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1. Introduction.

Let X -- {xl,...,xn} be a set of' Bool ean variables. A Bool ean

network is a sequence of triples (e e

n+1’ 2412004107 o n+k’ B2 Py

wher e each 6, is a binary Bool ean operation and each a; 5 b; is an
integer less than i . W associate with each integer i , 1<i <n+k,
a Boolean function f(i) given by f(i) :xiif 1<i <n,

f(i) =f(a;) 0, £(b) if ntl <i < n+k . If F,F,..,F are

l) 2)

Bool ean functions of x X, t he network_conput es Fl,FE,...,F

12 %0r e
if there is a function ¢: {1,2,...,m} - {1,2,...,ntk} such that Fi = £(g(1)) ,

m

where = denotes |ogical equivalence. The network is_monotone if 6, ¢ {A, v}
for all i , where a denotes conjunction and V denotes disjunction.

In this paper we study the size of nonotone networks for conputing
certain Boolean functions. Qur interest in this problemstens fromthree
sour ces. (1) Techniques for analyzing nonotone network conplexity nay
be useful in analyzing non-nonotone network conplexity, about which
little is known. (2) Qur lower bound results apply not only to
monot one networks, but to algorithns for other kinds of conputation.

(3) Qur main lower bound result inplies that an alnost-linear algorithm
for conputing functions defined on paths in trees [12] is optinumto
within a constant factor.

We restrict our attention to Bool ean functions F. of the form
F, = Af{xeX;}, where X, ¢ X . That is, F,F,...,F is a set of
conjunctions of various subsets of variables. In Section 2 we review
previ ous results on such sets of functions. In Section 3we prove a basic
result which gives conditions under which we can afford to ignore
disjunctions. In Section 4 we exhibit an anonal ous set of conjunctions

whose mi ni num si ze nonotone network contains a disjunction. Ve also use



the results of Section 3to derive sufficient conditions for the
non-exi stence of such anomalies. In Section 5 we prove a non-linear
| ower bound for sets of conjunctions which correspond. to path:; in trces,

thus proving the optimality, to within a constant factor, of the main

algorithmin [12].



2. Previous Results.

Several researchers, including Lamagna, Savage [5,10], and
Nechi poruk [7], have studied the conplexity of nonotone networks for
conputing conjunctions. W summarize their main results here. See [4,8,9]
for lower bounds on the size of nonotone networks for computing other types
of functions. The follow ng two theorens are special cases of nuch nore

general results proved by Savage [10].

Theorem A For 1 <i <m, |let X, e X. let F.o=A {}:eXi} . Then
F,Fy . wF o can be conputed by a nonotone network using 2mln/log m1 ¥/

bi nary conjunctions and no additional operations.

The idea used in the proof of TheoremA is the sane as used in the

four Russians' algorithmfor matrix multiplication [2]. For details, see [10].

TheoremB. For m and n polynomially related -—/and sufficiently large,
cmn/log mw

almost all sets of mconjunctions in n unknowns require

operations when conputed by any Bool ean networKk.

This theorem can be proved by a straightforward counting argunment. See
[10] for details and Mon and Mser [6] for a related result.

Theorem B shows that the bound in Theorem A is tight for alnmost all sets
of mconjunctions in n unknowns, if m and n are polynomally related.
However, it seens very hard to explicitly exhibit sets of conjunctions which

require as many operations as indicated by Theorem B.

¥/ All logarithms in this paper are base two; [ x1 denotes the cmallest
integer not less than x .

x*/ W say m and n are polynomially related if there is sone polynomial
p such that m< p(n) and n < p(m

xxx/ Throughout this paper, ¢ denotes a suitable positive constant.



Nechi poruk [7] and Lamagna and Savage [5] have exhibited sets of n

unknowns which require ¢ nB/Q bi nary conj unctions

conjunctions in n
constructions use the sane ideas,

for their nonotone conmputation. Their
To the author's know edge, no harder

which we shall review in Section 5.

sets of conjunctions have been explicitly exhibited.



