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Abstract. Let Fl,F2, . . ., Fm be a set of Boolean functions of' the form

Fi = A (xcXi) , where /\ denotes conjunction and each Xi is a subset

of a set X of n Boolean variables. We study the size of monotone

Boolean networks for computing such sets of functions. We exhibit

anomalous sets of conjunctions whose smallest monotone networks contain

disjunctions. We show that if FiI I is sufficiently small for all i ,

such anomalies cannot happen. We exhibit sets of m conjunctions in n

unI.~~owns  which require c2ma(m,n) binary conjunctions, where a(m,n)

is a very slowly growing function related to a functional inverse of

Ackermann's function. This class of examples shows that an algorithm

given in [12] for computing functions defined on path:: in trees is O]J~tjirnm

to within a constant factor.
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Let X -- Ix,,...,",) be a set of' Boolean variables. A Boolean

network is a sequence of triples (On+l,an+l,bn+l), . . ., (0n+kTan+kJbn+k >

where each 0i is a binary Boolean operation and each ai,bi is an

integer less than i . We associate with each integer i , l< i < n+k ,_ _

a Boolean function f(i) given by f(i) = xi if 15 i 5 n ,

f(i) = f(ai)Qif(bi) if n+l 5 i 5 n+k . If Fl,F2,...,Fm are

Boolean functions of xl,x2,...,xn , the network computes Fl,F2,...,Fm

if there is a function $?: (1,2,...,m) + (1,2,...,n+kg  such that Fi = f($(i)) ,

where = denotes logical equivalence. The network is monotone if eie (A,Vl

for all i , where A denotes conjunction and V denotes disjunction.

In this$aper we study the size of monotone networks for computing

certain Boolean functions. Our interest in this problem stems from three

sources. (1) Techniques for analyzing monotone network complexity may

be useful in analyzing non-monotone network complexity, about which

little is known. (2) Our lower bound results apply not only to

monotone networks, but to algorithms for other kinds of computation.

(3) Our main lower bound result implies that an almost-linear algorithm

for computing functions defined on paths in trees [12] is optimum to

within a constant factor.

We restrict our attention to Boolean functions Fi of the form

. Fi = A {x eXi) , where Xi 5 X . That is, Fl,F2,...,Fm is a set of

conjunctions of various subsets of variables. In Section 2 we review

previous results on such sets of functions. In Section 3 we prove a basic

result which gives conditions under which we can afford to ignore

disjunctions. In Section 4 we exhibit an anomalous set of conjunctions

whose minimum-size monotone network contains a disjunction. We also use
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the results of Section 3 to derive sufficient conditions for the

non-existence of such anomalies. In Section 5 we prove tl non-linc;;tr

lower bound for sets of con,junctions which correspond. to path:; .I.rt trc:c:::,

thus proving the optimality, to within a constant factor, of the main

algorithm in [12].

-=.
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2. Previous Results.

Several researchers, including Lamagna, Savage [5,10], and

Nechiporuk [7], have studied the complexity of monotone networks for

computing conjunctions. We summarize their main results here. See l&8,91

for lower bounds on the size of monotone networks for computing other types

of functions. The following two theorems are special cases of much more

general results proved by Savage [lo].

Theorem A. For 1 < i <m, let Xi c X . Then- - Let Fi = A {;reXi} .

Fl' F2, . . .) Fm can be computed by a monotone network using 2mrn/log ml *-I

binary conjunctions and no additional operations.
-=.

The idea used in the proof of Theorem A is the same as used in the

four Russians' algorithm for matrix multiplication [2]. For details, see [lo].

TheoremB. -f**'For m and n polynomially related and sufficiently large,

almOst all sets of m conjunctions in n unknowns require cmn/log m -I
*-x--x-

operations when computed by any Boolean network.

This theorem can be proved by a straightforward counting argument. See

[lo] for details and Moon and Moser [6] for a related result.

