
Stanford Artificial Intelligence Laboratory
Memo AIM-28 1.1

J u n e 1 9 7 6
revised March 1977

Computer Science Department
Report No. STAN-CS-76-658

Is “sometime” sometimes better than “always”?
Intermittent assertions in proving

program correctness

bY

Zohar Manna
Artificial Intelligence Lab
Stanford University

= Stanford, Ca.

Richard Waldinger
Artificial Intelligence Center
Stanford Research Institute
Menlo Park, Ca.

Research sponsoreh by

Advanced Research Projects Agency

National Science Foundation
and

Office of Naval Research

COMPUTER SCIENCE DEPARTMENT
Stanford University

Stanford Artificial Intelligence Laboratory June 1976
Memo AXM-28 1.1 revised March 1977

Computer Science Department
Report No. STAN-CS-76-658

. .

Is “sometime” sometimes better than “always”?
Intermittent assertions in proving

program correctness

bY

Zohar Manna
Artificial Intelligence Lab
Stanford University
Stanford, Ca.

Richard Waldinger
Artificial Intelligence Center
Stanford Research Institute
Menlo Park, Ca.

ABSTRACT

This paper explores a technique for proving the correctness and termination of programs
simultaneously. This approach, which we call the intermittent-assertion method, involves
documenting the program with assertions that must be true at some time when control passes
through the corresponding point, but that need not be true every time. The method, introduced
by Burstall, promises to provide a valuable complement to the more conventional methods.

We first introduce the intermittent-assertion method with a number of examples of correctness
and termination proofs. Some of these proofs are markedly simpler than their convetional
counterparts. On the other hand, we show that a proof of correctness or termination by any of
the conventional techniques can be rephrased directly as a proof using intermittent assertions.
Finally, we show how the intermittent assertion method can be applied to prove the validity of

e program transformations and the correctness of continuously operating programs.

This is a revised and simplified version of a previous paper with the same title (AIM-281, June
1976).

This research was supported in part by the Advanced Research Projects Agency under Contract
M DA903-76-C-0206, by the National Science Founclation under Grant GJ-36046, by the ofice of
Naval Research under Contracts AJOOO14-76-C-0687 and N00014-75-C-0816, and by a grant from
the United States-Israel Binational Science Fountlation @SF), Jerusalem, Israel. The United
States Government has at least a royalty-free, non-exclusive and irrevocable license throughout the
world for Government purposes to publish, translate, reproduce, deliver, perform, dispose of, and to
authorize others so to do, all or any portion of this work.

The views and conclusions contained in this document are those of the author(s) and should not be

interpreted as necessarily representing the oficial policies, either expressed or implied, of Stanford ’
University or any agency of the U. S. Government.

Reproduced in the U.S.A. Available from the National Technical information Service, Springfield,
Virginia 22161. . .

Manna f Waldinger

Table of Contents

. .
I. Introduction

II. The Intermittent-Assertion Method: Examples
1. Counting the tips of a tree
2. The Ackermann function
3. The greatest common divisor of two numbers

III. Relation to Conventional Proof Techniques
1. Invariant-assertion method
2. Subgoal-assertion method
3. Well-founded ordering method

--_

IV. Application: Validity of Transformations that Eliminate Recursion

V. Application: Correctness of Continuously Operating Programs

VI. Conclusions

VII. References

Manna f Waldinger

I. Introduction

The most prevalent approach to prove that &’ program satisfies a given property has been the
invariant-assertion method, made known largely through the work of Floyd 119673 and Hoare
[19691. In this method, the program being studied is supplied with formal documentation in
the form of comments, called invariant assertions, which express relationships between the
different variables manipulated by the program. Such an invariant assertion is attached to a
given point in the program with the understanding that the assertion is to hold every time
control passes through the point.

Assuming that an appropriate invariant assertion, called the input spccl,fication, holds at the’
start of the program, the method allows us to prove that the other invariant assertions hold at
the corresponding points in the program. In particular, we can prove that the output
speci.cation, the assertion associated with the program’s exit, will hold whenever control
reaches the exit/If this output specification reflects what the program is intended to achieve,
we have succeeded in proving the correctness of the program.

.

It is in fact possible to prove that an invariant assertion holds at some point even though
control never reaches that point, since then the assertion holds vacuously every time control
passes through the point in question. In particular, using the invariant-assertion method, one
might prove that an output specification holds at the exit even though control never reaches
that exit. If we manage to prove that a program’s output specification holds, but neglect to show
that the program terminates, we are said to have proved the program’s ~UYM corrcclne$J.

A separate proof, by a different method, is required to prove that the program does terminate.
Typically, a termination proof is conducted by choosing a well-founded set, one whose elements
are ordered in such a way that no infinite decreasing sequences of elements exist. (The

e nonnegative integers under the regular greater-than ordering, for example, constitute a
well-founded set.) For some designated label within each loop of the program an expression
involving the variables of the program is then selected whose value always belongs to the

well-founded set. These expressions must be chosen so that each time control passes from one
1 designated loop label to the next, the value of the expression corresponding to the second label

is smaller than the value of the expression corresponding to the first label. Here, “smaller”
means with respect to the well-founded ordering, the ordering of the chosen well-founded set.
This establishes termination of the program, because if there were an infinite computation of
the program, control would traverse an infinite sequence of designated loop labels; the
successive values of the corresponding expressions would constitute an infinite decreasing
sequence of elements of the well-founded set, thereby contradicting the defining property of the
set. This well-founded ordering method constitutes the conventional way of proving the
termination of a program (Floyd 119631).

2

Manna & Waldinger

If a program both terminates and satisfies its output specification, that program is said to be
totally correct.

. .
Burstall [1974] introduced a method whereby the total correctness of a program can be shown
in a single proof. The approach had been applied to specific programs earlier, by Knuth
([19681 Section 2.3.1) and others. This technique again involves affixing comments to points in
the program but with the intention that sometime control will pass through the point and
satisfy the attached assertion. Consequently, control may pass through a point many times
without satisfying the assertion, but control must pass through the point at least once with the
assertion satisfied; therefore we call these comments intermittent assertions. If we prove the
output specification as an intermittent assertion at the program’s exit, we have simultaneously
shown that the program must halt and satisfy the specification. This establishes the program’s
total correctness. Since the conventional approach requires two separate proofs to establish total
correctness, the intermittent-assertion method invites further attention.

We will use the phrase

sometime Q at L

to denote that Q is an intermittent assertion at label L, i.e. that sometime control will pass
through L with assertion Q satisfied. (Similarly, we could use the phrase “always Q at L” to
indicate that Q is an invariant assertion at L.) If the entrance of a program is labelled start and
its exit is labelled finish, we can express its total correctness with respect to an input
specification P and an output specification R by

Theorem: if sometime P at start
then sometime R at finish.

- This theorem entails the termination as well as the partial correctness of the program, because it
implies that control must eventually reach the program’s exit, and satisfy the desired output
specification.

If we are only interested in whether the program terminates, but don’t care if it satisfies any
particular output specification, we can try to prove

Theorem: if sometime P at start
then sometime at finish.

The conclusion “sometime at finish” expresses that control must eventually reach the program’s
exit, but does not require that any relation be satisfied. (It could have been written as
“sometime true at finish”, because the assertion true always holds.)

