
THE STATIONARY  P-TREE FOREST

bY

Arne Jonassen

STAN-CS-76-573
OCTOBER  1976

COMPUTER  SCIENCE DEPARTMENT
SchoDlof Humanitiesand  Sciences

STANFORD  UNIVERSITY



___. -- ---.-_  -__ --- ---- “- - ..-- -__ - l--------_l_  ___  -_-_--lpl___________cI_



The Stationary p-tree Forest

bY

Arne Jonassen

At present at Computer Science Department, Stanford University, Stanford,

California 94305, U.S.A. The work with this report has also been

supported by The Norwegian Research Council for Science and the Humanities.

Abstract

This paper contains a theoretical analysis of the conditions of a priority

queue strategy after an infinite number of alternating insert/remove steps.

Expected insertion time, expected length, etc. are found.

Kev words

Analysis of algorithms, priority queues, random deletions, binary trees.

This research was supported in part by National Science Foundation
grant MCS 72-03752 A03 and by the Office of Naval Research contract
NOOOl4-76-c-0330. Reproduction in whole or in part is permitted for
any-purpose of the United States Government.





3

Contents

1. summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3. The Stationary p-tree Forest . . . . . . . . . . . . . . . . 23

4. Approximate Probabilities for the Nest Last Node Value

on Left Paths in ( >
sin . . . . . . . . . . . . . . . . . ..3 g

5. ( >Measures of Efficiency in Sin . . . . . . . . . . . . . . . 77

References . . . . . . . . . . . . . . . . . . . . . . . . . 88

c

ii





1. Summary.

In [2] Ole-Johan  Dahl and the author studied an algorithm for

priority queue maintenance, first used in the work with the language

SIMULA in the beginning of the 1960's. The strategy uses special binary

trees called p-trees, and algorithms to maintain those structures.

The main part of [2], as well as of the more detailed treatment in

[l] and [311 was devoted to a mathematical analysis of the efficiency of

the structure after n successive insertions. Each new key was supposed

to be independent of the other keys and to have equal probability of

falling in any of the intervals defined by those keys already in the queue.

This paper is concerned with the efficiency of the algorithm after a

large number of alternating remove-best/insert-random steps, starting

with the situation after n successive insertions.

The famous ergodic theorem of Markov chain theory ensures us that

there exists a stationary state, called the stationary p-tree forest,

which the process approaches. We will find approximate values for properties

of the stationary p-tree forest, as an application of general methods

which will be developed for the analysis of such algorithms.

.Let F denote the normal p-tree forest and Is the stationary

p-tree forest. The following table compares some of the aspects of these

two random structures:

Expected left
path length

Expected insertion
time

Expected recursion
depth

F

2Hn -1

1 2
7 Hn + y Hn + O(1)

;Hml+$

S

1 2
7Hn + :Hn + O(1)

1 2
7 Hn + f Hn + O(1)

1
$Hn-g+O
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The stationary p-tree forest S is more "skinny" than the normal

p-tree forest F . Near the root, S is approximately equal to F ;

for example the expected right path length tends to the same limit, and

the probabilities of the value of the node next to the root are nearly the

sane. However at the end of the left path S is quite different from F .

The expected length of the left path of the last right subtree of the

'left path is shown to approach 1 , while the corresponding value of F

3approaches 5 . Similarly, the probability for the node next to the

left leaf to be a, is shown to have the approximate values:

in S:

in F:

if a=3

s: L+2 Hn
g 7-c

F: ;

andif a =2

1
F: 2 .

In Chapter 2, more general aspects of the queuing phenomenon are

presented. It should be pointed out that the text primarily deals with

the parbicblar problem of finding measures of the efficiency of the

stationary p-tree forest, despite the fact that some of the methods have

obvious generalizations.



In Chapter 3 is found a detailed definition of the stationary p-tree

forest and its prerequisites. We also discuss a function, the characteristic

left path polynamial attached to the forest, which will be essentially

useful later in the paper. By arguments in Chapter 3 the Qnction is

defined for S .

In Chapter 4 one will find a deductive proof of the probabilities

for the value of the node next to the left leaf. The derivation involves

techniques from discrete mathematics, especially involving binomial

coefficients.

In Chapter 5 we collect the information to derive the measures

for S .
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2. Models

2.1 The Queuing Phenomenon.

In the general case of the queuing phenomenon we have a Source (S)

consisting of a number of independent devices, generating units to be

served at some Service Processor (sp) . SP for some reason (for

example, its capacity) will not serve the units at arrival, and therefore it

depends on some type of Queue Controller (QC) which arranges the units

in some kind of priority sequence according to key values assigned to

each unit. QC usually makes use of some predefined strategy working

with special-types of storage structures in the queue itself (e.g. linear

lists, binary trees, index tables). At request, the QC releases the

unit having the best key value, for service by the SC (Best-In-First-Out

(BIEO) strategy).

The process of placing a new unit in the queue is called an Insertion (I)

and-the process of taking the best unit out of the queue is called a Remove (R) .

S - Source

QS - Queue Storage

QC - Queue Controller

SP - Service Processor

-0 -0 Insertion

Remove

Figure 1.
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We shall deal only with the queuing process and will assume that

the units consist of the key value only.

A very simple way of assigning key values is to define some kind of

time function according to the arrival at the QC . The best strategy

is then probably to use a simple linear list in the QS . However, in

the general case keys emanate from the source with values according to

some distribution function; they may be adjusted by the QC prior to

insertion and even be changed during their stay in the QS . We will

use the term key pattern for the complex of rules according to which

keys are assigned.

The queuing process may be regarded as a discrete time sequence of

events. At each time t (t = 1,2,3,...) either an insertion or a

removal takes place. In general we may have a case where the event to

take place is subject to selection according to some distribution function.

We will use the term I/R-pattern for the complex of rules according to

which the insert/remove sequence takes place.

Maintaining a priority queue requires selection of a strategy for

the structural ordering of the keys and algorithms for insertion and

remo,val of keys. Linear lists, AVL-trees, and "heaps" are examples of

such strategies. Each strategy provides algorithms for insertion and removal,

as well as a mechanism for representation of the data, and we shall call it

the queue strategy.

The purpose of this paper is to study a specific combination of the

three elements in the queuing phenomenon, as described in the next

sections. Some of our methods and resultshave obvious generalizations;

however, we shall not attempt such generalizations in this paper, but

concentrate on obtaining results for our special case.
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2.2 Models for Key and I/R-patterns.

We will assume that our source generates keys as an infinite sequence

of real numbers

X1,X2� l l .,Xs�  . . .

being independent random variables chosen according to the exponential

distribution with mean h (0 < A) , having the density distribution

function:

I

AeoAx if O<x
(2.2.1) f(x) =

1 0 otherwise.

Furthermore, we will adopt the following assumption

I Upon entry to the queue controller, each new key is increased
(2.2.2)

I
by the value of the key last removed from the queue.

To demonstrate the effect of (2.2.2) we give an example.

Example 2.2.1.

Let the first five keys from the source be

0.8 , 1.9 , 1.1 ) 0.1 , 2.0

and suppose the I/R-pattern is

IIIRIRRI

Key from Key to Last key
Time I/R source the queue The keys in the queue removed

1 I 0.8 0.8 0.8 0.0

2. I 1.9 1.9 0.8 ., 1.9 0.0

3 I 1.1 1.1 0.8 ) 1.9 , 1.1 0.0

4 R 1.9 ) 1.1 0.8

5 If 0.1 0.9 1.9 , 1.1 , 0.9 0.8

6 R- 1.9 , 1.1 0.9

7 R l-9 1.1

8 I 2.0 3.1 1.9 9 3.1

6
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Restricting ourselves to a source generating keys which'are independent

elcponential  random variables is not uncommon. Biasing

the keys as described in (2.2.2) needs some motivation. If no adjustment

were made we would run into cases where we would have smaller keys in the

queue than some of those removed on earlier stages. Not biasing keys

also means that large keys will have a tendency to be trapped in the

queue, because smaller keys keep coming in with non-vanishing probability.

The example below, quoted from [2], gives a practical example of bias

occurrence:

Example 2.2.2.

Let the source contain n b 2 1) independent exponentially

distributed event patterns, with common parameter

1 2

L4 Llxl x2

n

Ll'n

A>O.

source

The n devices each deliver an event time Xj (j = 1,2,...,n) to an

initial queue. From that time on the best key, say Xk' is executed and

the device k delivers a new key

x;z
= Xk+E

where E is exponentially distributed. Since
% is the smallest of such

keys in the queue at the present time, we have a situation conforming

w5th (2.2.1) and (2.2.2). 0

The key pattern described above is denoted s .

7



Suppose A is some fixed (i.e., not subject to probabilistic.

changes) I/R pattern, and let A(t) (1 < t) denote the t-th event

(1 or R) . (In Chapter 3 we will concentrate on a few such A ,

at present it is left unspecified.)

If we at any time t are left with an empty queue (i.e., if the

number of I's having occurred is equal to the number of R's having

occurred up to and including time t ), we clearly are in a trivial

situation equivalent to the original state; previous counts have no

effect on the subsequent ones. Thus we may neglect this situation.

We will allow A to be infinite, but will assume that it is bounded

in the sense that the queue never will contain a number of keys larger

than some predetermined number M .

The latter two assumptions may be formulated as follows.

Let NA(t) be the difference between the number of I's

and the number of R's having occurred in A up to and

including time t . Then

(2.2.3) 0 C NA(t) < M

I.for aJl times t = 1,2,... , where M is sOme predetermined

number.

Ko and A together uniquely define the queue at all times t = 1,2,... ,

when the initial stage (t = 0) is defined by the empty queue. The

content of the queue will be denoted as follows.

nt (= N&t))

(t>
xl

(t>
9 l **t X

nt
the keys in the queue at time t , in sequence

according to their arrival in the queue

% the value of the key last removed from the queue.

8



The notations apply to the situation after execution at time t (A(t)) .

Initially

no=60=0 .

Our combination of $, and A have the nice property of leaving

invariant the simultaneous density distribution function for the differences

between the keys and the value of the last removed key, as stated in

the following proposition.

Proposition 2.2.1. Using the notations above, let 1 St and define

the stochastic variables:

(t>W. (t>
3

=x -st
3

l_<j_<n,=n .

Then the W's have the following simultaneous density distribution function:

(2.2.4) f(Wl�W2� l  l  .,w,)  =

hne
-A(w1+w2+ . ..+wn)

if 0.~w19w2J-~9wn

1 0 otherwise.

