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1. [ ntroduction.

A graph G = (V,E) is an ordered pair consisting of a finite set V
of vertices and a set of unordered pairs (v,w) of distinct vertices,
called edges. Two vertices v,w are adjacent if (v,w)eE . Aset S

of vertices is independent (or int ernal | y stable) if (v,w) fE for all

v,2weS . Aset Sof verticesis aclique if (v,w)eEfor all v,we S .
The conplement of a graph' G = (V,E) is the graph ¢ = (V,E) where
E={(v,w)| v,weVv,v £w, and (v,w) £E}. Cearly Sc Vis an
i ndependent set of Gif and only if Sis a clique of G. (Note: sone
authors require that a clique be a nmaxi mal set of pairwise adjacent
vertices; we do not.)

A path fromvl to v

k

vertices Vs Vpr e sV such that, (v

of vertices S is connected if, for all v,wes, there is a path fromyv

inagraph G = (V,E) is a sequence of
i’vi+l) eE for 1<i<k . Aset
to wcontaining only vertices in S . The vertices of a graph ¢ can
be partitioned into maxi mal connected subsets, called the connected
conponents of G. If G =(V,E) is a graph and S is a set of vertices
the graph S) = (S,E(S)) , where E(S) = {(v,w) ¢E | v,weS} is called
t he subgraph of G induced by the vertex set S .

W consider the problem of finding a maxi num size independent set in
.a given graph G = (V,E) ; or, equivalently, finding a maxinumsize clique
“in a given graph. This problem has been studied extensively, but no
polynomal -tinme algorithm is known. In fact, the maxinum independent set
problemis NP-conplete [4,7], and thus is unlikely to have a polynomal-tine
algorithm  Qur goal is to provide an algorithm which, though not polynom al,
is significantly faster in the worst case than the obvious enuneration

algorithm or any other algorithm known to us.



Let n =|v|. The nunber of subsets of vis 2" By listing each
possi bl e subset of V and testing it for independence, one can find a
maxi mum clique in O(p(n)2™) tinme, where p(n) is some polynonial.
O her algorithnms have been proposed [2,9,10], but for none except the one
in [10] has a worst-case time bound better than o(zn) been proved.

W extend the algorithm of [10] to provide an 0(2n/5) -time al gorithm
The algorithmis recursive and depends upon a sonewhat conplicated case
analysis. Though the algorithmis tedious to state in detail, it would
be straightforward to program and we suspect that it would performwell
in practice. Nevertheless, its main interest seems to be theoretical;
its existence shows that at |east one NP-conplete problemcan be sol ved
in a tinme boundsignificantly better than that of the obvious enuneration
algorithm For a simlar algorithm to solve another NP-conplete problem
see [5].

It is also worth noting that the maxi num nunber of independent sets
maxi mal with respect to the subset relation in a graph of n vertices
IS 3n/5 . One could find a maxi mum si ze i ndependent set by enumerating
all maxi mal independent sets (using an al gorithm such as in [1, 3,6,8])
and choosing the largest. However, the algorithmto be proposed is
substantially better than even this method, in the worst case.

The al gorithm uses a recursive, or backtracking scheme. Its starting
.point is the following observation. Let vev . Let A(v) be the set
of vertices adjacent to v . Then any maxi mum i ndependent set either
contains v or it does not. Thus any maximum i ndependent set of Gis

either {v} conbined with a nmaxi numindependent set in G(V- {v} -A(v)),

or it is a maxinmum independent set in G(V-{v}) .



W extend this idea. For any S c V., let A(S) = UA(v) . If
ved

scv, then any maxi mumindependent set | in G consists of an independent
Set INS in S) and a maxi num i ndependent set [-Sin g(v-8 -A(l))
Qur algorithm selects a subset S c V-, finds each independent set J
in @S , and, for each such J , recursively finds a maxi num i ndependent
set in QV-SA(J))

W inprove this method further by introducing the concept of dom nance.
If scVand I,J are independent in S) , we say | dom nates J
if, for any J' < V-S such that Jug' is independent, there is a set
I'c V-S such that TUI' is independent and |TuzI'| > |[gJUJ'| . For
any such domnated J , we need not solve a subproblem since we get an
I ndependent set at |east as large by solving a subproblemfor |

Dom nance is inportant because in certain cases it can be confirned
quickly. W give two exanples which are used extensively in the algorithm
Let veV . Let s= {vlUA(v) . If wea(v), then {v} doninates
fw} inS, since Tc V-Sand tU {w} independent inplies U {v}
independent. Simlarly, {v} dominates ¢ in s .