Theorem B shows that the bound in Theorem A is tight for almost all sets

- of m conjunctions in n unknowns, if m and n are polynomially related.

However, it seems very hard to explicitly exhibit sets of conjunctions which

require as many operations as indicated by Theorem B.

f* All logarithms in this paper are base two; r xl denotes the cmall~::t,
integer not less than x .

/** We say m and n are golynomially  related if there is some pol/flomiti
p such that m 5 p(n) and n < p(m) .

/
***

Throughout this paper, c denotes a suitable positive constant.
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Nechiporuk [7] and Lamagna and Savage [5] have exhibited sets of n

conjunctions in n unknowns which require c n3j2 binary conjunctions

for their monotone computation. Their constructions use the same ideas,

which we shall review in Section 5c To the author's knowledge, no harder

sets of conjunctions have been explicitly exhibited.



3* Properties of Minimum-Length Monotone Networks.

In order to bound the number of binary conjunctions required by monotone

networks for computing specific sets of conjunctions, we need a result which

allows us to ignore the effect of disjunction::. 1n this  :;ect;icJfl  WC ::how  i11ad;

disjunctions can be ignored, provided we allow certain subconjunctions of.

previously computed conjunctions to be computed for free. We accomplish this

by showing how to transform a monotone network for computing functions

Fi = A {X EX~] into a straight-line computation of the sets Xi from the

singleton sets Cx,] , using the operations of set union and arbitrary subset.

Let (0
r+tp&bn+l > Y l l �☺ (0

n+k�  an+ky  bn+k) b

e a monotone network

for computing A [x 6X1), . . .
,A b-⌧,}  l

Let f(l),f(2),...,f(n+k)

be the associated  Boolean functions and let $: {1,2,...,m] --) {1,2,...,n+k]

be such that f@(i)) = A

v A {x eYj(i)] - f(i) be
j

{x E Xi) . For 1 < i < n+k , let- -

a disjunctive normal form for f(i) . This

form is unique up to adding conjunctions A {X EYj, (i)] such that

Yj(i) 5 Yj,(i) for some j .

Let Z(i) = n Yj(i) l Z(i) is independent of the disjunctive
j

normal form chosen to represent f(i) . Z(i) = (xi] for 15 i 5 n

and Z@(j)) = Xj for 1 < j 5 m . If C$ = v ,

z(aij nz(bi) = (3 Yj(ai)) n(; Yj,(bi)) = Z(i) , since

(
v  A  {xEYj(ai)] v is a disjunctive normal form
j 1 (

’ ’ txEYjtCbi)l

* fJ >

for f(i) . If Qi = /\ , Z(ai) UZ(bi) = (3 'j(.i))  ' (51 Sj,Cbi))  =

n n
J jt ( 'j Cai>  "j 9 Cbi) >

= Z(i) , since V V A {xEYj(ai) UYj,(bi)] z
j Y

(

v  A  {uYj(ai)} ’ A ix EYj  1 Cbi) 3
>

is a disjunctive normal form
j l rJ

for f(i) .
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Let lLj,j' Ln+k . We say j depends on j' in the network

(Ql+tl��l?tl☺blltl > ☺ l l l ☺ (Qn+kyan+kybn+k
) if there is a sequence

j = j(lLjW , . . . . j(t) = jc such that j(i+l) E [aj(,),bj(i))  for

l<i<a-1 .- -

Theorem 1. Let 1 < i < n+k . Let G be any Boolean function of x1, . . ., xn

such that G 1 A {x eZ(i)) , and if A {xeXj] 3 f(i) and 9(j) depends

on i then A {xeXj} 3 G . For l_< j 5 ntk , let g(j) be the Boolean

function defined by g(j) = xj if 1 _< j 5 n and j b i , g(3) * G

if j=i, g(j) e g(aj) 'j (bj) if n+lL j < n+k and j 6 i . Then

g(jW > = f@(j)) for 15 j < m w

Proof. --.Let l_<j_<m. If #(j) does not depend on i , then

obviously g@(j)) = f@(j)) . Suppose g(j) does depend on i .