3. Properties of MnimmlLength Mnotone Networks.

In order to bound the number of binary conjunctions required by nonotone
networks for conputing specific sets of conjunctions, we need a result which
allows us to ignore the effect of disjunction::. 1n thissectionweshowthat
di sjunctions can be ignored, provided we allow certain subconjunctions of.
previously conmputed conjunctions to be conputed for free. W acconplish this
by showi ng how to transforma nonotone network for conputing functions

= A {xeXi} into a straight-1ine conputation of the sets X, fromthe

singleton sets {xj} , using the operations of set union and arbitrary subset.

a b be a nmonot one network

Let (9n+l’an+l’bn+l)""’(@n+k’ i n+k)
for computing A{XGXl}, s 5 A {xexm} . Let f£(1),f£(2),...,f(ntk)

be the associated Bool ean functions and let ¢: {1,2,...,m} - {1,2,...,n+k}
be such that f£(¢(i)) = A {XEXi} . For 1 <i <mk, let

vA{x eYj(i)} = f(i) be a disjunctive normal formfor f(i) . This
J

formis unique up to adding conjunctions A{Xeyj, (1)} such that
Yj(i) c Yj,(i) for sone |
Let Z(i) = an(i). Z(i) is independent of the disjunctive
J
normal formchosen to represent f(i) . Z(i) = {xi} for 1<i <n

and Z(¢(j))=x.for L<jgm. Ife =v,

z(a;) Nz(b,) = (ny (a. )) (nyj.(bi)>: z(i) , since

j'

(v AfxeY, (a)) (\/ /\{xeY (b)}) is a disjunctive normal form

J

for f(i) . If &; =~ Z(ai)UZ(bi) = (Qyj(ai)> U (Qyj,(bi)) =
J J'

Jn' (Yj<ai)UYj’(bi)) = Z(i) , since}/ J\/ A {xeY (a)UY (b;)} =

n
J
(v A fxey, a)}) (V/\{xeY (b)) 3) is a disjunctive normal form

for (i)



Let 1 <j,j' <mk . W say j depends on j' in the nctwork

(en+l’an+l’bn+l) PR (@n+k’an+k’bn+k) if there is a sequence

j = 3(1),3(2), . ... j(t) =i such that j(i+l) ¢ {aj(i)’bj(i)} for
1<i<e-1.

Theorem 1. Let 1 <i <n+k . Let G be any Bool ean function of Xy w X

such that ¢ DA{x ez(i)}, and if A {xer} o f(i) and ¢(j) depends

on i then A{xer}:}G. For 1<j <mnmk, let g(j) be the Bool ean
function defined by g(j) :xjif 1<j <nandj £i, g(j) =G
if =1, g(j):g(aj)gj(bj) if 1 <j <ntk and j £i . Then

g(p(3) ) = £(B(3)) for L<j < m.

Pr oof . Let\'lgj <m . |f #(j) does not depend on i , then

obviously g(@(3)) = £(#(3)) . Suppose ¢(j) does depend on i
Let y = (yl,...,yn) be the Bool ean vector such that v, = 1 iff

x, .y - Then £(A(N)F) = 1. If f(i)(y) =1, then Alxex,} (i)

since f(i) is nonotone, and A{x er} D G by hypothesis. Thus
¢(y) =1, and g(@(3))(¥) = £(@(3))(¥) =1 . If f(i)(y) =0, then
£(1) (7) < g(i) (3) , and 1 = £((3))(¥) < e(@(3))(¥) . In either case,
since g is nonotone, g(#(3)) (z) = 1 for any Bool ean vector
2= (2,2, ---,2,) such that £(#(5))(z) =1 .

Lef z be such that £(@(3))(z) = 0 . Let 7 be such that

= . If .x,ez(i), then G(z) = 0 < f(i)(z) and

g(#(2))(2) <£(#(3))(2) = 0 . If x, fz(i), let Y,, (i) be such
that x, £Y,,(i) . Let y = (yy,---»¥,) be the Bool ean vector such

that y,, = 1 if z, =1 or X, EYZ'(i) . Then £(g(3i))(y) = o

since 'y, _z, _ . But f(i)(y)

1 >a(y) . Thus



g(#(3))(2) < g@())(F) < LPG))(F) . 0 . Hence g(#(3))(z) . ©
whenever £(g(3))(z) . o . O

Theorem 2. Let ntl <i < n+k . If Y, (i) & XJ. for all j such that ¢(j)
depends on i and all ¢, then there is a nonotone network for conputing

A {xexl},..., Afx exm} of length shorter than k and with fewer

bi nary conjunctions than in (Qn+l’an+l’bn+l)’ ,(@n+k,an+k,bn+k) .