Proof. The proof follows from standard results and methods of

probability theory.

As A(1) = I > and the first X from the source is exponentially

distributed, we have nl = 1 , bl = 0.0 and the correct distribution

function. So the proposition is true for t = 1 .

Assume the proposition to be true for some t , 15-t.

If A(t+l) = I , let the new key from the source be

x =W+bt

where the density f'unction of W is given by (2.2.1). At time t+l we

will have:

9
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"t+1 = n,+l

and the queue sequence:

(X(t+l),⌧ct+l),  . . l ,⌧(t+q
1 2

=
nt+l

p,⌧y . . .,XyX)
1 2 .

nt

The W's at time t+l are therefore defined by:

j = 1,2,...,r1~+~-1

W(t+l)
nt+l

= w .

(t+QAs W is independent of Wl Y l **,
w (t+U

nt
we obviously have the required

simultaneous density distribution function at time t+1 .

If' A(t+l) = R , let

V(t> = mjn(W(t),W(t),...,W(t))
1 2

nt
and

p,P), . . .,P) be the remaining W(t>
2 nt-1 9, conserving

the sequence.

By symmetry, the simultaneous density distribution function

for V(t),Y(t),...,,(t) is:
1 nt-1

nt -A(v+yl+ . ..+y )
n.$ e

n-t-1
if 0 _< v_<yl,...,y

f(V,Yl,Y27,Yn > =
nt-1

t-l
0 otherwise.

Removing the-smallest of the X (t) 's is equivalent to removing the smallest

of the W(t> Is, leaving us with the following situation:

10



nt+l = nt -1 ; 6t+l=V (t> +St ;

and

p+l) = y(t) _ ,(t >3 3 j = 1,2,...,nt+l .

The simultaneous density distribution function for the W(t+Q 's is hence:

-A(np+(y+...+w )

fby2’ l *.,wnt+l) = j-;nt Ant e
nt+l dv

(0 otherwise) because

& +Jt) +
1 . . . +,(t)

nt-1
= v(t) + (wt+l) +,(t> + ... +W(t+l)  +,W)

nt+l

= nt V (t> + (w@+Q +
1 . . . + w(t+Q ) .

nt+l

Simple integration yields the desired density function.

Proposition 2.2.1 has now been proved by induction. Cl

Another useful property of our ($,,A) complex is the fact that a key

to be inserted has equal probability of falling into any of the intervals

defined by the keys already in the queue, as is readily seen from the

symmetry properties of the density distribution function of Proposition 2.2.1:

Proposition 2.2.2. Using the notations above, assume

A(t+l) = I .

Let X = Wt+Et be the key to be inserted, W being distributed according

to (2.2.1).

Let ,(t) w
1 ‘%

w
ye**yznt

w (t>be the ordering variables of Xl ,X2
t l a*,

,(t)
nt l

Then for j = l,2,...,nt-1 :

Prob(X < gt)) -= (t)Prob(Z. < X < Z(t> (t)
J - j+l ) = Prob(Z

nt
<x)=-&y.

t



The results in Propositions 2.2.1 and 2.2.2 enable us to replace the

continuous key pattern Ko 'by a discrete key pattern Do , described

below- The replacement is easily seen to carry no loss of generality,

for-queue strategies that depend only on the relative order of keys.

The key pattern Do involves renumbering of the key values in the

queue at each step. However this will not alter the internal arrangement

of the key

equivalent to those of
%

l

P-2*5)

Key pattern
Do l

-0

-0

-0

At the end of each time t the queue contains a permutation

of the integers 1,2,...,nt .

If A(t+l) = I , the source generates an X from the set

7 =
nt

$,~,...,nt+-$
>

with discrete probability distribution

Prob(X=x) = -& VXET l

t nt

Having inserted x in the queue the keys are renumbered

according to their size.

If A(t) = R , the key 1 is removed and the remaining key

values are decreased by 1 .

Note that in
DO ( as in Ko)

all permutations (all relative

orderings) are equally likely to occur, and that inserted X's (both in

Do and - Ko)
have the same probability of falling in any of the nt+l

intervals defined by the queue keys.
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2.3 The Queue Strategy: p-trees.

The queue strategy p studied in this paper is the use of p-trees

with algorithms for insert and remove, as described in [1]

and [2]. In these papers, as well as in [3] and [6], one will find

theoretical and practical results concerning 63 . We will assume

familiarity with p .

using p , the queue structures are postfix ordered binary trees,

being elements of a subset of the set of all binary trees. We will denote by

Bn( 1 the set of all binary trees with n nodes (n ~1)-

ZP( > the set of all p-trees.

(We recall that a tree Ten( 1n is a p-tree if and only if

each node having a right successor also has a left successor.)

We will agree to define B(0) and 3(0) to consist of one tree, viz.

the emfiy tree u .

When using p-trees we will adopt some conventional notations.

(2-3.1)

Let Te9b, (2 ,< n) .

-- The length of the left path will be denoted r .

-- The values of the left path nodes in postfix order, from

top to bottom, will be denoted by

n = q1 > q2 > l ** > 97 = 1

-- The right subtrees of the ~-1 first left path nodes (left

leaf excluded) will be denoted by

B1’B2’  L
. l vB,e 1

agreeing that node values are adjusted to range from 1

upwards (if nonempty),

13
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(2.3.2)

I
I

A p-tree forest F is defined as the pair of items:

F = (3 n ,@>( )

where @ is some probability model containing for each tree T

in 9( >n a probability PT to occur.

Using the key pattern Do , some I/R-pattern A and cp
, will at '

each time t leave us with a p-tree forest, denoted by

wFA = (dn),m(t))
A

where

@A
@) = (Pp)(T) 1 T EgCn)] .

In [1] and [2] are presented theoretical results of the so-called

"normal p-tree forest", being the pair

( >nF. = (,(n) ;@(n) )
( >

a,
n

where 0n
a, -=I1 . ..I is the I/R-pattern consisting of n successive insertions.

One of the important properties of the normal p-tree forest, due to the

recursiveness of the insertion algorithm is that:

14



(2*3a3)
The set of all right subtrees  of a fixed left path node

position is composed of a set of copies of normal p-tree forests.

This property is called the basic p-tree property (BPP). Formally, the

BPP may be described as follows:

(2.3-b)

@ = EpT

be any p-tree forest (n > 2) with

I TeSn} .( 1

Let 15 j 5 (n-l) be any fixed left path node position, and

define .
(J)

av
= c PT

TEC( >

B -U.-
J

for all trees U :

n
UEU3S .( >

S=O

Let

.
(J)
%

= c $1

UC904

and

(0 < k < n-j-l)- -

Then F is said to have the BPP if the forests

are normal p-tree forests for all j, k : 0 sk_<n-j-l ;

l,< j <n-l .

( >n
A proof of the fact that F

0
have the BPP is found in [l].

15



2.4 The Characteristic Left Path Polynomial.

Adopt the notations in the previous section and let T ~3 n ,( >

@La l The polynomial

(2.4.1) %(z,w) = 5’ :j wqj+l.
j=l

is called T's left path polynomial (LPP).

Let F = (Sn,@)( > be any p-tree forest (n > 2) . The polynomial

(2.4.2) HF(z,w) = ’ ‘T %J(z,w)  ’
TESn( >

is called F's characteristic left path polynomial (CLPP),

Being a polynomial in z a band w having terms of the type z w with

1 <b < a < n we see that we may write-

(2-4.3) HF(z,w) = C pLF; z" wb
l_<b<a_<n y

where

I
w

(2.4.4) payb is the probability of a tree in F to have a and

b as values of adjacent nodes on the left path

For convenience we will adopt the conventions

h#YW> = HF(z,w) = 0 if n=l

(2.4.5)
h-J%4 = HF(zyw) = -z if n = 0 .

From the CLPP of a p-tree forest F , we may deduce the expected left

path length- LF . Because-each tree T has exactly one more node on its

left path than the number of terms in its LPP we find

16



T = l+hT(l,l)

(0 < n) .-

Assume that F = (s n ,@( 1 ) (n > 2) has the BPP, defined in the previous

section. We may then use F 9 CLFP to establish the expected number of key

comparisons @ >F
necessary to insert a random X'& Y being subject to the

equiprobability distribution as in DO
in the trees.

We split SF into two psrts:

m4.71 sF
= SLF + SRF

where SLF is the expected number of key comparisons involving left path

nodes, and SRF is the expected number of key comparisons involving nodes

in the right subtrees.

SL, l

Let T be any tree, and use notations as in (2.3.1):

if x<l weuse 'f comparisons;

if qj+l < x < q .
J

for some j = 1,2,...,T-1 we use j+l

comparisons;

if n<x weuse 1

leading to the expected number of left path comparisons in T :

t

T-1
s+ = ' + Xi (Sj

j=l

comparison;

- qj+l)(j+l)+l

)I
(n+l)

9j l

17



Now

r-1
c qj =
j=l z=w=l

so that

=!c 1
=1+x [ 1ah+34

az Z =w=l

and obviously

(2.4.8) sLF
=l+-& [ 1aHF(Z’W)

.
az Z =w=l

Let the number of key comparisons necessary to insert x in the right

subtree of left path node j of the tree T be

sT(xyj)

p:ovided qj+l <x < qj . This process is clearly equivalent with

inserting x-qj+l in B.
3

(where node values have been adjusted), denoted

~bY s,(x>, because of the BPP.
3

We then find

SRF = c c
T E3(n) j ='

G pT & sT(xyj)

qj+l <x<q.J

n-l n-'-l
= c E c
j=l k=O w

c & sU(x)

UE3 x E $

18



Using the notations of (2&b), knowing that F has the BPP, we find

c PT = ($1 = qij) A;’

TESn( >

B . =u
3

and hence

SRF

n-l n-j-l
c c
j=l k=O

k+l (3) v

GE% jyk

where

Vj,k =
c

�

(J)
qU l sU(⌧)  & = � (k)

Ue3(k) x E yk FO

because ($4 ,,(j))
k is a normal p-tree forest.