3

Manna & Waldinger

Generally, to prove the total correctness or termination theorem for a program, we must affix
intermittent assertions to some of the program’s internal points, and supply lemmas to relate
these assertions. The proofs of the lemmas often involve complete induction over a well-founded
ordering (see Manna [1974]). In proving such a lemma we assume that the lemma holds for all
elements of the well-founded set smaller (in the ordering) than a given element, and show that
the lemma then holds for the given element as well.

The intermittent-assertion method has begun to attract a good deal of attention. Different
approaches to its formalization have been attempted, using predicate calculus (Schwarz [1976J),
Hoare-style axiomatization (Wang [19761), modal logic (Pratt [19761), and the Lucid formalism
(Ashcroft f 19761). Topor [19771 applied the method to proving the correctness of the
Schorr-Waite algorithm, a complicated garbage-collecting scheme.

In this paper, we first present and illustrate the intermittent-assertion method with a variety of
examples for proving correctness and termination. Some of these proofs are markedly simpler
than their conventional counterparts. On the other hand, we prove that the
intermittent-assertion method is at least as powerful as the conventional invariant-assertion
method and the well-founded ordering method, in addition to the more recent
subgoal-assertion method (Manna [19711, Morris and Wegbreit [19761) for proving partial
correctness. Finally, we show that the intermittent-assertion method can also be applied to
establish the validity of program transformations, and to prove the correctness of continuously
operating programs, programs that are intended never to terminate.

Manna & Waldinger

II. The Intermittent-Assertion Method: Examples

Rather than present a formal definition of the intermittent-assertion method, we prefer to
illuminate it by means of a sequence of examples. Each example has been selected to illustrate
a different aspect of the method.

1. Counting the tips of a tree

Let us consider a simple program as a vehicle for demonstrating the basic technique. This is
an algorithm to count the tips of a binary tree, those nodes that have no descendents. A
recursive definition of a function tips(tree) that counts the tips of a binary tree tree is

tips(trce) <= if tree is a tip
then 1
else tip3(lejl(tree)) + tips(right(tree)),

where left(tree) and right(tree) are the left and right subtrees of tree respectively.

An iterative program to count the tips of a binary tree tree is

input(tree)
start: stack c (tree)

count c 0
more: if 5tack - ()

then finish: output(count)
else if head(stack) is a tip

then count t count t 1
stack t tail(Gack)
got0 more

else first t head(stack)
stack t /eft(first) 9 [right@st) 9 tail(stack)]
got0 more.

(This program is similar to one used by Burstall in his 119743 paper.) We have used the
notation () to denote the empty list, (x) to denote the list whose sole element is x, and x0 I to
denote the list formed by adding the element x at the beginning of the list 1. [Note that (35) is
the same as x*().1 If the list I is not empty, then head(l) is its first element and tail(l) is the list
of its remaining elements. The indentation of the program indicates that if head(stack) is a tip,
all three instructions following then are to be executed; otherwise, all three instructions
following else are to be executed.

I

5

Manna & Waldinger

This program initially inserts the given tree as the single element of the stack. At each
iteration, the first element is removed from -the stack. If it is a tip, the element is counted;
otherwise, its left and right subtrees are inserted as the first and second elements of the stack.
The process terminates when the stack is empty; count is then the number of tips in the given
tree.

Using intermittent assertions, we can express the total correctness of this program bx the
following theorem

Theorem! if sometime tree = t at start
then sometime count = tips(t) at finish.

This theorem states the termination of the program in addition to its partial correctness,
because it implies that control must eventually reach the program’s exit, and satisfy the

appropriate 0utpl;t specification.

In order to apply the intermittent-assertion method, we supply a lemma to describe the
behavior of the program’s loop. In this case correctness of the program depends on the
following property: if we enter the loop with some element t at the head of the Jtack, then*
eventually the tips of t will be counted and t will be removed from the stack. (Note that we may
need to return to mote many times before the tips of t are counted.) This property is expressed
more precisely by the following lemma:

Lemma: if sometime count - c and stack - te s at mc~e
then sometime count - c t tips(t) and stack - t at more.

The hypothesis count - c in the antecedent allows us to refer to the original value of count in
the consequent, even though the value may have changed subsequently.

It is not difficult to see that this lemma implies the theorem. Suppose

sometime tree - t at start.

Then, following the computation specified by the program, we set stack to (t), count to 0, and
reach more, so that

sometime count - 0 and stack - (t) - t* () at more.

The lemma then tells us, taking c to be 0 and J to be 0, that

sometime count - 0 t tips(t) and stack - () at more.

6

Manna 6 Waldinger

Because we are at more with stack={), the computation proceeds to finish, so that

sometime count - tips(t) at finish,

and the theorem is thereby established.

The proof of the lemma is by complete induction on the structure of t. in other words, we
suppose the antecedent of the lemma, that

sometime count - c and stack = t* s at more,

and we assume inductively that the lemma holds whenever count - c’ and stack - t’e s’, where t’
is any subtree of t. We will then show the consequent of the lemma, that

sometime cou_nl - c t tips(t) and stack = s at more.

The proof distinguishes between two cases, depending on whether or not t is a tip.

Case t is a tip: Then tip(t) = 1 by the recursive definition of tL#u. Since Jtack = te s, it is
. clearly not empty, but its head, t, is a tip. The program therefore increases count by 1 and

removes t from the stack. Thus,

sometime count - c t 1 = c t tips(t) and stack - s at more,

establishing the conclusion of the lemma in this case.

Case t Is not a tip. Then tips(t) = tips(left(t)) t tips(right(t)), by the recursive definition of
tipr. Since t is not a tip, we pass around the else branch of the loop this time: we remove t

e from the Jtack, break it down into its left and right subtrees, replace these on the stack as its
first and second elements, and return to more. Thus,

sometime count - c and stack - left(t)* [right(t). SJ at more

We: can then apply the induction hypothesis [taking c’ to be c, t’ to be left(t) and s’ to be
right(t). $3, since left(t) is a subtree of t. The induction hypothesis tells us that

sometime count - c t tips(left(t)) and stack 3: right(t)* s at more.

Since right(t) is also a subtree of t, we can apply the induction hypothesis again [taking c’ to be
c+tips(left(t)), t’ to be right(t) and s’ to be $3, yielding

sometime count - c t tips(left(t>> t tips(right(t)) and jtack - J at more.

Manna & Waldinger

In other words, since tips(t) - tips(left(t)) t tips(right(t)),

sometime count - c t tips(t) and stack - s at more.

This is the desired conclusion of the lemma.

Note that once the lemma was formulated and the basis for the induction decided, the proofs
proceeded in a fairly mechanical manner. On the other hand, choosing the lemma and the
basis for induction required some ingenuity.

The proof of the lemma called upon the full power of the intermittent-assertion method.
Although the recursive program that defines the tips function can count the tips of a subtree
with a single recursive call, the iterative program may require many traversals of the loop
before the tips of a subtree are counted. The intermittent-assertion method allows us to relate
the point at which we are about to count the tips of a subtree f with the point at which we
have completed the counting, and to consider the many executions of the body of the loop
between these points as a single unit, which corresponds naturally to a single recursive call of
tips(t).

. The conventional invariant-assertion method, on the other hand, requires that we identify a
condition that allows us to relate the situation before and after each single execution of the
body of the loop. There may be no natural connection between these two points; consequently
our invariant-assertion must be exceptionally complete. In this case, such an assertion is

tips(tree) - count +s Gack tip44 at mm

where c
s c stack

tips(s) is the sum of the tips of all the elements of the stack (cf. London

[19751). Once we know this assertion, the invariant-assertion proof is also straightforward.
However, to formulate the above assertion we are required to relate all the elements of the
stack, while to understand the program or to produce the intermittent-assertion proof we only
needed to consider the first element of the stack.

