CALCULATI ONOF I NTERPOLATI NG NATURALSPLI NEFUNCTI ONS using de BOOR'S PACKAGE FOR CALCULATING WITH B-SPLINES

by

John G Herriot

STAN CS- 76-569

OCTOBER 1976

COMPUTER SCI ENCE DEPARTMENT School of Humanities and Sci ences STANFORD UN VERSI TY

Calculation of Interpolating Natural Spline Functions Using de Boor's Package for Calculating with B-Splines

by
John G. Herriot
Computer Science Department Stanford University Stanford, California 94305

Abstract

. A FORTRAN subroutine is described for finding interpolating natural splines of odd degree for an arbitrary set of data points. The subroutine makes use of several of the subroutines in de Boor's package for calculating with B-splines. An ALGOL W translation of the interpolating natural spline subroutine and of the required subroutines of the de Boor package are also given. Timing tests and accuracy tests for the routines are described.

The work of this author was supported in part by the National Science Foundation under grant number MCS71-01996-A06.

Table of Contents

1. Introduction 1
2. B-Splines 3
3. Representation of the Interpolating Spline 8
4. The FORTRAN Subroutine 14
5. The ALGOL W Procedure 20
6. Tests 22
References 28
Appendix I 29
Appendix II 37

We now explain how a piecewise polynomial function can be expressed as a linear combination of B-splines. Let $\boldsymbol{\xi}=\left(\bar{\xi}_{i}\right)_{i}^{\ell+1}$ be a strictly increasing real sequence and let k be a positive integer. If P_{1}, \ldots, P_{ℓ} is any sequence of ℓ polynomials, each of order k (or, degree $<k$) then we define a corresponding piecewise polynomial f of order k by the prescription

$$
f(t)=P_{i}(t) \quad \text { if } \xi_{i}<t<\xi_{i+1} ; \quad i=1,2, \ldots, \ell .
$$

We arbitrarily make f continuous from the right at the interior breakpoints, i.e.,

$$
f\left(\xi_{i}\right)=f\left(\xi_{i}^{+}\right) \quad \text { for } i=2, \ldots, \ell .
$$

We denote the collection of all such piecewise polynomial. functions of order k with breakpoint sequence $\xi=\left(\xi_{i}\right)_{i=1}^{\ell+1}$ by

$\mathbb{P}_{k, \xi}$

- Note that $\mathbb{P}_{k, \xi}$ is a linear space of dimension $k \ell$ since it is isomorphic to the direct product of ℓ copies of \mathbb{P}_{k}, the linear space of all polynomials of order k (degree $<k$) . A convenient way to represent a piecewise polynomial function $f \in \mathbb{P}_{k, \xi}$ is by

$$
\begin{equation*}
f(t)=\sum_{r=1}^{k} C_{r, i}\left(t-\xi_{i}\right)^{r-1}, \quad \xi_{i} \leq t<\xi_{i+1}, i=1,2, \ldots, \ell \tag{2.7}
\end{equation*}
$$

where $C_{r, i}=D^{r-1} f\left(\xi_{i}^{+}\right) /(r-1): r=1, \ldots, k ; i=1, \ldots, \ell$. Then the j-th derivative of f at a point t is given by

$$
\begin{equation*}
\operatorname{Djf}(t)=\sum_{r=j+1}^{k} C_{r, i}\left(t-\xi_{i}\right)^{r-l-j}(r-1): /(r-l-j)!. \tag{2.8}
\end{equation*}
$$

We often wish to impose upon f the conditions that it have a certain number of continuous derivatives. We may write such conditions in the form

$$
\begin{equation*}
\operatorname{jump}_{\xi_{i}} D_{f}^{j-1}=0, \text { for } j=1, \ldots, v_{i}, \quad i=2, \ldots, I \tag{2.9}
\end{equation*}
$$

for some vector $\nu=\left(\nu_{i}\right)_{2}^{l}$ with nonnegative integer entries. The subset of all $f \in \mathbb{P}_{k, \xi}$ satisfying (2.9) for a given ν is a linear subspace of $\mathbb{P}_{k, \xi}$ which we denote by $\mathbb{P}_{k, \underline{\xi}, \underline{v}}$.

In order to obtain the B-spline representation of a piecewise polynomial function $f \in \mathbb{P}_{k}$, $\mathcal{\xi}$, v we need the following theorem which was proved by Curry and Schoenberg [5] and by de Boor [4].

Theorem. For a given strictly increasing $\xi=\left(\xi_{i}\right)_{l}^{\ell+1}$, and given nonnegative integer sequence $\nu=\left(\nu_{i}\right)_{2}^{\ell}$, with $\nu_{i}<k$, all i, set

$$
\begin{equation*}
n=k+\sum_{i=2}^{\ell}\left(k-v_{i}\right)=k \ell-\sum_{i=2}^{\ell} v_{\underline{i}}=\operatorname{dim} \mathbb{P}_{\underline{k}, \underline{\underline{\xi}}, \underline{v}} \tag{2.10}
\end{equation*}
$$

and let $t=\left(t_{i}\right)_{l}^{n+k}$ be any non-decreasing sequence so that
(i) $\quad t_{1} \leq t_{2-} \leq \ldots \leq t_{k} \leq \xi_{\mathfrak{l}}, \quad \xi_{\ell+1}<t_{n+1} \quad \ldots \leq t_{n+k}$
(ii) for $i=2, \ldots, \ell$, the number ξ_{i} occurs exactly $k-\nu_{i}$ times in t.

Then the sequence $N_{l, k}, \ldots, N_{n, k}$ of B-splines of order k (or degree $k-l$) corresponding to the knot sequence \underline{t} is a basis for $\mathbb{P}_{k, \underline{\xi}, \underline{v}}$ considered as functions on $\left[t_{k}, t_{n+1}\right]$.

From this theorem we see that the B-spline representation for the piecewise polynomial function $f \in \mathbb{P}_{\mathbf{k}, \underline{\underline{\xi}}, \underline{\underline{y}}}$ is

$$
f(t)=\sum_{r=i-k+1}^{i} a_{r} N_{r, k}(t),\left\{\begin{array}{l}
t_{i} \leq t<t_{i+1} \text { and } k<i<n \\
\text { or } t_{i} \leq t \leq t_{i+1} \text { and } i=n
\end{array}\right.
$$

where $a=\left(a_{i}\right)_{l}^{n}$ are the coefficients of f with respect to the B-spline
basis $\left(N_{i, k}\right)_{l}^{n}$ for $\mathbb{P}_{k} \xi y$ on the knot sequence t. Then the j-th derivative of f at a point t is given by

$$
\begin{equation*}
\operatorname{Djf}(t)=\sum_{r=i-k+j+1}^{i} a_{r}, j+1^{N} r, k-j(t) \tag{2.12}
\end{equation*}
$$

where

$$
a_{r, j+1}= \begin{cases}a_{r} & , \tag{2.13}\\ \\ (k-j) \frac{a_{r j}-a_{r-l, j}}{t_{r+k-j}-t_{r}}, & j>0\end{cases}
$$

$$
\begin{gathered}
\text { provided that either } t_{i}<t<t_{i+1} \text { and } k<i<n \\
\text { or } t_{i} \leq t \leq t_{i+1} \text { and } i=n .
\end{gathered}
$$

3. Representation of the Interpolating Spline.

Given a set of data points $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$, $\mathrm{i}=\mathrm{N} 1, \mathrm{~N} 1+1, \ldots, \mathrm{~N} 2$ with
$\mathrm{x}_{\mathrm{N} 1}<\mathrm{x}_{\mathrm{N} 2}<\ldots .<\mathrm{x}_{\mathrm{N} 2}$, we seek the interpolating natural spline function $S(x)$ of degree $2 m-1$ with knots $\mathrm{x}_{\mathrm{N} 1}, \ldots, \mathrm{x}_{\mathrm{N} 2}$. For convenience in the FORTRAN implementation of the algorithm we shall assume throughout that $\mathrm{N} 1=1 . \quad$ Then N 2 is the number of data points. For our interpolating natural spline $S(x)$ we wish to make use of the B-spline representation given in equation (2.11) and the theorem on which it is based. We choose $k=2 m, \quad l=N 2-1$. Since $D^{j-1} S(x), j=1,2, \ldots, 2 m-1$, are continuous at all interior knots, we have $\nu_{i}=2 m-1$, all i, and we easily find that $n=N 2+2 m-2$. We choose

$$
\begin{array}{ll}
t_{i} & =x_{1} \quad, \quad i=1,2, \ldots, 2 m \\
t_{2 m+i-1} & =x_{1} \quad, \quad i=2,3, \ldots, N 2-1 \tag{3.1}\\
t_{N 2+2 m+i-2}=x_{N 2} \quad, \quad 1 \quad=112, \ldots, 2 m .
\end{array}
$$

The knot distribution is shown in Figure 1.

From equation (2.11) we have the B-spline representation

Now $S(x)$ must satisfy the interpolating conditions

$$
\begin{equation*}
S\left(x_{i}\right)=y_{i}, \quad i=1,2, \ldots, N 2 \tag{3.3}
\end{equation*}
$$

and the natural spline end conditions

$$
\begin{equation*}
D^{j} S\left(x_{1}\right)=D^{j} S\left(x_{\mathrm{N} 2}\right)=0, j=m, m+1, \ldots, 2 m-2 \text { if } m>1 \tag{3.4}
\end{equation*}
$$

Substituting equation (3.2) into equations (3.3) and (3.4) we obtain the following set of equations for the determination of the a_{r} :

$$
\begin{align*}
& D^{j} S\left(x_{1}\right)=\sum_{r=1}^{2 m} a_{r} \dot{D}^{j} N_{r, 2 m}\left(x_{1}\right)=0, j=m, m+1, \ldots, 2 m-2 \tag{3.5}\\
& S\left(x_{i}\right)=\sum_{r=i}^{2 m+i-1} a_{r} N_{r, 2 m}\left(x_{i}\right)=y_{i}, i=1,2, \ldots, N 2 \tag{3.6}\\
& D^{j} S\left(x_{N 2}\right) \quad=\sum_{r=N 2-1}^{N 2+2 m-2} a_{r} D^{j} N_{r, 2 m}\left(x_{N 2}\right)=0, j=m, m+1, \ldots, 2 m-2 . \tag{3.7}
\end{align*}
$$

We now show that these equations lead to a (2m-1)-banded system of linear equations for the determination of the a_{n}. In Section 2 it was pointed out that $N_{r, 2 m}(t)$ is positive for $t_{r}<t<t_{r+2 m}$ and zero . otherwise. From equation (2.5) we conclude that at a knot t_{j} of multiplicity $d_{j}, D^{s} N_{r, 2 m}(t)$ is continuous for $s=0,1, \ldots, 2 m-1-d_{j}$. In-particular, if $d_{j}=2 m-1$, then $N_{r}, 2 m(t)$ is continuous at t_{j} but none of its derivatives is continuous at f_{J}. . If $\mathrm{d}_{\mathrm{y}}=2 \mathrm{~m}$, then even $N_{r, 2 m}(t)$ is discontinuous at t_{j}. For the coefficients in equations (3.6) we therefore conclude that

$$
\left.\begin{array}{l}
N_{1,2 m}\left(x_{1}\right) \neq 0, \quad N_{r, 2 m}\left(x_{1}\right)=0, r=2,3, \ldots, 2 m \\
N_{2 m+i-1,2 m}\left(x_{i}\right)=0 \\
N_{r, 2 m}\left(x_{i}\right) \neq 0, \quad r=i, \ldots, 2 m+i-2
\end{array}\right\} \begin{aligned}
& i=2,3, \ldots, N 2-1 \\
& N_{N 2+2 m-2,2 m}\left(x_{N 2}\right) \neq 0, \quad N_{r, 2 m}\left(x_{N 2}\right)=0, r=N 2, \ldots, N 2+2 m-3 .
\end{aligned}
$$

