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1. Introduction.

A graph G = (V,E) is an ordered pair consisting of a finite set V

of vertices and a set of unordered pairs (v,w) of distinct vertices,

called edges. Two vertices v,w are adjacent if (v,w) EE . A set S
. .

of vertices is independent (or internally stable) if (v,w) {E for all

V,WFS . A set S of vertices is a clique if (v,w) c_E for all v,wc S .

The complement of a graph' G = (V,E) is the graph c = (V,%) where

E = ((v,w) \ V,WEV, v f w , and (v,w) ,&El . Clearly S 5 V is an

independent set of G if and only if S is a clique of ?! . (N to e: some

authors require that a clique be a maximal set of pairwise adjacent

vertices; we do not.)
--,

A path from vl to vk in a graph G = (V,E) is a sequence of

vertices vl,v2,.. .,vk such that. ( v~,v~+~ ) EE for l<i<k. Aset-

of vertices S is connected if, for all v,w FS , there is a path from v

to w containing only vertices in S . The vertices of a graph G can

be partitioned into maximal connected subsets, called the connected

components of G . If G = (V,E) is a graph and S is a set of vertices

the graph G(S) = (&E(S)) , where E(S) = {(v,w) EE ) v,w~Sj is called

the subgraph of G induced by the vertex set S .e

We consider the problem of finding a maximum-size independent set in

.a given graph G = (V,E) ; or, equivalently, finding a maximum-size clique

: in a given graph. This problem has been studied extensively, but no

polynomial-time algorithm is known. In fact, the maximum independent set

problem is NP-complete [4,7], and thus is unlikely to have a polynomial-time

algorithm. Our goal is to provide an algorithm, which, though not polynomial,

is significantly faster in the worst case than the obvious enumeration

algorithm or any other algorithm known to us.
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Let n = \V\ . The number of subsets of V is 2n . By listing each

possible subset of V and testing it for independence, one can find a

maximum clique in O(p(n)2n) time, where p(n) is some polynomial.

Other algorithms have been proposed [2,9,lO], but for none except the one

in [lo] has a worst-case time bound better than 0(2n) been proved.

We extend the algorithm of [lo] to provide an 0(2"13) -toime algorithm.

The algorithm is recursive and depends upon a somewhat complicated case

analysis. Though the algorithm is tedious to state in detail, it would

be straightforward to program, and we suspect that it would perform well

in practice. Nevertheless, its main interest seems to be theoretical;

its existence shows that at least one NP-complete problem can be solved

in a time boundsignificantly better than that of the obvious enumeration

algorithm. For a similar algorithm to solve another NP-complete problem,

see [51=

It is also worth noting that the maximum number of independent sets

maximal with respect to the subset relation in a graph of n vertices

is 343 . One could find a maximum-size independent set by enumerating

all maximal independent sets (using an algorithm such as in [l, 3,6,8])

and choosing the largest. However, the algorithm to be proposed is

substantially better than even this method, in the worst case.

The algorithm uses a recursive, or backtracking scheme. Its starting

Ipoint is the following observation. Let veV . Let A(v) be the set

of vertices adjacent to v . Then any maximum independent set either

contains v or it does not. Thus any maximum independent set of G is

either {v) combined with a maximum independent set in G(V- {v) -A(v)) >

or it is a maximum independent set in G(V-Cvl>  l
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We extend this idea. For any S c V , let A(S) = U A(v) . If-
vcs

s c v , then any maximum independent set I in G consists of an independent-

Set Ins in G(S) and a maximum independent set I-S in G(V-S -A(I)) .

Our algorithm selects a subset S c V-, finds each independent set J

in G(S) , and, for each such J , recursively finds a maximum independent

set in G(V-S-A(J)) .

We improve this method further by introducing the concept of dominance.

If S C V and 1,J are independent in G(S) , we say I dominates J

if, for any J' c V-S such that JUJ' is independent, there is a set7

I' C V-S such that IUI' is independent and- \IUI~\ > IJUJ~\ . For-

any such dominated J , we need not solve a subproblem, since we get an

independent set at least as large by solving a subproblem for I .