The intermittent-assertion proof established termination at the same time as correctness; to
prove termination by the conventional well-founded ordering approach, we can show that the
value of the pair

(tfps(tree) - count tips(head(stack)))

always decreases in the lexicographic ordering each time we return to more. In other words,
either the first component tips(tree) - count is reduced, or the first component remains fixed

8

Manna f Waldinger

and the second component tips(head(stack)) is reduced. Both components remain nonnegative
at all times. Although finding the above pair requires a bit of ingenuity, this termination proof
is relatively straightforward. In the next section ~6’ will see a program for which the simplest
known conventional termination proof is significantly more complicated than the
intermittent-assertion proof of total correctness.

2. The Ackermann Function

The Ackermann function, denoted by A(x JI), is defined recursively for nonnegative integers x
and r as

A(x y) <= if x - 0
then y+l
els-i if y - 0

then A(x-1 1)
else A(x- 1 A(x y- 1)).

. For example, A(1 I) - A(0 A(1 0)) = A(0 A(0 1)) = A(0 2) - 3.

This function is of theoretical interest, in part because its value grows extremely quickly; for
instance,

2 2
*22

A(44)-22 -3

An iterative program to compute the same function is

9

Manna & Waldinger

Hart: stack1 1 I + x0
stackl21 + . .70
index c, 2

more: If index - 1
then finish: output(stackE 1 I)
else if Jtack[index- 11 = 0

then stackhdex- 11 t stacR[indexb 1
index + index- 1
got0 more

else if stack[index] - 0
then Jtack[index- 1 I + Jtackhdex- 1]- 1

stackltndex] c 1
got0 more

-- ~tack[index+ 11 stack[Index]-else t 1
stack[index] t stack[index- 11

stackhdex- 1 I + stack[fndex- 1 I- 1
index c index+ 1
got0 more.

This iterative program represents a direct translation of the recursive definition. If at some
stage the recursive program is computing

A(SO A($, l a* A(Si, 1 Ji)--)) 9

then at the corresponding stage of the iterative computation

stack - (so q . . . Ji- 1 Ji) and index - i.

Using intermittent assertions, we can express the program’s total correctness by the

Theorem: if sometime xo,yo L 0 at Jtari
then sometime stuck[11 = A(xo yo) at finish.

In proving this theorem we will employ the following lemma,

Lemma; if sometime index - i, i L 2, ttack[l:l-23 - J,
~tackb- 11 = a and Jtack[f] - 6 at mwe,

then sometime index = i- 1, stack[l:i-21 - J
and stackli- 1 I - A(a 6) at more.

10

Manna & Waidinger

Here, J represents a tuple of stack elements. The abbreviation JtackEI : 1-21 - s will be used to
denote that J equals the tuple of elements (stuck[ll &zck[Zl . . . stackI&21); this expression is
included in the hypothesis and the conclusion of the.lemma to convey that the initial segment
of the array, the first i-2 elements, are unchanged when we return to more.

It is straightforward to see that the lemma implies the theorem. For fndex is 2, Jtack[il is x0,
and stack[Z] is y. the first time we reach more. Then the lemma implies that eventually we will
reach more again, with index= 1 and stuck[lI - A(xo ~0). Since index - 1 we then pass to ffnfsh
with the desired output.

To prove the lemma let us suppose

sometime index - i, i 2 2, stuck~l:i-21 = s,
stuck[i- 11 = a and stud&l - 6 at more .

Our proof wi l l be by i n d u c t i o n o n t h e p a i r (stuck[index-11 Jtack[index]) u n d e r t h e
lexicographic ordering over the nonnegative integers; in other words, we will assume the lemma
holds whenever stack[index- 11 = a’ and stucklindexl = b’, where a’ and 6’ are any nonnegative

. integers such that a’ < a, or such that a’ = a and b’ < b, and show that it then holds when
stacklindex- 1 I-a and Jtack[indexI=b, i.e.

sometime index=i- 1, ~a&[1 : i-21=$, and
stuck[i- 1 I=A(u b) at more.

The proof distinguishes between three cases,
recursive definition of the Ackermann function.

corresponding to the conditional tests in t h e

Case a - 0: Then A(a b) = b+l by the recursive definition of the Ackermann function. But
*since index z 1, and Jtuck[index- 11 = a = 0, we return to m o t e w i t h fndex - t- 1 and
stack[i- i] - b+ 1, satisfying the conclusion of the lemma.

Case a > 0, 6 - Or Here, A(a b) - A(u-1 1) by the definition of the Ackermann function.
Be&use index z 1, stucklindex-11 = a z 0 and siuck[indexl - b - 0, we return to more with
index - i, stack[i- 11 - a- 1, and siack[il = 1. Since stuckli- 11 - a- 1 < a, we have

(stack[i- 11 stacklil) - (a- 1 1) ((a 0),

and, therefore, the inductive hypothesis can be applied [taking a’ to be a-l and 6’ to be i], to
yield that

sometime index = i- 1, ~taclt[l:i-21 = J and
Jtuck[i- 11 = A(a- 1 1) at more.

11

Manna & Waidinger

Because A(a 6) = A(a- 1 I), the lemma is established in this case.

Case a > 0, 6 > 0: Then A(a 6) - A(a-1.. A(a b-l)), by the recursive definition. Since
index z 1, sfack[index-11 - a z 0, and stacklindexl - 6 rr 0, we return to more with

index - f+ I,
stack[i- I] - a- 1,
stack[iI - a, a n d
stack[I+ i] - b- 1.

Because index - t+ 1 and (Jtack[il stack[i+ 11) = (a b- 1) ((a b), our induction hypothesis applies
[taking a’ to be a and 6’ to be b- 11, yielding

sometime index - i, stack[l:i-21 - J,
Jtack[i- 11 = a- 1, and stack[fl - A(a b- 1) at more,

Note that we could conclude that stack[i- 11 - a- 1 because the induction hypothesis, for
index - t+ I, states that the first i- 1 array elements are unchanged.

Because index - i and (stackri- 11 Jtack[iI) - (a- 1 A(a b- 1)) < (a b), we can apply the induction
hypothesis once more [taking a’ to be a- 1 and 6’ to be A(a b-1)1, to obtain that

sometime index - i- 1, Jtack[l:ti21 - J,
and stack[l- 1 I - A(a- 1 A(a b- 1)) at more,

which is the desired conclusion in this case.

This completes the intermittent-assertion proof of the total correctness of the Ackermann
program; we believe it reflects our understanding of the way the program works. The
invariant-assertion proof of the partial correctness is quite natural; at each iteration it can be
shown that

A(stack[I I A(JIack[Zl . . . A(Jtack[index- 1 I ~tackhzdexl)...)) - A(Q yo)

at more and, when the program terminates, that

rtack[1 I - A (x0 ro).

On the other hand, the known proofs of the termination of this iterative program using the
conventional well-founded ordering method are extremely complicated, and we challenge the
intrepid reader to construct such a proof.

12

Manna 6 Waidinger

3, The greatest common divisor of two numbers

In the previous two examples, we have applied thcintermittent-assertion method to programs
involving only one loop. The following program, which computes the greatest common divisor
(gcd) of two positive integers, is introduced to show how the intermittent-assertion method is
applied to a program with a more complex loop structure.