For the coefficients in equation (3.5) we find that

$$
\left.\begin{array}{rl}
D^{j_{N_{r, 2 m}}\left(x_{1}\right)} \neq 0, & r=1,2, \ldots, j+1 \\
& =0, \quad r=j+2, \ldots, 2 m
\end{array}\right\} \quad j=m, m+1, \ldots, 2 m-2
$$

and for the coefficients in (3.7)

$$
\left.\begin{array}{rl}
D^{j_{N}}{ }_{r}, 2 m \\
\left(x_{N N 2}\right) & =0, \quad r=N 2-1, \ldots, N 2+2 m-3-j \\
& \neq 0, \quad r=N 2+2 m-2-j, \ldots, N 2+2 m-2
\end{array}\right\} j=m, \ldots, 2 m-2 .
$$

If we denote the non-zero coefficients of the system of equations given by (3.5), (3.6), (3.7) by x, then the coefficient matrix has the form:

We have boxed the coefficients of a_{1} and $a_{N 2+2 m} 2$ to emphasizethe fact that these two coefficients can be calculated at once and eliminated from the remaining equations yielding a banded matrix with mol subdiagonals and $m-1$ superdiagonals. We use the first and last equations of (3.6) to obtain

$$
\begin{aligned}
& a_{1}=y_{1} / N_{1}, 2 m\left(x_{1}\right) \\
& a_{N 2+2 m-2}=y_{N 2} / N_{N 2+2 m-2,2 m}\left(x_{N 2}\right)
\end{aligned}
$$

Then from (3.5) and (3.7) we have

$$
\begin{align*}
\sum_{r=2}^{j+1} A_{r} D^{j} N_{r, 2 m}\left(x_{l}\right)=-a_{l} D^{j} N_{l, 2 m}\left(x_{l}\right)
\end{aligned} \quad \begin{aligned}
& j=m, m+l, \ldots, 2 m-2 \tag{3,8}
\end{align*}
$$

and

$$
\begin{gathered}
\sum_{r=N 2+2 m-2-j}^{N 2+2 m-3} A_{r} D^{j}{ }_{f, r}^{N} 2 m\left(x_{N 2}\right)=-a_{N N 2+2 m-2} D^{j} N_{N 2+2 m-2}\left(x_{N 2}\right)(3.9) \\
\\
j=2 m-2, \ldots, m .
\end{gathered}
$$

The remaining equations are given by (3.6) with the first and last equations omitted. Now we have a banded system; the unknowns are $a_{2}, a_{3}, \quad{ }^{*} y \operatorname{yN} 2+2 m-3$ which we rename $z_{1}, z_{2}, \ldots, z_{N 2+2 m-4}$. We note that the diagonal elements of the system matrix are in order

$$
\begin{aligned}
& D^{m} N_{2,2 m}\left(x_{1}\right), D^{m+1} N_{3}, 2 m \\
& \left(x_{1}\right), \ldots, D^{2 m-2} N_{m, 2 m}(x) \\
& N_{m+1,2 m}\left(x_{2}\right), N_{m+2,2 m}\left(x_{3}\right), \ldots, N_{N 2+m-2,2 m}\left(x_{N 2-1}\right) \\
& D^{2 m-2} N_{N 2+m-1,2 m}\left(x_{N 2}\right), D^{b-3} N_{N 2+m, 2 m}\left(x_{N 2}\right), \ldots, D^{m} N_{N 2+2 m-3,2 m}\left(x_{N 2}\right) .
\end{aligned}
$$

The subdiagonal and superdiagonal elements are also values and derivatives of B-splines evaluated at the knots.
All the elements of this matrix are calculated by using the subroutines of de Boor's B-spline package [4]. The elements of the matrix are stored in diagonal form for use of the band matrix solver subroutines BANDET and BANDSL which are essentially FORTRAN implementations of the corresponding ALGOL 60 procedures given by Martin and Wilkinson [10]. The diagonal elements are stored as $Q(i, m)$, the subdiagonal elements as $Q(i, j), j=1,2, \ldots, m-1$, the superdiagonal elements as $Q(i, j)$, $j=m+1, m+2, \ldots, 2 m-1$, where $i=1,2, \ldots, N 2+2 m-4$.
The solution of this system of equations yields the coefficients a_{r} of the B-spline representation (3.2) for the interpolating natural spline $S(t)$. The values of $S(t)$ and its derivatives can be evaluated at any point by means of subroutines in the de Boor package. In particular we can obtain the piecewise polynomial representation (2.7) (or (1.1)) of $S(x)$ by evaluating the function and the derivatives at the breakpoints.
4. The FORTRAN Subroutine.

Before describing the FORTRAN subroutine NATSPP for the interpolating natural spline we first describe briefly those subroutines of the de Boor package [4] which are used in the subroutine NATSPP.

We begin with a summary of the FORTRAN variables and their intended use and a terse summary of the subprograms and their intended use,

The B-spline representation consists of
$T(1), \ldots . T(N+K)$, the knot sequence, assumed nondecreasing; if t appears j times in this sequence, then the (K-j)-th derivative may jump at t.
$A(1), \ldots, A(N), B$-spline coefficients for the function represented on ($\mathrm{T}(\mathrm{K}), \mathrm{T}(\mathrm{N}+\mathrm{l}))$.

N , the number of B-splines of order K for the given knot sequence.

K , order (= degree +1) of the B-splines; should be < 20 .

The piecewise-polynomial representation consists of
XI(1),...,XI(LXI+1), the breakpoint sequence, assumed increasing.

$C(J, I)$ is (J-1)-st derivative at XI(I)+,
$J=1, \ldots, K$. Note that the coefficients in (2.7)
and (1.1) are these derivatives divided by (J-1): .
K , order (= degree +1) of polynomial pieces; should be ≤ 20.
Other variables are defined in the subroutine summary which follows:

Constructs divided difference table for B-spline coefficients preparatory to derivative calculation and stores it in $\operatorname{ADIF}(1, I), \ldots, \operatorname{ADIF}(N, N D E R I V)$. Expects NDERIV in the interval [2, K]. Used only in BSPLPP, prior to call of BSPLEV.
subroutine BSPLEV(T, ADIF, N, K, X, SVALUE, NDERIV)
Calculates value of spline and its derivatives at X from B-spline representation and returns them in SVALUE(1), . ..'SVALUE(NDERIV) . Can use A for $A D I F$ if $N D E R I V=1$. Otherwise must have ADIF filled beforehand by BSPLDR. Uses INTERV and BSPLVN. Used only in BSPLPP. subroutine BSPLPP(T, A, N, K, SCRTCH, XI, C, LXI)

Converts B-spline representation to piecewise-polynomial representation. SCRTCH is temporary storage of size (N, K) . Uses BSPLDR and BSPLEV. Used in NATSPP, the subroutine for natural spline interpolation.
subroutine BSPLVN(T, JHIGH, INDEX, X, ILEFT, VNIKX)
Calculates value of all possibly'nonzero B-splines at X of order $J=\max \{J H I G H,(J+1) *($ INDEX-I $)\}$ on T. ILEFT is input, assumed so that $T(I L E F T)<T(I L E F T+1)$; get division by zero otherwise. If $T(I L E F T) \leq X \leq T(I L E F T+I)$ (as would be expected) then VNIKX(I) is filled with B-spline value $N(I L E F T-J+I, J)$ at $X, I=I, \ldots, J$. Get limit from right or left, if $X=T(I L E F T)$ or $T(I L E F T+1)$ respectively. Can save time by using INDEX $=2$ in case this call's desired order J is greater than the previous call's order (saved in J) provided T , X , ILEFT and VNIKX are unchanged between the calls. Otherwise, use INDEX = 1 . Used in BSPLEV, BSPLVD and NATSPP.

```
    Calculates value and derivatives of order < NDERIV of all
B-splines which do not vanish at X . ILEFT is input, assumed so that
I}(ILEFT)<T(ILEFT+I) ; get division by zero otherwise. If
T(ILEFT) \leq X \leqT(ILEFT+I) (as would be expected) then VNIKX(I,J)
is filled with value of (J-I)-st derivative of N(ILEFT-K+I,K)
at X , I = l,...,K , J = l,...,NDERIV . Get derivative from right
or left if X = T(ILEFT) or T(ILEFT+l), respectively. Expects
NDERIV in [I,K] . Uses BSPLVN. Used in NATSPP.
```

subroutine INTERV(XT, IXT, X, ILEFT, MFLAG)

Computes largest ILEFT in [I,IXT] such that $X T(I L E F T) \leq X$. It is assumed that XT is a one-dimensional array of length LXT containing a nondecreasing sequence of real numbers. The subroutine returns integers ILEFT and MFLAG as follows:

The value of ILEFT is saved in a local variable ILO which under certain conditions is used to start the search for ILEFT in the next call. The local variable ILO is initialized to the value one.

Note that only BSPLPP, BSPLVN and BSPLVD are called directly by the natural spline interpolation subroutine NATSPP. In addition to these subroutines of the de Boor package, NATSPP also calls subroutines BANDET and BANDSL for the solution of the linear system $C X=B$ where C is an
unsymmetric band matrix. These subroutines were taken from the library of the Stanford Center for Information Processing. They are translations of ALGOL 60 procedures given by Martin and Wilkinson [LO]. They are fully described in the complete listing of the FORTRAN subroutines in Appendix I.
Turning now to the subroutine NATSPP for the interpolating natural spline we note that it is a direct implementation of the method described in Section 3. First we give a summary of the FORTRAN variables and their intended use. The heading of the subroutine is
SUBROUTINE NATSPP(N2, $\mathbb{N B}, \mathbb{N} 4, M, M 2, M M, X, Y, A, C, T, Q, T R L, ~ I N T, ~ V N I K X)$.
The input parameters are as follows:
N2 , the number of data points.
N4 , = N2 $\mathrm{M} 2-4$.
M , $2 * M-1$ is the degree of the natural spline admissible values range from 1 to N2 .
M2 , = $2 * \mathrm{M}$, the order of the natural spline.
$\mathrm{MM}, \quad=2 * \mathrm{M}-1$, the degree of the natural spline.
$\mathrm{X}(1), \ldots, \mathrm{X}(\mathrm{N} 2)$, abscissas of the data points which must be strictly monotone increasing.
$\mathrm{Y}(\mathrm{l}), \ldots, \mathrm{Y}(\mathrm{N} 2)$, ordinates of the data points.
The output parameters are as follows:
$N 3,=N 2-1+M M$, the number of B-splines in the B-spline representation (1.2).
$A(1), \ldots, A(N 3)$, the coefficients of the B-spline representation (1.2) of the natural spline.
$C(1,1), \ldots, C(M 2, N 2-1)$, the coefficients of the piecewise polynomial representation (1.1) of the natural spline.

The remainder of the parameters are only for temporary storage. They are included in the declaration in order to make it possible to give them variable dimensions. They are:
$T(1), \ldots, T(N 2+4 * M-2)$, the knot sequence.
$Q(1,1), \ldots, Q(\mathbb{N} 4, M 2)$, elements of the band matrix of the equations for the calculation of the $A(1)$.
$\operatorname{TRL}(1,1), \ldots, \operatorname{TRL}(N 4, M-1)$, matrix for storing lower triangular matrix of the LU decomposition of the band matrix.
$\operatorname{INT}(1), \ldots, \operatorname{INT}(\mathbb{N} 4)$, vector for recording row interchanges during decomposition of the band matrix.
$\operatorname{VNIKX}(1,1), \ldots, \operatorname{VNIKX}(M 2, M M)$, matrix for storing values and derivatives of B-splines as needed.

