
ITERATIVE ALGOR ITHMS FOR GLOBAL FLOW ANALYSIS

bY

Robert Endre Tarjan

STAN-CS-76-547
MARCH 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

Iterative Algorithms for Global Flow Analysis

Robert Endre Tarjan f
*

Computer Science Department
Stanford University

Stanford, California 94305

February 1976

Abstract. This paper studies iterative methods for the global flow

analysis of computer programs. We define a hierarchy of global flow

problem classes, each solvable by an appropriate generalization of

the "node listing" method of Kennedy. We show that each of these

generalized methods is optimum, among all iterative algorithms, for

solving problems within its class. We give lower bounds on the time

required by iterative algorithms for each of the problem classes.

Keywords: computational complexity, flow graph reducibility,

global flow analysis, graph theory, iterative algorithm,

lower time bound, node listing.

f* Research partially supported by National Science Foundation grant
MM 75-22870.

1

t

1. Introduction.

A problem extensively studied in recent years [2,3,5,7,8,9,12,13,14,

15,2'7,28,29,30] is that of globally analyzing cmputer programs; that is,

collecting information which is distributed throughout a computer program,

generally for the purpose of optimizing the program. Roughly speaking,
*

global flow analysis requires the determination, for each program blockf,

of a property known to hold on entry to the block, independent of the path

taken to reach the block.

* A widely used amroach to global flow analysis is to model the set of

possible properties by a semi-lattice (we desire the 'lmaximumtl property

for each block), to model the control structure of the program by a

directed graph with one vertex for each program block, and to specify,

for each branch from block to block, the function by which that branch

transforms the set of properties. If the semi-lattice of properties and

the set of transforming functions satisfy certain axioms, efficient methods

are available for producing a maximum property for each block [1,7,8,12,15,

27,301. In essence, finding such properties involves solving a set of

linearequations.

The known algorithms are of two types: 9.terative1~ algorithms, which

use only the semi-lattice meet operation and function application [9,X?,

14,151, and "elimination'I algorithms, which use in addition function

composition and meet extended to functions [3,5,7,8,27,28,30]. Most of

the elimination algorithms are refinements of the Vnterval analysis"

method of Cocke and Allen [3,5], which requires that the program flow

graph have a special property, called "reducibilityll. However, it is

*
J A block is a set of statements with a single entry and a single exit

point.

2

possible to formulate a general elimination method, related to Gaussian

elimination, which applies to all graphs and is particularly efficient

on reducible or almost-reducible graphs [27]. This algorithm requires

only O(n a(n,n)) time on an n vertex reducible program flow graph

wbn> is a very slowly growing function related to a functional inverse

of Ackermann's function).

The elimination algorithms apply to very general global flow problems

and are asymptotically efficient, but they are rather complicated to

program: There are several iterative algorithms which are much simpler

but which work only on restricted kinds of global flow problems. These

include the propagation algorithm of Kildall [15], studied by Hecht and

Ullman [p] and related to early work by Vyssotsky [29], and the "node

listing" algorithm of Kennedy [lb]. Kam and Ullm&n [131 have derived a

necessary and sufficient condition for global flow problems to be efficiently

solvable by Hecht and UllmarPs "depth-first" version of Kildallls algorithm.

&LO and UlJman [l], by giving an algorithm for constructing short node

listings, have shown that Kennedy's algorithm can be implemented to run

in O(n log n) time on an n vertex reducible program flow graph.

This paper extends the results of Kennedy [lb] and Kam and Ullman [13].

We present a hierarchy of global flow problem classes, each solvable by

an appropriate generalization of Kennedy's algorithm. One of the classes

is the one considered by Kam and Ullman. We show that each of the

generalized algorithms is optimum, among all iterative algorithms, for

solving problems in its class. We give lower bounds on the time required

by iterative algorithms for each of the problem classes.

The paper contains five sections. Section 2 contains the necessary

graph theory, including lemmas'needed to derive the lower bounds.

Section 3 gives an abstract framework for global flow analysis, defines

the hierarchy of problem classes, and presents the corresponding

hierarchy of algorithms. Section 4 shows the optimality of the algorithms

and provides a lower bound on the time required for each problem class. .

Section 5 contains further remarks.

2. Directed Graphs and Iteration Sequences.

A directed graph G = (V,E) is a finite set of n = VI I elements

called vertices and a finite set E of m = \E\ elements called edges.

Each edge (v,w) is an ordered pair of distinct vertices. The edge

(v,w) leaves v and enters w ; we say v is a predecessor of w . The

in-degree of a vertex v is the number of edges entering v ; the out-degree

of v is the number of edges leaving v . The reverse of a graph is

formed by reversing the direction of all its edges.

A path p of length k from v to w is a sequence of edges

p = (vl,v2),(v2,v3),...,(vk,vk+l) with vl = v and vHl = w . The

path p contains vertices vlt ...,v~+~ and edges (v,,v~),...,(v~~v~+~)

and avoids all other vertices and edges. There is a path of no edges

from every vertex to itself. A vertex w is reachable from a vertex v

if-there is a path in G from v to w .

A triple G = (V,E,r) is a flow graph if (V,E) is a directed

graph, rN , and every vertex is reachable from r . G is a program

flow graphif the out-degree of every vertex is at most two. Every

program flow graph has m ,< 2n . A flow graph G = (V,E,r) is reducible

if it can be reduced to the flow graph ([r],$,r) by applying a sequence

of transformations of the following form.

T: Let w # r be a vertex with exactly one entering edge (v,w) .

- Replace (V,E,s) by (V',E',s) , where Vr = V-{w} ;

E’ = {(x,Y) EE I-w/ [x,Y]] U ((‘J,Y) 1 (%Y> EE and Y k (v,w)) .

