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1. [ ntroduction.

A probl em extensively studied in recent years [(2,3,5,7,8,9,12,13,1L,
15,27,28,29,30] i s that of globally analyzi ng computer programs; that is,
collecting information which is distributed throughout a conputer program
generally for the purpose of optimizing the program Roughly speaki ng,
gl obal flow analysis requires the determ nation, for each program bl ockf/’
of a property known to hold on entry to the block, independent of the path
taken to reach the bl ock.

~ A widely used approach to global flow analysis is to nodel the set of
possible properties by a sem-lattice (we desire the "maximum" property
for each block), to model the control structure of the programby a
directed graph with one vertex for each program block, and to specify,
for each branch fromblock to block, the function by which that branch
transforms the set of properties. |f the sem-lattice of properties and
the set of transforming functions satisfy certain axions, efficient nethods
are available for producing a maxi mum property for each block [ 1,7,8,12,15,
27,20]. In essence, finding such properties involves solving a set of
| i near equati ons.

The known algorithms are of two types: "iterative" al gorithns, which
use only the sem-lattice neet operation and function application [9,12,
14,15], and "elimnation®™ algorithns, which use in addition function
composi tion and neet extended to functions [3,5,7,8,27,28,320]. Most of
the elimnation algorithnms are refinenents of the "interval anal ysis"
met hod of Cocke and Allen [ 3,5], which requires that the program flow

graph have a special property, called "reducibility". However, it is

Y A block is a set of statements with a single entry and a single exit
poi nt .



possible to formulate a general elimnation nethod, related to Gaussian
elimnation, which applies to all graphs and is particularly efficient

on reducible or alnost-reducible graphs [27]. This algorithm requires
only Q(n a(n,n)) time on an n vertex reducible program flow graph
(a(n,n) is a very slowy growing function related to a functional inverse
of Ackermenn's function).

The elimnation algorithms apply to very general global flow problens
and are asynptotically efficient, but they are rather conplicated to
program There are several iterative algorithns which are nuch sinpler
but which work only on restricted kinds of global flow problems. These
include the propagation algorithm of Kildall [15], studied by Hecht and
Ulman [9] and related to early work by vyssotsky [29], and the '"node
listing" algorithm of Kennedy [1k]. Kam and Ullm&n [ 13] have derived a
necessary and sufficient condition for global flow problens to be efficiently
sol vabl e by Hecht and Ullmen's "depth-first" version of Kildall's al gorithm
.tho and Ullman [1], by giving an al gorithm for constructing short node
listings, have shown that Kennedy's al gorithmcan be inplemented to run
in Qnlogn) time on an n vertex reducible program flow graph.

This paper extends the results of Kennedy [14] and Xem and Ul man [13].
W present a hierarchy of global flow problem classes, each sol vabl e by
an appropriate generalization of Kennedy's algorithm One of the classes
is the one considered by Kam and Ullman. W show that each of the
generalized algorithnms is optimum anong all iterative algorithms, for
solving problenms in its class. W give |ower bounds on the tinme required

by iterative algorithms for each of the problem classes.



The paper contains five sections. Section 2 contains the necessary
graph theory, including |emms' needed to derive the [ower bounds.
Section 3 gives an abstract framework for global flow analysis, defines
the hierarchy of problem classes, and presents the corresponding
hierarchy of algorithms. Section 4 shows the optimality of the algorithns
and provides a |ower bound on the time required for each probl em cl ass.

Section 5 contains further remarks.



2. Directed Gaphs and lteration Sequences.

A directed graph ¢ = (v,E) is a finite set of n =|y elenents

called vertices and a finite set E of m = |E| el ements cal | ed edges.

Each edge (v,w) is an ordered pair of distinct vertices. The edge

(v,w) leaves v and enters w; we say vis a predecessor of w. The

in-degree of a vertex v is the nunber of edges entering Vv ; the out-degree
of v is the number of edges leaving v . The reverse of a graph is
formed by reversing the direction of all its edges.
A path p of length k fromv to wis a sequence of edges
P = (vysvp)s (Vs ¥z)see s (Vi Vi g) With vy = v and v, = w. The
path p contains vertices Vi Vi and edges (vl,v2),...,(vk,vk+l)
and avoids all other vertices and edges. There is a path of no edges
from every vertex to itself. A vertex wis reachable froma vertex v

if-there is a path in G fromv to w .

Atriple G= (V,E,r) is a flowgraph if (V,E) is a directed
graph, Tev, and every vertex is reachable fromr . G is a program
fl ow graph if the out-degree of every vertex is at nost two. Every
program fl ow graph has m< 2n . A flow graph G = (V,Er) 1S reducible

if it can be reduced to the flow graph ({r},#,r) by applying a sequence

of transformations of the follow ng form

T: Let w# r be a vertex with exactly one entering edge (v,w) .
Repl ace (V,E,s) by (V',E',s) , where v' = v-{w};

E' = {(xy)cE|vi{xy}IU{(v,y)|(W,y)eEand ¢ {v,w}}



Cocke and Allen introduced reducible graphs [3,5]; the definition
above is Hecht and Ullman's [10,11], nodified to avoid the creation of
| oops (edges of the form(v,v) ). There is an Q(m a(m,n)) tinme
algorithmto test reducibility and to construct a reducing sequence of
transformations for any reducible flow graph [2L,25].

