avoids P has length at nmost |p| " has at |east cln/ log n

vertices.

11

W now give good methods for pebbling two special classes of
graphs. W call G = (V,E) e Hn, d) a level graph if V can be
partitioned into levels L(1),L(2),...,L(m) such that if (v,w)cE
and veL(i) , then weL(i+tl) . Let G be a level graph and let k
be any positive integer. Call level i large if |L(i)| > k and snall
otherwise. Let (i(j): 1<j <1} be the set of indices of small
levels, in increasing order. Let i(0) =0, i(#+1) = ml , and L(0) = ¢ .
Let veL(j) be any vertex and let £' be the integer such that
i(4') < j and i(£'+1) > |

The follow ng algorithmefficiently pebbles v .

procedure |evel pebble (EEEEE,G’ set array L, array i, vertex v, integer ')
for 1= 1ymtid 1 do
for ueL(i(j)) do
depth-first pebble (G wu, L(i(j-1)) UL(i(3)));
remve (L(i(j-1)));

end;

ot ad

depth-first pebble (G,v,L(i(2')));

end;

e

Lenma 5. Procedure |evel pebble pebbles any vertex of a level graph

G = (V,E) ¢ Kn,d) wusing no nore than 2k+ (d-1) % pebbl es.

Proof . During the pebbling process, no nore than two small |evels ever

contain pebbles sinultaneously. Thus at nost 2k-2 pebbles are ever on

B

k H
large levels. Thus the nunber of pebbles used in an

smal | levels. The number of |evels between two small levels is at nost

since there are at nost %

outermost cal | of depth-first pebble is at nmost (da-1) %+ 2 , and the total

nunber of pebbles used is at nmost 2k+ (d-1) }—ri .3

12

Theorem 3. If GeX(n,d) is a level graph, any vertex of G can be

pebbl ed using ~8(d-l)n pebbl es.

Pr oof . | medi ate from Lenma 5,choosing k =+ (a-1) n/2 . O

The bound in Theorem3 is tight (to within a constant factor which
depends on d), because the graphs Cook used to prove Theorem B are |evel
gr aphs.

The class of mtape Turing machine graphs T(n,m) is the subset of

&(n,m+1) containing graphs G = (v,E) of the follow ng type.

V= {(4,3,(4), --53 (1)) 1< i <n, 5(1)=1for all k,
and 3, (#1) e (j,(i)-1, j,(i) , 3 (1)+1) for all i <n
and all k) ;

m
B= U {((83,00, O w. (Li(), @ e

1= mexle < i (0 = (1))

u {((1,3,(2)5 53 (1)), (#*1,3,(i*1), .., 3 (#+1))): 1 < i < n)

The pebbl e gane on mtape Turing machine graphs was used in [1,3]
as a tool for relating the tine and space requirenents of Turing nachines.
It has been conjectured that there are graphs in T(n,1) which can require
en/log n pebbles to pebble some vertex. W disprove this conjecture by
adapting a proof of Paterson for space-efficient simulation of one-tape
Turing machines [6].

Let G = (V,E) ¢ T(n,1) . For any j , let
Hij) = {(i,jl(i)) eVij,(i) =3}. For any Sc V, let

width(S) = max{|3;(1) -3;(i) | (1,4,(0) , (1',3,(1)) ES) . For any Sc Vv,

13

there nust be some ;j such that max{\;jl(i)-j |: (i,,jl(i)) ¢ S) 5_% wi dt h(S) +1
and |H(J)| < 3n/width(s) . Renoval of the vertices in Hj) splits S
into two parts, s, = {(1,3,(1)) €S j, (i) < j} and

S, = {(i,jl(i)) €S:j,(i) >j) . Any path in G which contains a vertex
in S1 and a vertex in S2 nmust contain an intervening vertex in H(j) .

The followi ng recursive algorithmefficiently pebbles a vertex v

in G=(V,E) e T(n,1) .