Cocke and Allen introduced reducible graphs [3,5]; the definition

above is Hecht and UllmarPs [lo&], modified to avoid the creation of

loops (edges of the form (v,v)). There is an O(m a(m,n)) time

algorithm to test reducibility and to construct a reducing sequence of

transformations for any reducible flow graph [24,25].

Let kzl . A k-path in a flow graph G = (V,E,r) is a path

p = (vl,v2) (v2,v3) . . . (Q,v~+~) such that no vertex appears more

than k times among v~,...,v~+~ . A ks-path is a k-path which begins

at .r and contains r no more than k times. A k-sequence for

G = (V,E,r) is a sequence of edges which contains every k-path of G

as a subsequence. A ks-sequence is a sequence of edges which contains

every ks-path of G as a subsequence. Our lower bound proofs require

the following results concerning lengths of k-sequences and ks-sequences.

The first two l-as are immediate coromies of results in [20]. The

third 1-a is new.

Lemma 1 [20]. For infinitely many n , there is a program

flow graph G = (V,E,r) with \V\ = n , such that the reverse of G

is reducible and any ks-sequence for G contains at least

-I*cl n log n edges .

Lemma 2 EW* For infinitely many n , there is a (non-reducible)

program flow graph G = (V,E,r) with \V(= n such that any sequence

containing each Is-path ending at a predecessor of r contains at least

2
c n edges.
2 -

J* Throughout this paper, c,c1,c2,... denote suitable positive constants.

6

Corollary 1. For infinitely many n , there is a (non-reducible)

program flow graph G = (V,E,r) with IV\ = n such that any ks-sequence

for G contains at least c2kn2 edges.

Proof. Any ks-sequence for one of the graphs given by Lemma 2 must

contain k disjoint subsequences, each containing all Is-paths

ending at a predecessor of r . 0

For any k 2 1 , let s(k) be the length of the shortest sequence

containing each permutation of the numbers 1,2,...,k as a subsequence.

Newey [21] gives the following values of s(k) : s(1) = 1 , s(2) = 3 ,

s(3) = 7 , s(4) = 12 , s(5) = 19 , s(6) = 28 , s(7) = 39 . Newey [21]

and Koutas and Hu [183 have shown that for all k , s(k) 5 k2-2k+4 .

Kwiatowski and Kleitman [lp] have shown that, for all positive E ,

s(k) 1 k
2 7144-E-c(e)k for all k .

Lemma 3. Let k >l . For infinitely many n there is a reducible-

program flow graph G = (V,E,r) with IV\ = n such that any ks-sequence

contains at least c(k)n
"gk s(k)

edges.

7

.
Proof. For any fixed k , we recursively construct a sequence of flow

graphs G(k,i) g Each G(k,i) will have a unique start vertex r(k,i)

and a unique finish vertex f(k,i) . Let

G(k,O) =
(b-(k,O)~fbO)~ Y ~(r(k,O),f(k,O)) Y (f(k,O),r(k,O))] I r(W)) l

We construct G(k,i+l) from k copies of G(k,i) and three new

vertices r(k,i+l) Y f(k,i+l) , and x(k,i+l) , as follows. Let

Gl(k, i) , G2(ky i) , . . . , Gk(k,i) be k copies of G(k,i+l) . Let

G(k,i+l) = (V(bi+l) Y E(k,i+l) , r(k,i+l)) , where

k
V(k,i+l) = U Vj(k,i) U (r(k,i+l) , x(k,i+l) , f(k,i+l)] ;

j=l

k
E(k,i+l) = U (E.(k,i) U {(x(k,i+l),

j=l J
rj(kYi)) Y (fj(k,i)4bi+l)) Y

U {(r(k,i+l),x(k,i+l)) , (f(kyi+l),r(k,i+l))) .

Figure 1 illustrates G(k,i+l) .

r(k,i+l)

+-A,x(k,i+l)

f(k,i+l)

Figure 1. G(k,i+l) for k = 4 .

If P(l)YP(2), **VP(k) are ks-paths in G(k,i) ending at f(U) ,

~ then

is a ks-path in G(k,i+l) ending at f(k,i+l) , where c is any

permutation on 1,2,...,k and p
43) '(J) is the path in G

a(j)CkYi)

corresponding to p(j) .

Let S = el,e2,...,eQ be any sequence for G(k,i+l) containing

all ks-paths ending at f(k,i+l) . Form a sequence S = zl,z2,...,z~

of occurrences of 0,1,2,...,k from S as follows. Suppose zl,z2,...,zb

have been defined. Let j be such that %l is an edge of Gj(k,i+l) .

(If there is no such j , let %l = 0 .) Let bf be the maximum

b' 5 b such that zb, = j . (If there is no such bf , let bf = 0 .)

If the sequence of edges %,+l,...,eb+l contains every ks-path of

Gj(k,i) as a subsequence, let ~b+~ = j . Otherwise let ~b+~ = 0 .

We claim S, , so defined, contains every permutation of 1,2,...,k

as a subsequence. For, let c be any permutation of 1,2,...,k . Let

Vl) be the first occurrence of c(l) in S , and let p
a(l)(l) be

a ks-path in Ga(l) 0% i) ending at
f41)

0% i> and contained in

.e1� l **,
%(1)

but not in el,..., %(1)-l l

In general, let
zb(j+l)

be the first occurrence of c(j+l) following .
%J)

in S , and let

b

eaks-pathin Ga(j+l) (k, i> ending at fa(j+l> (k, i)

and contained in
%(j)+l� l l �� %(j+l) but not in, %(j)+lY l l l Y �b(j+l) -1 l

It must be possible to define b(l),b(2),...,b(k) since otherwise there

is a ks-path

10

(s(k,i+l),x(k,i+l))(x(k,i+1),s Q) (k, ~))P,o (1) (Ql) (ky %x(k, i+l>>

in G(k,i+l) , ending at f(k,i+l) , which is not contained in S . Thus

0 is contained in S .