Let 7 = (Yl’“.‘Yn ) be the Boolean vector such that y1 = 1 iff

⌧1 E X .  l

J
Then f(@(j))(y) = 1 . If f(i)(y) = 1 , then A {xcXj] 3 f(i)

since f(i) is monotone, and A {x eXj} z> G by hypothesis. Thus

G(f) = 1 J and g@(j))(y) = f@(j))(y) = 1 . If f(i)(y) = 0 , then

f(i) (3 < g(i) (5) J- and 1 = f(@(j))(p) 5 g($(j))(y) . In either case,

since g is monotone, gWj>> (3 = 1 for any Boolean vector

E = (z ,z
1. 2"**' z )n such that f(@(j))(z')  = 1 .

Let z be such that f(#(j))(i) = 0 . Let R be such that

ZR= 0 l If .x1 eZ(i) , then G(z) = 0 < f(i)(z) and-

d@(Z))(~) < f@(j))(i) = 0 . If x1 kZ(i) , let Y,,(i) be such-

that x1 {Y,,(i) . Let f = (y,,...,y,) be the Boolean vector such

-that Yp = 1 if zl,, = 1 or x1,, eYR'(i) . Then f(@(j))(f) = o

since
y1 = z.4 =

0 l But f(i)(y) = 1 1 G(y) . Thus
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d@(j>>(z>  5 g($(j))(Y)  _< f@(j))(f)  = 0 l Hence d@(j))(i)  = 0

whenever
f($%>)G>  = 0 l 0

Theorem 2. Let n+l < i < n+k .- - If Y,(i) $ Xj for all j such that p(j)

depends on i and all 1 , then there is a monotone network for computing

A {X +), l l l , A {x eXm) of length shorter than k and with fewer

binary conjunctions than in (Qn+l,a~l,bn+l),  ...,(Qn+k,an+k,b~k) .

Proof. Let i be such that Y,(i) $ Xj

depends on i-, and all R . Then G = 0

Theorem 1. For 1< j <n+k, let g(j)- -

bY g(j) = xj
if l<j<n,_ _ g(j) = 0

for all j such that $(j)

satisfies the hypotheses of

be the Boolean function defined

if j=i, and g(j) = g(aj) Qj g(bj)

if n+l< j <n+k and j f i . By Theorem 1 a network which computes- -

e(l) ☺ l ,d~k) will compute A[xd$), . . . . A(Xd,]  l

We can thus simplify (Qtil,an+l,bn+l), ...,(On+k,an+k,btik) by deleting

all triples (0
jJajJbj)

such that g(j) = 0 and modifying other a., , b
J jr

values appropriately. U

By Theorem 2, any monotone network that uses a minimum number of

conjunctions to compute A {x E Xl], . . . , A [x eXm) must satisfy

(*) For all i , Z(i) 2 Y,(i) c X. for some j
J

such that q(j)

depends upon i and some 1 .

A set network for computing Xl,X2,...,Xm is a sequence of ordered

pairs (wl,dl)) , (w,,d2)>  , l *� t (W&k)) satisming
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(1)

(2)

(3)

( >a

04

( 1C

wi c x for all i .- d 3

For all j , X. = Wi for some i such that L(i) 5 j l

J

For all i , either
. .

wi = (xj) for some j , or

wi c Wi’ and t(V) < c(i) for some i' <i, or- -

'i = ‘i’ Uwi” and t(j'),t(i") 5 t(i) for some

i',il � < i .

Note that this definition depends upon the order of the sets X. .
J

Theorem 3. Let (Qn+l,an+19bn+l),  ...,(On+k,an+k,bn+k)  be a monotone

network for computing A [x eXl) , . . . . A {x eXm] . There exists a set

network for computing Xl,...,Xm which has no more set unions than the

monotone network has binary conjunctions, and.no more subset operations

than the monotone network has binary disjunctions.