Let ScV. Let | and J = I1U {v} be independent in GS)
Suppose (V-8) NA(v) = {w,w,} . In 8U{w,w,}, J doninates both

1 u{w}and I U {w,}. W distinguish three possibilities.

(i) (wl’wg) €eE or INA({w ,w,}) £¢ . Then J dominates | in S :
if T* < V-S and ' UT is independent, then |I'N{w,w,}| <1 .
Thus g' = I' - {w,w,} satisfies [J' uJ{ > |T'UI| and J' UJ

I's independent.



(i) (w,w) FE INA(Lwy,w]) - §rand[(V-8 -A(T)) nNa({w,w1)| < 1.
Then | domnates J in S (and I‘J{Wlfwe} domnates J in
s ”{Wl’wz}) : If J*< V-S and 3" uUJ is independent, then
It = (J' U{wl,w2
and I' UI is independent.

D -A(fwy,w,}) satisfies [11UI]| > |97 UJ]|

(111) (wpowy) ¢ B, INA(WwoY) = ¢ and [(V-8-A(9) NA(Lv,w ) | > 2 .
In this case we need further information to determ ne whether |

domi nates J or vice-versa

In summary, the algorithm selects a set sc V, determnes a set of

dom nating independent sets in S using the two observations above, and

recursively sol ves one subproblemfor each dom nating set.



2. The Al gorithm

A detailed specification of the al gorithm appears below. # ¢t
maxset(S) Wi || return an integer which is the size ol amaximum
i ndependent set in G(s) ; the graph ¢ = (V,E) is assuned to be a
global variable. The statement of the algorithm consists of a sequence
of cases and subcases. The first case which applies is used to define
the val ue of maxset(s) . Thus, inside a given case, the hypotheses of
all previous cases can be assumed to be false. It is easy to modify the
algorithmso that it returns a maxi mum i ndependent set as well as the

size of such a set.

Erocedure maxset, (V);

begin
0: Vis not connected.

Let VisVos ooV be the connected conponents of v .

k
Note that every maxi num i ndependent set consists of a union of

maxi mum i ndependent sets, one from each connected conponent.
k

Let maxset = 2 maxset(V,) .
i=1

V is connected. Let v be a vertex of mininmum degree.
1. d(v) =1.
Let A(v) = {w}.

Let maxset = 1+ maxset(V- {v,w}) .

2.1: d(w = 2 for all wev.
Note that the vertices of V forma cycle.

Let maxset = L|v|/2]



There exist v,w such that d(v) = 2 , d(wl) >3,and

(v,wl) €cE . Let Alv) = {wl,wz} .

2.2: (wl,wg) €E.

Let maxset = 1+ maxset (V- {v,wl,we}) ,

2.3 (wl,we) £E
Let maxset = max{ly¢ maxset(V- {v,w ,vw,1),
2+ma.xset(V-A(wl) _A(WE))} )
d(v) = 3.
Let A(v) = {wl,wg,w5} :
3.1: (Wl:’.we)’ (Wl,W5),(W2,W5) €E .
Let maxset = 1+ maxset(V - {V’Wl’we’WB}) ,
3.2 (wl,wg),(wl,w5) eE (or any symmetric case).
Let maxset = max{l+ maxset(V- {v,wl,wg,w3}) s
2+ maxset (V - A(w,) 'A(Wj))} ,
3.3: (Wl’W2> eE (or any symmretric case).

For i =1,2,3, let & = V- fw swyews} - AW,

Note that |& |, 1&,] < |vl-5 , |&s] < |v]|-6

3.3.1: |AlnA5\ < |I\2m'\.5\ = |v|-6 (or the symmetric case).