The subroutine NATSPP begins by computing the knot sequence $T(1)$ from the abscissas of the data points. In order to get the coefficients of the first $M-1$ rows of the band matrix which are given by (3.8) we call

$\operatorname{BSPLVD}(T, M 2, X(1), M 2, V N I K X, M M)$

to obtain $\operatorname{VNIKX}(I, J)=D^{J}-{ }_{N} N_{I},(X(1)), I=1, \ldots, M 2, J=1, \ldots, \mathbb{M}$. We use these to calculate $A(1)$ and the coefficients of the first $M-1$ rows and their right members. For the coefficients of the last M-1 rows of the band matrix which are given by (3.9) we call $\operatorname{BSPLVD}(T, M 2, X(N 2), N 3, V N I K X, M M)$
to obtain $\operatorname{VNIKX}(I, J)=D^{J-I_{N_{N 2}}}{ }_{N-2+1, M 2}(X(N 2)), I=1, \ldots, M 2$, $J=1, \ldots, M M$. We use these to calculate $A(N 2+2 * M-2)$ and the coefficients of the last $\mathrm{M}-1$ rows and their right members. For the coefficients of the rest of the rows of the band matrix which are given
by (3.6) (omitting first and last equations) we call
$\operatorname{BSPLVNJ}(T, M 2, I, X(I), I+M M, \operatorname{VNIKX})$
to obtain $\operatorname{VNIKX}(J, 1)=N_{I-1+J, ~ M 2}(X(I)), J=1, \ldots, M 2, I=2, \ldots, N 2-1$.
The band matrix system is then solved using BANDET and BANDSL to
obtain the coefficients $A(1)$. Finally we call
$\operatorname{BSPLPP}(T, A, N B, M 2, Q, X, C, L X I)$
to calculate the derivatives needed to produce the coefficients of the
piecewise polynomial representation. Note that in BSPLPP, $C(J, I)$ hasthe value $D^{J-l_{S}}\left(X(I)^{+}\right)$whereas in NATSPP, $C(J, I)$ has the value$\left.D^{J-1} S_{S(X)}{ }^{+}\right) /(J-I):$.
The complete listing of NATSPP with all embedded subroutines is
given in Appendix I.
5. The ALGOL W Procedure.

Since we have available ALGOL W versions of the procedure NATSPLINE of Algorithm 472 of Herriot and Reinsch [8] and of Algorithm 480 of Lyche and Schumaker [9], it would be much easier to make comparison tests with the algorithm using the de Boor package [4] to calculate the interpolating natural spline if it were implemented in ALGOL W. The FORTRAN subroutine NATSPP was therefore translated into an ALGOL W procedure DEBNAT.

First the subroutines of the de Boor package used in NATSPP were translated into ALGOL W procedures with the same names and the same parameters. Special care was needed to deal with two unusual features of the FORTRAN package. In order to save the value of the local variable ILO of INTERV and of the local variable J in BSPLVN from one call to the next, these variables were made global to all the procedures of the de Boor package (J was renamed JJ). For the same reason the arrays DELTAM and DELTAP used in BSPLVN were made global. These global quantities were initialized prior to any calls of the package procedures. The other unusual feature of the FORTRAN subroutines was use of VNIKX as a one-dimensional array in BSPLVN and as a two-dimensional array in BSPLVD. This was handled by making VNIKX a two-dimensional array in BSPLVD and introducing a corresponding one-dimensional array NVNIKX local to BSPLVD,

The ALGOL W procedures BANDET and BANSOL are completely similar to the corresponding FORTRAN subroutines. They are fully described in the complete listing of the ALGOL W procedures in Appendix II.

Because of the greater flexibility of ALGOL W in using dynamic array declarations, it was possible to reduce the number of formal parameters
in the procedure DEBNAT compared to those in NATSPP. The heading of the procedure is

PROCEDURE DEBNAT(INTEGER VALUE N1, N2, M; REAL ARRAY X(*);
REAL ARRAY A(*,*); REAL ARRAY CFF(*));
The input parameters are as follows:
N1, N2 , subscript of first and last data point. M, $2 * M-1$ is the degree of the natural spline admissible values range from 1 to $\mathrm{N} 2-\mathrm{Nl}+1$.
$\mathrm{X}(\mathrm{N} 1:: \mathbb{N} 2)$, contains the given abscissas $\mathrm{X}(1)$ which must be strictly monotone increasing.

A(NI::N2, $\left.0:: 2^{*} M-1\right)$, contains the given ordinates as zero-th column, i.e., $A(I, 0)$ represents $Y(I)$. The output parameters are as follows:

A(N1::N2, $0:: 2 * \mathrm{M}-1)$, the ciefficients of the piecewise polynomial representation (1.1) of the natural spline with $C_{j, i}=A(i, j-1) \cdot(A(N 2,0)$ is unchanged and no values are assigned to the last row of A.)
$\operatorname{CFF}(1:: N 2-N 1+2 * M-1)$, the coefficients of the B-spline representation (1.2) of the natural spline.

The ALGOL W procedure DEBNAT is an exact translation of the FORTRAN subroutine NATSPP. The complete listing of DEBNAT with all embedded procedures is given in Appendix II.

Included among the tests described in Section 6 were tests to verify that NATSPP and DEBNAT produced the same results.

Another advantage of the ALGOL W procedure is that it is much easier to convert it to double precision arithmetic than it is to convert the FORTRAN subroutine NATSPP and the de Boor FORTRAN package to double precision arithmetic.

```
". Tests.
```

Both the FORTRAN subroutine NATSPP and the ALGOL W procedure DEBNAT were tested extensively on the IBM 370/168 at the Stanford Center for Information Processing.

In order to verify that the routines were operating correctly for the evaluation of the polynomial coefficients of the spline $S(x)$, the values of $D^{j} S(x) / j:, j=0,1, \ldots, 2 m-2$ were calculated at the righthand endpoint of each subinterval $\left[\mathrm{x}_{\mathbf{i}}, \mathrm{x}_{\mathrm{i}+1}\right)$ and compared with their values (the coefficients in equation (1.1)) at the left-hand endpoint of the next subinterval. For the first test we used the five data points $(-3,7),(-1,11),(0,26),(3,56),(4,29)$ with nonequidistant abscissas. Table I shows the results of a typical run using the FORTRAN subroutine NATSPP with $m=2$ for these data points. The first line of each box gives the tabulated quantities at the given value of x which is the left-hand endpoint of the subinterval, and the second line of the box gives the tabulated quantities at the right-hand endpoint of the same subinterval. Similar results were obtained for $m=1,3,4,5$ for the same data points. The close agreement of these quantities $D^{j} S(x) / j!, j=0,1, . . ., 2 m-2$ to the left and right of each breakpoint shows that the spline function and its derivatives satisfy the specified continuity conditions. This is a good indication of the correctness of the results. Note that in Table I $S^{\prime \prime}(-3)$ differs very slightly from its specified value of 0 and that $S(0)$ and $S(3)$ differ from their prescribed values in the least significant digit. Exactly the same results were obtained using the ALGOL W procedure DEBNAT. These results are very close to those obtained by using NATSPLINE which are given in Table I of Algorithm 472[8].

x	S(x)	$S^{\prime}(\mathrm{x})$	S" ${ }^{\prime \prime}$ (x)/2	$S^{\prime \prime}$ ' $(x) / 3:$
-3.000000	$\begin{array}{r} 7.000000 \\ 10.999999 \end{array}$	$\begin{array}{r} -1.999995 \\ 9.999986 \end{array}$	$-.4291534 \times 10^{-5}$ 5.	$\begin{aligned} & 1.000000 \\ & 1.000000 \end{aligned}$
-1.000000	$\begin{aligned} & 11.000000 \\ & 25 . \end{aligned}$	$\begin{gathered} 9.999997 \\ 18.99998 \end{gathered}$	$\begin{aligned} & 6.000000 \\ & 2 . \end{aligned}$	$\begin{aligned} & -1.000001 \\ & -1.000001 \end{aligned}$
0	$\begin{aligned} & 25.99995 \\ & 55 . \end{aligned}$	18.99998	$\begin{array}{r} 2.999995 \\ -14 \end{array}$	$\begin{aligned} & -1.999998 \\ & -1.999998 \end{aligned}$
3.000000	$\begin{aligned} & 55.99998 \\ & 29.00000 \end{aligned}$	$\begin{aligned} & -16.99998 \\ & -32.00000 \end{aligned}$	$-.3242493 \times 10-4$	4.999987 4.999987
4.000000	29.00000			

Table I. Cubic Natural Spline.

Five nonequidistant knots. Coefficients calculated by NATSPP.

The same test was run for ten data points $\left(\mathrm{x}_{\mathbf{i}}, \mathrm{y}_{\mathbf{i}}\right)$ with equidistant abscissas $x_{1}=i$ and ordinates given by

$$
y_{i}=\left\{\begin{array}{cccc}
1 & , & i & \text { odd } \tag{4.1}\\
0 & , & i & \text { even }
\end{array}\right\} \quad i=1,2, \ldots, 10
$$

For $m=1, \ldots, 5$ the FORTRAN subroutine NATSPP and the ALGOL W procedure DEBNAT gave the same results. In all cases the specified continuity conditions at the breakpoints were satisfied.

The previous tests established that the FORTRAN subroutine NATSPP and the ALGOL W procedure DEBNAT produced identical results. Further tests for accuracy and timing were carried out using only the ALGOL W procedure DEBNAT. Corresponding results for the accuracy of NATSPP can be inferred from these tests.

As a check on the correctness of the piecewise polynomial coefficients, Iong precision versions of DEBNAT and NATSPLINE from Algorithm 472[8] were used to calculate the polynomial coefficients for the data points $(-3,7),(-1,11),(0,26),(3,56),(4,29)$ (data for Table I) for $m=1,2, \ldots, 5$. When rounded to short precision, the corresponding coefficients calculated by the two procedures were identical, (Except that for $D^{j} S(1) / j!, j=m, \ldots, 2 m-2, N A T S P L I N E$ gave the specified values 0 and DEBNAT gave values of order $10^{-t}, t>9$.) The same comparison test was run for the set of $N 2$ data points. (x_{i}, y_{i}) with equidistant abscissas $\mathbf{x}_{\mathbf{i}}=\mathbf{i}$ and ordinates given by

$$
y_{i}=\left\{\begin{array}{cccc}
1 & , & i & \text { odd } \tag{6.2}\\
0 & , & i & \text { even }
\end{array}\right\} \quad i=1, \ldots, N 2
$$

Values of $N 2=10,20, \ldots, 50$ and $m=1,2, \ldots, 7$ were used.' Again when the long precision coefficients were rounded to short precision, the corresponding coefficients calculated by the two procedures were identical (with the same exceptions as above and occasional differences in the least significant digit for the case $m=7$).