Dominance is important because in certain cases it can be confirmed

quickly. We give two examples which are used extensively in the algorithm.

Let veV . Let S = {v)UA(v) . If weA , then {v) dominates

c IW in S , since 15 V-S and IU {w] independent implies IU {v}

independent. Similarly, {v] dominates @ in S .

Let S C V .- Let I and J = IU {v] be independent in G(S) .

Suppose (V-S)nA(v) = fwl,w2] . In SlJ(wl,w2] , J dominates both

I U (w,) and I U (w,] . We distinguish three possibilities.

c )i (w,,w,) EE or InA({w,,wQ)) f 6 . Then J dominates I in S :

151.

I L I L

if I' C V-S and I' UI is independent, then- 11' n CW,,W~I

Thus J' = 1' - {wl,w2] satisfies iJT UJ/ > II'UII and J-

is independent.
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( i i ) (wl,w2)  {E , 1nA({wlJw2))  = @ y and \(V-S -A(J))  nA(bl~W21)I  5 1 l

Then I dominates J in S (and IU(wl,w2) dominates J in

s u (w,,w,l) : If J' 5 V-S and J1 UJ is independent, then

I' = (J' U[wl,w2)) -A({wl,w2))  satisfies \I'UI\ 2 IJT UJ\
-.

and 1' UI is independent.

(iii) (y,w2) i E , InA((wp,l) = @ , and )(v-S-A(J))~A((w~,w~])(  ~2 .

In this case we need further information to determine whether I

dominates J or vice-versa.

In summary, the algorithm selects a set S c V , determines a set of

dominating independent sets in S using the two observations above, and
--.

recursively solves one subproblem for each dominating set.



2. The Algorithm.

A detailed specification of the algorithm :tppears  b(!low. A C!a.l.l

max:;et(S)  will return an integer which is" the size (~1' 11. maximum

independent set in G(S) ; the graph G = (V,E) is assumed to be a

global variable. The statement of the algorithm consists of a sequence

of cases and subcases. The first case which applies is used to define

the value of maxset . Thus, inside a given case, the hypotheses of

all previous cases can be assumed to be false. It is easy to modify the

algorithm so that it returns a maximum independent set as well as the

size of such a set.

-maxset (V);--.
*

0 : V is not connected.

Let Vl,v2,...,Vk be the connected components of V .
I

Note that every maximum independent set consists of a unionof

maximum independent sets, one from each connected component.

k
Let maxset = C maxset .

i=l

V is connected. Let v be a vertex of minimum degree.

1: d(v) = 1 .

Let A(v) = {w] .

Let maxset = l+maxset(V-  [v,w]) .

2: d(v) = 2 l

2.1: d(w) = 2 for all weV l

Note that the vertices of V form a cycle.

Let maxset = LIV\Pi  l



There exist v,w such that d(v) = 2 , d(wl) 2 3 , and

bYw,) EE l
Let A(v) = {wlyw2) .

2.2: (wl,w2) EE l

Let maxset = l+maxset(V-(v,wlyw2])  .

2.3: (yQ / E l

Let maxset = max{l$-maxset(V- (v,wl,w2~)  ,

2+maxset(V-A(wl) -A(w2))) .

3: d(v) = 3 .

Let A(v) = (wl,w2,w3] .

3.1: (y.p,>Y (WlY 3w )YCw2Yw3)  EE l

Let maxset = l+maxset(V-(v,wl,w2,w3))  .

3.2: (wl,w2),(w1,w3) EE (or any symmetric case).

Let maxset = m={l+maxset(V- (v,wl,w2,w3]),

2+maxset(V-A(w2)  -A(w,))) .
J

3.3: (wl,w2) EE (or any symmetric case).

For i = l&3 , let xi = V- (wl,~2,w3~ -A(wi) .

Note that I~llYI~21 _< (q-5 Y lX,l ,< \v(-6 l

3.3-i:  IAlnA3(  5 12i2nii3\ = IIT\-6 (or the symmetric case).

Note that 2i,fIi
3

= A3 . Thus {w2,w3)

dominates CWlYW33  l

Let maxset = max{l+maxset(V- (v,w,,w,,w,3),

2+maxset(li3)3 .