Note that A NAg = As . Thus {WQ,WB}
dom nat es {Wl,w5} )
Let maxset = max{1l+ maxset(V - {V’Wl’WQ’W5}) s

2 + maxset (1-&5) 1.



3.4

3.3.2: IAlnABI,IZ\gﬂZ\5I<_|v|-7
Let maxset = max{l+ maxset(V —{v,wl,w?,wﬁ}) s
2+ma.xset(j—xl ﬂAB) ,
2+ma.xset(A20A5)} )
(wisws) £E for d,5 ¢ {1,2,3} .
For i = 12,3, let Ai = V- {Wl’WQ’WB} -A(wi) )
Note that |A;| <|v|-6 for i = 1,2,3.
3.4.1: |lem§2rm.5|; |v|-7
Set {wy,wy,w3} dominates {wi,wj} for i,j e {1,2,3} .
Let maxset = max{l+ maxset(V - {v’wl’WQ’WBD s
3+maxset(]i.lﬂl-&20.3x5)} )
3.4.2; \Alﬂﬁen%l:wlﬁ or |v|-9
If, for some i,j, |Eiﬂ§j| < Iﬁlﬂfxgﬂ%\ﬂ ’
t hen {vi,wj} is dom nated by {Wl’we’wi} .
For distinct i, j , k,
|a; | = |AlﬂA20A5| + lAiﬂAj - (A N4, NAy) l
+ \innﬁk— (./110112 0115) | 5
|&;] < Iv|-6 , and Iﬁlﬂﬁeﬂ%l > |v|-9 .
Thus IAiﬂAj|>J_AlﬂA2ﬂA5l+2 for only one
possible pair i #j . Let 1,2 be the pair

(if any).



3.4h.3.

3.4.2.1: |Aiﬂ2\j| <IE NE NAg|+1for all i £ |

Let maxset- max{l+ _m.a.xset(v-{v,w],V{p,wj)}),

ormaxseb(A, NA,NA )]

L

N A,N A |+2  (or any symmetric

case).

Let maxset = max{l+ maxset(V - {v,wl,wg,wj}) ;

2+ ma,xset(ﬁl N AE) ,

3+ ma.xset(AlﬂAg ﬂA5)}
|Alm'x2mi§| <v|-10

3.4.3.1: |Ainﬁj| < |lem'\2m'x5|+l for all i f |

Sane as 3.h.2.1.
5.4.3.2:  |A,NA| >|A, nA, nA |+2 (or any symetric
case).

Same as 3.4.2.2.

3.4.3.3: |A10A2|,1A1013.5| > |& A nAgl+2  (or any

symetric case).

Let maxset = max{l+ maxset(V - {v,wl,w2,w5}) s

2+ maxset(ﬁlﬂf\g) ’
2+ maxset (A, ﬂAB) s

3+ maxset (Ay N4, ﬂA.ﬁ)} :

54050 |A10A2|,\Alnﬁ.5|,lﬁg ”A5IZ|A10‘12“A5|+2
For i = 1,2,3 , let uil,uige(A,mek)-A

(3,k £ 1) .



3.0.3.0.1: IZ\J. nE | = [ n&,nk|+2
and (uil,uig)r E for sone
distinct i, , k.
Then {Wl’wz’WB} domi nat es

{wj,w Sane as 3.k.3.3.

K} -

3.4.3.4.2: \AjﬂAkl = lAlﬂA20A5\+2
and (uy;,y,) £E for all

distinct i, j , k. Let

maxset = max{l+ maxset(V- {V’Wl’WE’WE]) ,
1++maxset(1-§lnlgm'x5- A(ull) - A(ulg)) ,

b+ ma.xset(f\lnﬁgﬂAB- A(ugl) -A(ugz)) s

L+ ma.xset(AlﬂAgﬂAB- A(HBl) _A(u52)) ,
5+maxset(ﬁlﬂl—\gﬂ§5)} )
3.4.5.4.5: |lenA2|, \AlnABI = |A NA,NA

(or any symmetric case).