In order to study the effect of round-off error build-up, both long and short precision versions of DEBNAT were used to calculate the B-spline coefficients and the piecewise polynomial coefficients. From the previous comparison tests we see that we can regard the long precision coefficients to be correct and hence the differences between the long precision and short precision coefficients are the errors in the latter. This error test was first run for the data points of Table I for $m=1,2$, ..' 5 . For $m=1$ all short precision coefficients calculated by DEBNAT are exactly correct. For $m=2$, the maximum errors in the B-spline coefficients and in the piecewise polynomial coefficients were of order approximately 10^{-5}. For $m=3$ and 4 the maximum errors increased to about 10^{-3}. For $m=5$ the errors exceeded one and the results were unacceptable. This may be due in part to the fact that for five points, $m=5$ is an extreme case. Tests were also run for the example with equidistant knots and ordinates given by (6.2). Values of $N 2=10,20, \ldots, 50$ and $m=1,2, \ldots, 7$ were used. The results for $m=1,2,3,4$ were similar to those for the data of Table I. For $m=5$ the maximum errors were of order 10^{-2}. For $m=6,7$ the maximum errors exceeded one.
-Long precision and short precision versions of NATSPLINE were used on the same data to find the errors in the piecewise polynomial coefficients calculated by short precision NATSPLINE. The results appeared to be
son:what better than for DENNAT. For the data used in Table I, the maximum errors in the piecewise polynomial coefficients were 0 for $m=1$ and of order 10^{-5} for $m=2, \ldots, 5$. For the example with equidistant knots and ordinates given by (6.2), the maximum errors in the piecewise polynomial coefficients were 0 for $m=1$, of order 10^{-5} for $m=2,3$, of order 10^{-4} for $m=4$, of order 10^{-2} for $m=5$, and of order 10^{-1} for $m=6,7$.

We conclude that DEBNAT should not be used in short precision for $m>5$ and NATSPLINE should not be used in short precision for mi7.

In addition to the tests for accuracy, timing tests were carried out for long precision and short precision versions of both DEBNAT and NATSPLINE on the IBM 370/168 computer at the Stanford Center for Information Processing. The tests were made using the example with equidistant knots and ordinates given by (6.2). Values of $N 2=10,20, \ldots, 100$ and $m-1,2, \ldots, 7$ were used. The time for both procedures was found to be approximately proportional to the number N 2 of knots. For DEBNAT the time was found to be approximately proportional to $m^{1.7}$ for $m \geq 3$ while for NATSPLINE it was approximately proportional to m^{2}. The actual times were almost exactly the same for the short precision and long precision versions.

The time T in seconds for the execution of the procedure DEBNAT was-found to be approximately

$$
T=(N / 60)\left(.0265 \mathrm{~m}^{1.7}\right), \mathrm{m} \geq 3
$$

This formula seriously underestimates the time for $m=1$ and 2 .
For NATSPLINE the time was found to be approximately

$$
T=(N / 60)\left(.015 \mathrm{~m}^{2}\right)
$$

For $m<5$ the times for NATSPLINE were somewhat less than those for DEBNAT, but for $m>6$ the times were nearly the same.

Since we found that for the IBM $370 / 168$ the times for short precision and long precision are nearly the same, we recommend the use of long precision for all calculations using these procedures. Converting the given ALGOL W procedures to long precision requires only replacement of all real identifiers by long real identifiers. The same recommendation would apply to any machine on which long precision is approximately as fast as short precision. For reasons of accuracy we would also recommend the use of double precision for the FORTRAN subroutines. We have not attempted to convert the FORTRAN de Boor package to double precision.

$$
1
$$

1. Anselone, P. M. and Laurent, P. J., "A general method for the construction of interpolating and smoothing spline functions," Numer. Math. 12 (1968), 66-82.
2. de Boor, Carl, "On uniform approximation by splines," J. Approximation Theory 1 (1968), 219-235.
3. de Boor, Carl, "On calculating with B-splines," J. Approximation Theory 6 (1972), 50-62.
4. de Boor, Carl, "Package for calculating with B-splines," MRC Technical Summary Report \#1333, Mathematics Research Center, The University of Wisconsin -Madison, Oct. 1973.
5. Curry, H. B. and Schoenberg, I. J., "On Pólya frequency functions. IV. The fundamental spline functions and their limits," J. Analyse Math. 17 (1966), 71-107.
6. Greville, T. N. E., "Spline functions, interpolation and numerical quadrature." In Mathematical Methods for Digital Computers, Vol. II. A. Ralston and H. S. Wilf (Eds.), Wiley, New York, 1967.
7. Greville, T. N. E., "Introduction to spline functions." In Theory and Applications of Spline Functions. T. N. E. Greville (Ed.), Academic Press, New York, 1969, pp. l-35. (Pub. No. 22 Mathematics Research Center, U.S. Army, U. of Wisconsin.)
8. Herriot, John G. and Reinsch, Christian H., "Algorithm 472. Procedures for natural spline interpolation, " Comm. ACM 16 (1973), 763-768.
9. Lyche, Tom and Schumaker, Larry L., "Algorithm 480. Procedures for computing smoothing and interpolating natural splines," Comm. ACM 17 (1974), 463-467.
10. Martin, R. S., and Wilkinson, J. H., "Solution of symmetric and unsymmetric band equations and the calculation of eigenvectors of band matrices," Numer. Math. 9 (1967), 279-301. Also in J. H. Wilkinson and C. Reinsch, Linear Algebra, Handbook for Automatic Computation, vol. II, F. L. Bauer (chief Ed.), Band 186 in die Grundlehren der matematischen Wissenschaften, Springer-Verlag, New York, Heidelberg, Berlin. 1971, pp. 70-92.
SUBROUTINE NAT SPP（NZ，N3，N4，M，ML，MM，X，Y，A，C，T，Q，TKL，INT，VNIKX） NATSPPCOMPUTESTHECJEFFICIENTJUFBJTHIHEPIECEWISE
POLYNOMIALREPRESENTATIJNAVOTHEB-SPLIVEREPRESENTATION UF A
N A TURALSPLINES(X)O FDEGREE(く*M-1), INTERPOLATINGTHE
ORDINATESY(IIA T POINTSXII), I=ITHKUJUH2.
PIECEWISE POLYNGMIAL KEPRESENTATIJN:
FORXX IN(X(I),X(I+1)),I=1,...,NC-L,
$S(X X)=C(1,1)+C(2,1) * T+\ldots+C(2 * M, I) * I * *(2 * y-1)$
WITHT=XX-X(I).
B-SPLINE REPRESENTATIUN:
FOR XXIN(X(1), X(N2)).
$S(X X)=A(1) * N(1,2 * M, X X)+A(2) * N(2,2 * M, X X)+\ldots$
$+A(N 2+2 * M-2) * N(N 2+2 * N-2,2 * M, x x)$

INPUT:
N2 THENUMBERURUATAPOINTS
N4 $=$ N $2+$ M2-4
M 2*M-1I S THE Jeurte of thenatjral Spline,
ADMISSIBLE VALJES RANGE FKUM 1 IJ N2,
RECOMMENDED VALUESARENUTGREATERTHAN 5 (SAY)
=2*M, T H E ORJER OF THE NATURAL JPLINE
M2 $\quad=2 * M, T$ H E ORJER OF THE NATURAL SPLINE
MM
$=2 * M-1, T H$ EUEGREE OF THE NATJRALS P LIN E
X(1),.... X(N2) AOSEISSAS UF THE DATA PUINTS WHICH
M U S T BE STKICTLY MUNOTUNE INCREASING
Y(1).....Y(N2) DRUIVATES UF THE UAIA PUINTS
OUTPUT:
N3 \quad N $2-1$ *MM. THE NUMBER OFB-SPLINESINT H E
B-SPLINE REPRESENTATIOMUFTHEN ATURAL SPLINE
A(1).....A(N3) THE CJEFFICIENTS UF THE B-SPLINE
REPRESENTATIUN UF T H E NATUKAL SPLINE
C(1,1),...C(M2,N2-1) THECUEFFICIEVTSO F T H EPIECEWISt
POLYNOMIAL REP ZESENTATIUN UFIHEN A T U R A LSPLINE
TEMPORARY STORAGE:
T(1), ——. T(N2+4*M-2) THE KNUT SEXUEVEE

EQUATIONS FORTHE GALCULATIUNJFTHE A (I)

matrix OF The -u decumpusitiuiv jF The band matrix
INT(I),.....INT(N4) VEGTJRFUKKEこJマUIVGR O WINTERCHANGLS
D URING DECOMPUSITIJNOF IHEBAVUMATRIX
VNIKX(1,1),..., VNIKXIML, MM) MATKIXFJxSTORINGVALUESAV.)
DERIVATIVESUFB-SPLINeJASNLEJLU
DIMENSIONX(1),Y(1), T(1),Q(V4,1),A(1),VVIKX(M2,MM),TRL(N4,1),
1 INT(1),C(M2,1)
D O SI=1,MM
$T(I)=X(1)$
$N 2 M 1=N 2-1$
$006 I=1$, N2MI
$T(I+M M)=X(I J$
$N 3=N 2 M 1+M M$
D $0 \quad 7 I=1, M 2$
$7 \quad T(I+N 3) \pm X(N 2)$
C
G E T COEFFICIENTS O F FIRST M-IROWد
CALLBSPLVD(T,M2,X(1), 42,VNIKX,MM)
$A 1=Y(1) / V N I K X(1,1)$
$M M_{1}=M-1$
IF(M.EQ.1)G O T OTO
D $040 I=1$, MMI
D $041 \mathrm{~J}=1$, MM


```
244.
245.
246.
247.
248.
249.
253.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
245.
266.
267.
268.
26.
27.
271.
272.
273,
274.
275.
27.
271.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
28.
20.
290.
291.
292.
293.
294.
29.
296.
297.
298.
299.
300.
301.
302.
303.
304.
```

```
    33 B(I)=X/A(I,1)
```