Proof. If the monotone network does not satisfy (*), simplify it

applying Theorem 2 until it does satisfy (*). Assume without 10~s of

ma
generality that U Xj = X l (That is, each variable occurs in some

j=l

conjunction.) For l<i<n+k, let t(i) be the minimum j such that- -

: $(j) depends upon i and Y,(i) C, X. for some I . We claim

(Z(l),&>), l .,(Z(n+k),t(n+k)) satiifies (l), (2), (3).

Condition (1) is immediate. Condition (2) follows from

X
j = Z@(j)>  l

For l<i<n,
_ _

Z(i) = 1x,3 and (3a) holds. For

n+ls i_<n+k with Qi = v , z(i) = Z(ai) nZ(bi) l Let .! be such

that Y,(i) 5 Xt(i) and Y,,(i) $ Y,(i) for 1' { I . Then either
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Y,(i) = YR,(ai) for some 1' , in which case z,(ai) ,< c(i) and (3b) holds

with i' = a
i :, or Y,(i) = Y1,(bi) for some 1' , in which case

"Cbi> 5 di) and (yb) holds with i' -bi. vor n+.I- < i. .' nl- I: WiIJl-- --

Qi = A, Z(i) = Z(ai) UZ(bi) . Let 1 be such that Y,(i) 5 %
a>

2nd.

Y,,(i) #Y,(i) for P f 1 . Then Y,(i) = Ypt(ai)UYl"(bi)  for some

1' , .I?" . It follows that (3~) holds with i' = ai , i" = bi . a

Theorem 3 is powerful enough to allow us to derive lower bounds on the

number of binary conjunctions required to compute some interesting sets of

conjunctions, as we shall see in Section 5.
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4. The Power of Disjunctions.

We might conjecture that any set of conjunctions can be computed

in a minimum number of operations by using only conjunctions. The

following example shows that this is not true.

IJet x = IP,q~r,s,u,w,xl,x2Yx~~YYz) and consider the following

fourteen conjunctions (we use juxtaposition in place of A ).

PY = c( i ) XlY = c(5) xlz = c(8) P7X23Y = F(1)

qz = c(2) XlX2Y -- c(6) xlx2z = c(9) 9”“1x2Jy  = F(2)

ry = (X3-J XlX2x3Y = c(7 ) xlx2x3z -
- c(10) r=lx23Y = F(3 >

s z  = c(4) Sw”1X23Y  = F(4)

We can compute these conjunctions using sixteen binary conjunctions and

one disjunction by the following method:

PY -= PAY xly = xlAy x z =
1

x AZ
1

qz z qAz xlx2y z x2Ax1y xlx2z = x2Ax1z

ry - rAy x1x2x3y = x3Axlx2y xlx2x3 - x3Axlx2Z

sz -= sAz

11



x1x2x3(YVz) 3 xlx2X3Y V XlX2X3Z

“f2”3(Y  v 4 = u A x1x2x3(y  v z)

wx1)(2x3(YVz) E wAxlx2x3(Y VZ)

Pux1x2x3Y E PY A =1)(2X3 (Y V Z)

qux1x2x3z =- qz~u1x2x3(YVz)

rwx1x2x3y = ryAwxlx2x3(yvz)

smlx2x3z = sz AWXlX2X3(y V 4

However, at least eighteen binary conjunctions are necessary if no

disjunctions -are used. To see this, note that -py , qz , ry , sz , xly ,

xlx2Y Y x1x2x3Y 3 xlz 3 x1x2z 3 x1x2x3z each require a separate binary

conjunction, for a total of ten. Each F(i) requires at least two

additional conjunctions. To beat eighteen, at least one conjunction must

contribute to the construction of two of the F(i) 9. Such a conjunction

must construct a subconjunction of either uxlx2x3 or wxlx2x3 .