Let
maxset = max{1l+ maxset(V - {v,wl,wg,w5}) s
h+maxset(.l_\lﬂ.§2 01-&5 'A(uBl) 'A(uBE)) s
b+ ma.xset(!ilﬂﬁ2 ﬂ.l% - A(ugj_) -A(ugg)) ’
2+ ma.xset(/l2 ﬂﬁ5) s

3+ ma.xset(l_kl N }-\2 N 55) 1

10



(or any symmetric case).

Let
maxset = max{l+ maxset (V - {v,wl,wg,w5}) s
b+ maxset (A N A, N - ACug) = Au0)) 5
2+ maxset (A NA;),
2+ maxset (Ay NAy),

3 + maxset (Z\l N ZXQ N A5)}

3.4.3.4.5: |Ainij\ > &) NAy NAg|+3
for i #]
) Let

maxset = max{l+maxset(V- {V’Wl’WE’WB}) s
2+maxset(]ilﬂf\2) ,
2+ maxset (&) NA;),
2+ma.xse’c.(f\.2 07\5) ,

3 + maxsetb (‘E‘l n :‘-\2 n Z\5) }

h: d(v) = L.

4.1: d(w = 4 for all vertices w.

4.1.1: There are vertices v, w such that (v,w) ¢E and

|a(v) nA(W) | > 2 .

4.1.1.1: |A(v) na(w)|> 3.
Then {v,w} dominates both {v} and {w}

in {v,w}.

11



Let

maxset {2 + maxset (V- {v,w} - A(v) -A(W)),

maxset (V- {v,w})} .

4.1.1.20 (A(V) nA(w)| =2 .

Let x,y eA(v) -A(W) , g,r € A(w) -A(v) .

Let A(z) = V- {z} -A(z) for zev .

h.1.1.2.1: (x,y),(q,r) ¢k . .
Then {v,w} domi nates both (v}

and {w} in {v,w} .

Let
maxset = max{2+ maxset(A(vV)NA(wW)),

maxset(V - {v,w})} .

4.1.1.2.2: (x,y) cE, (qyr) fE (or symetric
ease) .
Let
maxset = max {2+ maxset(A(v) NA(W)) |
3+ maxset (A(v) NA(w) NA(q) NA(r)) ,

maxset (V- {v,w})} .

L.1.1.2.3: (x,y),(a,r) fE |,
|A(v) NA(w) NA(a) NA(z)| > |v]-9
(or symetric case).

Let

12



maxset = max{3+maxset(A(v) NA(W) NA(x) NA(y)) ,
%+ maxset (A(v) NA(w) NA(q) NA(r))

maxset (V- {v,w})} .

h.1.1.2.4%: (x,y), (a,r) fE,
|&(v) NA(w) NA(q) NA(r)] ,
|A(v) NA(w) NA(x) NA(y)| < |v]-10 .
Let
maxset = mMax {2+ maxset(A(v) NA(w)) ,
3+ maxset (A(v) NA(w) NA(x) NA(y)) »
5+ maxset(A(v) NA(w) NA(g) NA(x)) ,

maxset (V- {v,w})} .

4.1.20 1f (v,w) fE, then |a(v) na(w)| < 1.

Let A(V) = {wl)wg)WB}wh} . For I = 112)51)'1' ’ |et

/li = V-A(v) -A(w,) . Then, for i £j ,

=1

iﬂAJ = ¢ * AI SO, |f (wi)wj)’(wi)wk) ek ’

*
t hen (Wj’wk) €k .

h.i.2.1: (wl,wi) ek for i =2,%,4 (or any symretric

case).

't follows from* above that the problem
graph is a conplete graph of five vertices.

Let maxset = 1 .

13



4.1.2.2: (Wl’w2>’(wl’w5)’ (wg,wﬁ) ¢E ,
(Wl’wh)’ (WQ’WJ;)’ (wi,),wh) /T (or any
symmctric casc) .
Let“ maxset - max{l+maxset(V- {v} -A(Vv)) ,
2+M(Almﬁh) ,
2+M(Z\g mp-\u) >

2+ mza,xset(ﬁ5 ﬂ}_\u) 1

h.1.2.3: (wl’WE)’(WB’Wh) cE ,
(Wl’WB)’ (Wl)Wh)) (W2;W5>: (WEJWM) ¢E (or
any symmetric case).
Let maxset = max{l+maxset(V- {v} -A(v)) ,
2+ maxset(}—\.l ﬂf\ﬁ) ,

2 + maxsch(A, N R)
2+w(AlﬁAh) ’

2+ ma.xset(ﬁ.2 N Ah) }

h.1.2.h: (wl,we) €E .
(wl’WB)’ (WQ;WE): (Wl’wbr)’ (Wgywl,r)a (W5’wh) fE

(or any symmetric case).