Let P(k,i) be the length of the shortest sequence containing all

ks-paths of G(k,i) ending at f(k,i) . Clearly 1(&i) > 1 . The

above argument implies that l(k,i+l) 2 a(k,i)*s(k) . Thus

(1) m(k,i) > (s(k))i .-

Let IV(k,i>l = n(k,i) . Then n(k,O) = 2 and n (k,i+l) = kn(k,i)+3 .

Thus
.

(2) n(k,i) < 3 ?J kj < 3ki+' .
j=O -

It' follows that

. (3) f(k,i) 2 c(k) n(k,i)
"@;k dk)

for some constant c(k) .

Each G(k,i) is reducible. (To reduce G(k,i+l) , reduce each

Gj(k,i) to (Erj(k,i)3,8,rj(k,i)) Y then delete the remaining vertices

in the order rl(bi)yr2(kyi)y l --, rk(k,i),f(k,i+l),x(k,i+l) .) Further-

more the out-degree of each vertex of G(k,i) is at most
m=☯k,3] l

From G(k,i) we can form a reducible program flow graph G'(k,i) by

replacing each vertex of out-degree greater than two by a binary fan-out

tree.

G'(k,i) contains O(n(k,i)) vertices. Furthermore every ks-path

of G(k,i) ending at f(k,i) is contained in a ks-path of G'(k,i)

ending at f(k,i) . The lemma follows from (3). c1

A slight modification of this proof gives:

Corollary 2. Let k 21 . For infinitely many n there is a program

flow graph G = (V,E,r) with IV\ = n such that the reverse of G is

"gl, dk)
reducible and any ks-sequence for G contains at least c(k)n

edges.

Aho and UUman*s construction [1] of an O(n log n) length

l-sequence for any reducible program flow graph shows that the bound

in Lemma 1 is tight to within a constant factor. The bound in

Corollary 1 is obviously tight to within a constant factor, as is the

Lemma 3 bound for l-sequences. For k 2 2 , it is an open problem

whether the Lemma 3 and Corollary 2 bounds are tight.

3. Global Flow Problems and Iterative Algorithms.

Let L be a set with a binary meet operation A satisfying the

following axioms.

AO: L is closed under A .

Al; X A (y A z) = (X A y> A z l

A2: XAY =yAx.

A3: xAx=x.

A4: There is an element OeL such that 0 A x = 0 .

A5: There is an element 1eL such that 1 r\ x = x .

As a consequence of A0 -A3 we can define a partial order on L by x <y-

if and only if x A y = x .

Let F be a set of functions f: L 3 L satisfying the following

axioms.

A& F is closed under function composition and A , where f A g is

the function h defined by h(x) = f(x) A g(x) .

A7: There is a function eeF such that e(x) = x .

A8: f(x A-Y> = f(X) A f(y) l

B: For all fcF there is a function f*eF such that f*g is the

maximum solution to fh A g = h .

Such-a pair (L,F) is a global analysis framework.

Let G = (V,E,r) be a flow graph, let (L,F) be a global analysis

framework, let f: E + F , and let a: V 3 L . (L,F,G,f,a) is a global

flow problem. The solution to this problem is the maximum solution to

the set of equations

Q: x(w) = A f(v,w)(X(v)) A ah> 3 WEV l

(VYW) a

13

We can extend f to paths by defining f(p) = f(vk,vHl) f(vk,l,~k) l -e f(vl,v2)

if p= (v,,v,) (v2,v3) . . . (vk,vcl) , and f(p) = e if p is a path of

no edges.

Observation 1. If X(W) is a solution to Q and p is any path from

a vertex v to a vertex w , then x(w) 5 f(p)(a(v)) .

Under the assumed axioms, Q always has a unique maximum solution x

such that x(w) is the meet of f(p)(a(v)) for all paths p from v

to* w . The existence of the closure operation * guarantees that this

meet of a possibly infinite set of paths exists and can be computed

[4,22,23,271. The asymptotically fastest method known for solving global

flow problems uses a form of Gaussian elimination and achieves a time

bound of O(m a(m,n)) on reducible flow graphs [27].

For most practical global flow problems, the closure operation can

be defined in terms of function meet and function composition. In such

cases, it is possible to compute solutions using only function application

and meet on L . We shall consider a hierarchy of global flow problems

of this kind. Consider the following axioms.

.Bks:

k-l
bz(x) > A fi(x) A fk(l)

i.4

k-l
fk(x> ,> A fi(x)

i=O
(k>l) .

Any global flow problem whose framework satisfies Bk we call a k-bounded

global flow problem.. Any global flow problem whose framework 'satisfies

Bks and such that a(w) = 1 if w f: r we call a ks-bounded global flow

-Problem.

14

Observation 2. Bks implies Bk . Bk implies B(k+l)s .

Bk implies B .

The k-bounded and ks-bounded global flow problems form a hierarchy

which includes some, but not all, of the global flow problems

mentioned in the literature. The transitive closure [6,271 and

dominators problems [p, 26,271 can be formulated as Is-bounded problems.

Problems which use bit vectors, such as available expressions [28] and

live variables [9,141 are l-bounded but not Is-bounded. Problems which

use "structured partition" lattices, such as common subexpression

detection, [7,13,15] are 2s-bounded but not l-bounded. Global flow

problems involving type checking [30] are not k-bounded unless some

bound is artificially imposed.