.
(J)

!k is the probability of finding a tree in F with right
?I*

sub-tree j of size k . Each time a term z J w
'j+l

with

9j Oqj+l
-1 = k occurs in the LPP's of the trees in F we get a

contribution PT to the corresponding term in F's CLPP. Summing over all

possible j 9 wiU, correspond in the CLPP to summing the coefficients of all

a bpossible z w with a-b-l = k . Hence

and

P-4-9)
n-2

k+l
n-k-l

SRF = 09
,c, a �$lik)  ,c, Bb+k+l,b l

Bringing (2.4.8) and (2.4.9) together we find

+ nc2 k+l

Z =w=l k=O n+l sFik) 'k (n 2 2,

where

19



(2.4.U)
n-k-l

The Pk *s may be found as follows:

(2.4.12)
n-2
x pkzk =

k=O

The quantities S /mj are known from [1] and [2]:

(2.4.13')

L Hc2) _ 28
3 n+l 27 (n ,> 2)

S
(0)

=o ; s
(1)

=l.

FO FO

Similar to the methods used above for LF and SF we may establish

formulae for the quantities

- RF the expected length of the right path in F

E";F the expected length of the left path of the last right

subtree

cF
the expected recursion depth

all quantities being examined in [2]. The appropriate formulae turn out

to be

(2.424) RF = 1 + ns2 R (k) ~(~1
k=O F.

n,n-k-l

(2.4.15)
n-2

RL~ = x L (F)
k = 0 $lck) pH2,1

- 0

20



(2.4.16) cF = 1 + ?i2 j$+j c0
k=O #d +f

0

b 2 2)

(with pk defined in (2.4.11)).

We shall demonstrate the effects of formulae (2.4.6), (2.4.10),

(2.4.14), (2.4.15) and (2.4.16) when applied to the normal p-tree forests.

( 1We assume n > 2 and Fan .-

( 1
FOn

has the BPP and the CLPP:

(2.4.17) H
a=2 b=l -

The latter formula was established in [2] on basis of considerations on

the correspondence between the set of all permuations of the numbers

1,2,...,n and F n .( >
0

From (2.4.17)  we deduce

a-l
(2.4.18) H (n) (191) = g c ( (n+l-b)(n-b) + 6 )1

FO a=2 b=l

= 2(Hn -1)

and'(according to (2.4.12)):

+ &-& ) Za-b-l

(2.4.19)

=

and finally

21



(2.4.20)

bH (n) hw)

FO
aZ Z =w =l a=2 b=l n+l-b)(n-b) +

= (n+l)Hn - 9 l

Inserting (2.4.18) -(2.4.20) in (2.4.6), (2.4.X)) and (2.4.14) -(2.4.16)

we find (n 12) :

(2.4‘21)

L
( >

FOn

= q-1

n-2
c (n-k-1)s (k)k o=

FO

n-2

Rn( >
=1+ c R

FO
(k)k=O F.

n-2
RLn = 1 1 1

( > kco LF(k) ~n(n-l)
+
'm

= 34 -
2 ii

+

FO
= n(n-1)

0

These formulae confirm those of [2]. Detailed treatment of (2.4.21),

may be found in [l] and [3].

.

The main advantage obtained by use of the CWP relative to [1] is the

establishment of the term SL (n) from (2.4.8).

FO
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3. The Stationary p-tree Forest.

3.1 General Considerations.

Consider the key pattern Do (see (2.2.5)), the queue strategy p

and any p-tree forest F = (3 n ,@)( > where n > 1 and

(3.14 G = (q(T) \ T ES(~)) .

Let A be the I/R pattern consisting of an infinite number of alternating

insertions and removals:

(y.2) A(%-1) = I > A(2s) = R s =1,2,... .

Suppose we start at time 0 with F and apply A . At each time t = 2s ,

s = 1,2,... we are left with a p-tree forest, denoted by

FS =( >
(3-1-3)

I Q s( >
= ( q + ) ( T )  1 T E dn)}

l

We also define F (0) = F .

The sequence F ("),F(l), . . .,F(') , . . . may be regarded as an infinite

Markov chain, where the possible stages are the trees of 3 n( > and where

the transition matrix

311= crni  j)9

is an NxN matrix (N being the number of elements in &n) ) whose

elements m. are the probabilities of mapping tree i from $5 n to( >
1, j

tree j in 3 n( 1 in one complete insert-remove operation. (We

f& some numbering of the trees in 3 n .)( >

To demonstrate this transition, let us consider the case when n = 4 .
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Example 3.1.1. The left column in the table below contains the possible tyees

in pj;(4) Y the horizontal line contains the possible x's and the table

entries are the resulting trees when inserting x and removing the left

leaves.

X
T
\

T2
!L

?\
T4 Op

0

1
2

2
2

The transition matrix is therefore

ti

2
5

2
5

0

2
5 Y

1
5

I
1
r

1
5

5

2
-5

0

1
2

0

0

F

1
5i

x
00

A

Bb
/

0

3

P
0

rA
0
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and one complete insert-remove step may be described as .

- swhere P( > is the row vector

ds’(Tl) Y dS)(T2) Y dS)(T3),  (P(S)(T4)) .

In the general case, if we agree to denote

- sP ( 1
= dshl) , (P(")(T2), l �* , cp (�I  cr,>>

for some predetermined enumeration of the N trees in 3 n , we have( 1

and

(3.15) @) = i;(O) ni’

r/l is a sparse matrix, the number of positive elements in each row being

at most n+l , while N is very large (consult [2]). However it is easy

to see that

(3.9 7f is a positive matrix.

This is deduced from the fact that Do gives a positive probability of

reaching any tree Tl in n steps, regardless of what the original tree

TO was.

To see this, we refer to [1] where it is shown that any p-tree may

be created by selecting an appropriate permutation of the numbers 1,2,...,n

and then performing n successive insertions using i% (Conversely, picking

any permutation, performing n successive insertions using p , of course

gives us a p-tree .) Let therefore (a1,a2,...,an) be a permutation of
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of the numbers 1,2,...,n corresponding to the tree
Tl . Select the

x % to be inserted: x~,x~,...,x~  into To in such a manner that at

any stage the inserted nodes are larger than those from To , maintaining

the order according to the permutation (al,a2,...,an) . The tree Tl

will then gradually be built in the upper part of the tree while the

original nodes will be removed one by one.

Since nn is a positive matrix, m is a regular matrix in the terminology

of Markov chain theory (see for example [4]). The famous ergodic theorem

of Markov chain theory then gives the following statements:

'There exists a uniquely defined p-tree forest

S cp
( )n= YY 3

with

Y = (Y(T) \ T E&~)]

such that F@) .--j s in the sense that
s -+a

lim c( > \lp(S)(T) -Y(T)! = 0 l

s4w TGn

The probability vector i) of Y is defined by

F=FTq, ZF=l.

S is independent of F .

Example 3.1.2. To find S for n = 4 we have to solve the equations:

Pl -= 73 5 + 7 53 P2A +3 p4

P2 = Ip 15 + ~P2+~*345 1 1 5 4
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p3 = yP1+5P2+51 1 !P 3

P4 = FP3+-P 1
5 4

1 = Pl+ P2 + P3 + P4 l

The first four of these equations have a determinant equal

column sums in r/l are all 1 . We find, for example,

Pl' P2 + P3 + P4 = 1

-- 2P
3

51 + - P52
+3 5P4 = 0

1 4 1 17Pl+5P2+5P3+7P4 = 0

1 1 3j- Pl+ 5 P2 - 7 P3 = 0

giving us S for n = 4 :

k Y = JI Y
1= -
5

to 0 Y as the

S depends only on R, defined by A , and it is therefore characterized

W A, Do, p and the number n . We will call S the stationary

p-tree forest (of degree n ).
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Since starting with F = F. , the normal p-tree forest, will '

maintaintheBPP (basic p-tree property (see (2.3.3) and (2.3.4)) for

all F ' ,( > it is easy to see that

S = limFS( >

s 4w

must have the BPP:

(3-1.9) The stationary p-tree forests have the basic p-tree property.

We also see that the characteristic left path polynomials (CLPP) of the

FS( > 's must amroach the CLPP of the stationary forest, in the sense

that each coefficient in the CLPP of the F '( > 3 approaches the corresponding

coefficient in the CLPP of S . We shall later on establish a transition

matrix, corresponding to n for the coefficients of the CLPP's.

3.2 Defining S,n .( >

Prom now on we will assume that n > 2 . We shall be interested

only in the process of alternating insert/remove so we define:

(3.2.1)
Al(2t-1) = I t = 1,2,...

Al@) = R t = 1,2,... .

using
Do '

( >p and the initial forest Fan (the normal p-tree forest)
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The p-tree forest at time 2% (t = 0,1,2,...) will be denoted

(t>Fl = (G) , P}
(3.2.2)

I and at time 2t+l (t = 0,1,2,...)

(t>Gl = Is(n+l) , ,(t> J .

According to the results of the previous sections

(t)
Fl tends to a limit, the stationary p-tree forest, having

‘(3.2*3) the BPP, and n elements, denoted by

( 1n
sl l

It is not hard to see that the sequence G!1),G(2)
1 , . . . also approaches

a limit, viz. that obtained by inserting a node in ( >
sl

n
, denoted here

by T{n+l) .

Eventua3J.y we will be interested in the average lef't path lengthy the

number of key comparisons to insert x in S n , etc.( 1
1 Using the methods

of Section 2.4 we will need the CLPP's of the forests. We will denote

(t)CLPP of Fl by:

(3.2.4) Hr)(z,w) = c ~~21, z" wb
l<b<a<n '-

(t>CLPP of Gl by:

f3*2.5) I!“’ (zyw) = c
l<b<a<ntl-
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( >CLPP of Sin by:

(3.2.6)

(3 02 -7)

A?)(,,,) = c d(; za wb
lLb<a<n-

( >and finally the CLPP of Tin by:

Bl ')ns (z,w) = c pi bl)n+ zawb .
l<b<a<n+l '- -

The interpretation of the a's, @ 3, 7's and p's (see 2.4.4), together

with the statement (3.1.6), makes it easy to see that

(3.2.8) lim H~)(z,w) = A?)(,,,)
t 40

and

(3 l 2*9) lim I$t)(z,w) = B$n+l)(z,w) .
t +w

In the next section we wiLl establish relations between these CLPP.

3.3 Relations Between the CLPP%.

Suppose we have any p-tree forest X with the BP9 and the CLPP:

H(z,w) = C ra b z" wb
l<b<a<n '

(X having n nodes).
*

We will establish the CLPP's of three p-tree forests Xl , Xi and

x; as functions of H(z,w) :

--
*

Xl is the result 6f one single insertion in has

n+l nodes.
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* -*
--

x2 is the result of one single removal in X . X2 has n-l

nodes.

-- is the result of the combination of an insertion and a

removal in succession.