Proof . Let i be such that Y, (i) yéxj for all j such that @(J)

depends on i and all ¢. Then G = 0 satisfies the hypotheses of
Theorem1l. For 1< j <ntk, let g(j) be the Boolean function defined

by g(3) =x, if 1<j<n, g(d=0 if =1, andg(J) = g(a;) 65 a(b)
if 1 <j <n+k and j #i . By Theorem1 a network which conputes

g(1), . ..,g(mk) will conpute A {x cxl} 5. .. A {X(Xn} .

We can thus sinplify (@n+l’an+l’bn+l)’ ’(Qn+k’an+k’bn+k) by del eting

all triples (Oj,aj,bj) such that g(j) = o0 and nodifying other a. g bj,

val ues appropriately. O

By Theorem 2, any nonotone network that uses a m ni mum nunber of

conjunctions to conpute A {Xexl}, o, ANix eX } nust satisfy

(¥) For all i , Z(i) c,(i) 93(' for some j such that ¢(j)

depends upon i and sone { .

A set network for conputing Xps¥ps e X Is a sequence of ordered

pairs  (Wy,2(1)) , (Wy2(2)) .. ., (Wyse(k)) satisfying



(1) wiC_xL(i) for all 1.

(2) For all j , XJ = W, for sone i such that (1) < j
(3) For all i , either
(a) W, = {xj} for some j , or
(b) W, ¢ W, and ¢(i') < ¢(i) for sone i'<i, or
(c) W, =W, Uw, and 2(3"),2(i") < t(i) for sone

i',i 0 L ¥ «

Note that this definition depends upon the order of the sets X.J :
Theorem 3. Let (9n+1’ an+l’bn+l)’ ...,(en+k, an+k,bn+k) be a nonotone
network for computing A f{xeX;}, . . . . afxex}. There exists a set
network for conputing xl,...,xm whi ch has no nore set unions than the
monot one network has binary conjunctions, and.no nore subset operations

than the nonotone network has binary disjunctions.

Proof . If the nonotone network does not satisfy (¥), sinplify it
applying Theorem 2 until it does satisfy (*). Assume w thout loss of
m
generality that U Xj = X .(That is, each variable occurs in some
j=1

conjunction.) For 1 <i <mntk, let (i) be the nininumj such that
© $(3) depends upon i and Y, (i) < X._f%r some ¢ . W claim
(z(1),2(1)), @ . (Z(n+k),t(n+k)) satisfies (1), (2),(3).

Condition (1) is imediate. Condition (2) follows from

X =2(¢()) . For 1<i<n, Z(i) = {xi} and (%a) holds. For

\

ml<i<ntk with e, , 2(1) = 2(a;) nz(by) . Let 2 be such

that Y, (i) C—:Xb(i) and Y,, (i) ¢ Y, (i) for £*£2 . Then either



Y, (i) = Yz'(ai) for some £', in which case z,(ai) < z(1) and (3b) hol ds

with i' = a, ,or Y, (i) = Yz'(bi) for some £', in which case

L(bi) < z(i) and (%b) holds with it - b, . For ml <. ok with

o, = A Zi) = Z(a.i) Uz(bi) . Let 2 be such that VY, (i) ¢ xb(i) and

Y,, (i) #Y,(i) for ¢ #2 . Then Y, (i) = ¥,,(a;) UY,u(b;) for sone

v, 1", It follows that (3c) holds with i'=ai, i"=bi. a
Theorem 3is powerful enough to allow us to derive |ower bounds on the

nunber of binary conjunctions required to conpute sone interesting sets of

conjunctions, as we shall see in Section 5.

10



4, The Power of Disjunctions.

Ve mght conjecture that any set of conjunctions can be conputed
in a mninum nunber of operations by using only conjunctions. The

foll owing exanple shows that this is not true.

Let X = {p,q,r,s,u,w,xl,xg,x.,,y,z} and consider the follow ng
)

fourteen conjunctions (we use juxtaposition in place of A).