3.3.2: J~lnX3~,12i2nX3(  < pi-7 .-

Let maxset = max(l+maxset(V-  (v,w~,w~,w,~),

2+maxset($  nli3) ,

-. 2+maxset(li2nA3)]  .

3.4: (wi,wj) fE for i,j c (l,2,3] .

For i = 1,2,3  , let xi = V- {wl,w2,w3] -A(wi) .

Note that )2ii( ,< Iv\-6 for i = 1,2,3  .

3.4.1: (Alni2nii3\  2 1~1-7 .

Set Ewl,w2,~3)  dominates {wiywj] for i,j E {1,2,3] .

Let maxset = max{l+maxset(V-(v,w1,w2,w3)),

3+maxset(illnii2nii3))  .

3.4.2: \ilnii2nii3/ = 1711-8 or 1111-9 .

If, for some i,j , \2i,nZijJ 5 \XlnX2nX3\+1  ,

then {vi,wj) is dominated by {w~,w~~w~) .

For distinct i, j , k ,

\$I = )2i,nA2nii31  + IA,nX;,  - (ii&i2 nZi3)  \

+ IX. nXk- (ApA ni,) \ ,1

IAil 5 IvIm I and j$n6,nx31 > Iv\-9 .-

Thus liinAjl > IX,nX2nA3)+2  for only one-

possible pair i f j . Let 1,2 be the pair

(if any).
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3.4.2.1: (AinAjl 5 jiiln712nA31+i  for all i + j .

IJet maxset  z max(l+ mnxset(V  - {v,w~,,w~,,w/~)  ,
I -.J

:j t- m.lxuct(  ii, f\ ii,, n /‘,;) ] .-.__I_ ,

3.4.2.2: Iri,n$l 2 In, n X2 n X3(+2 (or any symmetric

case).

Let maxset = max[l+maxset(V- [v,w1,w2,w3]),

2+maxset(iilnA2) ,

3+maxset(iiln~2nii3)) .

3.403: IJllnZi,nii3~  Iv\-10 .5

--. 3.4.3.1:  lii,"lijJ  5 (ZlnA2nii++i for all i f j .

Same as 3.4.2.1.

5.4.3.2: li,nA,( > \li,1G,ni,l+2  (or any symmetric--L L

case).

Same as 3

3.4.3-3:  It$nX,I,

symmetric

-L L /

4.2.2.

case).

(or any

Let maxset = ma+x{l+maxset(V-  ~v,wl,w2,w3]),

2+maxset(lilf7A2),

2+ma+xset(iiln;i3),

3+maxset(2ilfG2  f-+)) .

3.4.3.4: I;i,nX2(,(2ilni3(,IX2  nX31 1 IlilnZ2nA31+2  .

For i = 1,2,3 , let uil,ui2  E (Aj  nl$) -Xi

f&k f i> l
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3.4.3.4.1: IAj ni.J = JAlni2nii3(+2

and (uil,~i2)  c E for some

distinct i, j , k .

. .
Then {w1,w2,w3~ dominates

cw.,w )

Jk
l Same as 3.4.3.3.

3.4.3.4.2: liij nX.J = \ilnX2nX3)+2

and (u u ) y!E for all
il, i2

distinct i, j , k . Let

maxset = max(l+maxset(V-  ~v,wl,w2,w3)) ,

--. 4+maxset(Xl  nA2 f-G3 - A(ull) - A(u~~)) ,

4+m==t(lil  6, n$ - A(u~~) -A(u~~)),

4+ maxset(iil  nA2 f-G3 - A(uTl) -A(u~~)) ,

3+maxset(AlfG2nA3)) .

3.4.3.4.3: (AlnA2J, lTilnA3J = JAlnA2nA3\+2

(or any symmetric case).

Let

maxset = max{l+maxset(V-(v,wl,w2,w3)),

4+m=set($n~2f7A3  -A(u~~) -A(ug2)),

b+ma~set(@A:! Rx3 - A(u~~) -A(ue2)),

2+maxset(fi:,nA3),

3+maxset(iiln~2nX3)) .
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3.4.3.4.4: \X,n2[,,( = \ii,fG2n$l+~1.
(or any symmetric case).