We define gcd(x y), where x and y are positive integers, as the greatest integer that divides both
x and y, that is,

gcd(x y) - max{u : u 1 x and u Jy].

For instance, gcd(9 12) - 3 and gcd(l2 25) - 1.

The program is --.

iwut(x y)
start:
more: if x - y

then finish: output(y)
else reducex: if x > 9

then x t x-y
got0 reducex

reducey: if y > x
then y t y-x

got0 reduce3,
got0 more.

This program is motivated by the following properties of the gcd:

gcd(x 9) - y if x = y,
gcd(x y) - gcd(x-y y) if x > y, a n d
gcd(x y) - gcd(x y-x) if y > 3~.

We would like to use the intermittent-assertion method to prove the total correctness of the this
program. The total correctness can be expressed as follows:

Theorem: if sometime x - a, y = b and a,b > 0 at start
then sometime y = gcd(a b) at finish.

To prove this theorem, we need a lemma that describes the internal behavior of the program.

13

p

Manna f Waidinger

Lemma: if sometime x = a, JI - 6, and a > 6 > 0 at reducex
or sometime x - a, y - 6, and 6 > a s 0 at reducey

then sometime 7 - gcttfa 6) at finish.

To show that the lemma implies the theorem, we assume that

sometime x - a, 9 - 6, and a,b > 0 at start.

We must distinguish between three cases.

Case a - 6: Control passes directly to finish. Thus

sometime 9 - b at finish.

But because in this case 6 - gcd(a b), by a given property of the gcd, we have 7 - gcd(a 6) at
finish. --

Case a’ > b: Control passes directly to reducex, so

sometime x - a, y - 6, and a > 6 > 0 at reducex.

The lemma then asserts that

sometime 3 - gcd(a 6) at finish.

Case 6 > a: Here, control passes directly to reduce?, so that

sometime x - a, y - b and b > a > 0 at reducep.

d Again, the lemma yields the desired result.

The proof of the lemma proceeds by induction on a+b. We suppose

sometime 3c - a, fy - 6, and a > b s 0 at reduce%
or sometime x - a, y - 6, a n d b > a > 0 at reducey.

We assume inductively that the lemma holds whenever x - a’ and y I: b', where a’ + 6’ < a + 6,
and show that

sometime y - gcd(a b) at finish.

The hypothesis of the lemma is a disjunction of two possibilities. We consider each possibility
separately.

14

Manna f Waidinger

First, suppose

sometime x - a, JY = 6, and a > 6 > 0 at redwex.

Here control passes around the top inner loop, so that

sometime x = a-b and y = b at reduce%.

For simplicity, let us denote a-b and 6 by a’ and b’, respectively. Note that

a’, b’ > 0
a’ + 6’ < a + 6, and

gcd(a’ 6’) - gcd(a-b b) - gcd(a 6).

This last condition follp,ws by a given property of the gtd. We now distinguish between three
cases.

Case a’ - 6’: Control passes directly to finish, so

sometime 9 - gcd(a’ b’) = gcd(a b) at finish.

Case a’ > 6’: Here

sometime x - a’, y - b’, and a ’ > 6’ > 0 at reduce%.

Because a’ + 6’ < a + 6, we can apply the induction hypothesis to deduce that

sometime y - gcd(a’ 6’) = gcd(a 6) at finish.

Case 6’ > a’: Control passes to reducey and we can apply the induction hypothesis in the same
way.

The second possibility from the hypothesis of the lemma, that

sometime x - a, JI = b, a n d b > a > 0 at reducey,

is disposed of in a symmetric manner. This completes the proof of the total correctness of the
gtd.

It is not difficult to prove the partial correctness of the above program using the conventional
invariant-assertion method. For instance, to prove that the program is partially correct with
respect to the input specification

15

Manna & Waldinger

x0 > 0 and y. > 0

and output specification . .

(where x0 and y. are the initial values of x and 9) we can use the same invariant assertion

x,y > 0 and g& y) - gcd(xo yd

at each of the labels ~OYG, reducex and reducey.

In contrast, the termination of this program is awkward to prove by the conventional
well-founded ordering method, because it is possible to pass from more to teducex, reduce% to
reducey, or from reducey to tnure without changing any of the program variables. One of the
simplest proofs of the termination of the gcd program by this method involves taking the
well-founded set to be the pairs of nonnegative integers ordered by the regular lexicographic
ordering. When the expressions corresponding to the loop labels are taken to be

(x+y 2) a t tn6re,
if x z r then (x+u 1) else (x+y 4) at reduce%, and
if x < r then (x+y 0) else (x+y 3) at reducey,

it can be shown that their successive values decrease as control passes from one loop label to the
next (Katz and Manna 119751). Although this method is effective, it is not the most natural in
establishing the termination of the gcd program.

16

3

Manna & Waidinger

III. Relation to C o n v e n t i o n a l P r o o f Techniques

One question that naturally arises in presenting a new proof technique is its relationship to the
more conventional methods. I n t h e p r e v i o u s section we have seen examples of
intermittent-assertion proofs of correctness and termination that are simpler than any known
conventional counterparts. In this section we will show that the reverse is never the case; in
fact, we can directly rephrase any partial-correctness proof using the invariant-assertion
method as an intermittent-assertion proof. The same result applies to another standard
partial-correctness proof technique, the “subgoal assertion method”. Furthermore, we will show
that any termination proof using the well-founded ordering method can also be expressed
using intermittent assertions instead. Therefore, we can always use the intermittent-assertion
method in place of the established techniques.

To characterize the conventional techniques precisely, we find it convenient to introduce some
new notations, which are. described more fully in Manna [19741. Let x be a complete list of the
variables of a given program, and let x0 denote their initial values. Suppose that we have
designated a special set of labels Lo, L 1, Lh, where Lo and Lh are the program’s entrance

(start) and exit (finish) respectively. It is assumed that each of the program’s loops passes
. through at least one of the designated labels. A path between two designated labels is said to
be basic if it does not pass through any designated label (except at its endpoints). For each
basic path a from label Li to Lj, we let fd(x) denote the condition that must hold for control to

pass from Li along path a to Lj, and we let g&(x) be the transformation of the values of X‘

effected in traversing the path a. Thus, if x = a at Lit and condition t,(a) holds, then control

will pass along path a, reaching Lj with x = g,(a).

We now define the ordering that will enable us to mimic conventional partial-correctness
-proofs by the intermittent-assertion method. Suppose that the program is intended to apply to
inputs satisfying the input specification P(xo). Then the ordering > induced by the computation
is defined as follows:

(a 9) (bj)

if control passes through Li with x = a and then eventually passes through L
j

with x - b, f o r

some computation that initially satisfies the input specification P(x,) and that ultimately
terminates. This ordering is well-founded, because any infinite decreasing sequence in the
ordering would correspond to an infinite computation of the program, but we have only
defined the ordering for finite (terminating) computations.

Now let us see how the concepts we have introduced allow us t o rephrase an

17

Manna 6 Waidinger

invariant-assertion proof of the partial correctness of a program as an intermittent-assertion
proof.