Let k>1 . Ak-pathin a flowgraph G = (V,E,r) is a path
p = (vl’ve) (v2,v5) Co (vz’vz+1) such that no vertex appears nore

than k tinmes anong Voo A ks-path is a k-path which begins

"V£+l .
at .r and contains r no nore than k times. A k-sequence for
G=(V,Er) is a sequence of edges which contains every k-path of G
as a subsequence. A ks-sequence is a sequence of edges which contains
every ks-path of G as a subsequence. Qur |ower bound proofs require
the follow ng results concerning |engths of k-sequences and ks-sequences.

The first two lemmas are immedi ate corollaries of results in [20]. The

third leima is new.

Lermma 1 [20]. For infinitely many n , there is a program
flow graph ¢ = (V,E,r) with |v| = n, such that the reverse of G
I's reduci ble and any ks-sequence for G contains at |east

nlog n edgesy.

¢

Lemma 2 [20]. For infinitely many n , there is a (non-reducible)
program flow graph G = (V,E r) with |v| = n such that any sequence
containing each Is-path ending at a predecessor of r contains at |east

2
e edges.

%/ Thr oughout this paper, cy¢ysC denote suitable positive constants.

PYREE



Corol lary 1. For infinitely many n , there is a (non-reducible)
program flow graph G = (V,E,r) with |v| = n such that any ks-sequence

for G contains at |east cgkng edges.

Proof . Any ks-sequence for one of the graphs given by Lemma 2 nust
contain k disjoint subsequences, each containing all |s-paths

ending at a predecessor of r . O

For any k > 1, let s(k) be the Iength of the shortest sequence
containing each permutation of the nunbers 1,2,...,k as a subsequence.
Newey [21] gives the fol |l ow ng val ues of s(k) : s(1) =1, s(2) =3,
s(3) = 7, s(¥) =12, s(5) =19, s(6) = 28, s(7) = 39 . Newey [21]
and Koutas and Hu [ 18] have shown that for all k, s(k) < Ko - ok+ )
Kwi at owski and Kl eitman [19] have shown that, for all positive ¢,

T/ te

s(k) > k% -c(e)k for all k .

Lenma 3. Let k >1 . For infinitely many n there is a reducible

program flow graph G = (V,E,r) with |v| =n such that any ks-sequence

log, s(k)
contains at least c(k)n edges.



Proof . For any fixed k , e recursively construct a sequence of flow
graphs G(k,i) . Each G(k,1) will have a unique start vertex r(k,i)
and a unique finish vertex £(k,1) . Let

G(k,0) = ({r(x,0),£(k0)}, {(r(k,0),%(k,0)) , (£(k,0),7(k,0))} , r(k,0)) .
We construct G(k,i+l) fromk copies of G(k,i) and three new
vertices r(k,itl) , f(k,i+1) | and x(k,i+l) , as fol l ows. Let

Gy (k5 1), Gy(k, 1) , ..., G(ks1) be k copies of G(kitl) . Let

G(kyi+tl) = (v(k,itl) , E(k,i+1) . r(k,i+1)) , where

k
v(k,i+l) = Ule(k,i)U{r(k,:Hl), x(k,i+l) , f(k,i+l)]} ;
j:
k
E(k,i+1l) = U (B.(k 1) U {(x(ki+1),r, (k1)) , (£, (k,i),x(k,i+1)) ,
j=1 9 J J

(fj (k,1),f(k,i+1)) })

U {(z(k,i+1),x(k,i+1)) = (£(k,i+1),r(k,i+1))} .

Figure 1 illustrates G(k,i+l) .



Figure 1. G(k,i+1l) for k = L4 .



if p(1),p(2), ...,p(k) are ks-paths in G(k,i) ending at f(k1i) ,

t hen
(r(k,i+1),x(k, i+1)) (x(k, i+1), rcr(l) (k,1) )po(l) (1) (fc(l) (k,1),x(k,i+1))

(x(k,i+1) ’ro(E) (k, i))po(Q) 2 ... Pd(k) (k) (fc(k) (k, 1), f(k,i+1))

is a ks-path in G(k,i+1) ending at £(k,i+1) , where o is any
pernutation on 1,2,...,k and pc(j)(j) is the path in Ga(j)(k,i)
corresponding to p(j)

Let S = €17€55 ¢+ 5€, be any sequence for G(k,i+1l) containing
all ks-paths ending at f(k,i+1) . Form a sequence S' = 215Zps + s 2y
of occurrences of 0,1,2,...,k fromS as foll ows. Suppose 219 Zps ¢ v 9%y
have been defined. Let j be such that Sl is an edge of Gj(k,i+l) .
(If there is no such j , let Zyq 0 .) Let b' be the maxi num
b' < b such that z,, =j . (If there is no such b', let b'=0.)

If the sequence of edges €prs1? "t 28y CON ains every ks-path of
Gj(k,i) as a subsequence, et Zyp T j . OQherw se |et Zel = 0 .