PY = ¢(i) x¥ = ¢(5) x,2 = ¢(8) pux; X%y = F(1)
9z = c(@ XXy = c(6) X X,Z = c(9) qQUX XX 2 = F(2)
ry = C(3) X)X XY = c(7) X Xp¥aZ = c(10) W) XX,y = F(3 )

sz = C(4) sy X%,y = F(k)

W can conpute these conjunctions using sixteen binary conjunctions and

one disjunction by the follow ng method:

PY = pAYy Xy = XAy Xz = XlAZ

qz = qAz XlXEy = X5 A Xy X X2 = X5 A xlz

ry = rAy xlx2x5y = x3 A X XY xlxexﬁ = X'p ARSE
Sz = sAz

11



X1x2X5<y vz) = X XoXaY VK X X2

uxlxexﬁ(y Vz) =uA X1X2X5(y V 2)
WXlXEXB(y Vz) = wA XlXQXB(y Vv z)

Py /\'LleX2X5 (y v 2)

PUX X %oy =
QU XX52 = 9z AW XK (7 V Z)
rwxlxgxiy = Ty A W'xlXEXB(y \% Z)

]

SWX X X2

1%p%3 sz walx2x5(y V z)

However, at |east eighteen binary conjunctions are necessary if no
disjunctions -are used. To see this, note that py , gz, ry , sz, Xy
KXY 5 KyXoXz¥ X925 XqXpZ o, XX XsZ each require a separate binary
conjunction, for a total of ten. Each F(i) requires at |east two
additional conjunctions. To beat eighteen, at least one conjunction must
contribute to the construction of two of the F(i) 's. Such a conjunction
must construct a subconjunction of either WX X;Xz Or WX;X,X5 .

No subconjunction of ux.x.or of wx.x, for i,j e{1,2,3} allows

J i3]
the conputation of any F(i) in one step. Thus some subconjunction of
UX.X X, OTF wx. X, X, Which contains XX Xz nmust be constructed.

1273 127>

Wthout |oss of generality we can assume x I's constructed, using

1%2%3

two binary conjunctions. But no single additional conjunction will allow

the construction of F(1) , F(2) , F(3), F(4) in one step each. Thus at

| east five nore binary conjunctions are required, for a total of eighteen.
This exanple has the undesirable property that certain required

conjunctions are subconjunctions of other required conjunctions. V& can

elimnate this property by adding, for each of the ten short conjunctions

12



Cc(i) , a new set of variables {vl(i),vg(i),...,vla(i)} , and replacing C(i)
by the set of conjunctions C(i) /\vl(i) , C(1) /\ve(i) s - e - C(i)/\vl8(i) :
The entire set of conjunctions (C(i) /\vj(i) |1<i <10, 1<j <18}y
{(F(1),F(2),F(3),F(4)} can be conputed in 10-18+16 = 196 binary
conjunctions and one disjunction; if the conputation is carried out using
only binary conjunctions and some Nc(i) is not conputed, at least 11.18 198
bi nary conjunctions are necessary;, if each C(i) is conputed, 10-18+18 = 198
bi nary conjunctions are required.

This exanple can be generalized to show that for any n there is a set
of n conjunctions in n variables whose conputation is faster by a constant
factor if disjunctions are used. The author does not know whether the use of

di sjunctions can speed up such conputations by nmore than a constant factor.

By using the results in Section 3,we can show that if |Xi| is suffiently
small for all i , there are mnimmlength nonotone networks which use only

conjunctions to conpute the functions F.l = A {:{cXi} .

Theorem 4. | e t (9n+l, an+l’bn+l) e (9n+k, an+k’bn+k) be any m ni mum | ength
monotone network for computing a{x eX;}, . . . . A{xeX}. Suppose [Xil <1
for 1<i<m. For ntl <i < n+k, if e, =v, then 2 <|z(i)| <R-2.

Pr oof . Let i be such that o, =v. If Z(i) =4, then by Theorem 1 any

use of the function f£(i) can be replaced by use of the constant function 1 ,
~and the triple (Qi, a;, b;) is unnecessary. If Z(i) = {:cj} , then by Theorem 1
any use of the function f(i) can be replaced by use of X3 and the triple
(6 a ;b ) is unnecessary. Suppose |z(i)| =+t . By (¥) Z(i) < V, (i) f_X.J
for some | and since |le < o=|z@)], f(i) =A {:ceXJ.} . But

z@(i) = Z(ai) nz(bi) , and it follows that f(ai) = f(bi) = A {x exj} . Thus

the triple (Gi, a., b, ) IS unnecessary.