1. invariant-assertion method

Suppose that we have used the invariant-assertion technique to prove that a program is
partially correct with respect to some input specification P(Q) and output specification R(xo x).
Then we have a set of invariant assertions Q&o x), &(x0 xc), Q& x) corresponding to the

designated labels Lo, L 1, Lh, for which we have proved that for every x0 and X:

(1) P(q)) -’ Q&o x0>

(the input specification implies the initial invariant assertion), and

(2) Q(xo xc) =, Rho x)

(the final invariant assertion implies the output specification),

and, for each basic path a from Li to Lj, we have proved the verification condition

(3J Qi(xo X) a n d t&i) => Q (x gjod(x>)

(the invariant assertion before the path implies the invariant assertion after).

Conditions (1) and (3,) establish that each Qi(Xo x) is indeed an invariant auertion at Li; it has

the property that each time we pass through Li, Qi(Xo x) will be true for the current value of x.

Condition (2) then implies that if the program terminates, the desired output specification will
be satisfied. Together, these conditions establish the partial correctness of our program.

From the given prwf of the partial correctness of the program, we can extract an
. intermittent-assertion proof of the same result. The theorem that expresses the partial

correctness in the intermittent-assertion notation is as follows:

Theorem: if sometime x = x0 and P(xo) at start

and the computation terminates
then sometime R(xo x) at finish.

This theorem expresses the partial correctness of the program, because it includes the explicit
assumption that the particular computation being considered terminates. Given the assertions

18

Manna & Waidinger

Q&X0 x) from the invariant-assertion proof, we can construct the following lemma, which will

enable us to prove the partial-correctness theorem:

Lemma: for every i, 0 I i S h,

if somet ime x = a, P(xo) and Qi(Xo a) at Li

and the computation terminates
then sometime R(xo x) at finish.

To prove that the lemma implies the theorem, assume

sometime x -x0 and P(x,) at start
and the computation terminates.

Our invariant-assertion proof includes a proof of (I), that P(Q) -> Q&o x0). That proof can
be incorporated here, to-yield

sometime x = x0, P(x0) and Q&o x0) at Lo
and the computation terminates,

. (because Lo is identical to start). Taking i = 0 in the lemma, we may deduce

sometime R(xo x) at finish,

which is the desired conclusion of the theorem.

To prove the lemma, we suppose

sometime x - a, P(xo) and Qi(Xo a) at Li
and the computation terminates,

for some i between 0 and h. The proof is by induction on the ordering > induced by the
computation. Thus, we assume inductively that the lemma holds whenever x - a’ at LIP, where

(a i)- > (a’ i’).

The proof distinguishes between two cases.

If i - h, we have supposed that

sometime x - a and Q&x0 a) at Lh.

Incorporating the proof of (2) and recalling that Lh is finish, we have

19

Manna C Waldinger

sometime R(xo x) at finish,

which is the desired conclusion of the lemma. -.

On the other hand, if 0 I i < h, control must follow some basic path a to a designated label Lj

For this path, t&(a) must be true, and x - g,(a) when control reaches LJ’ Because Q&x0 a) and

t,(a) are true, we can reproduce the proof of (3,) to deduce that c4(xo g&(a)) is true. Thus

sometime x - g,(a) and Q.xo g&z)) at Lj.

Because x0 has been assumed to satisfy the input specification

computation has been assumed to terminate, we have that
Wx,), and because t h e

(a 0) -Ig&) j>,

by the definition of the ordering induced by the computation, and therefore that

sometime R(xo x) at finish,

by our induction hypothesis.

This completes the proof of the lemma.

We have thus constructed an intermittent-assertion proof of the partial correctness of the
program, assuming that we were given an invariant-assertion proof. In the next section we will
indicate how the same procedure can be applied to subgoal-assertion proofs.

2. Subgoal-asswtion method

The invariant-assertion approach always relates the current values of the program variables to
- their initial values. Another approach for proving partial correctness, the subgoal-assertton

method, relates these variables to their ultimate values when the program halts. We will first
present the method, and then show as before that if we have proved the partial correctness of a
program using this method, then we can rephrase the same proof with intermittent assertions
instead.

Suppose now that we have used the subgoal-assertion method to prove that a program is
partially correct with respect to some input specification P(Q) and output specification R(xo x).

Then we have a set of subgoal assertions f$(x xh), Qy(x xh) , Q$x xh) corresponding to the

20

3

Manna & Waldinger

:#
designated labels Lo, Lr , .*., Lh, with the intuitive meaning that Q&x a$ must hold for the

current value of x as control passes through Li and the ultimate value xh of x when the

computation halts. For these assertions we have proved that for every x0, x and q:

the final subgoal assertion always holds for the final value of x), and

(2*) P(q) and Q&O x$ => R(XO X$

(the input specification and the initial subgoal assertion imply the output
specification),

and, for each basic path-a from Li to Lp we have proved the verification condition

. (3;) $g&) q) a n d f , (x) => L$x q) I

(the subgoal assertion after the path implies the subgoal assertion before).

The subgoal-assertion method works backward through the computation, whereas the

invariant-assertion method works forward. Condition (l*) implies that the final subgoal

assertion always holds. Conditions cd, say that if the appropriate subgoal assertion holds

when control reaches the end of a path, then the corresponding subgoal assertion holds when

control is at the beginning of the path. If the program does terminate, conditions (1’) and (3:)
a
imply that each Q4& x$ is indeed a subgoal assertion at Li; it has the property that each time

we pass through Lip Cl& xh) will be true for the current value of the program’s variables, x,

and I its ultimate value, xh. Condition (2”) then implies that if the program terminates, the

desired output specification will be satisfied. Together, these conditions imply the partial
correctness of the given program.

To contrast the invariant-assertion and the subgoal-assertion method, let us consider a simple
program to compute the gcd:

21

Manna & Waldinger

inputix y)
start:
more: If x-o

then finish: output(y)
else (x y) t (ret+ x) x)

got0 more,

Here, rem(y x) is the result of dividing y by x. The notation (x 7) c (remb x) x) means that the
values of x and JI are simultaneously assigned to be rem(y x) and x, respectively.

To show that this program is partially correct with respect to the Input specification

P(xo yo) : x0 > 0 and y. > 0,

and the output s~ixification

R(q) y. y) : y = gcn(xo yo),

we can employ the invariant-assertions

Qst&rt(xO 7 0 x 7) E P(xo yO) : x0 > 0 and y. > 0

Qmmc(xo yo x 9) : x 2 0 a n d J > 0 a n d gcd(x 9) = g&o jpo)

Qp&o 70 x 7) c Rho 70; y) : y = gc&o 70) .

On the other hand, to prove the same result by the subgoal-assertion method, we can use the
subgoal assertions

Q*ttart(x Y Yh) : x 2 0 and JJ > 0 -> yh - g&(x 3)

The reader may observe that the invariant assertions relate the program variables x and y with
their initial values x0 and y. and the subgoal assertions relate the programs variables with the
ultimate final value of 7, ph.

22

Manna 6 Waldinger

Let us return to the general case. From a given subgoal-assertion proof of the partial
correctness of a program, we can mechanically paraphrase the argument as an
intermittent-assertion proof, just as we did for the invariant-assertion method.. .

The theorem that expresses the partial correctness of the program is again:

Theorem: if sometime x - x0 and P(xo) at start
and the computation terminates
then sometime R(xo x) at finish.

The lemma that we will use in proving the theorem, however, is different from the lemma in
the invariant-assertion case:

Lemma: for every i, 0 S i S h
if sometime x - a and P(xo) at Li--
and the computation terminates

then sometime C&z x) at finish .