No subconjunction of ux.x. or of wxixj for i,j E [1,2,3] allows
13

the computation of any F(i) in one step. Thus some subconjunction of

uxlx2x3 o r m1x2x3 which contains xlx2x3
must be constructed.

Without loss of generality we can assume x1x2x3 is constructed, using

two binary conjunctions. But no single additional conjunction will allow

the construction of F(1) , F(2) , F(3), F(4) in one step each. Thus at

least five more binary conjunctions are required, for a total of eighteen.

This example has the undesirable property that certain required

conjunctions are subconjunctions of other required conjunctions. We can

eliminate this property by adding, for each of the ten short conjunctions

12



c(i) 3 a new set of variables (vl(i),v2(i),~~~yv18(i))  , and replacing C(i)

by the set of conjunctions C(i) Avl(i) , C(i) Av2(i),  . . . . C(i)Av18(i) .

The entire set of conjunctions (C(i) Avj(i)  11 5 i 5 10 , 1 < j 5 181 [J

~F(1),F(2),F(3),F(4)) can be computed in 10*18+16 = 196 binary

conjunctions and one disjunction; if the computation is carried out using
-.

only binary conjunctions and some c(i) is not computed, at least 11-18 198

binary conjunctions are necessary; if each C(i) is computed, 1048+18 -: 198

binary conjunctions are required.

This example can be generalized to show that for any n there is a set

of n conjunctions in n variables whose computation is faster by a constant

factor if disjunctions are used. The author does not know whether the use of

disjunctions can speed up such computations by more than a constant factor.

By using the results in Section 3, we can show that if lXi( is suffiently

small for all i , there are minimum-length monotone networks which use only

conjunctions to compute the functions F.
1 = A @,Xi) .

Theorem  4. L e t (On+l, an+l,bn+l)  , . . . , (&In+kyan+kybn+k ) be any minimum-length

monotone network for computing A ix eX1], . . . . A {x eXm] . Suppose lXil < R

for l<i<m.- - For n+l < i < n+k , if 0i = v , then 2 < IZ(i)l  < R-2 .- - -

Proof. Let i be such that Qi = v . If Z(i) = $4 , then by Theorem 1 any

use of the function f(i) can be replaced by use of the constant function 1 ,

_ and the triple ('j-3 "i3 bi> is unnecessary. If Z(i) = (xj] , then by Theorem 1

any use of the function f(i) can be replaced by use of xj 3 and the triple

(0 ,a ,b > is unnecessary. Suppose IZ(i)I = R . By (*) Z(i) 5 V,(i) ' X.
- J

for some j and since l'jl < I = IZ(i>l 3 f(i) =A ExeXj) . But

Z(i) = Z(ai) 17Z(bi) , and it follows that f(ai) = f(bi) = A (v EX~] . Thus

the triple ('j-3 "53 bi > is unnecessary.

Suppose IZ(i)l = a-1 . Choose the minimum i such that 0i = v

and IZ(i)l = R-l . Then Z(i) = Z(a.) nZ(b.) . By (*), there must be1 1
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some j such that $(j) depends on i and Y,(i) 5 X for some R .

Choose 1 such that Y,,(i) # Y,(i) for all 1' { R . Then either

Y,(i) = Y1"(ai) for some 1" or Y,(i) = Y,,,(bi) for some 1" .

Sul?pose without loss of generality that the former is the case. If

\Z(ai)I = ! , then Z(ai) = Xj , f.(ai) = A [x eXj) , and the triple

(Q~(j),a~o,bpio)  is unnecessary. If lZ(ai)\ = 1-1, say

'j -z(ai) = Cxi* 5 3 we can replace the triple (0
@(~YafWybPkd  by

(/\,a&‘)  l Repeating this construction for each j such that #(j)
I

depends on i and Y,(i) EX. for some &
J

, we eventually create a

network which violates (*) and which can be simplified by Theorem 2. 63

Theorem 5. If \Xil < 4 for l<i<m,--_ then any minimum-length

monotone network for computing A {xdl], . . ..A {xcXrn] uses only

conjunctions.