Kam and Ullman [13] have shown that 1-boundedness is a necessary

and sufficient condition for fast convergence of Hecht and UllmarPs

version of Kildallls algorithm. We shall show that there is a general

iterative algorithm, an extension of Kennedy's node listing method, for

solving any k-bounded or ks-bounded problem. The algorithm is optimal,

among all iterative algorithms, for each k . We give a lower bound on

the running time of the algorithm, a bound which shows that the algorithm

becomes markedly less efficient, and thus less competitive with the

best .elimination algorithm, as k increases.

Let (L,F,G,f,a) be a global flow problem, with G = (V,E,r) .

Let S be a sequence of edges of G . Consider the following algorithm.

15

m ITERATE (s&V, s&E,.* r, function f, function a,

gs& s, m x)

bs

_forweV %x(w) := a(w);

z (V,W)ES po x(w) : = x(w) A f(v,w)(x(v));

end ITERATE;-

This algorithm propagates information along paths which are subsequences

of s .

Observation 3. Any function x ccmputed by ITERATE satisfies

x(4 = A Cf(p(v,w))(a(v)) 1 P(vYw)4 3 where P is some set of paths

leading to w .

Theorem 1. If (l&F) is ks-bounded, S is a ks-sequence for G , and

a(w) = 1 for w # r , then the function x computed by ITERATE is a

- maximum solution to Q .

Proof. Let y(w) = A [f(p)(a(r)) \ p a ks-path to w] for wcv ..

Let z be any solution to Q . By Observations 1 and 3, z ,< x . It

is easy to prove by induction on the length of p that x(w) 5 f(p)@(r))

for any ks-path to w . Thus x sy . It remains to be shown that y

is a solution to Q .

Y(W) = A if(P) (a(r)> 1 ?? a b-path to WI

A
= (v,w)eE

fbYW)(A Cf(p)(a(r)) 1 peF(vH)

where P(v) is a suitable subset of ks-paths to v

A fbYW)(YbH l

' (v,w)eE

16

Let (v,w)eE . Let p be a ks-path to v . If p(v, W) is a ks-path,

then f(p(v,w))(a(r)) ,> y(w) . Otherwise, p(v,w> = poPlP2 l pk 3

where p.1
starts and ends at w for 1 < i < k , and p.- - is possibly

empty. Then

f(P(vJ)) (a(r)) 2 (Jl f(Pi))k f(PO)(a(r))

L r: (jl f(Pi))j f(PO(a(r)) by Bks

= A Cf(P’) (a(r)) 1 P’4 where P is a suitable

subset of paths from r to w , each a

proper subsequence of p(v,w) .

By applying the same decomposition repeatedly, we eventually have

flP(bW)) (a(r))

It follows-that Y(W) 5 A f(v,w)(y(v)) , and y is a solution
(v> '2

to Q . Thus y = x and x is the maximum solution to Q . Cl

Theorem 2. If 09 F) is k-bounded, and S is a k-sequence for G ,

2 A HP’) (a(r)) I P’EP’ 3 where I?* is a set of

ks-paths from r to w

2 Y(W) l

then the function x computed by ITERATE is a maxim-urn solution to Q .

Proof. -Let y(w) = A Cf(p(v,w))(a(v)) I p a k-path to w] . Let z be

any solution to Q . As in the proof of Theorem 1, z_<x<y,andwe

must show that y is a solution to Q .

17

Y(W) = A {fb(v,W>>(a(v)) 1 P a k-Path to w)

=
(v,:) 43

fbv)(A Cf(p(u,v))(a(u)) \ pep(v)'J) tihere p(v)

is a suitable subset of k-paths to v

' (v&E
fbYW)YW l

Let (v,w)eE . Let p be a k-path to v . If p(v,w) is a k-path,

then f(v,w)(a(v)) my . Otherwise, p(v,w) = poplp2 . ..pk where

Pi 'starts and ends at w for l_<i_<k,and p. is non-e-mpty.

Then

f(p(v,w))(a(v)) l($ f(Pi))" f(pg)(a(v))

3
f(PO)("(V)) A (i!l f(Pi) r(l)

L A Cf(p'(u,w))(a(u)) 1 P'EP) , where P is a

suitable subset of paths to w , each a proper

subsequence of p(v,w) .

By repeating this decomposition, we eventually have

f(p(v,w))(a(v)) 2 A ~fb'b,w)>(a(u)) 1 p'ep'j t where Pf is some

set of k-paths to w .

It follows that y(w) 5
(v&E

f(v,w)(y(v)) , and y is a solution

to Q : Hence y = x- and x is the maximum solution to Q . 0

18

ITERATE gives a uniform method for solving k- and ks-bounded global

flow problems, with the length of the necessary sequence S dependent

upon k . The ks-bounded problems require propagation only from the start

vertex; the k-bounded problems require propagation from all vertices. We

have left unresolved the problem of finding a k- or ks-sequence to use as

input to ITERATE.

Kennedy's algorithm as originally stated is the version of ITERATE

which solves l-bounded global flow problems. Aho and Ullman [l] have

given a method for constructing, in O(n log n) time, an O(n log n)

length l-sequence for any reducible program flow graph. Thus ITERATE

can be implemented to solve l-bounded problems on reducible program

flow graphs in O(n log n) time.

Hecht and UllmarPs [p] depth-first ordering gives a l-sequence of

O(dn) length for any reducible program flow graph, where d is the

largest number of "cycle" edges [13,2'7] on any l-path. For typical FORTRAN

programs, d 5 2*75 [171* Thus the depth-first ordering gives a linear

time implementation for typical programs, although the worst case

is O(n2) .