Let

maxset = max{l+maxset(V-(v,wl,w2,w3]),
. .

~+maxset(~lfl~2n1\3-A(~31)-A(~32)),

2+maxset($ nA3) ,

2+maxset(K2 i-7X3) ,

3+mxset(2ilnA2nL3)) l

3.4.3.4.5: lZiniij\  1 IAlnX2nX31+3

for i f j .

Let

maxset = maX(l+ma.Xset(V- (vywlyw2,w33) y

2+maxset(XlnX2),

2+,maxset$ nii,) ,

2+maxset(f12  i-G+ ,

3+maxset(ZilnA:2nA3)}  .

4: d(v) = 4 .

4.1: d(w) = 4 for all vertices w .

4.1.1: There are vertices v, w such that (v,w) /E and

IA(v) > 2 .-

4.1.1.1: IA(v) nA(w)l 13 .

Then (v,w] dominates both [v] and {w)

in (v,w) l
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--

Let

maxSet{2+maxset(V-  {v,w)-A(v) -A(w)),

maxset(V- {v,w])] .

4.1.1.2: (A(v) nA(w)( = 2 .

Let x,y EA(v) -A(w) , q,r C-A

Let A(z) = V- (z] -A(z) for

(4 -A

zc-v .

4a1.1.2.1:  (x,y),(q,r)  tE .

( >v .

I

Then (v,w] dominates both (v}

and {w) in {v,w} .

Let

maxset = max(2+maxset($v)  G(w)) ,

maxset(V- {v,w))} .

4.1.1.2.2: (x,y) cE , (q,r) {E (or symmetric

ease) .

Let

maxset = max{2+maxset(X(v) ni(w)) ,

3+m=seNW  f-G(w)  f-G(q) G(r)),

maxset(V-  {v,w})}  .

401.1.2.3:  (x,y),(q,r) /E ,

lii(v)rG(w) nX(4)nTi(r)j  2 Iv\-9

(or symmetric case).

Let
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maxset = max

maxset = max[3+maxset(A(v) nli(w> G(x) nA(y)) ,

3+ma=et(A(v) G(w) M(q) r\A(r)) ,

maxset(V- {v,w])) .

. .

4.1.1.2.4: (x~Y), (w-) /E y

Iii(v) i-G(w) ni(q) nA(r)I J

Java G(x) rG(y)\  c ivl40 .-

Let

{2+maxset(A(v)  nli(w)) ,

3+maxset(li(v) f-G(w) ni(x) r-G(y)) ,

3+maxset(A(v) M(w) f-G(q) M(r)) ,

maxset(V- {v,wJ)} .

4.1.2: If (v,w) {E , then IA(V) nA(w)) 5 1 .

Let A(v) = {w -J-Y~~>~~Y~)+I  l
For i = 1,2,3,4 , let

ii = V-A(v) -A(wi) . Then, for i f: j ,

AinAj = fl . Also, if (w~,w~),(~~,w~) EE ,

then (wj,wk) EE .
*

4.1.2.1: (wl,wi) EE for i = 2,3,4 (or any symmetric

case).

I t  f o l l o w s  f r o m  * above that the problem

graph is a complete graph of five vertices.

Let maxset = 1 .
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4.1.2.3: (~1,~2),(~3,~4) EE >

( wlYw3)Y(wlYw4)Y(w~Yw3

any symmetric case).

4-l-2-2: (w~Yw~)Y(w~Yw~),(w~Yw~)  FE Y

b1'W),)7 (WyJq,)' (W:;,Wj,) / E (or any

s,y7rurit:Lrj  c ca.:;c!)  .

Let“ maxset z- rnax(I-trn;lx::et(V- [v) -A(v)) ,

2+maxset(jilnZ4)  ,

2+maxset(A2 nli4) ,

2+ maxset(.ii3 nA4) ] .

> (9 w2>w4.I i E (or

Let maxset = max{l+maxset(V- {v] -A(v)) ,

2+ maxset(jil n7(+ ,

2 + rnnx::ct(ji:,  n X5) ,

%+maxset(lilf7R4)  ,

2+mxset(A2fG4)]  .