Proof. Let (0
Ml3 �~l,b~l 3 l l l 3> (Q

tik,antk,bWk) be any minimum-

length monotone network for computing A {x EX~], .- l , A {x ‘Xm] .

Choose the minimum i such that 0i = v if there is any such i .

By Theorem 4, (Z(i)\ = 2 . Suppose Zi = (xj,xj,], . If Z(i) = Z(ai)

or Z(i) = Z(bi) , then by Theorem 1 (Qi,ai,bi) and one of the triples

(Qp apq for 1 E {ai,bi) can be replaced by the triple by&jr)  l

If Z(i) c Z(ai) and Z(i) c Z(bi) , then lZ(ai)I 1 a-1 and

IZ(bi)  1 2 a-1 l An argument like that in Theorem 4 for the case

Iw 1 = 1-l shows that the network can be simplified. Thus any

network containing a disjunction is not of minimum length. 0

14



Theorem 6. If \‘il15 for l<i<m, then some minimum-length

monotone network for computing A [XEX~), l a- , A {xEXrn]  uses only

conjunctions.

Proof. Let (0l+tpn,p*l 1 3 l l l 3 (Q
tik,an+k,bWk) be any minimum-

length monotone network for computing A [x eXl], . . . . A {x eXm} . Choose

the minimum i such that 6Ji = V , if there is any such i . By Theorem 4,

\Z(i)l E {2,3] . If Z(i) = [xj,xj, ] , then by Theorem 1 the triple

(Q -,a*,1
b.)

1 1
can be replaced by the triple (hj☺�>  l If IZ(i)l = 3 ,

an argument like that in Theorem 5 shows that part of the network, including

the disjunction Qi , can be replaced by conjunctions without increasing

the length of the network. By repeating the construction for each

disjunction, a minimum-length network without disjunctions is obtained. !J

The example previously considered shows that the bound of five in

Theorem 6 cannot be improved, and a similar example shows that the bound

of four in Theorem 5 cannot be improved.
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5. Lower Bounds for Explicit Set:; of Conjunctions.

In this section we review the cn312 lower bound result of [5] and

[7] and provide another non-linear lower bound, tight to within a constant

factor, on the monotone complexity of a family of sets of conjunctions.

Theorem 7 [5]. Let Xi c X for 1 < i < m be subsets of variables such- -

that /XinXj/ 5 1 for all i, j . Then any monotone network for computing

A {xeXi) for l<i<m has -m binary conjunctions.- - . 5 \x,I
1=1 '

Proof. Consider any set network for computing X1,X2, . . ., Xm . For any

particular Xi , at least /Xi\ -1 unions are required to combine the
--.

elements of X, into a single set. Each union used to combine elements
I

of xi produces a set containing

any pair of elements is contained

at least two elements of Xi . Since

in a unique setX i" each union used

to combine elements of Xi produces a set contained in Xi but in no

xj f xi . It follows that the -m unions required to combine

elements in X1, . . ..X are all distinct.m
The theorem follows from Theorem 3.

This proof is due to Lamagna and Savage [5], except that they use a less

general result than Theorem 3 as an intermediate step. q

Lamagna and Savage [5] and Nechiporuk [7] have exhibited families of

functions which satisfy Theorem 7 and have 5 1X.J 2 cn3/' . Here is
.l--1

another family of such functions.
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Let X = {xl,x2,...,xn] , where n = k2+k+l . Let Xi c X , for

l<i<n, be the n lines of a projective plane [3] whose set of points- -

is X . A projective plane has the property that each pair of points is

contained in exactly one line, and each line contains exactly k+l points.

Projective planes exist for all prime powers k = pr [3].

Theorem 8. Any monotone network for computing /\ [x cXi] for 15 i 5 n

requires nk binary conjunctions.