Lemmas 1, 2, and 3 give lower bounds on the lengths of k- and

ks-sequences , and thus on the worst case running time of all implementations

of ITERATE. We shall see in the next section that these lower bounds

apply not only to ITERATE, but to any iterative algorithm for solving

k- or ks-bounded problems.

19

4. Lower Bounds on Iterative Algorithms.

To provide lower bounds on the number of operations required to

solve k- or ks-bounded problems by iterative algorithms, we will

construct certain ffworst-casef, global flow frameworks. Let

(L13F& l l �Y
(LI,FL) be global flow frameworks. We can define a cross

product framework (LlxL2x .=. xL1 , FlxF2x...xF& , where operations

are performed component-wise. That is,

(f1'f~)(xl....,xp) = (f(xl),...,f(xl)) . It is easy to show that

(L1xL2x . ..xL! , FlxF2x... xFm) is a global flow framework with

zero element (O,...,O) , one element (l,...,l) , and identity function

Ft

(e,
4 l

Furthermore (xl,x2,...,x~) 5 (yl,y2,...,y~) if and only

if xi-<yi for all i . Also, (Llx . ..xL1 , Fix . ..xF& is

k-bounded (ks-bounded) if all the (Li,Fi) are k-bounded (ks-bounded).

Let G = (V,E, r) be a flow graph. Let k 22 and let p be any

ks-path of G . Let Ls(p) be the semi-lattice defined by

L*(P) = WI u cw 1 p(v) is a non-empty set of subsequences of p,

each of which is a path from r to v]

(A , the empty path from r to r, is an allowable

subsequence if v = r)

XAO = OAx = 0

XAl = l/ix = X

p,(v) u p,(w) if v=w

- P,(v) A P,(w) =

0 if vfw .

It is clear that Ls(p) satisfies A0 -A5.

20

Let Fs(p) be the smallest set of functions closed under meet and

composition which contains the identity function e , the function 1

such that k(x) = 1 , and a function fp(v,w) for each edge (v,w)

in p , defined by

fp(vm = 0

fpb’W)(l) = 1
CP,bv> 1 Pl e P()v and pl(v,w) is a subsequence of p]

fpbYW) P(v) > = if this set is non-empty

1 otherwise

fp(v,w)(P(u)) = 0 if u # v .

Lemma 4. oJs(P>3F,(P>> is a ks-bounded global flow framework.

proof. A6 and A7 hold by definition. Consider A8. Suppose

f(xAy) = f (x) Af(y) and g(XAy) = g(x) Ag(y) . Then

fdx Ad = f(g(x) A g(y) > = f@;(x) A fdY) and

(fA d (x0) = f(⌧) A f (y) A g(⌧) A g(Y) = (fU> (⌧) A @A 65) (Y> l

Thus we need verify A8 only for e , i and fp(v,w) . A8 clearly

holds for e and 1 . Consider fp(v,w) .

fp(v,w) (xA0) = fp(v,w)(0) = 0 = fp(v,W)(X) A fp(V,W)(o)

.fp(V,W)(XA1) = fp(v,W)(X) = fp(V,W)(X) A1 = fp(v,w)(x) A fp(v,w)(l)

fpb3w) (p,(v) A p,(v) 1 = fpbY4 <p,(v) u p,b~ >

= fp(v’w) <p,(v)) A fp(W) <p,(v) 1

fpb”) <p,(u) A P2(4 1 = 0 = fp(“,w) (y,(u)) A fp(v,w) (p,(x) 1

if u+v or x+v .

In all cases A8 holds.

21

To prove Bks , consider any function g eFs(p) . We can write

j
g= A 6s: Y where each g1 is either e or a composition of functions

i=l A J.

fp(v,w) , possibly followed by 1 .

k-l .
We wish to prove Bks : g"(x) 2 A gl(x) . We need only

i=l
prove

this inequality for x = 0 , x = 1 , or x containing a single ks-path.

The result is obvious for x = 0 or x = 1 . Let x be a ks-path.

Consider any term g
i(l) gi(2) l * � gi(k) (f⌧�3) Of

k
(C⌧l> l

If gi(,)({x]) does not denote a ks-path,

then either the left side of Bks is 1 or the right hand side of Bks

is 0, and Bks holds. If Qi(k) (CxI> is a ks-path but gi(k) (CxI)

does not end at the end of x , then gi(k)((xl) A [x] = 0 and the right

side of Bks is zero. Extending this argument, we can show that Bks

holds unless g
i(1) ." 'i(k) (CXN is a ks-path which contains the last

vertex of x k+l times. But this is impossible. Thus Bks holds. Cl

Lemma,. Let p be a ks-path in G . Consider the global flow problem

fpbYW)
C-

if (v,w) is on p

(Ls(P),Fs(P)&g,a) , where g(v,w> =

1 otherwise

a(r) = A

a(w) = 1 if wfr.

The solution to this problem is

r (p, I p, is a ks-path to w which is a subsequence of p

x(w) = (if this set is non-empty}

1 1 otherwise.

22

Proof. Similar to the proof of Theorem 1. Cj

To deal with the case of Is-bounded problems, we shall use a special

construction. Let G = (V,E,r) be any flow graph and let p be any

ls-path of G . Let Ls(p) be the semi-lattice defined by

$(P) = co313 u CP' I P' is an initial segment of p (pf = A is included)}

OAx = xA0 = 0 , lAX =xAl=x

'P2APl = P102 = Pl if Pl is an initial segment of p2 .

Let Fs(p) be the smallest set of functions closed under meet,

composition, and containing e , 1 , and a function fp(v,w) for each

edge (v.,w) on p , defined by

fpbtw) (0) = 0

fpbvw) = 1

p'(v,w) if this is an initial segment of p

fp(v,w)(P') =

P' otherwise.