Let maxset = max{l+maxset(V- {v} -A(Vv)) ,

2+rr_1_a_._}_<_s_e_§(ﬁlﬂﬁ.5) ,
2+9_3X_SG£(AQHA5) s
2+r_n_a£§£(51 ﬂ}-\ﬂ) s
2+m;a3c_si‘b(‘52ﬂ/1u):
2+ maxset(A, NA)
3 +I_ng.3§__se_t(1&lﬂ§5ﬁﬁh),
5+M(Agmﬁanﬁh)}

14



Lh.o:

4.1.2.5: (wi,wj),éE fori#j.

Let maxset

d(w > 5 for some vertex w .

Let v,w be such that d(v)

max {1+ maxset (V - {v} - A(V)) ,

2+ maxset (A NA,)

2+g§_.}is_e_§(./_klﬂ}_\3),
2+M(I\10Au) ,

2+£ﬂ_8£§gc_(f\2 ﬂﬁj) s
o+ maxset (A, NA)) ,

2+ maxset(A; NA) ,
3+ maxset (A NA,NAL)
5+ maxset(A, NA, N,
5+ maxset (A, NA; NAy)
5+@ix_sit_(ﬁeﬂﬁiﬂﬁ_u) s

b+ maxset(l—xl OJKE ﬂ:’% DALL)} .

Lod(w) >5, (v,w) ¢E.

Let maxset = max{l+maxset(V- {w} -A(W),

maxset (V- {w}) .

Note that V- {w} contains a vertex of degree three and

all vertices are of degree three or greater.

d(w) =5 for all vertices w .

5.1: |v| = 6 .

Let maxset = 1 .

15



5.2: |v] > 6 .

Let maxset = max{l+ maxset(V=-{v} -A(V)),

maxset(V - {v}) .

Note that V- {v} contains a vertex of degree four, a vertex

of degree five, and all vertices are of degree four or greater.

6: Sone vertex w has d(w >6.

Let maxset = max{l+ maxset(V-{w}-A(w)) ,

maxset (V- {w})} .

end maxset.™

A

16



3. Resource Bounds.

Let T(n) be an upper bound on the worst-case running time of
maxset (V) when |v| = n . Let T,(n) be an upper bound on the worst-
case running time of maxset(v)*when |v| = n and case i occurs at
the outermost level of recursion. Let p(n) be a polynomal which
bounds the running tine of the outernost |evel of recursion, exclusive
of recursive calls. W have the followi ng inequalities. (Starred

inequalities are the worst cases.)

M=
[

k
To(n) < max .Z T(ni)l
i=1

n,=n, 1<n < nyp(n

1

H

7,(n) < T(n-2)+p(n).
T, 1(n) < p(n).

T?I ?(n) T(n-3) + P(n) .

IA

Ty 3(n) < T(n-3)+T(n-5)+p(n) -

v, 1(%) < T(a-h)+ p(n)
T5 _g(n) < T(n-4) + T(n-5) + p(n) .
T5.5.1<n) < T(n—h’) * T(n_6) P(n) .

T, 5 p(n) < T(n-k) + 20(n=7) + p(n) . *

T5.h.l(n) < T(n-4) + T(n-7) + p(n) .
T5.h.2.l(n) < T(n-k) + T(n-8) + p(n) .

T5 4.p.0(0) < T(n-b)+T(n-6) + T(n-8) + p(n) .

17



5.3,

T5.h.5.

3.4.3.

Ty.1.1.

Ty.1.1.0.

Iy1.1.0.

Ty 1.1,

Ty.1.1.0.

Ty.1.2.
Ty.1.2.
Ty.1.2.
Ty1.0.

Ty.1.0.