W claim8', so defined, contains every pernutation of 1,2,...,k
as a subsequence. For, let o be any pernutation of 1,2,...,k . Let
z‘b(l) be the first occurrence of o(1) in S', and |et pc(l)(l) be
a ks-path in Go(l)(k’ i) ending at fc(l)(k’ i) and contained in

"el:ozzaeb(l) but not in €2ty | In general, et 2y (5+1)

be the first occurrence of o(j+l) foll ow ng zb(j) ins', and let
p0(5+l)(j+l) be a ks-path in Go(jﬂ) (k, i) ending at fc(j+l) (k, 1)

and contained in eb(j)ﬂ,.. »eb(j+1) but not in eb(,j)+l’--' °eb(j+l)-1'
It must be possible to define b(1),b(2),...,b(k) since otherw se there

is a ks-path

10



(s(k,itl),x(k,i+1)) (x(k,i+1), So(l) (k, i))pc(l) (1) (fd(l) (k,1),x(k,i+1))

(x(k,1+1), 50(2) (k,1) )PO‘(Q) (2) ... Pc(k) (k) (fo(k) (ky1),f(k,i+1))

in G(kx,i*1l) , ending at f(k,i+l) , which is not contained in S . Thus

o 1Is contained in 8.

Let £(k,i) be the length of the shortest sequence containing all
ks-paths of G(k,i) ending at f(k,i) . Cdearly 2(kx,i) > 1 . The

above argument inplies that ¢(k,i+1) > £(k,1i)-s(k) . Thus

(1) L(k,1) > (s(k))i

Let |v(k,i)| = n(k,i) . Then n(k,0) = 2 and n(k,i+1) = kn(k,i)+3 .

Thus
s 41
(2) n(k,i) < 3 T ¥ < 3k*
Jj=0
It' follows that
log, s(k)
e £(k,i) > c(k) n(k,i) for some constant c(k)

Each G(k,i) is reducible. (To reduce G(k,i+l) , reduce each
Gj(k,i) to ({rj(k,i)},gé,rj(k,i)) s then delete the remaining vertices
in the order rl(k,i),re(k,i), . gwrk(k:i),f(k, i+1l),x(k,i+1) .) Further-
nore the out-degree of each vertex of G(k,i) is at nost max{k,3} .
From G(k,i) we can form a reducible program flow graph g'(k,i) by
repl acing each vertex of out-degree greater than two by a binary fan-out
tree.

G'(k,i) contains O(n(k,i)) vertices. Furthernore every ks-path
of k,i) ending at f(k,i) is contained in a ks-path of g'(k,1i)

ending at f(k,i) . The lemma follows from (3). d



A slight nodification of this proof gives

Corollary 2. Let k >1 . For infinitely many n there is a program

flow graph G = (V,E,r) with |v| = n such that the reverse of Gis

log, s (k)
reduci bl e and any ks-sequence for G contains at |east c(k)n

edges.

Aho and Ullmen's construction [1] of an Q(n log n) length
| -sequence for any reducible program flow graph shows that the bound
in Lenma 1 is tight to within a constant factor. The bound in
Corollary 1 is obviously tight to within a constant factor, as is the
Lemma 3 bound for |-sequences. For k > 2, it is an open problem

whet her the Lenmma 3and Corollary 2 bounds are tight.



3. Jobal Flow Problens and lterative A gorithns.

Let L be a set with a binary neet operation Asatisfying the

foll ow ng axions.

A0 L is closed under a.
A: xa(yaz)=XAY) Az.
A: XANy=yAX.

A3: XA X =X.

1]
o

Ak: There is an el enment 0OeL such that 0 A X

A5: There is an elenent 1leL such that 1 A x

1]
X

As a consequence of AO -A3 we can define a partial order on L by X <y
if and only if x Ay = x .
Let F be a set of functions f: L - L satisfying the follow ng

axi oms.

A6: F is closed under function conposition and A, where £ A Qg is
the function h defined by h(x) = f(x) A g(x)

A7: There is a function eeF such that e(x) = x .

A8: Ff(x Ay) = (X Af(y)

B: For all feF there is a function f €F such that £ g is the

maxi mum solution to fhag=h .

Such-a pair (L,F) is a global analysis franework.

Let G = (V,E,r) be a flow graph, let (L,F) be a global analysis
framework, let f: E-F, and let a2 V- L . (I,FGf,a)is a global

flow problem The solution to this problemis the maxi numsolution to

the set of equations

Q:  X(w

N\ f(v,w)(x(¥)) A a(w) , WeV .

(v,wW)€E

15



We can extend £ to paths by defining f(p) = f(vk,vk+l) f(vk_l,vk).-e f(vl’vz)

it p= (vpvy) (v2,v5) .+ . (vpv,y) , and f(p) =eif pis apath of
no edges.
Qbservation 1. If xwis a solution to Qand p is any path from

a vertex v to a vertex w, then x(w) < f(p)(a(v))

Under the assuned axions, Q always has a uni que maximum sol ution x
such that x(w) is the meet of f(p)(a(v)) for all paths p fromv
to'w. The existence of the closure operation * guarantees that this
meet of a possibly infinite set of paths exists and can be conputed
[L,22,23,27]. The asynptotically fastest method known for solving gl obal
flow probl ens uses a formof Gaussian elimnation and achieves a tine
bound of Qm a(m,n)) on reducible flow graphs [27].