Lemma 6. (Ls(P) , Fs(P)) is a Is-bounded global flow framework.

Proof. AO-A7 hold obviously. A8 clearly holds for e and & .

Consider fp(v,w) .

fp(;'w) (XAO) = fp(v,w) (0) = 0 = fp(V,w) (X) A fp(v,w) (0)

fpb5W) (X A 1) = fp(v’w) (X> = fp(v’W) (X> A fp(v,w) (1)

23

fp(vYw)(PlAP2) = fp(v,w)(pl) = pl(v,w)

.

= fpb'w)bl) Ap2 = gcVY4 (P,) A p,(vd (P,)

if pl < p2 and pl ends at v

fp(V’W)(PlAP2) = fp(bW)(Pl) = Pl = fp(W)(Pl) A fp(v,w)(p2)

if pl<p2 and pl ends other than at v .

In all cases A8 holds.

s Note that the functions f E (e, 1, fp(v,w)} satisf'y f 1 e . It

follows that all functions f in Fs(p) satisf'y f 2 e . Thus

(Ls(P)YFs(P)) is a Is-bounded global flow framework. 0

Lemma 7. Let p be a Is-path in G l Consider the global flow problem

f;(w) if (v,w) is on p

@&?~,Fsb),W,a) where is(w) =
1 otherwise

a(r) = A

a(w) = 1 if w#r .

The solution to this problem is

if p* starts at r , ends at w , and is an

initial segment of p

1 if there is no path from r to w which is an

initial segment of p .

proof. Similar to the proof of Theorem 1. 0

24

Let G = (V,E,r) be a flow graph. Let k ,>l and let p be any

k-path of G starting at some vertex s . Let L(p) be the semi-lattice

defined by

L(P) = COY13 u {P(v) I F(v) is a non-empty set of subsequences of p,

each a path to v, such that P(v) contains A(v), the

empty path from v to v]

XAO = OAX = 0

xAl = lAx = 0

1

p,(v> u p,(w) if v=w

p,(v) A p,<w, =

0 if v+w .

It is clear that L(p) satisfies A0 - A5.

Let F(p) be the smallest set of functions closed under meet and

composition which contains the identity function e , the function 1

such that l(x) = 1 , and a function fp(v,w) for each edge (v,w)

on p , defined by

fp(v’W)(0) = 0

fpW (1) = CbbwLMw)3

fpb’4 PW = CPl(VYW) 1 Pl4)v and p,(v,w) is a subsequence of p]

u CA(w) 1

f,(Jv) (P(u)) = 0 if u+v.

Lema 8. (L(P) 3 F(P)) is a k-bounded global flow framework.

25

Proof. A6 and A7 hold by definition. Consider A8. A8 clearly holds

for e and & . Consider fp(v,w) .

fp(v,w)(xhO) = fp(v,w)(0) = 0 = fp(v,w)(x) A fp(v,w)(0)

fp(v'W) (P(v) Al) = fp(',w)+) = fp(v,") (P(v)) A hw>, A(w) 3

= fp(V,W) (p(V) > A fp(V) (1)

fp(v'w) (p(u) A 1) = fpb,W) (p(u)) = 0 = fp(v'w) (P(u)) A fp(v,w) (1)

if u#v

fp(VY”) (p,(v) A p,(v)) = fpbbv) (p,<v> u p,w 1

= fpb,w) <p,(v) > A fp(v’w) <P,(v> >

fp(‘bW) <p,(U) A p,(x> > = 0 = fp(v’w) <p,w> A fpbvd <p,<x>>

if u#v or x+v.

In all cases A8 holds.

To prove Bk , suppose k 2 2 and consider any function g eF(p) .

j
We can write g = A gi , where each gi is either e or a composition

i=l

of functions fp(v,w) , possibly followed by 1 . We wish to prove Bk :

k-l
gk(x) > A gi(x) Agk(l) . We need only prove this inequality for

i=l

x = o , x=1, or x of the form x = {pryA(where p* is a path

from v to w . The result is obvious for x = 0 and for x = 1 .

Suppose x = (pryA(, where p, is a path from v to w .

Consider any term gi(1) 'i(2) l ** 'i(k)
(x) of gk(x) =

If any gi(j) contains 2 , Bk holds. If 'i(k) x() is not a set of

k-paths, the right side of Bk is 0 and Bk holds. If gi(k)(x) does

26

not denote a set of k-paths ending at w ,
gi(k)

(x) Ax = 0 and Bk

holds. Extending this argument, we can show that for all 1 < j < k ,- -

'i(j) '** gi(k) x(> is a set of k-paths ending at w . The only possible

kind of path occuring in
gi(l) gi(2) l *. gi(k)

(x) which does not occur

in a set on the right side of Bk is a path of the form

picl) pic2) .*. pi(k) pf , where pi(j) is the sequence of edges

corresponding to the functions camposed to form g.
l(j)

and p* is

non-empty. But such a path is not a k-path and thus does not occur in

gi(l) l . . gi(k) X . Hence Bk holds.(> A similar argument shows that

Bk holds if k = 1 . U

Lemmap. Let p be a k-path in G starting at s . Consider the global

flow problem

(Lb),Fb),G,w) I where g(w) =

c

fpbJ3w) if (v,w) is on p

1 otherwise
u

a(s) = b(s)3
a(w) = 1 for w # s .

The solution to this problem is

_ !

{p* 1 p* is a k-path to w which is a subsequence of p]

. x(w) = if w lies on p

1 otherwise.