In terms of the notations in the previous section, we then will have:

if X is F@)-- (t > 0) , then XT is G(t) and X* is
3

Fb+')

-- if X is Gw then XE is F@+')

*-- if X is S ( 1n , then XI is T b-4 and X is S ( 1n
3

if X is T n , then XG is( > S (n-1)-- .

*
Having established the equations for the CLLP*s for Xl , Xi and X*

3

below we may therefore concentrate on one single relation, viz. the one

arising from the relation

(3.34 if X is S n( 1 ( >then X; is S n ;

as we indeed will in Chapter 4.

Below a and b are integers satisfying lib < a ,< n , and T is

some tree in 3( 1n .

*
Case 1. xl

The CLPP of XT will be denoted HT(z,w) . Let T have a and b

as values of two adjacent left path nodes:
:

T:
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The tree T* resulting from T is then:

if x<l: .
.

T*

if l<x<b

T*

a+1

8

b-l-1:
P1 \ 1x+ 2

new left leaf

..

a+1$b+l.

i f  b<x<a

T*

i f a<x<n

T*

..

d
a+1

d
b \

1
x +F

:

8

% 1
a x +2

b
.

no new nodes on left path

no new nodes on lef't path

no new nodes on left path
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if n<x

T* ac?
/b/

Summing over the entire forest we see:

(3e3.2)

new root.

H;(z,w) = & z2 w' + -& zn+' wn

c r .

lzb<a<n

b za+l wb+l + s za+l wb + n-tl;a za wb

*
Case 2. x2

The CLPP

of the normal

o f  x; will be denoted HE(z,w) and we recall the CLPP's

p-tree forests: Hik)(z,w) from (2.4.17).

As in the previous case we assume T to have a and b as adjacent

lef't path node values:

If 1 <b we get

T*

If b = 1 we have

T



where B(a-2) is the last right subtree of the left path having a-2

nodes
(a 2 2) l

As ,(a-2> is appended to the left path, we will

have the new left path of T* :

da-l

left path of B (a-2) .

Summing over the total forest X , recalling that X has the BPP, we find

(393.3)

H;(z,w) = ZI ra b za-lwb-'
2<b<a<n '- -

+ c ra l(z&-l~"-~ 4 H(a-2)(z,w)j .
2<a<n y 0 /
- -

(The latter formula being justified by the conventions made earlier:

H(')(z,w) = -z

H(l)(z,w) = 0 .)

Case 3.
x;

In this case we could use "geometric" considerations as in the two

previous cases. However we may establish HJ by means of (3.3.2) and

(303.3)  l -
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Introducing the convention

r
a,b = 0 if (a.,b)i((c,d)  1°C d < c < n]

we have f'rom (3.3.2)

H;(z,w) = xi
lsb<a<n+l

e ((b-l)ra l b-, - l ' (a-l-b)ra l b +
- Y

(n+l-a)ra b)
Y

a b

+1z2w1+1z
n+l n+l

n+l wn
.

Inserting this in (3.3.3) we obtain

q >zyw = c
ab 1z w

l<b<a<n ( ix
(b ra b4 (a-b-l)ra b+l+ cnmajra+lY Y Y b+l) >

(3.304) + c 1 (zawa-l+Hha-l)(z,w))((a-l)ra  l+(n-a)ra+ll)
2<a<n n+l Y 1
- -

+ 1 zn wn-l
zi .

( >3.4 The CL** of Sin .

From (3.3.1) and (3.3.4) we obtain the following polynomial identity

( >for the CLPP of the stationary p-tree forest Sin , using the notation

(3.2.6)  :

35



(3.401)

at2 bat; $izawb = Ap)(z,w)

1=
zi* 5

a-l
x zawb(bvanb+( 1

a=2 b=l Y (a-b-1) T;kl+ (n-a) 1::;Y t b+l)

+ & l 5 ((a-1)1;!+ (n-a)Ta+l ,)(z~w”-~+~~~~~)(z,w))

a=2 Y Y

.

Here we recall

04
HO a=2 b=l (k+l-b;(k-b) +

a b
z w (k > 2)-

(3-4.2)
(0)

HO = 0 (k = 1)

and the convention:

(3.4.3) p = 0
0 if (a,b)~{(r,s)Ilp <r_<n} .

(3.4.1) is in fact a set of M = n*(n-1)2 simultaneous linear

equations in the M variables

v( >0 (l<b<a<n) .- -

The uniqueness of the solutions follows from the existence of S n , but( >

we could also prove it directly from (3.4.1).

The solution of 3.4.1 for the first few n's proves to be:

n=2
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n = j

n=4

n=5

\ b
12 3

2

3

4

b

\
a

31
45
1
7

1
9

1

$

2 3 4

2 - 2584
N

3 698
N

AZ!2
N

4 363 624 1443
N 7 N

5 243 405 810 2430
N N N N

N = 3888

There seems to be no simple solution to (3&l), except for:

qn = 1( >
n,l (n-1)'

For example, we may show the general formulae:
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$4
n-l,1 = ,&

r

14 3 7
(;,-l+ (( ;b1)0 !p)

L

( >n
7-l

1

1
4-+ ; 8

- n-l
3 2n2 -2n+3

-2,l = (n-1)2 n - 3 (( p-1) + (( ;)-1)o ;)-l) + u y)-l)(( YpH( ';I-1)
m

4

We will therefore settle for approximate solutions. Fortunately

( 1we need not have solutions for all Ia", to establish the quantities
Y

described in Section 2.4, it will turn out in Section 5 that in order to

( >establish L , S , R , RL and C for Sin we need only the values of

the corresponding quantities for F.(k) (k >0) and the $ani 3 and_
Y

the ( >
l-ln 's.

Yb

In the next chapter we shall deduce from (3.4.1) an equation for the

,k)
a, 1

's and find an approximate solution for them.
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4. Approximate Probabilities for the Next Last Node Value on Left

( >Paths of Sin .

4.1 Summary.

j In this chapter we will prove the following formulae to be true.

Proposition 4.1.1. We have

Hn
(2)and Hn are the harmonic numbers:

n
1

Hn= c I;
k=l

(4<t <n)- -

(2)
Hn

The O(f(n)) notations should be interpreted as follows:

iff there exists a constant that

lddl < MlfW for all n = 1,2,... .
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During this and the following chapter we will make extensive use

of standard formulae from combinatorics and discrete mathematics, referring

for example to [5].

Please notice the difference between the ( >
zn
11

's above and the

corresponding probabilities in the normal p-tree forest:

( )4.2 Linear Equations Involving Only Ian1 's.
Y

The goal of this section is to prove

E zag2 ljpl (ra-~)n~(n-l)  z (z+l)n-2
a=2 I

(42.1) + 5
a=2

($an!(a-1)+T21  l(n-a
Y Y

+ 5
a=

($$a-l)++$ l(n-a))(X(a-l)(z)+y(&-l)(z
2 ' Y

where ( >n
x-t 111

=0 and

>> Y

(4.2.2) X(~)(Z) = 5
r=2 s=l

( 4.2.3) Y(~)(Z) = 5
r=2 s=l

for l,< k- (k = 1 leaves empty sums, being 0 ).
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In (3.4.1) we multiply both sides with (n+l) and move the double

sum to the left, obtaining the equation:

(4.~4)

a-l ( > ( > ( )
c zawb((n+l-b)~anb - (a-b-l)~a~b+l - b-a)~a~l,b+l)

a=2 b=l 7

n n-l= zw + f, ((a-l)?Jri + (n-a)$! ,)(zawa-' + Hi"-l)(z,w))  l

2 Y Ya=

We introduce the new quantity:

(4.2.5) ~"1, = (n-a+2)(n-a+1)(~:~~)~~~ for all a,b .
Y Y

The left hand side coefficients then transform to (provided 15 b < a-2 5 n-3) ,

@+1-b)  1:; - (a-b-1)  TFkl -Y Y (n-a)“rl,, wlY

cLani(n-Ml) cl
Y

a J.&-b-l)
=

(n-a+l)(n-a+2)( :I:;) - (n-a+l)(n-a+2)( n-b )n-a+2 (n-a) (n-a+11  ( ,rzl >

1=
(n-a+l)( ,~itl)

( cl
ayb

- CJ
a&+1

- CT
>a+l,b+l  l

This transformation is easily checked to be valid for the cases a = n ,

and b = a-2 or b = a-l with 2 < a < n also.- -

We use this result in (4.2.4) and multiply each term zawb with

(n-a+11  ! .;;;, 1

obtaining
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(4.2.6)

where

(

5
a= 2

a-l
c

b=l

( >n ( >n
- ua,b+l - Oa+l,b+l >

n n-l= z w + g ((a-l)Q!+ (n-a)q$!! 1)
a=2 Y Y

a((n-a+l)z wa-1 + Kb-l)(z Y w))

r-l
4.2.7) dk)(z,w) = 5 c ( IL

r=2 s=l
(k+l-b) ( k - b )  � & ) (wl-r)  ( nnzl) zrws l

Now,

a=2 b=l

a=2 b=l

zawb-l $4 _ g acf za-lwb-l ,(n)
0 a=3 b=2 a,b

r
l<b<a<n-

+ a (4J z CT
a=2 a, 1

z+l
so that by putting w = 7 , followed by division of z*(z+l) we obtain

from (4.2.6)

5 Za-2 aa 1 = (z+1)n-2
a=2 Y

+ 5 ((a-l)Q! + (n-a)TJ$i 1> (n-a+l)(~+l)~-~ +
Y Y

i

"'a-~~~z~;)', ).

a=?

We have from (4.2.7 >
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w = j, zt( (k+l-A (k-b) + &)(n-til) (*,“,s,) (z+l)S-lzr-s-l
= X(k)(Z,w)  + YO(Z,W)

so we arrive at (b&l), having realized from (4.2.5):

( >n
CT
a, 1

= (n-a+2)(n-a+l)(n-~+2)~~~  = (zIg )n(n-l)$!  .
f Y

4.3 Properties of X04 (z) and Y04 (z) .

The complexity of (4.2.1) is primarily due to the sums involving the

functions Xw (z) and Y09 (z) as defined in (4.2.2) and (4.2.3).

In this section we shall concentrate on simplifying these polynomials.

We will make use of the following differential operator:

(4.3.1) aj = {j-(z+Q &} ; O_<j

so that ~7.
J

applied to a function f(z) is

ajf(z)
= j f(z) -(z+l) q .

In particular we will make use of

(11.3~2) U.(Z+~)~ = (j-i)(z+l)i
J

(all i ).