. To construct a proof that the lemma implies the theorem, we take I - 0 and extract the

justification for Condition (2*) from the given subgoal assertion proof.

The proof of the lemma is constructed in a way analogous to the earlier invariant-assertion
case. Induction is again based on the ordering > induced by the computation. When f - h we

use the proof of Condition (l”), and if 0 I i < h we use the inductive hypothesis and the proof

of (3;).

* We have remarked that the invariant-assertion method relates the current values of the
program variables to their initial values, whereas the subgoal-assertion method relates the
current values to their final values. The intermittent-assertion technique can imitate both of
these methods because it can relate the values of the program variables at any two stages In the
computation.

3. Well-founded ordering method

The above constructions enabled us to mirror conventional partial-correctness proofs using
intermittent assertions. In fact, we can also use the intermittent-assertion method to express
conventional termination proofs that use the well-founded ordering approach.

23

3

Manna 6 Waldlnger

Suppose that we have used the well-founded ordering approach to prove the termination of a
given program with respect to some input specification P(xo). Then we have found a
well-founded ordering > over a set W, and for some set of designated labels Lo, L t,..., Lh, we

have found a set of invariant assertions Q&X, x), Q&XI> x), Cl,&0 x) and a set of expressions

Eo(xo ~1, E ,(x0 d, . ..9 Eh(xo x) for which we have proved the following conditions for every x0

and x:

(1) P(x,) -> Q&o x0)

(the input specification implies the initial invariant assertion),

(2,) Q&x0 4 and t&) =:> ($(x0 g,(x)) for every basic path a from Li to LJ

(the invariant assertion before the path implies the invariant assertion after),

(3i) Qi(Xo X) => E&x0 X) E W f o r e a c h l a b e l Li

(the value of the expression belongs to W when control passes through Ll), and

(4,) Q&x0 X) a n d &,,&) -> Ei(xo X)) EJbo g,(X))

for every basic path a from Li to Lj

(as control passes from Lf to Lj, the value of the corresponding expression is reduced).

The above conditions establish the termination of the program. Conditions (1) and (2,) ensure
that each Q&co x) is indeed an invariant assertion at Li: whenever control passes through I+,

assertion Q&X0 x) is true for the current value of X. Condition (3) then tells us that each time

control passes through Li, the value of the expression E&Xc x) belongs to W.

I Now, suppose that Conditions (l)-(4) are satisfied but the program does not terminate for some
input x0 satisfying the input specification P(x0). Control then passes through an infinite

sequence of designated labels; the values of the corresponding expressions E&x0 x) constitute an

infinite sequence of elements of W, Condition (4) then implies that this is a decreasing
sequence under the well-founded ordering, thereby contradicting the definition of a
well-founded set. Conditions (l)-(4) therefore suffice to establish the termination of the given
program.

It is our task to transform a proof by the above method into an intermittent-assertion proof of
the termination of the program. The following theorem expresses the desired property

24

Manna & Waldinger

Theorem: if sometime x = x0 and P(x,) at start
then sometime at finish .

Recall that “sometime at finish” expresses the terminat ion of the program in the

. intermittent-assertion notation. We can prove this theorem by establishing the following
lemma

Lemma: for every i, 0 < i I h
if sometime x = a and Qi(Xo a) at Li

then sometime at finish .

To construct a proof that the lemma implies the theorem, we take i to be 0 in the lemma and
incorporate the given proof of Condition (1) into the intermittent-assertion prwf of the
theorem.

To prove the lemma we use induction over the same well-founded ordering > that we
employed in the given termination proof. Suppose that

sometime x - a and Q&Q a) at Li

for some designated label Li. We assume inductively that the lemma holds whenever x - a’ and

Qi(#O a ’) a t Lit, w h e r e Ei(Xo a) > Eit(xo CZ’). If i = h, termination has already occurred.

Otherwise, control must follow some path a from Li to 4, i.e. t,(a) is true. Thus

sometime x - g&(a) at Lj .

Because both Q&X0 a) and t,(a) hold, the proof of Condition (2) enables us to de’duce

(Ij(r, g,(a)). The proof of Condition (3) can be incorporated to yield

Ei(xo a) E W and Ej(Xo g,(a)) E W ,

because both Q&X0 a) and Qj(Xo g,(a)> are true. By Condition (4) then, we have

E&x0 4) EJ(xo g,(4) .

We can now use the induction hypothesis, with t’ = j and a’ = g&(a), yielding the desired
conclusion

sometime at finish.

25

Manna & Waldinger

In this section we have shown how proofs by the conventional methods for establishing partial
correctness and termination of programs may be translated into intermittent-assertion proofs of
the same results. The translation process is purely mechanical and does not increase the
complexity of the proof. For this reason we can conclude that in employing the
intermittent-assertion method we have not lost any of the power of the existing methods.

Is it possible that a similar translation could be performed in the other direction? For
example, couldn’t we devise a procedure for translating any partial-correctness proof by the
intermittent-assertion method into a conventional invariant-assertion proof of comparable
complexity? We believe not. We have seen no invariant-assertion proof for the tip program
that does not require consideration of the sum of the tips of ail the elements in the stack. We
have seen no termination proof of the iterative Ackermann program by the conventional
method that employs such a simple well-founded ordering as the intermittent-assertion proof.
Without formulating a precise notion of the “complexity” of a proof, we cannot argue rigorously
that the intermittent-assetion method is strictly more powerful than the conventional. methods,
but our experience and our intuition lead us to maintain that this is so.

26

Manna f Waidinger

IV. Applioation: Validity of Trans fo rmat ions Tha t
Eliminate Recursion

In discussing the tips program (Section II-I) we remalked that part of the difficulty in proving
the correctness of the program arose because the program was developed by introducing a stack
to remove the recursion from the original definition. It has been argued (e.g. Knuth [19743,
Burstaii and Darlington [19’75], Gerhart [1975]) that, in such cases, we should first prove the
correctness of the original recursive program, and then develop the more efficient iterative
version by applying one or more transformations to the recursive one. These transformations
are intended to increase the efficiency of the program (at the possible expense of clarity) while
still maintaining its correctness.

If we were applying this methodology in producing our tips program, therefore, we would first
prove the correctness of the recursive version (a trivial task, since that version is completely
transparent); we would then develop the iterative tips program by systematically transforming
the recursive program” -- removing its recursion and introducing a stack instead.
Consequently, the proof we presented in Section II would be completely unnecessary, since the
program would have been produced by applying to a correct recursive program a sequence of
transformations that are guaranteed not to change that program’s specifications.

To realize such a plan, however, we must be certain that the transformations we use are valid;
i.e. that they actually do produce a program equivalent to the original one. Given the same
input, the two programs must be guaranteed to return the same output. In other words, we
must be certain that bugs cannot be introduced during the transformation process.

In this section we will illustrate how intermittent assertions can be employed to establish the
validity of such transformations. We will present the intermittent-assertion proof of the
validity of a transformation that removes a recursion by introducing a stack. This
transformation could have been used to produce our iterative tips program from its recursive
definition.

Suppose we have a recursive program of form

F(x) <= if p(x)

then f(x)

else Mg 1 (x>) F(g&X))).