 33 B(I)=X/A(I,1)
 | F(L-M3) 31,30,30
 | F(L-M3) 31,30,30
 31 L=L+1
 31 L=L+1
 30 CONT I NUE
 30 CONT I NUE
 RETURN
 RETURN
 END
 END
 C**************************** END OF BANUSL ****************************
 C**************************** END OF BANUSL ****************************
 S U B R O U T I N E BSPLDR(T,A,N,K,ADIF,NJERIV)
 S U B R O U T I N E BSPLDR(T,A,N,K,ADIF,NJERIV)
 CONSTRUCTS DIV.DIFF.TABLEFORB-SPLINLCJEFF. PREPARATORY TO DERIV.CALC.
 CONSTRUCTS DIV.DIFF.TABLEFORB-SPLINLCJEFF. PREPARATORY TO DERIV.CALC.
 DIMENSION T(I),A(I), AUIF(N,NDERIV)
 DIMENSION T(I),A(I), AUIF(N,NDERIV)
 D O10I=1,N
 D O10I=1,N
 LO ADIF(I,I)=A(I)
 LO ADIF(I,I)=A(I)
 KMID = K
 KMID = K
 D O 20ID=2,NDERIV
 D O 20ID=2,NDERIV
 K M I O = KMID - 1
 K M I O = KMID - 1
 FKHIO= FLOAT (KMID)
 FKHIO= FLOAT (KMID)
 DO 2OI=ID,N
 DO 2OI=ID,N
 IPKMID = I + KMID
 IPKMID = I + KMID
 01FF = T(IPKMAD) - T(I)
 01FF = T(IPKMAD) - T(I)
 F(DIFF.EQ. O.) GO Tu<0
 F(DIFF.EQ. O.) GO Tu<0
 ADIF(I,ID)=(AJIF(I,ID-I)-AUIF(I-I,ID-I))/UIFF#FKMIU
 ADIF(I,ID)=(AJIF(I,ID-I)-AUIF(I-I,ID-I))/UIFF#FKMIU
 20 CONTINUE
 20 CONTINUE
 RETJRN
 RETJRN
 END
 END
 S U B R O U T I N E BSPLEV(J,ADIF,N,K,X, SVALUE,NDERIV)
 S U B R O U T I N E BSPLEV(J,ADIF,N,K,X, SVALUE,NDERIV)
 CALCULATES VALUEOF SPLINE ANJITSDERIVATIVESAT*X*FROM B-REPK.
 CALCULATES VALUEOF SPLINE ANJITSDERIVATIVESAT*X*FROM B-REPK.
 DIMENSION T(I),ADIF(N,N)ERIVI,SVALUE(1)
 DIMENSION T(I),ADIF(N,N)ERIVI,SVALUE(1)
 DIMENSION VNIKX(20)
 DIMENSION VNIKX(20)
 DO 5 IDUMMY=1, NOER IV
 DO 5 IDUMMY=1, NOER IV
 SVALUE(IDUMMY)=0.
 SVALUE(IDUMMY)=0.
 KM1 = K-1
 KM1 = K-1
 C ALLINTERV(T(K),N+1-SHL,X,I,MFLAG)
 C ALLINTERV(T(K),N+1-SHL,X,I,MFLAG)
 I = I +KMI
 I = I +KMI
 IF (MFLAG)
 IF (MFLAG)
 9 I F (X,GT.T(I))
 9 I F (X,GT.T(I))
 99.20.9
 99.20.9
 9F(X-GT.TII)) GOTU9 9
 9F(X-GT.TII)) GOTU9 9
 10 IF (I .EQ.K) GO TO 99
 10 IF (I .EQ.K) GO TO 99
 I=1-1
 I=1-1
 I F(X.EQ.T(I)) GOTOLO
 I F(X.EQ.T(I)) GOTOLO
 C
 C
 C *I*HAS BEENFO UND I N (K,VISUTHATTIIH.LE.X.LT.T(I+I)
 C *I*HAS BEENFO UND I N (K,VISUTHATTIIH.LE.X.LT.T(I+I)
 (O R .LE.T(I+I),I FT(I).LT.TII+I)=T(N+II).
 (O R .LE.T(I+I),I FT(I).LT.TII+I)=T(N+II).
 2 OKPIMN = K+1-NDERIV
 2 OKPIMN = K+1-NDERIV
 CALL BSPLVN(T,KPIMN, L,X,1,VVIKXI
 CALL BSPLVN(T,KPIMN, L,X,1,VVIKXI
 IO = NDERIV
 IO = NDERIV
 21LLE F T = I - KP IMN
 21LLE F T = I - KP IMN
 D O 2 2L=1,KP1 MN
 D O 2 2L=1,KP1 MN
 LEFTPL = LEFT+L
 LEFTPL = LEFT+L
 SVALUE(ID) = VNIKX(LI*ADIFILEFTPL,IU) + SVALUE\ID)
 SVALUE(ID) = VNIKX(LI*ADIFILEFTPL,IU) + SVALUE\ID)
 ID = IO - 1
 ID = IO - 1
 F(ID.EQ.O) GU TU 99
 F(ID.EQ.O) GU TU 99
 KP1MN = KP1MN + 1
 KP1MN = KP1MN + 1
 C ALLBSPLVN(T,0,2,X,1,VNIKX)
 C ALLBSPLVN(T,0,2,X,1,VNIKX)
 C
 C
 99 REIJRN
 99 REIJRN
 END
 END
 S U B R O U T I N EBSPLPP{I,A ,N,K,SCRTCH,XI,C,LXI)
 S U B R O U T I N EBSPLPP{I,A ,N,K,SCRTCH,XI,C,LXI)
 C O NV ER T S B-SPLINEREPRESENTATIONTOPIECEWISEPGLYNOMIALREPRESENTATION
 C O NV ER T S B-SPLINEREPRESENTATIONTOPIECEWISEPGLYNOMIALREPRESENTATION
 DIMENSIONT(1),A(1), SGRTCH(N,K),XI(1),C(K,1)
 DIMENSIONT(1),A(1), SGRTCH(N,K),XI(1),C(K,1)
 CALL BSPLDR(T,A,N,K,SLRTCH,K)
 CALL BSPLDR(T,A,N,K,SLRTCH,K)
 LXI=0
    ```
    LXI=0
```

305. 306. 307. 308. 309． 310. 311. 312. 313. 314. 315. 315. 317. 318.
1.
2.
3. 322 ． 323.
4.
5.

326 •
327.
328.

329 •
333.
331.

332 ．
333 ．
334.
335.

336 ．
337.
338.

339 。
340 ．
341 。
342 ．
343 。
344 ．
34s．
346 •
347 。
348.

349 •
350.

351 ．
352 ．
353 ．
354.
355.
3% ．
357 。
358.
359.
360.

361 ．
362 •
363.
364.
365.

```
    XI(1) = T(K)
    OO 5 O ILEFT=K,N
        I F(T(ILEFT+1).EH. T(ILEFT)) ii3 TU50
        LXI = LXI + I
        XI(LXI+I)= T(ILEFT+1)
        CALL BSPLEV(T,SCRIGI,N,K,XI(LXI),G(L,LXI),K)
        CONTINUE
C
s 0
                                    AtIURV
    END
    SUBRUUTINE BSPLVD (T, <, X, ILETI, VNIKX, NDERIV J
CALCULATES VALUE AND OERIV\bulletJJFALLBGSPLIVESWHICHOUNOT VANISH AT x
    DIMENSIUN T(1),VNIKX(K,NDLRIV)
    UIMENSIUN A(20,20)
C
CF I L L VNIKXIJ,IUERIVD,J=IJEKIV, .... *K mIIHINONZEROVALUES OF
    C B-SPLINESO F CRUERK+I-IUERIV,IULRIV=VUCKIV,.m e,I,BYREPEATED
    C CALLST O BSPLVN
    CALLBSPLVN(T,K+1-NUERIV,1,x,1LLEFT, ViNIKX(NUERIV,NUERIV))
    IF (NDERIV -LE. 1) Gu 10 79
    IDERIV = NCERIV
    0 0 1 5I=2,NDERIV
        IDERVM = IDERIV-A
        UU }11\textrm{J}=\mathrm{ IDERIV,K
            VhfKX(J-I,IDERVM) = VIVIKX(J,IULKIV)
            IDERIV =IDERVM
            C ALLBSPLVN(T,0,2,X,ILEFT,VNINXILJERIV,IOERIV))
            CONTINUE
    C
    DO 20I=1,K
        0O1 9 J=1,K
            A(I;J)=0.
            A(I,I)=1.
    KMD = K
    DO 40M=2,NDERIV
            KMD = KMD-1
        FKND = FLOAT(KMD)
        I = ILEFT
        J = K
            JMI = J - I
                IPKMD = I + KMU
                DIFF = T(IPKMU) - T(I)
                IF IJMI EEQ. U) GUIUL b
                I F(DIFF.EQ.U.) GU IU<כ
                00 24L=1,J
                    A(L,J)=(A(L,J) - A(L,J-1)J%)IFF#FKMD
                    24
                    A(L,
                I=1-1
                                    gutu C A
            26 IF IOIFF .EG. O.)
                                    ou Tusu
            A(1,1) = A(1,1)/UIFF*FKMJ
C
            30-DO4 OI=L,K
                v = 0.
                JLOW = MAXO(I,M)
                DO 35 J= JLOw,K
            35 v=A(I,J)*VVIKX(J,M) +V
            40 VNIKX(I,M)=V
            99 ENO
            SUGROUTINEB S P L V N(I,JHIGT,I,VUEX,X, ILEFT, VNIKX)
366.
367.
368.
369.
373.
311.
372.
373.
374.
375.
376.
377.
378.
379.

380．
381 。
382.
383.
384.
385.
386.
387.
388.
389.
390.
391.
392.
393.
399.
395.
394.
397.
398.
399.
403.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.

4－12．
413.
414.
415.
415.
417.
418.
419.
423.
421.
422.
423.
424.
425.

426 。

CALCULATES The value OF ALL POSSIblyivúncerub－splines at＊X＊UF
CORDERMAX（JHIGH；（J＋1）（IN）EX－1））ON＊T＊。
DIMENSION T（1），VNIKX（1）
DIMENSION DELTAM（201，DELTAP（20）
DATA J／1／，DELTAM，DELTAP／40＊J．／
Gu \(10(10,20)\) ．I NDEX
\(10 \mathrm{~J}=1\)
VNIKX（1）＝1．
IF（J．GE．JHIGH）GU1099
C
\(I P J=\{L E F T+J\)
DELTAP（J）\(=\) T（IPJ）\(-X\)
IMJPI＝ILEFT－J＋1 DELTAM（J）\(=\quad X\)－I（IMJPI）
VMPREV＝0．
\(J P 1=J+1\)
DO \(26 \mathrm{~L}=1, \mathrm{~J}\)
\(J P 1 M L=J P 1-C\)
VM＝VNIKX（L）／（DELTAP（L）t UELTAA（JPLML））
VNIKX（L）＝VM＊OELTAP（L）＊VMPREV
26 VMPREV＝VM＊DELTAM（JPIML）
VNIKX（JPI）＝VMPREV
\(J=J P 1\)
IFIJ．LT．JHIGHJ GU TU 60
C
99 RETJRN
END
SUBROUTINE INTERVIXI，LXT，X，ILEFT，\＆FLAG J
COMPUTES LARGEST ILEFTIN（1，LXT）SUCHTHATXT（ILEFT）－LE．X
DIMENSIONXTILXT J
D ATAILO／1／
\(I H I=I L O * 1\)
IFIIHI－LT．LXTJ GUTO 20
IF（X．GE．XT（LXT））GOTO11J
I F（LXT－LE．I）GUTU 90
ILO \(=\) LXT－ 1
GU TU 21
20 IF（X．GE•XT（IHI））GU TO 40
C末\＃＊＊NOW \(X\)－LT．XT（IHI）．FIND LUWER BUUND
3 OISTEP \(=1\)
31 IHI＝ILO
ILO＝IHI－ISTEP
IF（ILO－LE．1）GuTU 35
\(F(X . G E \cdot X T(I L O))\) Gu IU 50
ISTEP＝I STEP＊2
guTO 31
35 ILO \(=1\)
IF（X．LT．XT（1））GUT0 33
C＊＊＊＊NOW X．GE．XTIILOJ•FIVOUPPEKBOUNJ
4 OISTEP \(=1\)
41 I L O＝IHI
IHI \(\pm\) ILO＋ISTEP
I f（IHI．GE．LXT）
Gu Tu t
I \(F(X\) ．LT．XT（IHI））
GU TU 30
ISTEP \(=1\) STEP＊ 2
GU \(10+1\)
45I f（X．GE．XT（LXT））GOTU 410
\(I H I=L X T\)
C＊＊＊＊NOW XT（ILO）LE．X－LT．XT（IHI）．NAKRUwTHEINTERVAL

427 • 428. 429 。 433. 431 ． 432 。 433. 434. 435 。 436. 437. 438 。 439. 440. 441 ． 442. 443. 444 。 445 ．
```

 5 OMIODLE = (ILO + IHI)/L
 I f IMIODLE - EQ. ILOI uU IJ lou
 C NOTE. I TIS ASSUMED THAT MIUULE = ILU IN_ASEIHI = ILO+I
 I F(X.LT.XTIMIDDLE)) GUTU5 3
 ILO = MIDDLE
 GU TU 50
 53 IHI = MIODLE
 u Tu su
 C**** SET OUTPUT ANDRETURN
 90 HFLAG = -1
 ILEFT = 1
 100 MFLAG = 0
 ILEFT = ILO
 110 HFLAG=1
 ILEFT = LXT
 RE Tukiv
 END
    ```
```