Proof. Similar to the proof of Theorem 2. 0

Consider any algorithm, which, starting from the values a(v) , 0, 1,

computes a solution to the global flow problem (L,F,G,f,a) by computing

27

meets of elements in L and applying functions in {f

such an algorithm an iterative global flow algorithm.

of such an algorithm is the list of edges (v,w) such

(

I

w)l l
We call

The derived sequence

that f(v,w) is

applied by the algorithm, with the edges occuring in the order the

functions are applied. We provide lower bounds on the number of operations

required by iterative algorithms by showing properties of their derived

sequences.

Theorem 3. Let G = (V,E,r) be any flow graph. Consider the global

flow problem

(W’) = X(Ls(P) Y F,(P)) \P a ks-Path3 l

Let fpbYw)
(.

if (v,w) lies on p

f(v,w) = kpbyw>> , where gp(v'w) =
1 otherwise.

Let a(r) = (A,A,~~.,A) , a(w) = (1,1,...,1) for w f r . Then the

derived sequence for any iterative algorithm which solves (L,F,G,f,a)

must contain a ks-sequence.

proof. Let p=(r= vl,v2) (v2,v3) . . . (vk,vH1 = w) be a ks-path.

Consider the p-component of the solution x to Q . The only way to

build up the correct value in the p component of x(w) is to apply

f(vl,v2),...,f(vk,vk+l) in sequence. c3

Theorem 4. Let G = (V,E,r) be any flow graph. Consider the global

flow problem

(LYF) = XI(L(P) Y F(P)) \ P a k-path] .

28

Let

C
rp(v’W) if (v,w) lies on p

fhw) = (g,bw)) , where gp(v'w) =

1 otherwise.

Let

w if p starts at v
a(w) = (ap(v)) , where a,(v) =

1 otherwise.

Then the derived sequence for any iterative algorithm which solves

(L,F,'G,f,a) must contain a k-sequence.

Proof. Similar to the proof of Theorem 3. 0

Thus Theorems 1, 2, 3, and 4 characterize the exact number of function

applications needed to solve a k- or ks-bounded global flow problem in

,the worst case. This number is equal to the length of the shortest

k- or ks-sequence for the graph. Lemmas 1, 2, and 3 give lower bounds

on this length, and hence we have the following corollaries:

Theorem 5. In the worst case, the solution of a k- or ks-bounded global

flow problem on an n-vertex (non-reducible) program flow graph requires

at least c kn2 function applications, if no function compositions or

function meets are used.

Proof. Immediate from Corollary 1 and Theorem 3. 0

Theo&n 6. In the worst case, the solution of a k- or ks-bounded global

flow problem on an n-vertex reducible program flow graph requires at

least c(k)n
"gk s(k)

function applications, if no function compositions

or function meets are allowed.

29

proof. Immediate from Lemma, 3 and Theorem 3. q

Theorem 7. In the worst case, the solution of a l-bounded global flow

problem on an n-vertex reducible program flow graph requires cnlog n

function applications if function compositions and function meets are

not used.

Proof. mediate from Lemma 1 and Theorem 4. a

Some global flow problems, notably the live variables problem [p&O]

require propagating information backward through the graph. By Corollary 2,

the lower bound of Theorem 6 applies to program flow graphs whose reverses

are reducible. We also have the following lower bound.

Theorem 8. In the worst case, the solution of a Is-bounded global

flow problem on an n-vertex program graph whose reverse is reducible

requires cn log n function applications if function compsitions

and function meets are not used.

proof. From Lemma 1 and Theorem 4. 0

Our worst case global flow problems are somewhat contrived.

However, it is possible, for instance, to construct a worst-case bit-

vector type problem and use it in place of (Lr,Fr) in the l-bounded

case.

Let G = (V,E,r) be any flow

be any-l-path of G . Let I,
P be

graph ad let P = (vl,v2)(v2~v3) l a- (vl~VL+l)

the semi-lattice defined by

L
P

= (s 1 s c {Xij- IO 5 i 5 j 5 W

SlAS2 = slns2 l

30

Let

o = 6 and 1 = (xij(o<i<j <.t) l
- - -

Clearly L
P

satisfies A0 - A5.

Let F
P

be the set of functions closed under composition and

intersection and containing the identity function e , the function

g4 = 1 3 and a function fp(vi,vi+l) for each edge (vi,vi+l) ,

defined by

f (v.,v.p 1 1+1)(s)
= s-(xij Iis j _<~]U(xjiIo~j <i] l

The pair (LtiFp) is an example of a typical global flow framework for

available expressions or any similar bit vector type problem and is

l-bounded [12].

Let (Lp,Fp,G,g,a) be the global framework with

fpb' 4 if (v,w) is on p

dv,w) =
1 otherwise

a(v,> = (Xij 115 i_< j ,< I) U (Xoj 115 j 5 I)

a(w) = 1 for w # vl .

If x is the solution to this problem, a computation shows that

x(ve+l) = (Xij I1 < i < j < 1) U CxOj 11 < j < 11 l In Order to comPUte- - -

x(vL+l) from 0 , 1 , or a(v,> , fp(vi,vi+l) for i = 1323 *=*,a

must be applied in sequence.

Thus, by using the appropriate product framework, we can show that

Theorems 4, 5, 7 hold for all iterative algorithms which solve bit-vector

type problems. We have not tried constructing "natural" worst-case

examples for other values of k .

31

Remarks.

We have exhibited a hierarchy of global flow problems, an optimal

iterative algorithm for solving any problem in the hierarchy, and lower

bounds on the time necessary for solving worst-case problems in each level

of the hierarchy. For k- and ks-bounded problems on non-reducible program

graphs, the lower bound is c kn2 , and this bound is tight to within a

constant factor independent of the boundedness. For l-bounded problems

on reducible program graphs, the lower bound is O(n log n) , which is

tight to within a constant factor by a result of Aho and Ullman [l]. For

k- *and ks-bounded problems on reducible program graphs, the lower bound is

wn
"gk s(k)

. Both the tightness of this bound and the exact value of

s(k) are unknown.