This section contains the proof of the following three statements,

all valid for 1 < k < n-l :- -
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(4.3.3) Qnw2 Xck)(z) = 5 zsM2((i) -(n-k)(E$ -(E))
s=2

k
(4.3.4)  an Y(~)(Z) = C zs-2( i)

s=2

(4.3.5)  an-2(x(k)(Z)+y(k)(z))  = s-l 2Yc 04 (4 - ( ‘z’
z+l)k-x-l

>

l,

mom (4.2.2) we obtain:

04x z=( 1 skc; +$g&y  r j+,  zr+? E:�,:�,  1 l

The inner sum of this expression may be written as a polynomial in (z+l) :

5
Zr-s-l n-s-l i

r-s-l

( r-s-l =)
c ( ;-i-i ) ( y-1 ) ( z+l)t( ml)r-s't-l

r= s+l r= s+l t=o - -

k-s-l
= c (z+l)t  5 (n-~-l)(~~~~~:::)(-l)r-s-t-l

t=o r =t+s+l

k-s-l
= c

t=o
(z+$( n-;-1 ) ( y;-'l) ( -l)k-s-t'l

so that
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Now :

(
n-s-l

H
n-s-t-2

t k-s-t-l => (
n-s-l
n-s-t-l I(

n-s-t-l
>

k-s-t
k-s-t n-s-t-l

( n-s-l
>(

n-s-t-l
1

k-s-t= - -
n-s-t-l n-k-l n-s-t-l

( n-s-l H k-s
>

k-s-t=
n-k-l k-s-t n-s-t-l

n-s
1
k-s+1 k-s-l k-s= ( -.

n-k-l n-s ( >k-s-t-l n-s-t-l

so that

(k)
k-l k-s-l s+t-1

x z=c( > c
(z+l) -1 k-s-t-l n s

( - >(
k-s-l

(n-s-t-l) n-k-l >

s=l t=o k-s-t-l l

Applying  Qnw2 to (z+l)
s+t-1

we obtain

Qn 2(z+l)S+t-1  = (n-s-t-l)(~+l)~+~-~

so that

w
k-l

an-2 x (z) = c ( nn;sl)(z+l)s-l
k-s-l

s=l --
c (z+l)t(-l)k-s-l-t( k-;-l)
t=o

k-l
= c ( ,",", ) (z+l) s-1 zkgs-l
s=l --

k-l s-l
=c c

z(k-s-l)+(s-t-1)( n-s )( s-l)

s=l t=o n-k-l t

= kss Zk-t-2 k-1
c

t =o
( nn;sl I( s;l >

s=t+1 - -
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k-2 Zk-t-2

I(

k+l
lx c

t =o s=t+1
( n-s

>(
s-l

n-k-l t > -( n-k
I(

k-l
n-k-l t ->

k-2
c zk-t-2i( n-;+t)  - (n-k)(  kf&)  - (kft 11 l

t=o

Changing the summation index to k-t we obtain (4.3.3).

From (4.2.3) we see:

n-*1y(k)(Z) = 5 .+j r-l

I-0 r-l x
r=2 s=l

Zr-s-l(z+l)s-l( n!;l) .

The innear sum may be transformed as follows:

r-l
c z
s=l

r-s-l(z+l)s-l(n=&)

s-l= '2' c ( ~~1)~s~t-l Zr-s-l( n-s )

s=l t=o
n-r+1

= r-2 Zr-t-2
r-l

t=o
c ( St', ( /-sl )

s=t+1

= rg2 P-2( n ;t+2)
t =o

= r52 z"(;) .
t =o

Using this transformation, and applying Q" we obtain:

k r-2
a,.YCk)(z) = z c

r=2 s =o r
(i)(nzS -(z+l) s zSM1)

r-2
n-l

r-2 n-l s-l
IZ w( s )zs - C n*( s-l)z

s =o s =o
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= g ( ;)Zrg2
r=2

and (4.3.4) is proven.

From (4.3.3) and (4.3.4) we find:

anm2(x(“)(z)+Y(“)(z))  = 5 Zsm2( i) - ( n - k )  5 zsm2( f;i) - 5 Zsw2(  z)
s=2 s=2 s=2

+ (an Y(~)(Z)) f 2 dk)(z)

= 2(an Y(~)(Z)) -2 Y(~)(Z) - (n-k)
(,+Qk-l - 1 k

(z+l) -kz-1

Z2
.

Z

Now :

(a, Y(~)(Z)) -Y(~)(Z) = an-l Y(~)(Z)

and

(z+l)k-l-l z+l k-1-l
an-l Z = (n-l) ( )z - (z+l)

(k-l)(~+l)~-~ (z+l)k-1:1
Z Z2 I

= (n-k) ( z+l k-1-ljz
k

- lz+l) ,; kz -'

proving (4.3a5)*

.

4.4 Revision of Equation (4.2.1).

- In this section we will obtain a simplified version of (4.2.1),

using the results of Section 4.3. We will use a new notation for the

( 1-own quantities Tan1 :t
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(4.4.1) ( >
pa = %!a,1 '

The main result of this section is:

n-2
C (zr(r+2)-z*’  r )  51 (i)(",-::)nps(-l)r-s  '

r= 0 s=o

(4.4.2) = 2 -(n -(n-l)pn-2)zn-1

+ n52 (zr(r+2)-Zr+l b+Wprb-r-l)+Pr-l  4 l

r= 0

As before we use the convention

Pa = O if a<0 or n<a.

We will split (4.2.1) into three sums

(4.4.3) Sl = 5 za-2 $ni (",-E ) n(n-1)
a=2 9

(4.4.4) s2 = (z+l)n-2

(4.4.5) s3 = g (~~~(a-l)+~$!  l(n-a))((n-a+l)(z+l)a-2+X~~~1)(z)+Y(a-1)(z))
a--2 ’ 9

s; that

(4.4.6) sl =s2+s .
3

We also introduce the notation

(4.4.7)
n

Ka= c (
s = a+2

-1;) $+y-a-2 .
9

In (4.3.1) we defined the differential operator Q. .
J

The corresponding
.

integration operator will be denoted Bj . We have

48



(4.4.8) aj sj f(z) = f(z)

(4.409) Tj 0 = C(z+l)j (C constant)

(4.4.10) Jj(z+lp =& (~+l)~ + C(z+l)j (C constant and i # j) .

We will apply the operator

(4.4.11) ' = z2 an 8,-l anw2

to (b-2.1), and then rearrange the polynomials using (z+l) as variable.

For S, we findc

Lb s2 = c z2(z+l)n-1
(4.4.~~)

= c((z+l)I1+l - 2(z+l)n+ (z+l)n-l)

where the constant C is assumed to represent the integration constant

for the entire equation.

For Sl we find

a-2
s1 = c (z+l)b(a;2

a=2 b=O

= ng2
b=O

> (-1) a-2-b (

(~+l)~ C
a=b+2

( "1;')n (n-l)(E-E-i)(-l)a-2-b  $ni- - Y

n-2 (n)
VIa-2 a,1 n(n-1)

n-2
= c (~+l)"(",~)n*(n-l)K~

- a=0

and
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I
a=0 \

leading to

n-2
(4.4013) b s1 = c

a=0

(

(z+l)a+2 -2(z+l)a+1 + (z+l)")(n-a-2)(n-a)("i')n  Ka .

For S
3

we will have to involve ourselves in more complicated

calculations, (see (4.3.4) and (4.3.5)).

b~( (n-+1> (z+l) a-2 + XaBl( z) + Yaml(  z) )

= z'[(n-a+l) * (z+l)a-2]+ z2(an(2 Yaol(z) - (z+I-2-,1 ))

a-l
= (n-a+2)(n-a)(z+l)a-2 z2 + 2 C z'(i)

s=2

- -( n( z+l)
a-2

Z
-IL - (z+l) (a-2)(z

(

z+qa-3 z+l) a-2- ( z2 -1
9

z2

a-l
= 2 C z’(z)+ (n-a)(n-a+2)(~+1)~-~  z2 -(n-a+2)

s =o

+ n z+(z+l)-2nz-2 .

Hence we may write

b s3
= u+v+w

where

(4.4.14) u = g x u
a=2 a a

(z+l)&02 z - (z+l)a-1

n
(4.4.15) v = c xa va

a=2
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(4.4.16) w = $ x w
a=2 a a

where

Xa = ($$a-1) +
9 1::; l(n-a))

9

a-l
Ua = 2 c zS(Z)

s =o

Va
= (n-a)(n-a+2)(~+1)"-~ z2 - (n-a+2)(z+l)"02 Z - (Z+l)"-1

w =
a n z+(z+l)-2nz-2

Now

a-l a-l
U
a
=2 c zS(i)=2 c

s =o
I5 (z+l)t(-l)s-t(;)(;)

s=o t=o

a-l
= 2 c (z+lp(;) a51 (=;)(-p

t =o s=t

a-l
= 2 L (Z+l)t(;)(t-,t-;)(-l)a-t-l

t=o - -

= 2 a51 (z+l)t(nn;lt) 5 (n;E,l,(-l)a-t-l
t =o

a -

= 2n( ,":11) as (a;l)(-l)a-t-l(z+l)t  &
-LO

so that
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3,

n
u = c xa ua

a=2

a-l
= 5 TJ~~(a-l)2n(~-~)  C (ail)(-l)a-t-l(z+l)t  a&

a=2 ' t=o

( >+ at2 \fl,1(n-42n( i:i >
a-l
C

t=o
( ai1 > kl)a-t-l(z+Qt &

= 2n(n-1) E

[

a2 qp~(;-;)(a;l)(-l)a-t-l(z+l)t 1
a=2 t=O ' -

+ 5 a52 I;;( ;-;)(ai2)(-1)a-t-2(Z+l)t
a=3 t=() ' - *&

4

= 2n(n-1) 5

c a=2

a-l
c Tp;(;-;)(-l)a-t-l(t&-;)(Z+l)t  -&
t=o ' -

_ 0nn, ( n-2
,l 2-2 )

= 2n(n-1) 5

1a=2

C n-2
= 2n(n-1) C

t =o

And hence

(4.4.17)

2,2)(-l)2-o-2(z+l)o -&-1
a-2
C 9~!(_l)awt-2 & (z-E)( a~2)(Z+l)t+1-2(n-1)~2  l
t=o '

- I 9

(~+l)~+'( nG2) -&- g Tj~~(-l)a-t-2(~-~-~)  -2(n-1)$ni .0 0
a&+2 '