For nost practical global flow problems, the closure operation can
be defined in terns of function nmeet and function composition.Insuch
cases, it is possible to compute solutions using only function application
and meet on L . W shall consider a hierarchy of global flow problens

of this kind. Consider the follow ng axions.

k-1,

Bk: fk(x) > A £(x) A fk(l) (k >1)
i=0
k-1,

"Bks: f'k(x) > A £ (x) (k > 1)
i=0

Any global flow problem whose framework satisfies Bk we call a k-hounded
global flow problem. Any global flow problem whose framework 'satisfies

Bks and such that a(w) =1 if w# r we call a ks-bounded global flow

- Probl em

14



Qbservation 2. Bks inplies Bk . Bk inplies B(ktl)s .

Bk inplies B .

The k-bounded and ks-bounded gl obal flow problenms forma hierarchy
which includes some, but not all, of the global flow problens
nentioned in the literature. The transitive closure [ 6,271 and
dominators problens [p, 26,27] can be fornul ated as |s-bounded probl ens.
Probl ens which use bit vectors, such as available expressions [28] and
live variables [ 9,14] are |-bounded but not Is-bounded. Problens which
use "structured partition" lattices, such as conmon subexpression
detection, [7,13,15] are 2s-bounded but not |-bounded. @G obal flow
probl ens involving type checking [30]) are not Kk-bounded unless sone
bound is artificially inposed.

Kam and Ullman [13] have shown that 1-boundedness is a necessary
and sufficient condition for fast convergence of Hecht and Ullman's
version of Kildall's algorithm W shall show that there is a general
iterative algorithm an extension of Kennedy's node |isting method, for
solving any k-bounded or ks-bounded problem The algorithmis optinal,
anong all iterative algorithns, for each k . W give a |ower bound on
the running time of the algorithm a bound which shows that the al gorithm
beconmes markedly less efficient, and thus less conpetitive with the
best ‘elimination al gorithm as k increases.

Let (L,F,G,f,a) be a global flow problem with G = (V,E,r) .

Let S be a sequence of edges of G. Consider the follow ng algorithm

15



procedure | TERATE (set V, set E, vertex r, function f, function a,
list s, function x)

begin
for wev ggx(w) = a(w;

for (v,w)es do x(W) = x(w) A £(v,w)(x(v));
end | TERATE;

This al gorithm propagates infornation al ong paths which are subsequences

of s .

Cbservation 3. Any function x computed by | TERATE satisfies

x(w) = A {£(p(v,w))(a(v)) | p(v,w)eP} , where P is some set of paths

| eading to w .

Theorem 1. If (IL,F) i s ks-bounded, S is a ks-sequence for ¢, and

a(w =1 for w#r , then the function x computed by I TERATE is a

- maxi mum solution to Q.

Proof. Let y(w) = a{f(p)(a(r)) | p a ks-path to w} for wev .

Let z be any solution to Q. By Cbservations 1 and 3, z <X . It

is easy to prove by induction on the length of p that x(w) < £(p)(a(r))
for any ks-path to w. Thus x <y . It remins to be shown that y

is a solution to Q.

y(w)

A {£(p) (a(r)) | p a ks-path to w}

N t(vw) (A 1£(0) (ar) | peB(v) )

(V‘,W ek

where P(v) is a suitable subset of ks-paths to v

> N W)

(v,w)€E

16



Let (v,w)eE . Let p be a ks-path to v. If p(v,w is a ks-path,
then f(p(v,w))(a(r)) > y(w) . Otherwise, p(v,w) = Py PP o pk »

wher e p., starts and ends at wfor 1 <i <k, and Py i's possibly

enpty.  Then
k k
f(p(v,w))(a(r)) > ( ./\l f(Pi)) £(p,) (a(r))
i=
k-1 k j
= A A f(py) | fpy(alr)) by Bks
3=0 \_i=1
= A{£(p") (a(r)) | p'eP} where P is a suitable

subset of paths fromr to w, each a

proper subsequence of p(v,w) .
By applying the same deconposition repeatedly, we eventually have

flp(v,w))(a(r)) >A{f(p') (a(r))|p'ep’ 3 where p' is a set of
ks-paths fromr to w

> y(w) .

It follows-that y(w) < A f(v,w)(y(v)) , and y is a solution
(v,w) €E

to Q. Thus y =x and x is the maximnum solution to Q. O

Theorem 2. If (L,F) is k-bounded, and S is a k-sequence for ¢,

then the function x conputed by | TERATE is a maximurn solution to Q.

Proof. -Let y(w = A {f(p(v,w)){a(v)) |p a k-path to w} . Let z be
any solution to Q. As in the proof of Theoreml1l, =z <x <y, and we

must show that y is a solution to Q.