PROCEDUREDEBNATIINTEGER VALUENL,N\angle;M;REALA R R A Y X(*);
REAL ARRAY A(*,*); REAL ARRAY CFF(*));
COMMENTDEBNAT COMPUTESTHE COEFFICIENTS O F BOTHTHEPIECEWISE
POLYNOMIALREPRESENTATIONAND THEB-SPLINEREPRESENTATION OF A
NATURAL SPLINE S(X)OFDEGREE(2*M-1), INTERPOLATINGTHE
O R D I N A T E S Y(I)A TPOINTSX(I),I=NITHRJUGHN2.
PIECEWISE POLYNOMIAL REPRESENTATIDN:
FOR X X IN(X(I),X(I+1)),I=V1,....N2-1,
S(XX)=A(I,0)+A(I,1)*I*···+A(I,2*M-1)*T**(<*M-1)
WITH T=XX-X(I).
B-SPLINE REPRESENTATIUN:
FOR X XIN(X(N1),X(N2)),
S(XX)=CFF(1)*N(1,2*M,XX)+CFF(2)*N(<,<*M, XX)+···
+CFF(N2-N1+2*M-1)*N(N2-N1+2*M-1,2*M,XX)
WHEREN(J,2*M,XX)ISTHE (NJRMALILED)B-SPLINEOFDEGREE
(2*M-1)ON 'THE KNOT SLQJENCET(J).....IT(J+2*M).
INPUT:
N1,N2SUBSCRIPT OF FIRST ANDLASTDATAPOINT
M 2*M-1IS THEDEGREEO FTHENATJRALSPLINE,
A D M IS S I B L E VALJESRANGE FRUM1TON2-N1+1,
RECOMMENDED VALUESARENUTGREATERTHAN 7 (SAY)
X(N1::N2)CONTAINS THE GIVEN ABSCISSAS X(I) W HICH
MLST B ESTRIこTLY MUNOTUNE INCREASING
A(N1::N2,0::2*M-1)CJNTAINSTHEGIVEVORDINATESA SZERO-TH
C OLUM N,I.E.A(I,OIREPRESENTSY(I),
OUTPUT:
A(N1::N2,0::2*M-1)THECJEFFICIENT\JFTHEPIECEWISE POLYNOMIAL
REPRESENTATION UFTHENATURALSPLINE,(AIN2,O) I S
UNCHANGED ANOVOVALUESARtASSIGNEDTO THE LAST
RCWOFA)
CFF(1::N2-N1+2*M-1)T H E COEFFICIENTSJFTHEB-SPLIN E
REPRESENTATION OFTHENATURALSPLINE:
IFIM> OJAND(M<=N2-NL+I)THEN
BEGIN
PROCEDURE BSPLDR(REAL ARRAYT,A|*);INTEGERVALUEN;K;
REALARRAY ADIF(*,*); INTEGER VALUE NDERIV);
CCMMENT CONSTRUCTS DIV.OIFF.TABLE FORB=SPLINECOEFF.
PREPARATORY T O DERIV.CALC..ARRAY DIMENSIONS ARE AS
FOLLOHS: T(1::N+K), A(1::N), AOIF(1::N,1::NDERIV).
NDERIV SHOULD BE IN (2,K);
BEGIN
INTEGER KMID;
REALDIFF:
FOR I:=1 UNTILN DOADIF(1,1):=A(I);
KMID:=K;
FORID:=2 U NTIL NDERIVJO
BEGIN
KMID:=KMID-1;
FOR I:=I D UNTILNDO
BEGIN
DIFF:=T(I+KMID) = T(I):
IFDIFFT=0 THEN
ADIF(I,ID):=(AOIF(I,ID-1) - AUIF(I-1,ID-1))/DIFF*KMID
END
END
END BSPLDR:
PROCEDURE BSPLEV(REAL ARRAYT(*);REAL ARRAY ADIF(*;*);
INTEGER VALJE N;K; REAL VALJE X:
R E A L ARRAYSVALUE(*); INTEGER VALUE NDERIV);
COMMENT CALCULATES VALUE OF SPLINEANOITSUERIVATIVESAT XFROM

```
```

 61.
 B-REPRESENTATION. A&RAYDIMENDIONS ARE AS FOLLOWS:
 62.
 63.
 64.
 65.
 6.
 67.
 6
 63.
 7.
 7.
 72.
 7.
 74.
 75.
 7.
 7.
 7.
 7 9 .
 8.
 81.
 82.
 83.
84.
85.
86.
87.
88.

b 9.
0.
91.
92.
93.
94.
95.
95.
97.
98.
99.
103.
101.
102.
103.
104.
105.
105.
107.
108.
107.
110.
111.
112.
113.
114.
115.
116.
117.
113.
119.
123.
121.

```

1く2．
123.
124.
\(1<3\).
1くう。
127 ．
123.

127 ．
130.
131.
132.
133.
134.

133．
135.
137.
133.

137．
143.

141 ．
142.
143.

14 ＇，
145 ．
145．
147.
143.

147．
153．
151.
－152．
153.
154.
155.
156.
157.
153.

157．
163
161.
162.
163.

164 ．
16）．
160.
167.
163.
163.
173.

171 ．
172.
173.
174.
175.
175.
177.
173.

177 ．
183.
181.
182.

INILGER JP1，JPIML：
KEAL VMPKE V，VM；
IFINDEX＝1THEN
BEGIN JJ：＝1； VNIKX（1）：＝1； I f－JJ＞＝JHIGH THEN GU TU S99
END；
SLO：DELIAP（JJ）：＝T（ILEFT＋JJ）－X ；
UELTAM（JJ）：＝X－T（ILEFT－JJ＋1）；
VMPREV：＝0；
JP1：＝JJ +1 ；
FORL：＝IUNIILJ JDU
BEGIN
JPIML：－JPI－L；
VM：＝VNIKX（L）／（DELJAP（L）＋DELTAM（JPLYL））：
VNIKX（LJ：＝VM＊DELIAP（L）＋VMPKEV；
VMPREV：＝VM＊DELTAM（JPIML）
ENL：
VNIKX（JPI）：＝VMPREV：
JJ：＝JP1；
IFJJくJHIUHTHEN G OTJدくU；
s99：
ENDBSPLVN；

Real valjミx ；inteutk valje ileft；
H E A L AKKAYVNIKX（＊，＊）；INTEJERVALUENDERIV）；
COMMENT CALCULATES VALUEAVDOERIVS．JH ALL O－SPLINES WHICH DO NUT VANISHATX．ARRAY DIMEIVSIUIVSAKEAS FOLLOWS：
I（1：：（N＋K），VNIKXII：：K，1：：NuckIV）：
BEGIN
INTLUER IDERIV，I DERVM，KYU，I，J，JML，JLUW；
REAL V，DIFF：
REAL ARRAYNVNIKX（1：：K）；
KEALARRAYA（1：：K， \(1::(\mathbb{l})\) ；
CUMMENTFILLVNIKX（J，IJEKIV），J＝IULRIV，．．．．．KK W IT H NONZERO
VALUES 0 F B－SPLINES UF URUER K＋I－IUERIV，
IUEKIV＝NDERAV，．．．， 1 GY KEPLAILUCALLS TOBSPLVN；
ロSPLVN（T，K＋1－NDERIV，i，x，ILEFI，NVIV \((K x)\) ；
FUK1DUMMY：＝NDERIV UNIIL \(K\) J U
VNIKXIICUMMY，NOEKIVI：＝IVVNIKA（IUJMMY－VUEKIV＋I）：
I FNDERIVく＝1THENG OIJゝナ9；
IDERIV：＝NDERIV；
FOK \(1:=2\) UNTIL NDERIV JJ
BEUIN
IDERVM：＝IDERIV－1；
FOR J：＝IDER I V UNTILくJU
VNIKX（J－1，IOEKVM）：＝VNIKג（J，IUEKIV）：
IDERIV：＝IDERVM；
BSPLVN（T，O， \(\mathrm{Z}, \mathrm{X}, \mathrm{ILLET}\) ，iVVNIKXI；
FORIDUMMY：＝I DERdV UVTIL K UU
VNIKXIIDUMMY，dUEKIVI：＝NVNIKXIIDJMMY－1DERIV＋1）
ENO；
FORI： 1 UNTILK DO
BEGIN
FORJ：＝1UNTILKUU
A（1，J）：＝ 0 ；
\(A(I, I):=1\)
END；
KMO：＝K；
FORM：＝2UNTILNDERIVDJ
366.
367.

368 ．
369.
373.

371 ．
372.
373.
374.
375.
376.
377.
378.

3791
380.

381 。
382.

383 。
384.
385.
386.
387.
388.

389 a
390.
391.
392.
393.
399.
395.
394.
397.
398.
399.
400.
401.
402.
403.
404.
405.
406.
407.
408.
409.
410.
411.
412.
413.
414.
415.
415.
417.
418.
419.
423.
421.
422.
423.
424.
425.

426 。

CALCULATES THE VALUE OF ALLPQSSIBLY NUNLERU B－SPLINESAT＊X＊OF
COR D E R MAX（JHIGH，（J＋1）（IN）EX－1）ON＊T＊。
DIMENSION I（1），VNIKX（1）
DIMENSION DELTAM1201，DELTAP（201
DATA J／1／，DELTAM，DELTAP／40＊J．／
\(10 \mathrm{~J}=1\)
VNIKX（1）\(=1\)
I F（J．GE．JHIGH）
601099
C
\(20 \quad\) IPJ \(=\) LLEFT \(+J\)
DELTAP \(\ d)=T(I P J)-X\)
IMJPI＝ILEFT－J＋1
DELTAM（J）\(=\quad X\)－I（IMJPI）
VMPREV \(=0\) ．
\(J P 1=J+1\)
DO \(26 L=1, J\)
\(J P 1 M L=J P 1-L\)
\(V M=V N I K X(L) /\)（DELTAP（L）＋UELTAA（ JPLML））
VNIKX（L）\(=\) VMFOELTAP（L）＊VMPREV
VMPREV＝VM＊DELTAM（JPIML）
VNIKX（JPI）\(=\) VMPREV
\(J=J P 1\)
IFIJ－LT．JHIGHJ GU TU 60
C
99
RETJRN

\section*{END}

SUBROUTINE INTERVIXI，LXT，X，ILEFT，サFLAG J
COMPUTES LARGESTILEFTIN（1，LXT）SUCHTHATXTILEFT）－LE．X DIMENSION XTILXT J
DATA ILO／1／
\(I H I=I L O * 1\)
IFIIHI．LT．LXTJ GU TO 20
I \(F(X\) ．GE．XT（LXT）\()\) G OTOL1J
I F（LXT．LE．I）GUTO 90
\(I L O=L X T-1\)
GU Tu 21
20 IF（X．GE．XT（IHI））GU TO 40
21 IF（X．GE．XTIILOJJ ：GUTU 100
C\＃\＃＊＊NOW X－LT．XT（IHI），FIND LJWER BUJND
3 OISTEP \(=1\)
31 IMI＝ILO
ILO＝IHI－ISTEP
IF（ILO－LE．1）Gu TU 35
\(F(X, G E . X T(I L O))\) GU Tu 50
ISTEP＝ISTEP＊2
35 ILO \(=1\)
IF（X．LT．XT（1））GO T0 90
GUTL 53
C＊＊＊＊N O W X．GE．XTIILO J•FIVOUPPERBOUNJ 4 OISTEP \(=1\)
41 ILO＝IHI
IHI＝ILO＋ISTEP
IF \(\{I H I\) ．GE．LXT GU Tu ヶら
I F（X．LT•XT（IHI））GU TU 5U
ISTEP \(=1 S T E P * 2\)
GU \(10 \div 1\)
45 If（X．GE．XT（LXT））GOTU 410
\(I H I=L X T\)
C＊＊＊＊NOWXT（ILO）LEEX－LT．XT（IHI）．NAKRUwTHEINTERVAL

```

 1.
 2.
 3.
 4.
 5.
 5.
 7
 3.
 9.
 13.
14.
15.
16.
17.
18.
19.