Proof. mediate from Theorem 7. 0

The set of conjunctions defined by the lines of a projective plane

thus provides a simple, explicit example of a monotone Boolean function

which requires a non-linear number of operations when ccmputed by any

monotone network. Note that the bound in Theorem7 is obviously tight

and implies that any minimum-length monotone network for such sets of

conjunctions uses no disjunctions. It is not hard to show that the

largest lower bound that can possibly be proved using Theorem7 is O(n3/2) .

17



computing functions defined on paths in trees is optimum to within a constant

factor. For this purpose we need a few definitions from graph theory.

directed graph. G = (V,E) consists of a finite set V of vertices and

set E of ordered

path of length k

= ( v1Yv2) 3 Cv2Yv3)

(directed, rooted)

vertex r such that

pairs ( V,W) of distinct vertices, called edges.

from v to w in G is a sequence of edges

3 l *- 3 ( vkJvk+l 1 with v1 = v and v~+~=w l

tree (T, r) is a directed graph T with a distinguished

there is a unique path from r to any other vertex.

We say v and w are related ( v is an ancestor of w and w is a

descendant of v ) if there is a path from v to w in T .

Let T be a directed, rooted tree with n+l vertices (and n edges).

For each edge (v,w) in T , let x(v,w) be an associated Boolean

variable. For related vertices v,w in T , let f(v,w) be the Boolean

function f(v,w) = A [x(y,z) \ (y,z) on p(v,w)} , where p(v,w) is the path

from v to w in T . Consider the problem of computing f(vj,wj) , for

m related pairs of vertices
(vjYwj)  3 using a monotone network. An

oh ewN operation method for solving a more general version of this

problem (where conjunction is replaced by any associative operation) is

presented in [12]. Here we show that no better method is possible.

Given m related pairs (vj,wj) , order the pairs so that if (vj,wj)

precedes (v.,,w )
J jr

in the ordering and vj f vjt , then vj is not an

ancestor of v., in T .
J

(This is always possible; see [12].) Now

associate with T and with the pairs
CvjYwj)

a directed graph G"

and a cost C as follows. Initialize G* to G* = T . Process the
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pairs (v.,w.) in the order defined above.
J 3

To process a pair (v.,wij) ,
<I

let P(vjYwj) = (YlYY2) 3 (Y2YY3) 3 l  * *  3 (Yk,Yk+l)  l Add to 6� each edee

(YiY  Yit 1
with i<i' which is not already present in G* . Let the

cost of pair (vj,wj) be aj-l ; where I.
J

is the length of the shortest

path from v. to w. in G* are
3 3

(before the new edges for (v.,w.)
J J

added). Let the cost' C be the total cost of all pairs (Vj,Wj) **

Theorem 9. The cost C is a lower bound on the number of u.n:'Lon;:  jn any

set network which computes Xl,X2,...,Xm  , where

'j = Cx(YYz)  \ (YY'>  is On P(vjYwj)3  l

--.

Proof. Consider any set network (W,,t(l))  , ..*, (Wk,c(k))  for computing

x+p l * l 3⌧m l
We claim that, for any j , the number of values i , such

that L(i) = j and Wi satisfies (3~) but not (3a) or (3b), is at least

as great as the cost of (vi,wi) .

Consider any set X. .
J

By (2), there must be some i such that

X.
J

= wi and z,(i) 5 j . Furthermore, Wi must be constructed from

singleton sets using the subset and union operations of (3b) and (5c).

It follows that there are indices . * -il, 12, . . l , lR 5 1 such that

( >i xj 5 W(i,> UW(i2)  U l - -  UW@.,)  ;

( >ii each W(ij,) satisfies either @a) or t(ij,) < I ; and

(iii) the number of sets W(i') satisfying neither (3a) nor (3b)

but such that t(i') = i is at least 1-l .