17



y(w)

A {£(p(vsw))(a(v)) | P a k-Path to ¥}

A £(v,w) (A {£(p(u,v)) (a(u)) | peP(v)}) where P(v)
(v,w) E

Is a suitable subset of k-paths to v

v

A E(vw)y(v)
(vy,w)€E

Let (v,w)eE . Let p be a k-path to v . If p(v,w) is a k-path,
then £(v,w)(a(v)) >y(w) . Qtherw se, p(v,w) = Py P1 P,

pi starts and ends at w for

oo Py wher e

1<i<k, and p, i s non-empty.
Then

k k
£(p(v,w)) (a(v)) >{ A f(pi)> £(py) (a(v))

1=1
k-1/ k 3 k k
> A ( A f(pi)> £(p,) (a(v)) A( A f(pi)> (1)
j=0 \i=1 i=1
> A {£(p'(w,w))(a(u)) | prep} | where P is a

suitabl e subset of paths to w, each a proper

subsequence of p(v,w) .
By repeating this deconposition, we eventually have
£(p(v,w)) (a(v)) > A (£(p' (u,w))(a(u)) | p'er'} , Wwhere P' is some
set of k-paths to w .

It follows that y(w) < A £(v,w)(y(v)), and y is a solution
(vy,w)€E

to Q: Hence y = x and x is the maxi num solution to Q . a

18



| TERATE gives a uniformnethod for solving k- and ks-bounded gl oba
flow problems, with the Iength of the necessary sequence s dependent
upon k . The ks-bounded problenms require propagation only fromthe start
vertex; the k-bounded problenms require propagation fromall vertices. W
have | eft unresolved the problemof finding a k- or ks-sequence to use as
input to | TERATE

Kennedy's algorithmas originally stated is the version of | TERATE
whi ch sol ves | -bounded gl obal flow problems. aho and Ullman [1] have
given a method for constructing, in Qn log n) tine, an Q' n |og n)
| ength |-sequence for any reducible program flow graph. Thus | TERATE
can be inplenmented to solve |-bounded problens on reducibl e program
flow graphs in Q(n log n) tine.

Hecht and Ullman's [9] depth-first ordering gives a |-sequence of
0(dn) length for any reducible program flow graph, where d is the
| argest number of "cycle" edges [13,27] on any |-path. For typical FORTRAN
programs, d < 2.75 [17]. Thus the depth-first ordering gives a |linear
tine inplenmentation for typical prograns, although the worst case
is o(n°) .

Lenmas 1, 2, and 3 give |lower bounds on the lengths of k- and
ks-sequences , and thus on the worst case running time of all inplenentations
of ITERATE. W shall see in the next section that these |ower bounds
apply not only to I TERATE, but to any iterative algorithmfor solving

k- or ks-bounded problens.

19



4, Lower Bounds on lterative Al gorithns.

To provide |ower bounds on the number of operations required to
solve k- or ks-bounded problens by iterative algorithns, we wll
construct certain "worst-case" global flow frameworks. Let
(Ll’Fl)’--"(Lz’Fz) be global flow frameworks. W can define a cross

product framework (L, xL,X «-« XL leF2x...xFl) , Where operations

11
are performed conponent-wise. That is,

(£ "fz)(xl"“’xl) = (f(xl)""’f(xl)) . It is easy to show that

1I
(Ll,xsz . eexDy, FyxFoxee. XFz) is a global flow framework with
zero el ement (0,...,0) , one elenent (1,...,1) , and identity function
(e,.... e) . Furthernore (Xl’xe""’xz) < (yl,yz,...,yz) if and only

i f x; <Yy for all i . Also, (le o oeexLy, Fyxo. "XFz) is

k- bounded (ks-bounded) if all the (Li’Fi) are k-bounded (ks-bounded).
Let G= (V,E, r) be a flow graph. Let k >2 and let p be any

ks-path of G. Let Ls(P) be the sem-lattice defined by

Ly (p) {0,1} U {P(v) | P(v) is a non-enpty set of subsequences of p,

each of which is a path fromr to v}
(A, the enpty path fromr tor, is an allowable

subsequence if v =7r)

XAO = OAX =0

XAl =1Ax= X

- Pl(v) A Pe(w)

It is clear that Ls(p) satisfies A0 -AS5.
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Let Fs(p) be the smallest set of functions closed under neet and
conposition which contains the identity function e , the function 1
such that 1(x) = 1, and a function fp(v,w) for each edge (v,w)

in p, defined by

1|
(@

£(v,w)(0)

n
=

fp(V’W) (1)

{pl(v,w)| Pl € P(v) and pl(v,w) is a subsequence of p}
if this set is non-enpty

£,(vs¥) (B(v) )
1 ot herwi se

fp(v,w)(P(u)) 0 if u#¢v.

Lenma 4. (Ls(p),FS(p)) is a ks-bounded global flow franmework.

proof. A6 and A7 hold by definition. Consider A8. Suppose
f(xny)=f (x) Af(y) and g(xAy)= gx) Ag(y). Then

fe(x Ay) = flg(x)Ag(y)) = fe(x)Afe(y) and

(EAE)(xAY) = F(X)A ... Ag(x)Agly) . (FAg) (x) A(fAg) (y) .
Thus we need verify A8only for e , 1 and fp(v,w) . A8clearly

holds for e and 1 . Consider fp(v,w) )

fp(v,w)(x/\O):fp(v,W)(O) = 0 = fp(v,w)(x)Afp(v,w)(O)

£ (Hn) (xAD) = £ () = (WAL = £ (mW ) A £ (v, ()

I

£,(7W) (B () AZ,(1)) = £ (v3w) (By(V) U 5(¥))

]

£(v,) (P () A 2, (v, ) (B(v))

£(v,w) (P (u) AP,(x)) =0 = £,(vsw) (P (w) A £ (v,w) (Py(x))

if ufgvoor x£v .