Bone-tape pebble (graph G, set S, vertex Vv);
if width(S) < k then
begin
for (i,jl(i)) ES in topol ogical order while i < v do
begin
pebbl e (1,3,(1)) 3
| et (i’,,jl(i')) be the vertex (if any) in Swth
largest i' < i and j;(i') =j,(i);
remove pebbl e from(i',jl(i'));
end,
remove (s-{vi);
end

AP~

el se

begi n
Set 8y 5,3
find j such that max{ljl(i)-jl: (i,31(1)) es} < % width(s)+1
and |H(3)| < 3n/width(S);

5, 0= (5,3 (0)eS |,(1) <);

14

s, 1= UL, (1) ES . (i) >);
for (i,jl(i)) e H(j) in topological order do

begin
AR~

it (3-1,5,(1-1)) €5, then One-tape pebbl e
(G:Sl) (i‘l,jl(i‘l)))

else if (i-1,3,(i-1)) eS, then one-tape pebbl e

(G:SQ’(i'l:jl(i'l)));
pebbl e (1,3,(1)) 3

end:.

AL~

if veS, then one-tape pebble (g, S V)

else iﬁvese zone-t ape pebbl e (G,Sg,v);

remove (S-(v)) ;

end one-tape pebble;

15

Lemma 6. Procedure one-tape pebble pebbles any vertex of a graph

G = (V,E) € T(n,1) using %? + k pebbl es.

Proof . Let p(n,x) denote the nunmber of pebbles used by one-tape
pebbl e (G,8,v) when G = (V,E) ¢ T(n,1) and S ¢V has width(S) = x .
Then

p(n,x) <k Iif x <k, and

P@ﬁ)SPGML%XJ)+%E if x>k .

Let x be such that x <k,

() < 5 gy

2
j -1 i
< gn 2 ('% > + k
5)X i =0
< %g + k for any positive |

The maxi mum nunber of pebbles required to pebble any graph in T(n,1) is

no nore than p(n,n) < 3?n+ k . ad

Theorem 4. If GeT(n,1) , any vertex of G can be pebbled using 6/n
pebbl es.

Proof . | mredi ate from Lenma 6, choosing k = 3/n. 0

Cook' s graphs can be enbedded in one-tape Turing machine graphs with
an increase of only a constant factor in the nunber of vertices. Thus
the Theorem & bound is tight to within a constant factor. By modifying

the construction of Section 2, we can show that two-tape Turing machine

16

graphs require en/ (log n)2 pebbles in the worst case, and we believe
but cannot prove that this |ower bound can be inproved to cn/log n .

The last result of this section is an algorithm based on

the proof of Theorem C in [3], which efficiently pebbles any

vertex of an arbitrary graph. The algorithmis recursive and operates on
a graph Gin the following manner. If G is small, the vertices of G
are pebbled in topological order wthout removing pebbles. If Gis large,

Gis split into two parts, G, and G, , of roughly the same number of

1
edges, such that noedges run fromG, to G . If a vertex in Gy is

to be pebbled, the nethod is applied recursively to Gy If a vertex in

G, is to be pebbled and the number of edges fromg, to G, is small

2
(i.e., less than g/log £ , where ¢ is the nunber of edges in G), then

the vertices in Gy Wi th successors in G, are pernmanent |y pebbl ed by

applying the nethod recursively to G, and all pebbles except the

1
permanent ones are renoved. Then the vertex in Gy i's pebbled

by applying the nethod recursively to Gy - If a vertex in Gy
is to be pebbled and the nunber of edges fromGl

to is large, the algorithmis applied recursively to G, - Wienever

(€7
the next vertex v to be pebbled in Gy has sone predecessors uj,.«--,u,

in Gy > the algorithmis applied recursively to G, to pebbl e Upy e erly

and all pebbles in @, but the ones on Ups .-y are renoved. After v

1

is pebbled, all pebbles are deleted froma and the method continues on Gs.