0 I 1 9
n-2

u = 2 n  c (~+l)~~~(~~~)K~-2(n-l)'$~~  .( >
a=0 9

For the sum W we find

n
w = c xa wa

-a=2

= E
a=2

x,(-nz+z-1)
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= (
r-

-nz+z - 1) 1 5 Tanl(a-l)+ 5 ?+a$n-a+l)( > *
a=2 ' a=3 ' 1

= ( -nz+z-1)
[

2 1:; n
a=2 '

- $$n-1) 1 .

n
Knowing that ( >c Ian1 = 1 we obtain

a=2 '

(4.4.18) w - (n- (n-1)1, l)((n-2) -(n-l>(z+l>) .
f

Applying k to (4.4.6), inserting (4.4.12), (4.4.13), (4.4.17) and

(4.4.18) we obtain equality between two polynomials where the maximum

exponent of (z+l) is (n+l) , occurring only in kS2 (4.4.12). Hence

the integration constant C = 0 and we have transformed (4.2.1) to the

equivalent identity:

(4.4.19)

n-2
c ((z+L)~‘~-~(z+~)~+~+  (z+l)&)(n-a-2)(n-a)(":') nKa
a=0

n-2
= ngF (z+l)a+1(n~1)2nKa-2(n-l)~:! + c xava

a=0 a= 0

+ (n - (n-l)?$"$((n-2)  - (n-l)(z+l))
>

where

Xa

and

v =a n-a)(n-a+2)(~+1)'-~ z2 - (n-a+2)(z+l)"02 z - (z+l)'-1

n-a)(n-a+2)(z+l)a-2(n-a+l)2(z+1)a'1+  (n-a)(n-a+2)(z+l)a-2

- (n-a+l)(z+l)""+  (n-a+2)(~+1)&-~ .
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In (4.4.19) the first sum on the right hand side is moved to the

left hand side, and we use Bn throughout the identity to simplify

the terms:

Bn[((z+l)a+2 -2(z+l)&+l + (z+Qa)(n-a-2)(n-a) - 2(2+1)'+5

= 7J(z+l)a+2 (n-a-2)(n-a) -2(~+l)~+l (n-a-l)2+ (z+l)a(n-a-2)(n-a)]

= [(z+l)a+2(n-a)  -2(~+l)~+'( n-a-l)+ (z+l)"(n-a-2)]+C(~+l)~

= z[(z+l)a+l (n-a) - (z+l)a(n-a-2)]+C(~+l)n

for some constant C .

Furthermore

BV
n a = (n-a+2)(z+l)"-2(n-a+1)(~+1)~-'+  (n-a)(z+l)a-2-(z+l)a-1+ (z+l)a-2

= z((n-a+2)(z+l)"-l- (n-a+l)(z+l)a-2)

*(neglecting the integration constant).

Application of J& to (4.4.19)  hence yields

n-2
c z[(z+l>&+'(n-a) -(z+l)a(n-a-2)]n(n~1) Ka,
a=0

(4.4.20) = - i 2(n-l)dni + (n - (n-l)p$~~)(~ - (z+l))
9 n

+ 5
a=2

(~~$-l)+~~! l(n-a))((n-a+2)(z+l)a-1-(n-a+l)(z+l)(a-2))z
9 t

+ c(z+l)n .

The coefficients of zn are seen to be

(n - (n-2)) n(i:k)Knm2 = ('$$(n-l))*(n-n+2)+C .

54



Now, following (4.4.7)

Kn-2 =

SO

C = \,l[2n(n-l)  -2(n-l)] = 2(n-l):! qnr!j .
3

( >Going back to (4.2.1) easily gives us a"
91

:

T-l (-($ ,"-E)n(n-1) = 1 + vnn$n-IL)
Y

(n-n+l)

lJn = IL( >
n,l (n-l)2

and hence C = 2 in (4.4.20).

We insert this last result in (4.4.20), divide by z , and then

change our variable from (z+l) to z , obtaining

(4.4.21)

n-l
C [za+'(n-
a=0

= 5
a=2

l a!) - z"(n-a-e>]n( n,1) K
a

( $-$a-l)+ 7& a-2
9 t

l(n-a))((n-a+2)za-1- (n-a+l)z )

n

Recalling the d.e

ng2 (za+l
(

a=0

!finition of the pa 's in (4.4.1) we find from (4.4.~)

n-a) - z"(n-a-2))  n(",l) Ka

n-2 -
= C (z"+'(n-a) - z"(n-a-2)) n( .a') g (n-a-2)p

( 1)
s-a-2

a=0 s= a+2 s-a-2 n-s -

n-2
= C (z"+'(n-a) - za(n-a-2)) n(

a =O
.";',) n-5o2 (n-;-2 )p (-l)n-s-a-2

s=o S

+2z-1 - (n-(n-l)?j2  l) .z-1 9
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= ?I2 ( znoao1(a+2) - znmao2 a ) n ( ii,' ) fJ
a=0 0

( i ) p (-1) a-s
S=

S

and

g (Tp$-l)+ 7::; l(n-a))((n-a+2)za-1-
a-2

a=2 ' 9
(n-a+l)z )

= Yi2 ( (a+2)znoa-l - (a+l)zn-a-2) (~~~,l(nmao~) + ,Cn)
a=0 n-a+l,l

a)

n-2
= 2 ((a+2)zn-"-'- (a+l)zn-a-2)(p

a=0 a
(n-a-l)+ pa+1 a)

Inserting the two last results in (4.4.21), dividing by zn-l and

finally changing the variable to l/z we obtain (4.4.~).

4.5 Series Expansion of the o 9.a

The polynomial equation (4.4.2) contains n equations and the (n-l)

variables (PO9 l �☺Pn-2 > . However, by putting z = 1 we will see that

the equations are dependent. Furthermore, it is not hard to see that the

equation obtained from the coefficients of zn-l may be ruled out,

leaving an independent set of linear equations.

In this section we shall obtain series expansions for the pa 3,

making it possible for us to obtain approximate solutions.

The following facts are trivial.
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0 < a < n-2-

a<0 or n < a

(4.54

O L F, < 1-

pa = 0

n-2
‘t F =l
a=0 a

1
PO =

(n-l)2

We shall prove the following proposition:

Proposition 4.5.1. Define for 1 <t < n-2- -

(4.502)

(405.3)

(4.504)

Then

(405.5)

(495.6)

(0)(5 = ,& (““,“)
t+1

1 t
= c i ( k)k(k+l)a(r)

t(t+l) ( tzl) k=l j=l J j

t

( >Gtr = i Jr) j
( >

j=l j
(j+2)(n-j-l)

(0 < 4-

(0 < 4-

Pt = 1 + 5 &1
(n-l)2 r=O t

1 <t < n-2- -

( 10 < t$ < fJ0) 5 r
t ( >n 1Lr 1 <t < n-4 .- -

is uniform for 1 <t < n-4 ,- - and is not very

well optimized. As we shall see later, (4.5.6) does not hold for

> .t = (n-2) or (n-3
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Proposition (4.5.2) below gives, for each

b
as a linear function of FpPp  ��☺Pt~1  l

Proposition 4.5.2.

( n
t-1

(405.7) pt = a+1 >

( afl)-l at + u=(-J( ' 'u B,,u

where

at =

and

t( 1U

(
n

u+l >
+

( n
ut2 )(n-u-2)

t = 0,1,2,...,n-2,

0 5-b 5 n-2

0 5-b < n-2-

t t
- p (u+l)(u+2) c

( 1r

r =u+l r++l)(rt2)(2:)

(0 <u <t-l , 1 <t < (n-2)) .- - - -

Solutions of equations like (4.4.2) often involve one or more cleverly

selected substitutions. In our case, the following sequence of

substitutions are not unnatural choices:

(4.5-8) - I dt = (t+2)ct-t Ct 1

t

et =
t3 d.(-l)t-j(t) .

j=() J j



The direct correspondence between the et's and the ctTs is seen

to be:

et =
5 (-l++j($(j+2)cj  -

j =0
& (-l)t-j(i)j  cj 1

j =0

= 4:
j =0

(-Qt-j(( i)(j+2)  + ( jzl)(j+l))cj

= (t+2)
j =0

(-lp-j(;)cj

t
= (t+2)

[

t
22 c-l)

t-j t

j =0
( j )(noj-l)Pj + ICZ (-I-)

t-j t

j =0
(j)ZJPj-1 1

t

= (t+2) c (-1p-j
j =0

Pj( 5 )Wj-1) - (t-j>>

so

F-5*9)  et = (t+2)(n-t-l) 5 (-l)t-j(-F)pj  l

j  = 0

From (4.5.9) we easily deduce

(4.5.10) pt = 4:

t(,I.
j =. ej (j+2> (n-j-1)

Inserting (4.5.8) into (4.4.~) we obtain

n-2
C
r=O

(zr(r+2) - zH1(r+l))(pr(n-4-l)+ p, 1 r)

= z2 (zr(rt2) -zr+tl))c,
r=O

0 _<t < n-2 .-

= n' i'((2't2)Cr -r cr-l>
r=O

-zn-'(n-l)cn 2
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zr dr - z
r=O

n-l(n-l)cn 2

n-2
= L zr

r=O
5 ( ",)er - zn-'(n-l)cn 2

t =o

and from (4.5.9)

(
n-l

5 (~~)(+s(-l)r-s =
>

s =o
(rt2r+i ,"10 0 er

leading to

n-2
Z (zr(r+2) -zH1 r)(zt) A- e
r=O

n+l r

n-l
= 2 c zr+zn-l (

r=O

From which we obtain

(n-l)Pn 2 -n- (n-l)cn-2)+ n%2 zr
5 (;)et  l

r=O t=O

(4.5.11) (zl)er - $$ (F)e, 1 = 2+ 5 (t)et
t =o

0 5 r < n-2-

when neglecting the terms z
n-l .

MulTiplying  each equation (4.5.11) with r=(r+l) and summing from

3 through s (0 _< s _< n-2) we obtain

5 ( ~l)r(*l)er - 5 ,-&+j- ( iler-l r(*l) = ( sTl)s(s+l)er
r=O r=O

= 2 5 r(r+l)+ S:
r=O

5 ( t)et r(r+l) .
r=O t=O
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The first sum being 5 s(s+l)(s+2) we see

2 s+2 1 S r
e = -

S 3 ( n ) + s(s+l)( n ) rC0 tf;, ( ')r(wl)et
s+l s+l

(4.5.12)

I if (1 ,< s 5 n-2) .