In all cases A8 holds.

21



To prove Bks , consider any function g er(p) . W can wite

J
g= A g, , Where each 8 is either e or a conposition of functions
i=1
fp(v,w) , possibly followed by 1 .
k-1 .
W wish to prove Bks : g"(x) 2Ag1(x) . VW need only prove
i=1

this inequality for x =0, x =1, or x containing a single ks-path.

The result is obvious for x = 0 or x =1 . Let x be a ks-path.
Consi der any term gi(l) 8i(2) - - Bi(x) ( {x1]) of

k, J k

g ({x}) = A - ({x}) . If g, ({x}) does not denote a ks-path,

i=1 1(k)

then either the left side of Bks is 1 or the right hand side of Bks

is 0, and Bks holds. 1If & (k) ({x}) is a ks-path but gj(k) ({x})

does not end at the end of x , then gi(k)({x})A{x} = 0 and the right

side of Bks is zero. Extending this argunent, we can show that Bks

hol ds unl ess gi(l) gi(k)({x}) is a ks-path which contains the |ast

vertex of x ktl times. But this is inpossible. Thus Bks holds. O

Lemma 5. Let p be a ks-path in G. Consider the global flow problem

fp(v,w) if (v,w) isonp

(LS(P),FS(P):G,g’a) , where g(v,w) =
1 ot herwi se

1
>

a(r)
a(w

1
-

if wér .
The solution to this problemis

({p' | p'is a ks-path to wwhich is a subsequence of p
x(w) = § if this set is non-enpty}

1 1 ot her wi se.
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Proof . Simlar to the proof of Theorem 1. O

To deal with the case of Is-bounded problens, we shall use a special

construction. Let G = (V,E,r) be any flow graph and let p be any

|'s-path of G. Let Ls(p) be the sem -lattice defined by
L (p) = {0,1} U {p'| p* isan initial segnent of p (p' = A is included)}

OANx =xA0 =0 , IANX =xALl =x

P,AP; = P{AD, = Py if pi is an initial segment of P, -

Let Fs(p) be the smallest set of functions closed under neet,

conposition, and containing e , 1, and a function fp(v,w) for each

edge (v,w) on p , defined by

fp(v,w) (0) =0
fp(v,w)(l) =1
p'(v,w) if thisis an initial segment of p
fp(f’:w) (p') =
P ot herw se.
Lenma 6. (Ls(p) , Fs(p)) is a |s-bounded global flow framework.

Proof . AO-A7 hol d obviously. A8 clearly holds for e and 1 .

Consi der fp(v,w) .

fp(?r,W) (xA0) = £.(v;w) (0) =0 = £ (v,w) (x) AL (v,)(0)

£,(vw) (x A 1) = £ (vyw) (x) = £,(vsw) (x) A £_(vW) (2)
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£,(vs%) (2 AR,)

fp(V’W) (Pl) = Pl(V:W)

fl

fp(v,w)(Pl) AP, = fp(V,W) P /\fp(v,W) (»,)

if pl<p2 and Py ends at v

£ (B ABp) = £,(vsw)(py) =y = £ (mW)(p) A £,(v>¥) (D)

if py <P, and P, ends other than at v
In all cases A8 holds.

‘Note that t he functions f e (e, 1, fp(v,w)} satisfy £ > e

It
follows that all functions £ in Fs(p) satisf'y £ > e Thus
(L (p)>F (P))

is a Is-bounded global flow framework. d

Lemma 7. Let p be a Is-path in G.

Consi der the global flow problem

f;)(v,w) if (v,w) is on p
(LS(P),FS(P),G’)gJa) where g(v,w) =
1 ot herwi se
a(r) = A
a(w =1 it wir
The solution to this problemis
-
P! if p* starts at r , ends at w, and is an
initial segment of p
x(w) = {

if there is no path fromr to w which is an

initial segment of p .

proof . Simlar to the proof of Theorem 1. O
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Let G = (V,E,r) be a flow graph. Let k >1 and let p be any
k-path of G starting at some vertex s . Let L(p) be the sem-lattice

defined by

L(P) = {0,1} U {p(v) | F(v) is a non-enpty set of subsequences of p,
each a path to v, such that P(v) contains A(v), the

enpty path fromv to v]

xAO = 0Ax = O
xALl = 1Ax =0

Pl(v)UPz(w) if v=w
Pl(v) APB(W):

0 if viw .

It is clear that L(p) satisfies A0 - A5.

Let F(p) be the smallest set of functions closed under neet and
conposi tion which contains the identity function e , the function 1
such that 1(x) =1, and a function fp(v,w) for each edge (v,w)

on p , defined by

fp(v,w)(O) = 0

fp(V)W)(l) = {(v,w),A(w)]}

]

fp(v,w) (P(v)) {pl(v,w) | pleP(\; and pl(v,w) is a subsequence of p]

U {A(w) 1

£(mw) (Pw) =0 if ufv.