1 1

Suppose |z(i)| = -1 . Choose the nmininumi such that 6, = v

and |z(i)] = Rl . Then Z(i) = Z(a.) nz(by) . By (x), there nust be

13



sone | such that ¢(j) depends on i and Y,(i) < X for sone 1.
Choose ¢ such that Y,,(i) ¢ Y, (i) for all 2+ #1¢ . Then either
Y, (i) = Yl,,(ai) for some (" or VY, (i) = YE"(bi) for some ¢" .
Suppose Wi thout |oss of generality that the former is the case. If
|Z(ai)| =1, then z(a;) = X5 £(a;) = A {x er} , and the triple
(9¢(j),a¢(j),b¢<j)) i s unnecessary. |f |Z(ai)\ = 1-1, say

X, -Z(ai) = {xi, }, we can replace the triple (@¢(j)’a’¢(j)’b¢(j)) by
(/\,ai,i') . Repeating this construction for each j such that #(j)

depends on i and Y,(i) <x, for some ¢, we eventually create a

J
network which violates (¥) and which can be sinplified by Theorem 2. O

Theorem 5. If |X,| <4for 1<i<m, then any mininmmlength

monot one network for conputing A {xeXl}, - . A {xexm} uses only

conj unctions.

Pr oof . Let (O e be any minimum-

pr1? B P s e (O P

| engt h nonot one network for conputing A {x eXl}, e, A eXm} )
Choose the mininumi such that e, =V if there is any such i

By Theorem4, |z(i)| = 2 . Suppose z, = {xpx5. 3 . If Z(i) = z(s;)
or Z(i) = z(bi) , then by Theorem 1 (Gi,ai,bi) and one of the triples
(el, al,bf) for 1 ¢ {ai,bi} can be replaced by the triple (Ad,3") .
If z(i) c Z(ai) and Z(i) < Z(bi), t hen |Z(ai)| > £-1 and

\Z(bi) | >4-1 . An argunent like that in Theoremk for the case

lz(i) = £-1 shows that the network can be sinplified. Thus any

network containing a disjunction is not of mninumlength. 4

14



Theorem 6. If [X;| <5 for 1<i<m, then sone mninumlength
monot one network for conputing A{x exi},.a-,A{x eX }usesonly

conj unctions.

Proof . Let <en+l’an+l’brri—l) s (emk,amk,bmk) be any minimum-
| engt h monotone network for conmputing A {x eXl}, ... Afx exm} . Choose
the minimmi such that e, = v, if there is any suchi . By Theor em 4,

|z(1) |ef2,3} . If Z(i) = {xj,xj,} , then by Theorem 1 the triple
(94,a4ob,) can be replaced by the triple (R 33") . 1f z2(2)] = 3,

an argunment like that in Theorem 5shows that part of the network, including
the disjunction 6, , can be replaced by conjunctions without increasing
the length of the network. By repeating the construction for each

disjunction, a mninumlength network wthout disjunctions is obtained. )

The exanpl e previously considered shows that the bound of five in
Theorem 6 cannot be inproved, and a sinilar exanple shows that the bound

of four in Theorem 5cannot be inproved.

15



5. Lower Bounds for Explicit scts of Conjunctions.

In this section we review the cn5/2 [ ower bound result of [v] and
(7] and provi de another non-linear |ower bound, tight to within a constant

factor, on the nmonotone conplexity of a famly of sets of conjunctions.

Theorem 7[5]. Let X; ¢ Xfor 1 <i < mbe subsets of variables such

t hat |Xiﬂle <1 for all i, j . Then any nonotone network for conputing
m

Af{xeX;} for 1<i<m has 2 |X |-m binary conjunctions.
i=1 "

Proof . Consi der any set network for conputing XoXos oK For any

particular X. , at |east |Xi|-l unions are required to conbine the

el enents of X, into a single set. Each union used to conbine elements
of X produces a set containing at |east tw elements of X, Since
any pair of elements is contained in a Xnique set ;0 each uni on used

to conbine el enents of X, produces a set contained in Xi but in no

m
Xj%Xi. It follows that the 2 |X |-munions required to conbine
i=1
el ements in Xl’ o "Xm are all distinct. The theoremfollows from Theorem 3.