As (4.5.9) gives

we see that (4.5.12) leads to

(4-5.13)  es = &
(
‘i2 + 1 5

>
5 (i)r(r+l)et .

s+l s(s+l)( ,tl) r=l t=l

From the definitions (4.5.2) and (4.5.3) we see that if' we define

( >rU
S

we find

J*l> til
( 1

S
=ao+ c a "

a=1
S

= a0 +
1

s*(s+l)( &)

(0 ,< r>

t
c 5 ( k)k(k+l) 5 a("
k=l j=l j a=0 j

so

_&-w 1 t t
e =

s s

lz
s(s+l)  (

x (J)k(k+l)(e.  CL?)) l

,Tl) k=l j=l 3 J

As -

e -U (0) =
s s es - & ( s+n2) ’ O

s+l
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induction shows

(4.5.14) ( 1rU
S < es (0 ,< 4 (1 ,< s 5 n-2) .

Jo> , Jl>
S s 3.-* is hence an increasing bounded sequence and therefore

converges for all s = 1,2,...,n-2 . The fact that

( >lim usr = e
Sx-da

(1 < s < n-2)- -

+)follows from the fact that us satisfies (4.512):

( >a3
‘U = 5 ,(r>

S
r=O

S

=ao+ ca3 &-+l>

r=O S

a0 +
1= 5 5 (;)r(r+l)I$") .

s(s+l)(s$) r=l t=l

From (4.5.10) we find for 1 <t < n-2 :- -

t t(,I.
Pt = c

j =0
ej (j+2)(n-j-l)

1 t t
2

=n-lqiiq +c l

(,I
j = 1 (j+2)  b-j -1)

. E  a{��

a  = o

1= + 5 6"( 1

(n-l)2 a=0 t

proving (4.5.5) of Proposition 4.5.1.

Now assume: 1 <t < n-2 ,- - we find from (4.5.3)
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1=
W+l) (

4; cxir) $ ((k:l)+ (;;;))k(k+l)
tTl) j=l ' k=j J

1=

t(t+Q ( tfl >
;: &)(( -lJ+2

j=l j
j+3 1 (j+l> (j+2) + ( YjIE >j(j+W

t+2
t

= ( 1
t=l) jFl Jr

1
a.

s
(
t-1
j

1
1

(
+ j+2 (

t-1
j-l

hence

(1 <t < n-2 ; 0 < r) .- - -

Now, from (4.5.4) we easily deduce

(4 .5 .17)  cp t
= (t+2)(n-t-l) C (i)(-l)t-j  8:')

j=l

so

-= 4: (i)( ;) .LJy$jkQ (-l)j'k p

k=l j=k

= & 6(r)(t) 'gk (t-k)(-l)j(n-k 1 j)0 0.
k=l k k j=O J

= -4; Ecr)( t,

k k
'gk (n-k-1)( t-k

k=l j =0
j )(-'lj

t-k
- c (t-k)( _

j =0
tJk;l)(-1)j 1

= hi’) (n-t-l) + t girl

provided 1 <t .-
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From (b.5.b) we txsily see

( 1 ( >6 r < iltr
t-1

so l'or 2 < t < n-2 we find from (4.5.16):-- -

(4.5.18)  a~*‘) <-
(

t+n2 6ir)(n-1)

t+1 >

t = 2,3,...,n-2

(1 < t < n-2)- -

(the latter formula easily being checked for validity when t = 1 ).

*From (4.5.2) and (4.5.4) we find

.t,

;(N

tjl

=

t
jcl & * (j+2)(n-j-l)

j+l

,fin- & 1

(
n-2
t > C

t
c
j=l

( n-2
)(

n-2-j j-l-1
j Hn-2-t 1 >

(
n-2
3 > 3

i

n
( >t

(
n- 2
t 1

- 1 1
and hence

Using (4.5.18) in (4.5.4) we get, when 1 _<t ,< n-4 :
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2

[

t
- n
3

c
j =0

2

1

t
- n
3

c
j =0

t(,I.

(n-j-l)(n-j)(n-j-1)( j=1) -

t( 1i

t
c

j =0

t(,).

( jfl)(n-j-l)n(n-l) 1
J - &[(n-t-l!j(n-t)]

n-4 n-4-j

= gn +
t
c

( - >(, 4 ,)P;l)- - 1 1

t ) j =O n(n-1) (n-2) (n-3) ( n;4) - 3O (n-t-l)(n-t)

(
n-2

zn
t 1 1 1=

3 n( n-1) (n-2) (n-3) ( ni4 ) - 30- (n-t-1) (n-e)

=& L 1
n-t-3)(n-t-2) - (n-t-l!j(n-t) 3 '

Hence we find

(4.5.20) (1)
&t

< 2 fj(o)
nt '

We will use this as a starting point in an inductive proof of (4.5.6).

(4.5.20) shows (4.5.6) to be true for r = 1 . Suppose it is true for

r=x. Then, from (4.5.4) and (4.5.18) we find
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t

6 (x+1)
t 5

4; (j+2) (n-l) 8:") ,&
3 =1 ( <t, 1

- L

t

2
( 1

< n
x 4: (j+2) (n-l) j+2)tn-j-l) 'i")

j=l (j~l)

< ( ~)x(;)p = ( gx+l $0)

as in the proof of (4.5.20). This is (4.5.6) and hence Proposition 4.5.1

is proven.

We proceed to prove Proposition 4.5.2.

Inserting (4.5.12) in (4.5.10), using (4.5*9):

,t\
eO

pa = *(n-l)+ rtler
(r)

(*2)(n-r-l)

a
eO

=-F?&q+rfl (

( )

r
I-+2

1+2)(n-r-l) 5 ( n )
4-I

t
a

+E 5 s: x
( 1r 1

132)(n-r-1)
( ; b(s+l)

r=l s=O t=O U=O ( k+l)r( rt"l)

.(t+2)(n-t-l)(-l)t-u(~)~u

From (4.5.10) we see

eO
-PO = 2(n-I) = (n-;)2

(0 ,< a 4 n-2) 6

and from the proof of (4.5.19) we have:
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?

a
.tl (r+2)(L-r-l) ( > 7 2 (x+2) n =

( )
7 2 ( 1 1

(n-a)(n-a-l) - n(n-1) )
131

so we obtain:

(4.5.21) $ (( 1
Pa = n-a)(n-a-l) - & + (n:)" + Ta>

where Ta is the last sum in the previous formula for pa . As Ta=O

when a = 0 (sum being empty), we see that (4.5.21) is valid for a = 0

also.

To evaluate Ta we shall consider the sums

I-L
a 5

u9r
S: (~)(~(s+l))(t+2)(n-t-l)(-1)~-~(~)

s=u t=u

so that

Ta
= 5
r=l

5
u=o

a
( >r

r(*l) (*2)n( nr;; >
pa +u,r

Now :

S;
t =u

(t+2)(n-t-l)(-l)t-u( k,( t )

= (t)
t =u

(t+2)(n-t-l)(~-~)(-l)t-u

= (E) 'fj" ((n-u-l)(u+2)+t(n-2u-4) -t(t-l))(  si")(-l)t
t=o
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= I
)
1
(n-u-l)(u+2) 'Z!? ('i"

t =o
)(-l)t - (n-2u-4)(s-u) sY~ ('s~u~l)

t=o *

- (s-u)(s-u-l)
y ( stu;2)(-l)t-2

t=o - 3

(n-u-l)(u+2) if s=u

-(n-2u-4)(u+l) if s = II+1

-(u+2)(u+l) if s = u+2

and hence

aa
Ta = Xl Pr

( >r

r=l e-4 b-+2)4 ;; 1
b,r

a

+ 5 P,l
( >r

r=l - e-+1) b-+2)4 $ >
b-1,r

a

+ 5
( ) r-2
r

' pa C%,r
r=2 r(r+l)(r+2)n($) u=O

a

= 5 p,
( >r

. r=l r(*l) (Mn( zi >
r(x+l)(n=r=l)(r+2)

a

+ ' Pri
( >r

r=l - ++l) b+2)n( ;; )
(w-1) b-2) b-+1) b-1 1

a

+ 5
( )

[

r-l
r c p,[u(u+l)(n-u-l)(u+2)

r=l r(r+l)(ti2)n(zt) u=O

- (ti+l)(u+2)  (n-2u-4) (u+l) - (u+2) (u+3) (u+2)(u+l)] 1
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a
( >

'EP r+5
( r" 1 b-+1)

r=l r (z,) r =l "-' ( gl)(n-r-l)

- ag1

a

pu(u+l)(u+2)(n+2) 5
( 1r

u=o r=u+l r(r+l)(r+2)(n$)n  l

Inserting this in (4.5.21) yields

: L 1
Pa = n-a-l) n-a) - C$iJ + (n:)" + pa ( i ) - n(n11)2> a+1

a
( > a-l

+ a51 p r + c p
( z1 > b+2

r=O r ( n ) r=O r
??+l

( n )(n-r-2)r-t-2

- ag1 p,(u+l)(u+2)  q ;

a
( >r

u=o r =u+l r(rkl)(Ir-2)(n$)

and we easily see that we have proven Proposition 4.5.2.

4.6 Proof of Proposition 4.1.1.

nom (4.5.6) we find

5
o<lEs, <sFt(0) (0) 1 <t <n-4 .- -

r=l

So, bringing in (4.5.19) together with (4.5-5) we find

1
- h = '$Ei)- (n-t)(n-t-l) -

1

3(n-Q2
+ % (1 <t < n-4)- -

where
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0 < Et <
3(fZl) (n-t)(kt-1)( -Z&)&

( >
Y-l
n

so, as Pt = -t-2,1 we find

4 C t < n-2- - >=Mt<M

where M is some uniform positive constant (at least less than 26 ).

This proves the first statement of Proposition 4.1.1, as the

formula for t = n-2 is trivial.

(4.5.6) is not valid for t = n-3 or t = n-2 , so we have to treat

these two cases separately.

We introduce the notations:

(4.6.1) ( 1 n-2

Str = t-l
c 6:') (0 < 4- 15-t 5 n-2

and shall concentrate on S ( 1nz2 first.