(We can produce this set of indices il,i2,=..,i~ with a backward trace

through the set network from index i .)
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Order W(i,),...,W(i,> so that W(il), contains the variable

for the first edge on p(vj,wj)  , W(ijt) for 2 5 jt 5 h contains

the variable for the edge on p(vj,wj) following the last edfr,e whose

variable is in W(i.,-,> , and W(i,) contains the vari ahlc l'or thC)
J

last edge on p(vj,wj) . (Note that the contents of the sets

W(j h+l >, l . . , W(j,) are unimportant.)

'Cij,) Ex'Cijt)
for 1 ,< jr 5 I(O) , there is a sequenceSince

of edges

u1 j=v ;

(u~Yu,)  Y (u~Yu~)  Y l  l  l  Y (9 ~n+~) in G* such that

X+1 = wj
; and, for 1 < jt < h , edge (u~,u~+~)

is added to G* before or during the time (v >
.

L(ij,)'wL(ij,) Is

processed.=. Since c(ij,) < t(i) 5 j , (u~,,u~,+~)  is present in G*

before CvjYwj) is processed. Hence h-l , and also R-l, is an

upper bound on the cost of (vj,wj) . This proves the claim, and the

lemma follows by summing over all j . Ca

Now we apply the very general lower bound result of [ll], which

states :

Theorem C L-113  l There is a positive constant c such that, for all m

and n with m > n , there is a tree T of n vertices and a sequence-

of m pairs ("jY"j) of related vertices for which the total cost C is

f*at least cmCX(m,n) .

*
f We define a(m,n) as follows. Let A(i,x) he defined on rLr)n-rlrl~~~J.ti\/rJ

integers by A(O,x)=2x for x10, A(i,O) =0 for i/l,

A(i,l) = 2 for i > 1 , and A(i,x) = A(i-1, A(i,x-1)) for i ,> 1 ,-
x>2. A(i,x) is a slight variant of Ackermann's function [l].-
Let a(m,n) = min{z 2 1 \ A(z, 4rm/nl) >log n] .
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We have, from Theorems 3, 9, and C:

Theorem 10. For any m 2 n , there is a tree T and a set of m pairs

(v.,w.) of related vertices such that any monotone network for computing -
J J -.

f(vjJwj) for each pair uses at leastt cma(m,n) binary conjunctions.

This result implies that the algorithm of [12] for computing

f(vj,wj) for such pairs i's optimum to within a constant factor, among

straight-line algorithms.
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6. Remarks.

The lower bounds in Theorems 8 and 10 apply not only to monotone

networks, but also to straight-line algorithms which use more general

operations to comb-tie  the appropriate subsets of inputs. For instance,

the lower bounds hold if A is replaced by maximum over real numbers

and v is replaced by minimum over real numbers.

For operations over certain domains, the lower bounds of Theorems 8

and 10 apply not only to straight-line algorithms, but to all algorithms

which can compute values only by applying various operations to the

input values. Such domains include sets (replacing A by set union and

v by set intersection), strings (replacing A by string concatenation

and omitting v ), and function spaces (replacing A by function

composition and omitting v ).

Apparently, no one has yet explicitly exhibited a family of monotone

Boolean functions fn: {O,l}n --) {O,l) such that fn has a monotone

circuit of size polynomial in n but no monotone circuit of size linear

in n . The family of functions

n
fn(X1' . . .;x,) = ' ' CxEXin] >

i=l

where the sets Xln’x2n.’ l g �☺m
are the lines of a projective plane

whose points are [xl,..., x,) , is a possibility for such a family.

Another possibility is the family of functions

fnby2’ l l .,⌧,) = &l☯⌧cX }

i=l in '

22



\ where
xlnJx2nJ 'm. . .J correspond to ap-pro~riate  path:; in a tree oI' n

edges. Perhaps the proofs of Theorems 8 and10 can be extended to give

lower bounds in these cases. Another open problem is to determine by how

much disjunction helps in computing sets of conjunctions.
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