This proof is due to Lamagna and Savage [5], except that they use a |ess

general result than Theorem 3 as an internediate step. a

Lamagna and Savage [5] and Nechi poruk [7] have exhibited famlies of
m
functions which satisfy Theorem 7and have 2 [x,| > en?/? . Hereis
I -1
another famly of such functions.

16



2
Let X = {x,x,,...,x }, where n = k™+k+l . Let X, ¢ X, for

1<i<n, bethenlines of a projective plane [3] whose set of points
is X. Aprojective plane has the property that each pair of points is
contained in exactly one line, and each line contains exactly k+1 points.

Projective planes exist for all prine powers k = o [3].

Theorem 8.  Any nonotone network for conputing A {x exi}for 1<i <n

requires nk binary conjunctions.
Proof . Immediate from Theorem 7.0

The set of conjunctions defined by the lines of a projective plane
thus provides a sinple, explicit exanple of a monotone Bool ean function
which requires a non-linear nunber of operations when carputed by any
nmonotone network. Note that the bound in Theorenv is obviously tight
and inplies that any mninumlength nonotone network for such sets of
conjunctions uses no disjunctions. It is not hard to show that the

2
| argest | ower bound that can possibly be proved using Theorenv is 0(n3/ )

17



We shall now usc Theorem % Lo show Ghal the algorithm ol [12] ror
conputing functions defined on paths in trees is optinumto within a constant
factor. For this purpose we need a few definitions fromgraph theory.

A directed graph. G = (V,E) consists of a finite set V of vertices and

a set E of ordered pairs ( v,w) of distinct vertices, called edges.

A path of length k fromv towin G is a sequence of edges

p = (vy5v,) ,(VQ,VB) s (Vv ) with vy =v o and v, =w.

A (directed, rooted) tree (T, r) is a directed graph T with a distinguished

vertex r ~such that there is a unique path fromr to any other vertex.
W say v and w are related ( v is an ancestor of wand wis a
descendant of v )if thereis a path fromv towinT.

Let T be a directed, rooted tree with ntl vertices (and n edges).
For each edge (v,w) in T, let x(v,w) be an associated Bool ean
variable. For related vertices v,win T, let f(v,w) be the Boolean
function f£(v,w) = A {x(y,z) | (v,z) on p(v,w)} , where p(v,w) is the path
fromv to win T . Consider the problem of conputing f(vj,wj) , for
m related pairs of vertices (V,j’wj) , using a nonotone network. An
o(m a(m,n)) operation method for solving a nore general version of this
probl em (where conjunction is replaced by any associative operation) is
presented in [12]. Here we show that no better method is possible.

Gven mrelated pairs (vj,wj) , order the pairs so that if (vJ.,w.)

J

pr ecedes (vJ,,wj,) in the ordering and vy # Vi t hen vy is not an

ancestor of vJ in T. (This is always possible; see [12].) Now
associate with T and with the pairs (vj’wj) a directed graph G*

and a cost C as follows. Initialize ¢*to ¢* = T . Process the
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pairs (Vj’wj) in the order defined above. To process a pair (v,i,wj) ,

*
let P(Vj,w,j) = (yl)yg) b <y2’y5) s . 3 (yk,yk'*'l) . Add to G each edge
V.»¥.,) Wth i <i' which is not already present ing . Let the
12940 y p

cost of pair (vj,wj) be /zj-l 5 Wwhere |.J is the length of the shortest

path from Y- to w. in ¢© (before the new edges for (vj,v&.

added). Let the cost' C be the total cost of all pairs (vj,wj)

) are

Theorem 9. The cost ¢ is a lower bound on thce number of union: in any

set network which conputes XpoXps oo s X wher e

Xj = {x(y,2) l (y,2z) is on P(VJ-:WJ-)}

Proof . Cohsi der any set network (wl,z,(l)) L eees (Wk,a(k)) for conputing
Xl,Xg,,M O .. W claimthat, for any j , the nunber of values i , such
that (i) = j and W, satisfies (3c) but not (%a) or (3b), is at |east
as great as the cost of (vi,wi) :

Consi der any set X.J . By (2), there must be sonme i such that
X.J =W, and 2(i) <j . Furthernore, W, must be constructed from
singleton sets using the subset and union operations of (%b) and (Jc).