1
This algorithmis given nmore precisely below The parameter s is

the partition of the vertex set V of G created by nested recursive

calls of the procedure. Set T gives a set of vertices which, once

pebbl ed, are not to be unpebbled during the current recursive call of the

procedure. Integer Kk is sone suitable positive constant. The procedure

call best pebble (G Vhvo®) will pebbl e vertex v in graph

G = (V,E) € #(n,d) .
17

procedure best pebbl e (graph G, partition o, vertex v, set T);

begin
find Se/ such that veS;

¢ := |{(w,w): w,wes}|;

Lfvz<kthen

AN~

begi n
for ueB(v) do if u not pebbl ed then best pebble (G,S,u,TUB(v));

pebbl e v;
renove (V- (T u{v]));

end

A~~~

el se

NSNS

begin

divide Sinto 5. 8, such that (u,w) ¢E and ues,
inplies wes, and £/2 -d < | {(u,w): ues; 3| < 2/2+ d;
if | { (u,w) - ues, , weSe}l < 1/log 1 then
set, ¢
C := (u |d(u,w) with ues, wes,};

for ueC do if u not pebbled then
best pebble (G, #-{S} U{8y,5,},u, TUC);
best pebble (G,-{S}U {sl,se} s, Vv, TUC);
remove (V- (T Uv)));
end
el se best pebble (G, /-{S}U {Sl’SQ}’ v, T);

end end best pebbl e,

Theorem 5. Procedure best pebbl e pebbles any vertex of a graph

G = (V,E) € &(n,d) using c(d) n/log n pebbles.
Proof. Let q(n) be the maxi num number of pebbles used by best pebble
to pebble any vertex in any graph with m or fewer edges and maxi num

in-degree d . Then

18

a(m) < k if m<k ,

m m a - = i >k .
q(m) Sma.x{q(2+ d)+logm’ 2q(2+d logm)} if m

It is easy to show by induction that qg(m) <c nlog mfor a suitable

positive constant ¢ . The theoremfollows. O

L. Remarks.

Theorem 1 gives a |ower bound of ecn/log N for the nunber
of pebbl es necessary to pebble every graph in %n,2) . This result
inplies that the upper bound in TheoremCis tight to within a constant
factor. The result also shows that the space-efficient simulation for
nmul ti-tape Turing machines given in [3] cannot be inproved w thout using
new techni ques.

Many questions about the pebble gane remain unanswered and several
application areas remain to be explored. For instance, how nuch tine nust
one sacrifice to achieve a given savings in pebbles? How many pebbl es
can be saved while preserving a polynomal running time? How nuch time
can be saved while preserving a cn/log n pebble bound?

A possible application area lies in the derivation of |ower bounds
on the tine necessary for various conputations. For instance, suppose
we wish to prove a |ower bound of cn log n on the size of a Bool ean
circuit necessary to do sone conputation. |f we can prove that any
circuit either has size ¢in log n or requires sinultaneous storage

of (En intermediate results, the bound follows from Theorem C.

Acknow edgnent . For hel pful and inspiring discussions we thank

Professors V. Caus and K Mehl horn.

19

Ref er ences

[1] S. A Cook, "An observation on time-storage trade off,"
Proceedings of the Fifth Annual ACM Symp. on Theory of Conputing
(1973), 29-33.

[2] P. Erdos, R. L. G aham and E. Szemerédi, "On sparse graphs with
dense long paths,” STAN-CS-75-504, Conputer Science Departnment,
Stanford University (1975).

(5] J. Hoperoft, W. Paul, and L. Valiant, "on tinme versus space and
related problens," Sixteenth Annual Symp. on Foundations of
Conput er Sci ence (1975), 57- 64.

. [4] D. Knuth, The Art of Conputer Programmng, Vol. 1: Fundanental
Al gorithns, Addison-Wesley, Reading, Mass. (1968), 258-265.

[5] M. S. Paterson and C. E. Hewitt, "Conparative schematology,"
Record of Project MAC Conf. on Concurrent Systenms and Parall el
Conput ation (1970), 119-128.

[6] M S. Paterson, "Tape bounds for time-bounded Turing machines,"
Journal of Conp. and Sys. Sci. 6 (1972), 116-12k.

[7] R Sethi, "Conplete register allocation problenms," Proceedings of
the Fifth Annual ACM Symp. on Theory of Conputing (1973), 182-195.

[8] L. Valiant, "On non-linear |ower bounds on conputational complexity,"
Proceedi ngs of the Seventh Annual ACM Symp. on Theory of Conputing

(1975), 45-53.

20

S(i +)

direct

o \ connecti ons

T(i+l)

Figure 1. G(i+1) .

21