4.1.2.4: (wl,w2) EE , w

( Wl'W3)Y (w2>w3)>  (wl>w4)Y (w2Yw4)Y (w39w4) kE

(or any symmetric case).

Let maxset = max{l+maxset(V- {v] -A(V)) ,

;I+maxset(.QAj)  ,

2+maxset(li2nA3),

2+maxset(Al nA4),

2+maxset(A2 nAq) ,

2+ maxset(A, nA4) ,/
3 +maxset(AlnA3  nE4) ,

3+mmwt(ii2fG3nA4)]  .
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4.1.2.5: (Wi,wj) /E for i # j l

Let maxset = max[l+maxset(V- {VI-A(V)),

c.
P+maxset(liln$) ,

2+maxset(Al nA$ ,

2+maxset(ilM4) ,

2+maxset(li2 nA3) ,

2+maxset(li;? n2i4) ,

2+maxset(A3 niT4) )

3+mxset(AlnA2nA3),

3+ maxset(li1 nX2 nX4) ,

3+11mxset(i~nii~~i~),

3+maxset(A2ni3nA4)j

4+ max3et(lil f-2, nii3 fG4)) .

4.2: _d(w) > 5' for some vertex w .

Let v,w be such that d(v) = 4 , d(w) 2 5 , (v,w) cE.

Let maxset = max{l+maxset(V- (w] -A(w)),

maxset(V- {w]) .

Note that V- (w] contains a vertex of degree three and

all vertices are of degree three or greater.

5: d(w) = 5 for all vertices w .

5.1: 1171 = 6 .

Let maxset = 1 .
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5.2: \Vl > 6 .

Let maxset = max~l+rnaxset(V-(v]  -A(v)),

maxset(V- {v]) .
. .

Note that V- (v] contains a vertex of degree four, a vertex

of degree five, and all vertices are of degree four or {yeater.

6: Some vertex w has d(w) 2 6 .

Let maxset = max{l+maxset(V-(WI-A(W))  ,

maxset(V- {w))) .

end maxset.='-
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3. Resource Bounds.

Let T(n) be an upper bound on the worst-case running time of

maxset when (VI = n . Let Ti(n) be an upper bound on the worst-

case running time of maxset (V) *when 1~1 == n and case i occurs at

the outermost level of recursion. Let p(n) be a polynomial which

bounds the running time of the outermost level of recursion, exclusive

of recursive calls. We have the following inequalities. (Starred

inequalities are the worst cases.)

TO(n) 5 max

{

g T(ni) 1 $ ni = n , l_< ni 5 n +p(n) .
i=l i=l

>--.
T+-d _< T(n-2)+p(n)  l

T2.1 (n> _< p(n) l

T, An>L- . c- 5 T(n-5) +p(n) .

T2.3 (n) 5 T(n-3)+T(n+)+p(n) .*

T3.1(n) _< T(n=4)+p(n) .

T3 .2cn) 5 T(n-4)+T(n+)+p(n) .

T3e3.1(n) 5 Tb-4) + T(n-6)  + p(n)  l

T3.3.2(n) 5 T(n-4)+ 2T(n-7)+p(n)  . *

T;3.4.1(n) 5 T(n-4)+T(n-7)+p(n)  .

T3.4.e.l(“) 5 T(n-4)+ T(n-8)+p(n) .

T3.4.2.2 (4 < T- (n-4)+T(n-6)+T (n-8)+p(n) .*
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T3.4.3.1
(n) 5 T(n-4)+T(n-lO)+p(n) .

T-3.4.3.2
(n) 5 T(n-l+)+T(n-8) +T(n-10) -I-p(n) .

T3.4.3.3
(n) 5 T(n-4)+2T(n-8)+T(n-lO)+p(n) l '

T3.4.3.4.1  -
(n) < T(n-4)+2T(n-8)+T(n-lO)+p(n)  .*

T3 h.3 .b.2’n)
2 T(n-4)+4T(n-10) .*

T3.4.3.4.3
(n) 5 T(n-4)+T(n-8)+3T(n-11) .*

T3.4.3.4.4(n)
5 T(n-4)-+2T(n-9)+2T(n-12)  .*

T3.4.3.4.5
(n)='z T(n-4)+3T(n-lO)+T(n-13)  .