Lemma 8. (L(p) , F(p)) is a k-bounded global flow framework.
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Proof . A6 and A7 hold by definition. Consider A8. A8 clearly holds

for e and 1 . Consider fp(v,w).

£,(vW) (xA0) = £, (VW) (0) = 0 = £ (v,wW)(x)A £ (v,%)(0)
£,(vsw) (B(v) A1) = £(v,)B(V) = £(vs¥) (B(v)) A {(v,w), Aw) 3
= £,(nw) (B(v) ) A £(v,w) (1)
£5(vsw) (B(u) A 1) = £ (v,w) (P(w)) = 0 = £ (v,w) (P(w)) A £ (v5w) (1)

if ufgv

£(vW) (By(¥) ARy(W) = 2,(vsW) (B (MU, (V)

fp(V:W) (Pl(v) ) A fp(V:W)(Pe(V))

£,(s%) (P () AB,())

0 = fp(v,w) (Pl(u)) A fp(v,w)(PQ(x))

if wufgv oor xfgv.

In all cases A8holds.

To prove Bk , suppose k > 2 and consider any function g eF(p) .
J
W can wite g = Agi,v\/nere each g; is either e or a conposition
i=1
of functions fp(v,w) , possibly followed by 1 . W wish to prove Bk :
k-1

gk(x) > A gi(x) /\gk(l) . W need only prove this inequality for
i=1

x =0, x=1, o0r x of the formx = {p',A(w)} where p' s a path
fromv to w . The result is obvious for x =0 and for x =1 .

Suppose x = {p',A(w)} , where p' is a path fromv to w.

J k
Consi der any term gi(l) gi(2).** gi(k)(x) of gk(x) =(i21 gi> (x) .

I f any 81 (3) contains 1, Bk holds. If 8 (k) (x) is not a set of

k-paths, the right side of Bk is 0 and Bk holds. If gi(k)(x) does
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not denote a set of k-paths ending at w, gi(k)(x) Ax= 0 and Bk
holds. Extending this argument, we can show that for all 1 <j <k,
8i(5) " gi(k)(X) is a set of k-paths ending at w. The only possible
kind of path occuring in gi(l) gi<2).*. gi(k)(x) whi ch does not occur
inaset onthe right side of Bk is a path of the form

pi(l)pi(e) pi(k) p', Where pi(j) Is the sequence of edges
corresponding to the functions composed to form g'i(j) and p' is
non-enpty. But such a path is not a k-path and thus does not occur in
85 (1) gi(kgx). Hence Bk holds. A simlar argument shows that
Bk holds if k =1 . O

Lemma 9. Let p be a k-path in G starting at s . Consider the gl obal

flow problem

-

fp(v,w) if (v,w) is on p

(L(p),F(p),G,g,a) s Where g(V:W) =
1 ot herwi se

a(s) = {A(s)}
a(w

1
[N

for w#s .

The solution to this problemis

{p'| p'is a k-path to w which is a subsequence of p}
x(w) = if wlies on p
1 ot herw se.

Proof. Simlar to the proof of Theorem 2. a

Consi der any algorithm which, starting fromthe values a(v) , 0, 1,

conputes a solution to the global flow problem (L,FG,f,a) by computing
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neets of elements in L and applying functions in {f(v,w)} . W call

such an algorithm an iterative global flow algorithm The derived sequence

of such an algorithmis the list of edges (v,w) such that f£(v,w) is
applied by the algorithm wth the edges occuring in the order the
functions are applied. W provide |ower bounds on the nunber of operations
required by iterative algorithns by showi ng properties of their derived

sequences.

Theorem 3. Let G = (V,E,r) be any flow graph. Consider the gl obal

flow problem

(L,F) = X(T () , F(P)) |P a ks-path}.
Let

fp(v,w) if (v,w)lies onp
(v,w) = (gp(v,w)) . where gp(v,w) = . —
W .

Let a(r) = (AyAs--+5A) , a(w) = (3,1,...,1) for w# r . Then the
derived sequence for any iterative algorithm which solves (L,7G,f,a)

must contain a ks-sequence.

pr oof . Let p=(r= Vl’vz) (Ve’v5) S (vk’vkl-l = w) be a ks-path.
Consi der the p-conmponent of the solution x to Q. The only way to

build up the correct value in the p conponent of x(w) is to apply

£(vysVp)s - -5 T(Vio Vi, 1) i sequence. O

TheoremL. Let G = (V,E,r) be any flow graph. Consider the gl obal

flow problem

(L,F) = X{(L(p) , F(?)) | P a k-path]
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Let

fp(v,w) if (v,w) lies on p
f(v,w) = (gp(v,w)) , where gp(v;w) =
1 ot herw se.
Let
A(v) if p starts at v

a(w) = (a_(v)), where a,(v) =
P 1 ot her wi se.