I3 (n) < T(n-4)+7(n-8) +3T(n-11)

k.5 (n)”

L)

<

T(n-4) + T(n-10) + p(n) .

< T(n-4) + T(n-8) +T(n-10) -1-p(n) .

s 4554 (0)

<

IA

< T(n-b) +27(n-8) +T7(n-10) +p(n) @

s .5.4.1(N < T(a-b) +2T(n-8) + T(n-10) + p(n) U

5 0.3 o) < T(n-b) + 4T (n-10) e

*

< T(n-k) +20(n-9) +2T(n-12) .

< T(n-4) +3T(n-10) + T(n-13) .

T(n-2) + T(n-6) +p(n) .*

< T(n-2) + T(n-8) +p(n) .

T(n-2) +2T(n-8) +p(n) .

< T(n-2) +2T(n-8) +p(n) .

< T(n-2) +T(n-8) +2T(n-10) +p(n) .

p(n) .

T(n-5) +3T(n-9) +p(n) .

T(n-5) +k1(a-9) +p(n) -

T(n-5) +4T(n-10) + T(n-11) +2T(n-13) +p(n) .

T(n-5) + 6T(n-11) +4T(n-1%) + T(n-17) +p(n) .

18



Tu.g(n) < TB(n—l) + T(n-6) + p(n)

max{T(n-5) + T(n-6) , T(n-5) + 2I(n-8) , T(n-5) +T(n-7) +T(n-9) ,

IN

T(n-5) + 2T(n-9) + T(n-11) , T(n-5) + 4T(n-11) ,
T(n-5) + T(n-9) + 3T(n-12) , T(n-5) + 2T(n-10) + 2T(n-13) }

+ T(n-6) + p(n) .

p(n) .

3
\J1
H/\

[»]

~

A

Ts.o(n) < 1), . ,(n-1) +T(n-6) + p(n)
< max{T(n-6) + T(n-7) , T(n-6) + 2T(n-9) , T(n-6) + T(n-8) + T(n-10) ,
T(n-6) + 2T(n-10)+T(n-12) , T(n-6) + kr(n-12),
T(n-6) +T(n-10)+ 3T(n-13) , T(n-6) + 2T(n-11) + 2T (n-14)}

+ T(n-6) + p(n)
T6( n) < T(n-1)+T(n-7)+p(n) .

T(n) < max T, () .

From each of the recursive bounds
k
T,(n) < i§1 aiT(n-bi)+p(n)

we get a polynom al equation

b k .
Xk _ E ai k i
i=1

If y is the maxi num of the positive solutions to all these equations,
cy™ € is a bound on the runni ng time of the algorithm It happens that
the value of y is slightly less than 5/2 . By neans of a tedious

calculation using Table 1, one can prove by induction that T(n) < 2™/
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without solving lots of polynomials. The constant ¢ depends upon

p(n) . The worst cases of the recursion are 4.1.1.2.4h and 4.1.2.5.
The storage required by the algorithmis certainly polynom al

since the depth of recursion is only o(n) . Wth careful programming

the storage required can be nmade linear in the size of the graph

n 2"/
1 1.2599%
2 1.5876%
- 3 2. 0000
4 2.5198%
5 5. 17kt
6 4, 0000
7 5.0397*
8 6.3496"
9 8. 0000
10 10.079*
11 12.699F
12 16. 000
13 20.158%
14 25.3%08%
15 32.000
16 40.317%
Table 1. Fractional Exponentials for |nductive Proof

of Tine Bound.
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4. Concl usions

W have presented a recursive al gorithmwhich finds a maxi num
i ndependent set in a graph of n vertices in 0(2n/5) time. The
algorithmis an extension and inprovement of one described in [10].
Though the case analysis used is Iengthy, the algorithmcould be
programred easily, and we believe the algorithmwould perform well
in practice.

Nevertheless, the main interest of the result is theoretical; it
shows that even for NP-conplete problens it is sometines possible to
devel op al gorithns which are substantially better in the worst case
than the obvious enuneration algorithms. \Wether the algorithm presented
here can be inproved substantially, and whether simlar algorithns can be

devel oped for other NP-conplete problens, are open questions
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