I't follows that there are indicd;,z, ««oz1 <1 such that

2
(i) ch_:w(il)uw(ig) u.--uw(i,);
(i) each w(ij,) satisfies either (3a) or z,(ij,) < ¢(i) ; and

(iii) the nunber of sets w(i') satisfying neither (3a) nor (3b)

but such that z(i') =i is at least -1 .

(Ve can produce this set of indices 1,,i,,...51, with a backward trace

through the set network fromindex i .)
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Or der w(il),...,w(il) so t hat w(il) contains the variable
for the first edge on p(vj,wj) , w(ij,) for 2 < j' < h contains

the variable for the edge on p(vj,wj) following the last cdse whose

variable is in w(}j'-l) , and w(ih) contains the vari able L'or ithe
| ast edge on p(vj,wj) . (Note that the contents of the sets
W(dyq) 5. ... W(3,) are uninportant.)
Si nce w(ij,) EXL(i ) for 1 < j'<1(0), there is a sequence
jl
of edges (ul,ug), (ug,u5) A (U-hJ Uh+l) in @ such that
uy :vj Uy = Ws ; and, for 1 < j'< h , edge (uj,uj+l)
. X% . . )
is added to G before or during the tine (Vb(i. )’Wz,(i.,)) is
J' J

processed. =. Si nce L(lj') < (i) < , (uj,,uj,+l) is present in G
before (vj,wj) is processed. Hence h-1 , and also RI|, is an
upper bound on the cost of (vj,wj) . This proves the claim and the

lemma follows by sunming over all j . (I

Now we apply the very general |ower bound result of [11], which

states :

Theorem C [11]. There is a positive constant ¢ such that, for all m
and n with m>n , there is atree T of n vertices and a sequence
of mpairs (vj,wj) of related vertices for which the total cost C is

/

at least cma(m,n) .

Y ve define a(mmn) as follows. Let A(i,x) be defined wnon-ncgotive
integers by A(0,x) =2x for x>0, A(i,0) =0 for i -1,
A(i,1) =2 for i > 1, and A(i,x) = A(i-1, A(i,x-1)) for i > 1,
x>2 . A(i,x)is a slight variant of Ackermann's function [1].
Let a(mn) = min{z > 1 | A(z, LI m/nl) > 1log n} .
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W have, from Theorens 3,9, and C

Theorem 10. For any m>n , there is a tree T and a set of mpairs
(vj,wj) of related vertices such that any nonotone network for conputing

f(vj,wj) for each pair uses at least cma(m,n) binary conjunctions.

This result inplies that the algorithm of [12] for conputing
f(vj,wj) for such pairs i's optimumto within a constant factor, anong

straight-1ine algorithns.
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6. Renar ks.

The [ ower bounds in Theorens 8 and 10 apply not only to nonotone
networks, but also to straight-line algorithns which use nore general
operations to combine the appropriate subsets of inputs. [or instance,
the | ower bounds hold if A is replaced by maxi mum over real numbers
and v is replaced by m ninumover real nunbers.

For operations over certain donmains, the |ower bounds of Theorens 8
and 10 apply not only to straight-line algorithms, but to all algorithns
whi ch can conpute values only by applying various operations to the
input values. Such domains include sets (replacing A by set union and
v by set intersection), strings (replacing A by string concatenation
and omitting v ), and function spaces (replacing A by function
conposition and onitting v ).

Apparently, no one has yet explicitly exhibited a famly of nonotone
Bool ean functions £ {0,1}* - 10,1} such that f has a nonot one
circuit of size polynomal in n but no monotone circuit of size linear
inn . The fanily of functions

n

fn(xl,. . .',xn) = i\_/l/\ {xeXin} s

where the sets X X, are the lines of a projective plane

1n*Xon? -+ 2
whose points are {xl,...,xn} , Is apossibility for such a famly.

Anot her possibility is the famly of functions

m
fn(xl’ Koy ooes Xn> u 1%1 A {xe Xi n} B
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where X TR, correspond to appropriate path:; in a tree of n

l_n’XQn’ e
edges. Perhaps the proofs of Theorems 8andl0 can be extended to give
| ower bounds in these cases. Another open problemis to deternine by how

much di sjunction helps in conmputing sets of conjunctions.
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