Then the derived sequence for any iterative algorithm which sol ves

(L,F,G,f,a) nust contain a k-sequence.
Pr oof . Simlar to the proof of Theorem 3. U

Thus Theorens 1, 2, 3, and & characterize the exact nunber of function
applications needed to solve a k- or ks-bounded global flow problemin
the worst case. This nunber is equal to the Iength of the shortest

k- or ks-sequence for the graph. Lenmas 1, 2, and  give |ower bounds

on this length, and hence we have the follow ng corollaries:

Theorem 5. In the worst case, the solution of a k- or ks-bounded gl obal

fl ow problemon an n-vertex (non-reducible) programflow graph requires
at least ¢ kn- function applications, if no function conpositions or

function neets are used.
Proof . I medi ate from Corollary 1 and Theorem 3. g

Theorem 6. In the worst case, the solution of a k- or ks-bounded gl obal

fl ow problemon an n-vertex reducible programflow graph requires at

logk s(k) . _ o
l east c(k)n function applications, if no function conpositions

or function neets are allowed.
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proof . | nedi ate fromLemma, 3 and Theorem E<& a

Theorem 7. In the worst case, the solution of a |-bounded global flow
probl em on an n-vertex reducible program flow graph requires cnlog n

function applications if function conpositions and function nmeets are

not used.
Pr oof . Immediate from Lenmma 1 and Theorem 4. O

Sone global flow problens, notably the live variables problem [9,10]
require propagating i nformation backward through the graph. By Corollary 2,
the | ower bound of Theorem 6 applies to program flow graphs whose reverses

are reducible. W also have the follow ng | ower bound.

Theorem 8. In the worst case, the solution of a Is-bounded gl obal
fl ow probl emon an n-vertex program graph whose reverse is reducible
requires cn log n function applications if function compositions

and function nmeets are not used.
pr oof . From Lemma 1 and Theorem 4. 0

Qur worst case global flow problenms are somewhat contrived.
However, it is possible, for instance, to construct a worst-case bit-

vector type problemand use it in place of (E“’F;r) in the |-bounded

case.
Let G = (V,E,r) be any flow graph and let P = (v,v,)(vyv3). . (v)5v,, )

be any-1-path of G . Let LP be the sem-lattice defined by

L, = (slscix;lo<cicic<el}

S, AS, = SlﬂS2
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Let

o=¢ and 1 = {x,.|0<i<j <1}

Clearly LP satisfies A0 - A5,

Let FP be the set of functions closed under conposition and
intersection and containing the identity function e , the function
1(x) = 1, and a function £ (v,, v.,1) for each edge (vi»vy,) ,
defined by

fp(vi,vi+l)(s) = 8- (X, | i< j SZ}U{in|OSj <i} .

The pair (Lp’Fp) is an exanple of a typical global flow framework for
avai l abl e expressions or any simlar bit vector type problemand is
| - bounded [12].

Let (LP,FP,G,g,a) be the global framework with

fp(v, W) if (v,w) isonp

S(V:W) =
1 ot herwi se

a(vy) = I |1<i<j cadulxg i< <o)

a(w) =1 for w# v .

1f X is the solution to this problem a conputation shows that
= < i < j .|1 < j < t}.In order to compute
x(vy,q) = (x5 |1 <0 <j_< 2} {x; |L<j } pu

x(le) fromo , 1, or a(vy), fp(vi,vi+l) for i = 1,2, ...5¢
nmust be applied in sequence.

Thus, by using the appropriate product framework, we can show t hat
Theorens 4, 5, 7hold for all iterative algorithms which solve bit-vector
type problens. W have not tried constructing "natural" worst-case

exanpl es for other values of k .
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Remar ks.

W have exhibited a hierarchy of global flow problenms, an opti nal
iterative algorithmfor solving any problemin the hierarchy, and | ower
bounds on the tinme necessary for solving worst-case problens in each |evel
of the hierarchy. For k- and ks-bounded probl ens on non-reduci bl e program
graphs, the lower bound is ¢ kn° , and this bound is tight to within a
constant factor independent of the boundedness. For |-bounded problens
on reduci ble program graphs, the lower bound is Q'n log n) , which is
tight to within a constant factor by a result of Aho and Ullman [1]. For

k- and ks-bounded probl ems on reduci bl e program graphs, the |ower bound is

log, s(k)
c(k)n . Both the tightness of this bound and the exact val ue of

s(k) are unknown.
The | ower bounds indicate that, at l|east theoretically, iterative
met hods become markedly | ess conpetitive with elimnation methods (which
- have an Q(n a(n,n) log k) running time for k-bounded problens on
reduci bl e program flow graphs) as K increases. For instance, for k = 2,

. . . . log, 3 1.59
the lower bound on iterative algorithms is cn > cn :

O course,
real -worl d problens may exhibit a different behavior, especially since
iterative algorithns are so easy to program

A natural next step in this research would be to prove a non-trivial
(i.e., cna(n,n)) lower bound on the time required by any elinination
algorithmfor solving global flow problens on reducible programflow graphs.

The |ower bounds in [24,26] are probably relevant to this question.

Acknow edgnent s. M/ thanks to Prof. Jeffrey Ulman, for hel pful discussions

on the ideas used in the lower bound results, and to Prof. Richard Karp, for

suggesting an inprovement in the result of Lemma 3.
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