(For simplicity, let us assume that p, f, gl, g2 and h are defined for all arguments). If we know
that

27

Manna 6 Waldinger

(1) Mu NV w)) - h(lr(u v) w) for every u, v and w
(A is associative), and

(2) Ne 4 = u for every u
(e is a left identity of n),

then we can transform our program into an equivalentdterative program, of form

input(x)
sfcwt: stack + (x)

xte
VloYe: If stack = ()

then finish: output(x)
else if p(head(slock))

-- then z t h(r f(head(stack)))
stack c tail(stack)
got0 more

else first c head(stack)
stack t g #rst) l [g&W) l tatl(stack)J
got0 more

The validity of this transformation is expressed by the following two theorems,

Theorem I I if sometime x = a at start
and F(a) is defined
then sometime x = F(a) at finish.

- and

Theorem 2: if sometime x = a at start
and the iterative computation terminates
then F(a) is defined.

Theorem I contains the condition that F(a) is defined (that the recursive computation of F with
input a will terminate). This condition is necessary for, otherwise, the iterative program will
not terminate, and therefore control will never reach ftnish at all. If we succeed in proving
Theorem 1, we will have established that the iterative program terminates whenever the
original recursive program does, and returns the same output; in other words, the iterative
program computes an extension of the function computed by the recursive program, rather than

the exact same function. Theorem 2 shows that the recursive program halts whenever the

28

Manna & Waldinger

iterative program does. Together, Theorems 1 and 2 imply that the recursive and iterative
programs are equivalent. The proof of Theorem 1 is analogous to the proof of the total
correctness of the tips program; it can be proved using the following lemma:

Lemma 1: if sometime x = c and stack = aes at more
and F(a) is defined
then sometime z = h(c F(a)) and stack - s at more.

To show that the lemma implies Theorem 1, assume

sometime x = a at start

and that F(a) is defined. Then immediately control passes to more, so that

sometime z = e and stack = (a) = a* () at more.--

By the lemma [taking c to be e and s to be ()I, we have

sometime 2 - h(e F(a)) and stack = () at more.

But h(e F(a)) = F(a) by Property (2), that e is a left identity of h. Because stack is 0, control
passes to finish, and we deduce

sometime z = F(a) at finish,

which is the desired conclusion of the theorem.

To prove the lemma, suppose

a
sometime r - c and stack = a9 s at more,

where F(a) is defined. The proof employs complete induction on a, over the ordering > induced
by the recursive computation. This is the ordering such that

d>d’,

where F(R) is called recursively during the computation of F(d), and where the computation of
F(d) terminates. In particular, if F(d) is defined, d > gr(d) and d > g&d). This ordering’ > is
well-founded, because an infinite decreasing sequence in the ordering would correspond to an
infinite, nonterminating computation of the recursive program, but the ordering has only been
defined for finite (terminating) computations.

29

Manna & Waldinger

We will assume inductively that the lemma holds whenever z - c’ and stack = a’~ s’, where a > a’
in the ordering > induced by the recursive computation, and show that it holds when r = c and
stack I: aa s as well. We distinguish between two cases, depending on the truth of p(a).

Case p(u) Is true: Then F(a) - j(a), by the recursive definition of F. Because u is at the
head of the stack, the duck is not empty and p(head(stack)) is true; therefore we follow the then
branch of the program, so that

sometime z - h(cfla)) and stack - s at moye.

But flu) - F(a), so we have

sometime z - h(c F(a)) and stack = s at more,

which is the desired conclusion.

Case p(a) Is false: Here F(a) - h(F(gl(a)) F(g&))), by the recursive definition of F. Note
that F(u) is defined; therefore F(gl(a)) and F(g&z)> are also defined. Because stack is not empty
and p(head(stack)) is false, control follows the else branch of the loop body, so that

sometime z - c and stack = gr(u)o [g*(a)* s] at more.

Recall that a > g&z), because we have assumed that F(a) is defined; therefore we can apply the
induction hypothesis [taking c’ to be c, a’ to be gl(a), and J’ to be g&u)*J] to obtain

sometime 2 - d(c F(g@))) and stack = g2(a)e s at mote.

Because a > g&z), we can apply the induction hypothesis a second time [taking c’ to be

- NC F(g , (d)), a’ to be g*(a), and s’ - 51. We derive

sometime x - h(h(c F(g l(a))) F(g&D) and stack = s at mote.

’By the associativity of h (Property (I)), and the recursive definition of F, we have

WC F(g&))) F(g&d)) - NC NF(gl (a)) F(g&a)))) = h(c F(u)).

Therefore we can conclude

sometime z = h(c F(u)) and slack - s at more,

completing the proof of the lemma.

30

Manna & Waldinger

So far we have only establ ished Theorem 1 , that the funct ion computed by the i terat ive
program is an extension of the function computed by the recursive program. We still need to
prove Theorem 2, that if the iterative program terminates, then the recursive program also
terminates. This proof depends on another lemma.

Lemma 2: if sometime z = c and slack = a* s at more
and the iterative computation terminates
then F(a) is defined.

Lemma 2 implies Theorem 2 directly, because the stack is initialized to (a) = a*().

The proof of the lemma employs induction over the ordering > induced by the iterative

computation. In this ordering, (ci sl) > (c2 s2), where cl and c2 are successive values of the’

variable z at More, and sl and s2 are successive values of the stack at more, during a
terminating computation-of the iterative program.

To prove the lemma, suppose that

sometime z - c and stack = a’s at more,

and that the iterative computation terminates. We assume inductively that the lemma holds

w h e n e v e r z = c ’ and slack = a’*~’ where (c a* s) > (c’ a’4) in the order ing induced by the

computation, and show that F(a) is then defined.

We distinguish between two cases.

Case p(a) is true: Here F(a) = f(a) by the recursive program, and therefore F(a) is defined.

Case p(a) Is false:a Here F(a) = h(F(gt(a)) F(g2(a))), by the recursive program. Since NCR is

not empty and p(head(stack)) is false, the iterative computation follows the else branch, so that

sometime z - c and stack = gl(a)~[g2(a)asJ at more.

Because the computation was assumed to terminate, we have that

(C a4) (c gl(d4g2(a)- sl),

and therefore, by our induction hypothesis, that

F(g,(a)) is defined.

By Lemma I, we have that

31

Manna C Waidlnger

sometime 2 - h(c F(gl(a))) and stack = g2(a)-s at more.

Again, by the induction hypothesis, we have t..at F(g,(a)) is defined. Because both F(g,(u)) and

F(g2(a)) are defined, and F(a) = lI(F(gl(a)) F(g&a))), we can conclude that F(a) is defined.

We have just shown the validity of the transformation that was actually used to produce the
iterative tips program in Section 11-L As in that section, we could have used the conventional
invariant-assertion technique in the proof of Theorem 1. However, although we could employ

the standard c notation to denote repeated applications of the + operation in the tips

invariant assertion, we would have had to invent a new notation to denote repeated application
of the function h in the invariant assertion for the iteratiye program here.

In the next section we will discuss an entirely different application of the intermittent-assertion
method.

32

Manna & Waldinger

V . Applioation: Correotness of Continuously Operating

Programs . .

Conventionally, in proving the correctness of a program, we describe its expected behavior in
terms of an output specification, which is intended to hold when the program terminates. Some
programs, such as operating systems, airline-reservation systems and management information
systems, however, are never expected to terminate. Such programs will be said to be
continuously operating (see, for example, Francez and Pneuli [19771). The correctness of
continuously operating programs therefore cannot be expressed by output specifications, but
rather by their intended behavior while running.