1 7 .
18.
19.
23.
21.
22.
23.
2'.
25.
25.
27.
28.
29.
3.
31.
32.
33.
34.
35.
36.
37.
38.
40.
4.
42.
4.
44.
4.
4.
4.
4.
4.
53.
51.
52.
53.
54.
55.
56.
57.
59.
59.
60.
PROCEDURE DEBNATI INTEGERVALUE NL,NL,M; RLALARRAY X(*);
REAL ARRAY A(*,*); REALARRAYCFF(*));
COMMENT DEBNAI COMPUTES THE COEFFICIENTS OF BOTH THE PIECEWISE
POLYNOMIALREPRESENTATIONANDTHEB-SPLINEREPRESENTATION OF A
NATURAL SPLINE S(X)OF DEGREE (2*M- L), INTERPOLATING THE
ORDINATESY(I)A T POINTS XIIJ,I=NITHRJUGHN 2.
PIECEWISE POLYNOMIAL REPRESENTATION:
FOR XX IN(X(I),X(I+1)),I=VI,...,N<<1,
S(XX)=A(I,0)+A(I, 1)*T*···..+A(I, 2*M-1)*T**(<*M-1)
W ITHT=XX-X(I).
B-SPLINE REPRESENTATIUN:
FOR XX IN (X(N1),X(N2)),
S(XX)=CFF(1)*N(1,2*M,XX)+CFFF(2)*N(<,<*M, XX)+···.
+CFF(N2-N1+2*M-1)*N(N2-N1+2*M-1,2*M,XX)
W HEREN(J,2*M,XX)ISTHE (NJRMALILEDJB-SPLINEOFDEGREE
(2*M-1)ONTHE KNOT SL\alphaUENCET(J),...,I(J+2*M).
INPUT:
N1,N2 SUBSCRIPT OF FIRST ANDLAST DATA POINT
M 2*M-1 IS THE DEGREE OF THE NAIJRAL SPLINE,
ADMISSIBLE VALUESRANGEFRUMITON2-N1+1,
RECOMMENDED VALUESARENUT GREATERTHAN 7 (SAY)
X(N1::N2) CONTAINS THE GIVEN ABSCISSAS X(I) W HICH
MLST B E STRIこTLYMUNOTUNE INCREASING
A(N1::N2,0::2*M-1)CJNTAINSTHEGIVEVORDINATES AS ZERO-TH
COLUMN, I.E. AII,OIREPRESENTSY(I),
OUTPUT:
A(N1::N2,0::2*M-1)THECJEFFICIENT\JFTHE PIECEWISE POLYNOMIAL
REPRESENTATION OFTHE N A TUR Al SPLINE,(AlN2,O)IS
UNCHANGED ANOVOVALUESAREASSIGNEDTO THE LAST
RCW OFA)
CFF(1: :N2-N1+2*M-1)THECOEFFICIENTSOFTHEB-SPLIN E
REPRESENTATION OFTHENATURALSPLINE:
I F(M>O)A N D(M<=N2-N1+1)T HEN
BEGIN
PROCEDURE BSPLDR(REAL ARRAYT,A|*);INTEGERVALUEN;K;
REAL ARRAY ADIF(*,*); INTEOER V ALUENDERIV);
CCMMENT CONSTRUCTS DIV.OIFF.TABLEFOR B=SPLINECOEFF.
PREPARATORY TO DERIV.CALC..ARRAY DIMENSIONS ARE AS
FOLLOhS: T 11: :N+K), A(1::N), AOIF(1::N,1::NDERIV).
NDERIV SHOULD BEIN(2,K);
BEGIN
INTEGER KMID;
REALDIFF:
FORI:=1 UNTIL N DO AUIF(1,1):=A(I);
KMID:=K;
F O RID:=2UNTILNDERIVJO
BEGIN
KMID:=KMID-1;
FOR I:=ID UNTILN DO
BEGIN
DIFF:= T II+KMID)-T(I):
IFDIFFT=OTHEN
ADIF(I,ID):=(ADIF(I,ID-1) - AUIF(I-1,ID-1))/DIFF*KMID
END
END
END BSPLOR:
PROCEOURE BSPLEV(REALAKRAYT(*);REALAKRAYADIF(*;*);
INTEGER VALUE N;K; REAL VALJE X:
R E A L ARRAYSVALUE(*); INTEGERV ALUENDERIV);
COMMENT CALCULATES VALUEO FSPLINEANOITSULRIVATIVESAT XFROM

```
```

 61.
 B-REPRESENTATION. ARRAYDIMENDIONS ARE AS FOLLOWS:
 62.
 63.
 64.
 65.
 6 6 .
 67.
 6
 63.
 7.
 7.
 72.
 7.
 74.
 7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.
```

1く2．
123. 124.
\(1<2\) 。
1くう。
127.
123.
127.
130.
131.
132.
133.
134.

133．
13 s.
137.
133.
137.
143.
141.
142.
143.

14＇．
145 ．
145．
147.
143.

147．
153．
151.
－ 152.
153.
154.
155.
156.
157.
153.

157。
163
161.
162.
163.
104.

16）．
100.
167.
163.
163.

173．
171 ．
172.
173.
174.
175.
175.
177.
173.

177 ．
183.
181.
182.

INILGER JP1，JPIML：
KEAL VMPKE \(V\) ，VM；
IFINDEX＝1THEN
BEGIN
\[
J J:=1 \text {; }
\]

VNIKX（1）：＝1；
I f JJ＞\(=\) JHIGH THEN GU TU S99
END；
SLO：DELIAP（JJ）：＝T（ILEFT＋JJ）－X ；
ut \(\operatorname{TAM}(J J):=X-T(I L E F T-J J+1) ;\)
VMPREV：＝0；
JP1：＝JJ +1 ；
FORL：＝IUNIILJ JDU
BEGIN
JPIML：－JPI－L；
VM：＝VNIKX（L）／（DELJAP（L）＋DELTAM（JPLYL））；
VNIKX（LJ：＝VM＊DELIAP（L）＋VMPKEV；
VMPREV：＝VM＊DELTAM（JPIML）
ENL：
VNIKX（JPI）：＝VMPREV：
JJ：＝JP1；
IFJJくJHIUHTHEN G OTJدくU；
s 99 ：
ENDBSPLVN；
PRLCeUure BSHLVE（REAL arkay \(\mathrm{T}(*)\) ；livtluer value k：
REAL VALJミX ；inteuek valje Ileft；
H E A L AKKAYVNIKX（＊，＊）；INTEJERVALUENDERIV）；
COMMENT CALCULATES VALUEAVDOERIVS．JHALL O－SPLINES W HICH DO NUT VANISH ATX．ARRAYDIMEIVSIUIVSAKEAS FOLLOWS：
1（1：：\((\downarrow+K)\) ，VNIKX（1：：K， \(1:\) ：NuckIV）：
BEGIN
INTLUER IDERIV，I DERVM，KYU，1，J，JML，JLUW；
HEALV，DIFF；
REALARRAYNVNIKX（1：：K）；
KEALARRAYA（1：：K， \(1::(\mathbb{)}\) ；
CUMMENTFIL LVNIKX（J，IJEKIV），J＝IUERIV，．．．．．K K I T H NONZERO VALUES O FB－SPLINES UF URUERK＋I－IUERIV， IUEKIV＝NDERdV，．．．， 1 GY KEPLAILJCALLS TOBSPLVN；
BSPLVN（T，K＋1－NDERIV，I，\(\lambda\) ，ILEFI，（NVIV \((K X)\) ：
FUKIDUMMY：＝NDERIV UNIIL \(K\)
VNIKXIICUMMY，NOEKIVI：＝IVVNIKA（IUJMMY－VUEKIV＋1）；
I FNDERIVく＝1THENG OIJゝ४9；
IDERIV：＝NDERIV；
FOK \(1:=2\) UNTIL NDERIV JJ
BEUIN
IDERVM：＝IDERIV－1；
FOR J：＝IDERIVUNTILくJU
VNIKX（J－1，IOERVM）：＝VNIK入（J，IUEKIV）；
IDERIV：＝IDERVM；

FORIDUMMY：＝I DERdV UVIIL K UU
VNIKXIIDUMMY，IUEKIVI：＝NVNIKXIIDJMMY－1DERIV＋1）
ENO；
FOR I：\(: 1\) UNTILK DO
BEGIN
FOR J：＝IUNTILKUU
A（1，J）：＝ 0 ；
\(A(I, I):=1\)
END：
KMD：\(=K\) ；
FORM：＝2UNTILNDERIVDJ
183.
184.
185.
185.
187.
188.
187.
190.
191.
192.
193.
194.
195.

196 。
197.
193.

197．
203.

201．
20\％．
203.
204.

205 ．
20c．
207.
208.
203.

213
211 。
212 。
213.

214 。
215.
216.
217.
218.

217．
223.

221 。
222.
223.

224 ．
225.
226.
227.
228.
223.
230.

231 ．
232.
233.
234.
235.
236.
237. \(<38\) 。 239 ． 243. 241 。 242. 243.

BEGIN
KMD：＝KMD－1；
I：＝ILEFT；
J：＝K；
S21：JM1：＝J－1；
DIFF：\(=T(I+K M D)=T(I) ;\)
IFJMI＝OTHEN GOTOSく0；
IFDIFF＝OTHENGOTOSL5；
FOR L：＝1 UNTIL J DU
\(A(L, J):=I A(L, J)-A(L, J-1)) / \cup I F F * K M D ;\)
J：＝JM1； \(1:=1-1\) ；

GC TO S21；
S26：IFDIFF＝OTHEN GOTJS30： \(A(1,1):=A(1,1) / D \leq F F *<M O\) ；
S30：FORI：＝ 1 UNTILK DO BEGIN
\(V:=0\) ；
JLOW ：＝IF I＞＝M THEN I ELSEM ；
FORJ：＝JLOWUNTILKDO
```

 V:=A(I ,J)*VNIKX(J,M) + Vi
    ```

VNIKX（I，M）：＝V
END；
END；
s99：
END BSPLVO；
PROCEDUREINTERVIREALARRAYXT（＊）；iNTEOEZVALUELXT；REAL VALUEX： INTEGER रLSULT ILeF T，MFLAj）；
COMMENT COMPUTES LARGESTILEFTIN（i，LXIISUGHTHATXT（ILEFT）＜＝X． X T IS OFSIZEXT（L：：LXT）．ILOI S A ULOBALVARIABLE． ILOMLSTBES E TEQJALT O 1 beforethefirst CALLO FINTERV；
8EG IN
INTEGERIHI，ISTEP，MIODLE；
IHI：＝ILO＋I；
I FIHI＜LXTJHENG O T OSZO；
I FX＞＝XT（LXT）THENGOT OSLLO；
IFLXT＜＝1THENG O T OS90；
ILO：＝LXT－1；
GU TO S21：
S20：IFX＞＝XT（IHI）T H E NGUTJ＞40；
S21：\(|F X\rangle=X T(I L C) T H E N G O T J S I U O:\)
COMMENTNOWX＜XT（I Hi ）．FIN 3 LOWERBUUND；
S30：ISTEP：＝1；
s3 1：IHI：＝ILO；
ILO：＝IHI－I STEP；
I FILO＜＝1THENG 0 T OS3j：
IFX）＝XT（ILOIT H E NGUTJS50：
ISTEP：＝ISTEP＊2；
G OTUS31；
s35：ILO：＝1；
I \(F X<X T(1)\) THENG OTOSFU：
GU TO Sbu：
COMMENT NOWX＞＝XT（ILO）．FIVU UPPEK BUJVO；
S40：ISTEP：＝1；
S41：ILO：＝IHI；
IHI：＝ILO＋ISTEP；
I FIHI＞＝LXTT H E NGUTOS45；
If X XXTIIHI）THENG UTUS50；
I STEP：＝ISTEP＊2；
Gu T O S41：
s45： \(\mid F X>=X T(L X T) T H E N G O T J S 110 ;\)