The lower bounds indicate that, at least theoretically, iterative

methods become markedly less competitive with elimination methods (which

_ have an O(n a(n,n) log k) running time for k-bounded problems on

reducible program flow graphs) as K increases. For instance, for k = 2 ,

the lower bound on iterative algorithms is cn
log2 3

> cn1*5p . Of course,

real-world problems may exhibit a different behavior, especially since

iterative algorithms are so easy to program.

A natural next step in this research would be to prove a non-trivial

(i.e., cna(n,n)) lower bound on the time required by any elimination

algorithm for solving global flow problems on reducible program flow graphs.

The lower bounds in [24,26] are probably relevant to this question.

Acknowledgments. My thanks to Prof. Jeffrey Ullman, for helpful discussions

on the ideas used in the lower bound results, and to Prof. Richard Karp, for

suggesting an improvement in the result of Lemma 3.

References

[1] A. V. Aho and J. D. UlJman, "Node listings for reducible flow
graphs," Proc. Seventh Annual ACM Symposium on Theory of Computing
(1975L 177485.

El A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and
Compiling, Vol. II: Compiling, Prentice-Hall, Englewood Cliffs, N.J.
(1972) l

[31 F. E. Allen, "Control flow analysis," SIGRLAN Notices, Vol. 5
(197O)Y l-19.

[4] .R. C. Backhouse and B. A. Car&, "Regular algebra applied to
path-finding problemsyff
161-186.

J. Inst. Maths. Applies., Vol. 15 (1~75)~

[5] J. Cocke, "Global common subexpression elimination,** SIGPLAN
' Notices, Vol. 5 (1970), 20-24.

[6] J. Eve, "On computing the transitive closure of a relation,'*
STAN-CS-75-508, Computer Science Dept., Stanford University (1975).

[7] A. Fong, J. Kam, and J. Ullman, "Application of lattice algebra to
loop optimization,ff Conf. Record of the Second ACM Symposium on
Principles of Prog. Lang. (1975), l-p.

[8] S. Graham and M. Wegman, "A fast and usually linear algorithm for
global flow analysisyff J. ACM, vol. 29 (1975), 172-202.

_ [p] M. S. Hecht and J. D. Ullman, "A simple algorithm for global flow
analysis problems," SIAM J. Comp., to appear.

[lo] M. S. Hecht and J. D. Ullman, ffFlow graph reducibilityyff SIAM J.

Comp., vol. 1 (1~72)~ 188-202.

[EL] M. S. Hecht and J. D. Ullrnan, "Characterizations of reducible flow
graphs," J. ACM., Vol. 21 (1974),'367-375.

[12] J. Kam and J. D. Ullman, "Global optimization problems and
iterative algorithms,f' J. ACM., vol. 23 (1~76)~ 158471.

[13] J. Kam and J. D. Ullman, "Monotone data flow analysis frameworks,"
unpublished report, Princeton University (1975).

[lb] K. W. Kennedy, "Node listings applied to data flow analysis/l
Conf. Record of the Second ACM Symposium on Principles of Prog.
Lang. (1973, 10-21.

[15] G. A. Kildall, "A unified approach to global program optimization,'l
Conf. Record of the ACM Symposium on Principles of Prog. Lang.
(1973), 194-206.

[16] S. C. Kleene, "Representation of events in nerve nets and finite
automata," Automata Studies, Shannon and McCarthy, eds., Princeton
University Press, Princeton, N.J. (1~56)~ 3-40.

[17] D. E. Knuth, "An empirical study of FORTRAN programs,'* Software
Practice and Experience (l~l), 105-134.

33

[18] P. J. Koutas and T. C. Hu, 'Shortest string containing all
permutations," Discrete Mathematics, Vol. 11 (1975), 125-132.

[lp] D. J. Kwiatowski and D. J. Kleitman, "A lower bound on the length
of a sequence containing all permutations as subsequences,"
submitted to J. Comb. Theory, Series A.

[20] G. Markowsky and R. Tarjan, "Lower bounds on the lengths of node
sequences in directed graphs," Discrete Mathematics, to appear.

[2l] M. Newey, "Note on a problem involving permutations as subsequences,"
STAN-CS-73-340, Computer Science Dept., Stanford University (1973).

[22] A. Salomaa, "Two complete axiom systems for the algebra of
regular events," J. ACM., Vol. 13 (1966), 158-169.

[23] A. Salomaa, Theory of Automata, Pergamon Press, Oxford, England
(1969)) 120-127.

1.241 R. Tarjan, "Efficiency of a good but not linear set union
algorithm," J. ACM., Vol. 22 (1975), 215-225.

[25] R. Tarjan, "Testing flow graph reducibilityyff J. Comp. Sys.
Sciences, vol. p (1974), 355-365.

[26] R. Tarjan, "Applications of path compression on balanced trees,"
STAN-W-75-512, Computer Science Dept., Stanford University
(1975).

[27] R. Tarjan, "Solving path problems on directed graphs," STAN-M-75-528,
Computer Science Dept., Stanford University (1975).

[28] J. D. ullman, "A fast algorithm for the elimination of common
subexpressions, " Acta Informatica, Vol. 2 (1973), 191-213.

' [29] V. A. Vyssotsky, private communication to M. S. Hecht, 1973.

[30] B. Wegbreit, "Property extraction in well-founded property sets,ff
Computer Science Division, Bolt Beranek and Newman, Inc.,
Cambridge, Mass. (1973).

34