Furthermore, we conventionally describe the internal workings of a program with an invariant
assertion, which is intended to hold every time control passes through the corresponding point.
The description of the workings of a continuously operating program, however, often involves
a relationship that sake event A is inevitably followed by some other event B. Such a
relationship connects two different states of the program and, generally, cannot be phrased as
an invariant assertion.

. In other words, the standard tools for proving the correctness of terminating .programs,
input-output specifications and invariant assertions, are not appropriate for continuously
operating programs. The intermittent-assertion method provides a natural complement here,
both as a means for specifying the internal and external behavior of these programs, and as a
technique for proving the specifications correct.

We will use one very simple example, an imaginary sequential operating system, to illustrate
this point:

more: read(requests)
setup: i4 requests - ()

then goto more
else (lob requests) t (head(requests) taU(requests))

execute: process(job)
got0 setup.

At each iteration this program reads a list, requests, of jobs to be processed. If requests is
empty, the program will read a new list, and will repeat this operation indefinitely until a
nonempty request list is read. The system will then process the jobs one by one; when they are
all processed, the system will again attempt to read a request list.

What we wish to establish about this program is that if a job j is read into the request list, it

33

3

Manna & Waldinger

will eventually be processed. Although this claim is not representable as an input-output
specification, it is directly expressed in the following

. .

Theorem; if sometime j E requests at setup
then sometime job - j at execute.

Here, j E requc~t~ means that j belongs to the list of current requests.

To prove the theorem, assume that

sometime j E request3 at setup.

Then requests is not empty and is of the form

aj 0, --

.

where a and (3 are the sublists of jobs occuring before and after j, respectively, in the request
list. Our proof will be by complete induction on the structure of a: we assume the theorem
holds whenever requests is of form

for any sublist a’ of a. The proof distinguishes between two cases

Case a - 0: T h e n j = head(requeJts). S i n c e requcJtJ z (), w e r e a c h e x e c u t e w i t h

job - Acad(requests) - j, satisfying the conclusion of the theorem.

Case a z 0: Then a - head(a)@ tail(a). Because again requests z (), we process job - head(a),
- and return to setup with requests reset to tail(a) j 0. Since W(a) is a sublist of a, we can

conclude from our inductive assumption that

sometime job = j at execute,

- as we had hoped.

This program is very simple, but it may serve to suggest how the intermittent-assertion method
can be applied to the more realistic examples.

Note that when we make a statement of form

if sometime P at L1
then sometime Q at Lz,

34

Manna & Waldinger

we do not necessarily imply that condition Q is satisfied at L2 after condition P is satisfied at

Lr; in fact, condition Q could hold before condition P. Thus, in the above example, we should
be perfectly content if some especially fast operating system were able to process the job before
it was submitted. In fact, the proof techniques that we have used in this paper will only allow
us to prove an implication of the above form if Q holds at L2 after P holds at LI. Additional
techniques would be necessary if we wanted to prove such an implication if Q actually holds
before P.

Throughout this paper, in proving an implication of the above form, we have tacitly assumed
that conditions P and Q are satisfied at different stages of the same computation. It is possible
to relax this assumption and relate different computations by extending our notation
appropriately. We believe one could then apply the intermittent-assertion method to prove
properties of nondeterministic and concurrent programs as well.

35

Manna f Waidinger

VI. Conolusions

The intermittent-assertion method not only- serves as a valuable tool, but also provides a
general framework encompassing a wide variety of techniques for the logical analysis of
programs. Diverse methods for establishing partial correctness, termination, and equivalence fit
easily within this framework. Furthermore, some proofs, naturally expressed with intermittent
assertions, are not as easily conveyed by the more conventional methods.

It has yet to be determined which phases of the intermittent-assertion proof process will be
accessible to implementation in verification systems. If the lemmas and the well-founded
orderings for the induction are provided by the programmer, to construct the remainder of the
proof appears to be fairly mechanical. On the other hand, to find the appropriate lemmas and
the corresponding orderings may require some ingenuity. We believe that the
intermittent-assertion method will have practical impact because it allows us to incorporate our
intuitive understanding about the way a program works directly into a proof of its correctness.

Acknowledgements

We would like to thank Rod Burstall and Nachum Dershowitz for many helpful discussions
related to this work. We would also like to thank Ed Ashcroft, Edsger Dijkstra and Jim King

. for their careful critical reading of the manuscript, and their many suggested revisions.

VII. Referenoes

Ashcroft, E.A. [Nov. 19761, Intermittent-assertion proofs in LUCID, Research Report,
University of Waterloo, Waterloo, Canada.

- Burstail, R.M. [Aug. 19743, Program proving as hand simulation with a little
inciuction, I n f o r m a t i o n Processing 1974, North-Holland Publishing
Company, Amsterdam, pp. 308-312.

Burstail, R.M. and Darlington, J. [Apr. 19751, Some transformations for developing
recursive programs, Proceedings of In ternationai Conference on Reliable
Software, Los Angeles, Ca., pp. 465-472,

Floyd, R.W. [MT], Assigning meaning to programs, Proceedings of Symposium in

36

Manna 6 Waldinger

Applied Mathematics, V. 19 (JT. Schwartz, ed), American Mathematical
Society, pp. 19-32.

Francez, N. and Pnueli, A. 119771, A proof method for cyclic programs, Acta
Informatica (to appear).

Gerhart, S.L. [Jan. 19751, Correctness-preserving program transformations,
Proceedings of the Second Symposium on Principles of Programming
Languages, Palo Alto, Ca., pp. 54-65.

Hoare, C.A.R. [Oct. 19691, An axiomatic basis of computer programming, CACM, Vol.
12, No. 10, pp. 576-580, 583.

Katz, S.M. and Manna, Z. [Dec. 19751, A closer look at termination, Acta Informatica,
Vol. 5, pp. 333-352.

Knuth, D.E. [19681, The Art of Computer Programming, Volume I: Fundamental
Algorithms, Addison-Wesley Publishers, Reading, Mass.

Knuth, D.E. [Dec. 19741, Structured programming with goto statements, Computing
Surveys, Vol. 6, No. 4, pp. 261-301.

London, R.L. [April 19751, A view of program verification, Proceedings of the
International Conference on Reliable Software, Los Angeles, Ca., pp.
534- 545.

Manna, Z. [June 19711, Mathematical theory of partial correctness, Journal of
Computer and System Sciences, Vol. 5, No. 3, pp. 239-253.

Manna, Z. [19741, Mathematical Theory of Computation, McGraw-Hill Book
. Company, New York, N.Y.

1 Morris, J.H. and Wegbreit, B. [Feb. 19761, Subgoal induction, Memo, Xerox Research
Center, Palo Alto, Ca.

Pratt, V.R. [Oct. 19761, Semantical considerations on Floyd-Hoare logic, Proceedings
of the 17th Symposium on Foundations of Computer Science, Houston,
Texas, pp. 109-121.

Schwarz, J. [July 19761, Event-based reasoning - A system for proving correct
termination of programs, Proceedings of the Third International Colloquium
on Automata, Languages and Programming, Edinburgh, Scotland, pp.
131-146.

37

Manna b Waldinger

Topor, R.W. [1977], A simple proof of the Schorr-Waite garbage cdlecttan algorithm,
Acta Informatica (to appear).

Wang, A. 119763, An axiomatic basis for @wing total correctness of goto-programs,
BIT, Vol. 16, pp. 8th 102.

38