IHI: = LXT;
COMMENTNUWXT(ILO)<=x<XT(IAI). NARRUW THE INTERVAI:
SSC: MIDDLE:=(ILC+IHI) DIV \(<\);
IFMIDDLE=ILOTHEN G OTUS100;
C O M M E N T I TISASSUMEU THATYIDDLE=ILUUIVUASEIHI=ILO+1:
IFX<XI(MIDDLE)THEN GO TOS53;
ILO:=MIDDLE:
GU 「O ゝ5U:
S53: IHI:=MIDOLE;
GU TJ S50;
CCMMENIS E TCUTPUTANUEXIT:
S90: MFLAG:=-1;
ILEFT:=1;
GO TJJFIN:
S100: MFLAG:=0;
ILEFT:=ILO;
GU TJ \(\operatorname{sFiN}\);
S110: MFLAG: \(=1\);
ILEFT:=LXT;
SFIN:
ENDINTERV:
PROCEDURE BANDET(REALARRAYM(*;*) ; INTEGERARRAYINT(*);
REAL AR941A(*,*); INTEGER VALUE N,ML, M2):
CGMMENT BANOET ANDITS COMPANION PRUGEUJREBANSOLSOLVETHESYSTEM O FEQUATICNSA*X=BWHERE A ISA N JVSYMMETRICBAND MATRIX. (THEYWILL W ORKWITHSYMMETRIC BANUYATRICESBUT TAKE NO ADVANTAGE OF THEIR STRUCTURE.J
T H E BANDMATRIX 4 JFURDERNmITHMLSUB-DIAGONALELEMENTS ANO M 2 SUPER-DIAGJNALELEMENTSINA TYPICAL ROW IS STOREOAS
 SUB-DIAGONAL ELEYENTSINA(*, \(j), J=1, \ldots, M 1\), THE DIAGONAL ELEMENTSI NA(*, MI + 1), ANDTHESUPCR-DIAGONALELEMENTS IN A(*, J), J=M1+2, ..., M1+M2+1. THEMATRIXAISFACTORIZED BY BANDEIINTOTHEPRODUCTOF A LUWER-TRIANGULARMATRIX ANO AN UPPER-TRIANGULAR MATRIXUSINGPARTIALPIVOTING. THELOWER TRIANGLE IS STOREJA SA NN BYMLARKAYM(1:: N, 1::M1)AN 0 THE UPPER TRIANGLE IS UVERWRITTENUNA. DETAILSOFTHE INTERCHANGES ARESTUREDANTHEARRAYINT(I::N):

\section*{BEGIN}

INTEGER I.L.M3;
REAL X;
M3: = M1 + M \(2+1\);
L: =M1;
FOR I:=1UNTILM IDO
BEGIN
FOR J: = ML +2-IU N T IL M3DO
\(A(I, J-L):=A(I, J) ;\)
\(\mathrm{L}:=\mathrm{L}-1\);
FOR J:=M3-LUNTILM3D O \(A(I, J):=C\)
ENDI ;
L: = M1;
FORK:=1 UNTILN 00
BEGIN
\(X:=A(K, 1) ;\)
1: ;
IFL<NTHENL: \(=\mathrm{L}+1\);
FOR J: =K+1 UNTILL3 3
I FABS \((A(J, 1))>A B S(X)\) THEN
BEGIN
\[
X:=A(J, 1) ;
\]

30：．
305.
307.
303.
309.
313.

311 ．
312.
313.
314.
315.
316.
317.
318.
319.
323.
321.
322.
323.

32ヶ。
325.

325 ．
327.
323.

329 ．
333.

331 ．
332.
333.
\(33 \%\) 。
335 。
335 ．
337 ．
339 。
339.

343 ．
341 ．
342 ．
343.

344 ．
345 ．
345 。
347 ．
343 ．
349 ．
353.

351 ．
352.
353.

3ヶ＇。
35）。
355，
357 ．
353 。
359.
363.

361 ．
362 。
363.

36＇t．
365.

1：\(=\mathrm{J}\)
END J：
INT（K）：＝I；
I FI？\(=\) K THEN
FORJ：＝1UNTIL M3 UO
BEGIN
\(X:=A(K, J):\)
\(A(K, J):=A(L, J) ;\)
\(A(I, J):=X\)
END J；
FORI：＝K＋I UNTILL，UJ
BEGIN
\(X:=M(K, I-K):=A(I, 1) / A(K, 1) ;\)
FGR J：＝2 UNTIL M 3 UU
\(A(I, J-1):=A(I, J)-X * A(K, J) ;\)
A（I，M3）：\(=0\)
END I
END K
ENDBANDET；
PR O C E D U R E BANSOL（RE AL ARRAYM（＊；＊）；iNTEGLRARRAYINT（＊）；
REALARZAYB（＊）；REAL ARRAYA（＊）＊）；
INTEGER VALUE \(N, M 1, M<J\) ；
CCMMENTthe P ARAMETERSM，INT，A，N，ML，M\＆ARETHESAME ASINbANUET．
BANSOLS OLVESIHESYSTEMUとCUMPUSEUBYBANDET W ITH
RIGHT－HANC SIDEB（L：：N）．THESULJTIONIS RETURNEDINB；
BEGIN
INTEGERI，L，M3，W；
REAL X；
M3：\(=\) M1 + M \(2+1\) ；
L：＝M1；
FOR K：＝1UNTILN D O
BEGIN
I：＝INT（K）；
I FIT＝K THEN
BEGIN
\(X:=B(K) ;\)
\(B(K):=B(I):\)
B（1）：\(=X\)
END；
IFL＜NTHENL：\(=\mathrm{L}+1\) ；
FGR I ：－K K 1 UNTIL LUJ
\(B(I):=B(I)=M(K, I-K) * o(K)\)
END K；
L：＝1；
FOR I：＝N STEP－ 1 UNTILLD
BEGIN
\(X:=B(I) ;\)
\(\mathrm{w}:=1-1\) ；
FOR K：＝2UNTILLDJ
\(x:=x-A(I, K) * B(K+W) ;\)
\(B(I):=X / A(I, 1) ;\)
I FL＜M3 THEN L：\(=L+1\)
ENDI
－END BANSOL；
INTEGER TN2，IN3，TN4，IML，TMM，MPI，LL，MM2，iL，IM2，LXI，JJ，ILO：
REAL AI，ANP，FAC：
REAL ARRAY DELTAM，DELTAP（1：：\(\langle * M)\) ；
REAL ARRAYT（1：：N \(\left.2-N_{1}+4 * M-1\right)\) ；
REAL ARRAY TAI 1：：\(N 2-N L+\langle * M-1\) ）；
REAL ARRAY TX，TY（1：：NZ－V1＋1）；
REAL ARRAYG（1：：N2－N1＋ \(2 * M-1,1::(\langle M)\) ；

REAL ARRAYTRL（1：：N2－N1＋2＊M－3，1：：M－1）；
REAL ARRAYVNIKX（1：：\(\langle\neq 4,1::\langle * M-1)\) ；
REAL ARRAY C（1：：2＊M，1：： \(\left.\mathrm{V}_{2}-\mathrm{N}_{1}+1\right)\) ；
INTEGER ARRAY IN T（1：：N2－N1＋2＊M－3）：
TN2：＝N2－N1＋1；
TM2：＝2＊M；
TN4：＝TN2 + TM2－4；
TMM：＝TM2－1；
FOR I：＝N1 UNTILN2OO
BEGIN
TX（I－N1＋1）：\(=\mathrm{X}(1):\)
\(\operatorname{TY}(I-N 1+1):=A(I, 0)\)
END I；
JJ：＝1LO：＝1；
FORI：＝ 1 UNTILT M 2 DU DELTAM（I）：\(=\) OELTAP（I）：＝40；
FOR I：\(=1\) U N T I LTMM DOTII \(:=T \times(1)\) ；
FOR I：＝1 UNTIL TN2－1 UU T（I＋TMM）：＝TX（I）：
TN3：＝TN2－1 + TMM：
FORI：＝1UNTILTM 2 D OT（I＋TN3）：＝TX（TN2）：
COMMENT GET COEFFICIENTS OFFIKSTM－IRJWS：
BSPLVD（T，TM2，TX（1），TML，VNIKX，TMM）；
AI：＝TY（1）／VNIKX（1，1）：
FOR I：＝1 UNTILM－IDO
BEGIN
FOR J：＝1 UNTILTMMDOQ（I，J）：＝0；
MPI：＝M＋I；
LL：＝M－I；
FORL：＝2UNTILMPIDJ
BEGIN

\section*{LL：＝LL＋1；}

\section*{Q（I，LL）：\(=V \operatorname{NIKX}(L, Y P I)\)}

END L；
TA（I）：\(=-A 1 * V N I K X(1, M P()\)
ENDI；
COMMENT G ET COEFFICAENTS OFNEXTINLRUNS：
MM2：＝M－2；
FOR I：＝2 UNTILTN2－1 D O
BEGIN
BSPLVN（T，TM2，1，TX（I），I T TMM，VNIKX（＊，1））；
IM2：＝I＋NM2；
FORL：＝1 UNTILTMMDJQ（IM2，L）：＝VivIKX（L，L）；
TA（IM2）：\(=T Y(1)\)
END I：
COMMENT GET COEFFICIENTS OF LASTM－iKUWS：
BSPLVD（T，TM2，TX（TN2），TN3，VNIKX，TMM）；
ANP：＝TY（TN2）／VNIKX（TM2，1）：
FORI：＝1UNTILM－I DO
BEGIN
II：＝TN2＋TM2－3－I；
FOR J：＝1 LNTILTMM DU Q（II，J）：＝0；
MPI：\(=M+I\) ；
LL：＝M－I；
FORL：＝1 UNTILMPI－100
BEGIN
c \(C\) ：\(=L L+1\) ；
Q（II，L）：＝VNIKX（LL，MPI）
ENDL；
TA（II）：＝－ANP＊VNIKX（TML，MPI）
END I；
BANDET（TRL，INT，Q，TN4，M－1，M－1）：
BANSOL（TRL，INT，TA，Q，TN4，M－1，M－1）；
427.
428. 429 ．
430.

431 ．
432.
433.

43 ＇。
435.

435 ．
437.
438.
433.

440 ．
441 ．
442 ．
443.

44’．

FOR \(I:=1\) UNTIL TN4 UU \(\mid A(I N S H I):=1 A(I N S-I-1) ;\)
TA（1）：＝A1；
TA（TN3）：＝ANP；
FOR I：＝1 UNTILT N 3 DUG：F（I）：＝TA（1）；
BSPLPP（T，TA，TN3，TM2，W，TX，C，LXI）；
FOR I：＝A UATILTN2－1 DU
BEGIN
FAC：\(=1\) ；
FORJ：＝LLNTIL TMく UJ
BEGIN
FAC：－FAC \(=(\mathrm{J}-\mathrm{I} \mathrm{J}\) ；
C（J，I）：＝C（J，I）／FAこ END J
END I；
FORI：＝1 UNTIL TN2－1 OU FOR J：＝1 UNTIL TM2 J J A（N1＋1－1，J－1）：\(=C(v, 1)\)
END DEBNAT：```