T4.l.l.l(n) -< T(n-2)+T(n-6)+p(n)  .*

T4.1.1.2.1(n) -
< T(n-2)+T(n-8)+p(n) .

T4.1.L2.2(n) -
< T(n-2) +2T(n-8)+p(n) .*

T4.1.1.2.3(n) -
< T(n-2)+2T(n=8)+p(n) .

- T4.1.1.2.4(n)
5 T(n-2)+T(n-8)+2T(n=lO)+p(n)  .*

T4.1.2.1Cn) 5 P(n) l

T4.1.2.2(n) 5 T(n-5) +33(-Y) +p(n) .

T4.1.2.3(n) -
< T(n-5) +4T(n-9) +p(n) .*

T4.1.2.4(n) -
< T(n-5) +4T(n-lO)+T(n-11)+2T(n-13)+p(n)  .

T4.1.2.5(n) -
< T(n-5)+6T(n=ll) +4T(n-14)+T(n-lT)+p(n) .*
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T4.2(n) 5 T3(n-l)+T(n-6)+p(n)

< max{T(n->)+T(n-6),T(n-5)+2T(n-8)  ) T(n-5) +T(n-7) +T(n-9) J-

T(n-5)+ 2T(n-y)+T(n-11)  ) T(n-5)+4T(n-11)  J

T(n-5)+T(n-9)+3T(n-l2),T(n-5)+2T(n-lO)+2T(n-l3))

+ T(n-6)+p(n)  .

T5.1(4 _< p(n) l

T5.2 b-4 5 T4 . 2b-1>  +T(n-6)+p(n)

5 max{T(n-6)+T(n-7),T(n-6)+2T(n-y),T(n-6)+T(n-8)+T(n-l0),

T(n-6) + 2T(n-lO)+T(n-12), T(n-6) + 4T(n-12),

--. T(n-6) +T(n-lO)+ 3T(n-13),T(n-6)+  2T(nLL)+ 2T(n-lb)]

+ T(n-6)+p(nj

T6 (n) 5 T(n-l)+T(n-7)+p(n)  .

T(n) 5 max Ti(n) .
i

From each of the recursive bounds

Ti(n) ,< 8 aiT(n-bi)+P(n)
i=l

we get a polynomial equation

. Xbk

If y is the maximum of the positive solutions to all these equations,

n+e
CY is a bound on the running time of the algorithm. It happens that

the value of y is slightly less than 3[2 . By means of a tedious

calculation using Table 1, one can prove by induction that T(n) < c2n/3

19



without solving lots of polynomials. The constant c depends upon

PC4 l
The worst cases of the recursion are 4.1.1.2.4  and 4.1.2.5.

The storage required by the algorithm is certainly polynomial,

since the depth of recursion is only o(n) . With careful programming,

the storage required can be made linear in the size of the graph.

n

1

2

--. 3
4

5
6

7
8

9
10

11

12

13
14

15
16

g-d3

1*2599+
1.5876+
2.0000

2.5198+

3*1747+
4.0000

5.0397+
6.34y6+
8.0000
10.079+
12.699+

16. ooo

20.158+

25.398+
32.000

40.317+

Table 1. Fractional Exponentials for Inductive Proof

of Time Bound.
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4. Conclusions

We have presented a recursive algorithm which finds a maximum

independent set in a graph of n vertices in 0(2n/3) time. The

algorithm is an extension and improvement of one described in [lo].

Though the case analysis used is lengthy, the algorithm could be

programmed easily, and we believe the algorithm would perform well

in practice.

Nevertheless, the main interest of the result is theoretical; it

shows that even for NP-complete problems it is sometimes possible to

develop algorithms which are substantially better in the worst case

than the obv%us enumeration algorithms. Whether the algorithm presented

here can be improved substantially, and whether similar algorithms can be

developed for other NP-complete problems, are open questions.
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