We have

t t
Sr( > ( >
n-2 = Y2 % Jr) &

tal j=l j

(4.6.2)

n-2
= c

j=l

( 1a. r
3

&T) ng2 Jr) n+l) 1
n-2 = .

j=l J ( j+2 i$GiJ '
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We find from (4.53)

,b+l> = I?52
Il+l

CJ >
.

l +2
n-2 h

j =l (n+l)nj(j+l)( j=l) k=l
ar)[k(k+l)(g;)+ (k+l)(k+2)($

(4.6.3) sL]P~~) a ng2 $ [-& ("1;') + & (L:,] .
k=l

Inserkhg  (4.5.2) in (4.6.3) we find

S (1)
n-2

=
n-2
c
k=l

1
n fin-

k+2

(
n

k+l >
(
n-2 +
k > ( n-2

k+l )I

and eventually

Similarly, as

(1) t l

% =
1

c h (L)j(j+l) k+2

t&+1) ( & ) j=l k=l (
n

k+l >

2n

f 3(n-l)t(t+l)(&) j
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4n
=m

(nt-l)(nt-2)

f++l) ( & >
h
j=l

we find from (4.6.3)

s(2) = w(zt (A (“i2) + & (;i;F)) t(t+lc n )n-2
t+1

= 4(n+l)(n+2)

3(n-Q2n

After tedious computations we find

(4.6.5) Sri = - & +

+ Hn

(
2n2+kn+L!k+L+

n(n-1)2 3 3 3 gn &-Sk '>

We shall, however use approximations and write

2 Hn(4.6.7) -SF; = ? n - 5 + o



(1) (2)In order to find approximations for En 2 and sn 2 we will use

the following formula

From (4.5.4) we have

sr( >
n-2 =

and similar to the proof of (4.6.3) we find

&-a
n-2

k (n-l) + 1 (n-2) + k+l (n-l) + 1 (n-2
m k+l s k k+3 k+2 k+3 )Ik+l l

Now

c k
(
n-l

>
1

(
n-2

i%!? k+l +m k >
k+l n-l

+Eqk+2+( >
1 n-2
m ( k+l )I

n-2 1
+( >-

2n-1 n-l k+l 1
k+l k+3 (n-l)n-(k+2Jn(n-l)-ii(iq 1

So, according-to (4.6.2),  (4.6.3) and the two formulae above for BEi

and "Lzl) we have (4.6.8).
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From (4.5.19) we have

6 (0) =
m
2 n  (n-t-1;("-t) - 81)2 1 < t 5 n-2

t -3( n-

so

(4*6-Y)
fjm - -n-2 L+ L+ 0 ( Hn 13 3n z

and also

(4.6.10) S (0) Hn

n-2
=

5 x+0 3n ( 7 1
- .

mom (4.6.6) - (4.6.8) we then find

&I _ @) n s(o) + b-1 s(1)
n-2 - n-2 - n-l n-2 n-l n-2

giving

(4.6.11)  6;; = $ - 2 + $ +o 3
( 1

and similarly

6 (2)
n-2 =

6 (1) 2-s -(1) + b-1 cp
n-2 - n-l n-2 n-l n-2

giving

2 Hn
(4.6.12) 6ri a 3 n - g+ 0

From the above formulae (4.6.6),  (4.6.7),  (4.6.9) -(4.6.11)  we easily

obtain

(4.6.13) S (0)
n-3 =

g-i

(1) H
(4.6.14) S

20
n-3

= $ +z+o
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(4.6.15) S (2)
n-3

= 0

We already know En 3(y) from (4.5.19)

(4.6.16) 8 (0) A+ 1-+ 0
n-3 = 9 9

and (4.6.15) implies

(4.6.17) 6:; = o

To find 6 (1) (1)
n-3

we inspect Sn 4 . We use (4.6.1), (4.5.4) and the

(1)formula for at established below (4.6.4) above to obtain:

t =l (t+2)(n-t-l)t(t+l)(

n-4 (
n-3
t+1 1

- -
2 ' 4"' (t+2)(n t 1)3n t=1 '- -

so

S (1)
n-4 + 3n n-4

2 s(o) = ,Mtn$ jcl -A -%&gy

4 (2)
= THn

Hn
_ 53n + o 0 3 l

NOW, (4.6.13) and (4.6.14) give

(4.6.18) s;; = 5 - $ + 0

we find
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(4.6.19) p 4
n-4 = YH

(2) _ 49 L+ 0
27 n

Together with (4.6.14) we arrive at

(4.6.20) 6 (1) 2 Hn
n-3 = 3 YF -

11+
27

$f') $+ O($) .

From (4.5.1) and (4.5.5) we see

1 = 5 + E sn‘f2( >

r=O

so that from (4.6.10),  (4.6.6) and (4.6.7) we see

(4.6.21)

proving

(4.6.22)

5 Sri = l--&- s;+$-s~~ = 0
'n

r=3 - c 1n2

1 +6 (0) (1) (2)
Pn-2 = cn-ll2

+8 +6 +o Hn
n-2 n-2 n-2

( )n2

( >leading to the value for kn
21

stated in Proposition 4.1.1.

From (4.6.15) we see that

6 (2) Hn
n-3

= 0( 12
and from (4.6.21) we see

; Er( > = 0
Hn

r=2 n-3 ( 1z
so that

1 Hn
Pn-3 =

(0) (1)
cn-ll 2

+6
n-3

+6 +o
n-2

( 1
2 l

Referring to (4.6.16) and (4.6.20) we have then proven the value of q n( >
391

in Proposition 4.1.1.
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5= ( >Measures of Efficiency in Sin

5.1 General Formulae for Basic Probabilities.

In order to obtain the measures for S,n :( 1

L" =Ln
( >

sl

*
R.‘ = R

ST
( 1

RL* =RL ( 1
Sl"

C* C
( >

sin

-- the expected left path length

-- the expected number of key comparisons

-- the expected right path length

-0 the expected length of the last right subtree

-- the expected recursion depth

( )(see Section 2.4) we need knowledge of some properties of the CLPP of Sin :

( >Formula (3.4.1), together with the approximate values for Ian1 proven
9

( 1in Chapter 4 could give us values of ?Janb for general 1 sb < a 5 n .
Y

However, it turns out that we may express all the quantities needed in

( 1terms of Tan1 's, ( >
>

without knowing the qanb 9 in general.
9

To establish the measures above we need formulae for

(5*14

(5*W

n-l-r
hr = ( >

bcl !&+l,b=
0 ,<r _<n-2

2<a_<n
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(5.103)
( >

Y-l
n

'b= ,b
l<b <n-l .- -

Knowing that

(5.104) Q)(l,l) = nC2 hr = 5 Pa
r=O a=2

(5.105)

(5-W [’ A’~~zyw’]z~w~l  = a!, a Pa

we see that we then will have the sufficient knowledge to establish the

measures needed (see Section 2.4).

We will use the notation

(5J*7) B, t= (a-l)Q! +
9

l<aln.-

First we prove

(5.1.8) h = &r - 2(Hkwl - H,l

Using w = l/z in (3.4.1) we obtain

1 2 ag1
=zi a=2 b=l

zaob(b 'fj(an; +
>

+ ILzi lE B
a =2 a(

z+Hca-�)(  z  ,  t,) + j& l

0

0 5 r ,< n-2 l
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giving

f?i (p,(n+l-a> -~,+~(n-a))~” = 2 +
a=2

5 B, Hha-l)(z,l) .
a=2

As for hr above we obtain for 2 < r < n- -

1 1-w- +l
a-k a-l k

leading to (5.1.10).

The 7b 's turn out to be

(5=lJ-l) Tb = (n-l)(n+?-b)(n-b)
lib <n-l-

as proven by isolating the terms in (3.4.1) having z to the power (n-l) :

n-l
c b

1 n$ 1 wn-l
zw =-

b=l b mlb=l
w~(~z~+ (n-l-b)TMl) + - wn-'(n-l)z, + xn+l

yielding

2 'n-1 = l+ (n-l)Tl

and

Tb(n+l-b) -(n-1-b)7Ml  = 0 1 ,< b 5 n-2 .

( >As ~~ = Tnnl =
1

is found earlier we easily see (5.l.ll).
9 (n-l)2

We will also prove the usef'ul relation

(5JJ-a qn = &+$ 5 ~~$(Ha2-1) .( >
24 a=3 t -

This is s-een from (5 .l.lO) and the fact that

( >?2
n

l2= ,l l
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We find

= l+ g ((k-l)$$
k=3 + (n-k)?l~l 1@) )(2Hk l-')

7 _

= 1 + 5 (k-l)'$$; 2 Hk
2
-2+& -1 + ,$, (n-k+l)$$( 2Hkm2 - 2)

k=3 Y _

= l+ 2n g 7 (H
k=3 k,l k-2

-1)+2(1-@l)
9

from which 5.1.12) follows easily.

5.2 The Expected Lef% Path Length.

The Pa % defined in statement (5.1.7) are approximated from

Proposition 4.l.lby

(5.2.1)

B, = $ Hn +

1
B, =gn+3 n

42H +27-

Pt = 3_<t_<n .

Inserting (5.1.10) in (5.1.4) gives

(592.2) (l+k;+lBk(tk; &+&+i~)

=Hnl+N

where, according to (5.2.1)

81



L;

k=a+l t=a

Straightforward calculations lead to

(592.3) N-l 2-TH~+~2H

and hence from (2.4.6)

(5.204) L” = $ Hi +

The expected length of the left path has increased from

2Hn-1

in the normal p-tree forest to the value given in (5.2.4).

5.3 The Average Number of Key Comparisons.

The formula for the expected number of key comparisons in the

stationary p-tree forest is found from (2.4.10), (5.1.6) and (5.1.1) to be

S* =l+&

where S
(k)

is the corresponding value for the normal p-tree forest,

FO

defined in (2.4.i3).

To establish a formula for

-T=l+
-& j2 rPr

we see
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T =
r

= l+Al(n)(l,l) - K

where

(5.32) K = &[rt2(1'k!fi1 Pk(Hk-rfHk-l-Hr-l - a,)]

n’l+ 1=
n+l X E @k(k-2)  ( Hkwl - $, ) l

k=3

Defining

n-2
(503.3) u = c 2 s (k) hk

k=O
FO

we have from (5.3-l) and (2.4.6)

(5.3.4) S* = L* - K + U .

To evaluate U we use (5.1.8) and (2.4.13):

u = -sL
n+l 1

3k-2r-5
- 2(Hkml-Htil H;l-H$;)+ lo 28

k-l 7 Hr,l - 27

The latter inner sum simplifies nicely and we obtain eventually

ii% 5+ IE
k=4

= 5 B,. (kH 1 4 3k-7
k=3 *' k-1 - 5 k-5 + k-l + k-l - 2(Hk,l-H2>)

from (5.1.8) with r = 1 .
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Rearranging the terms yields

n
'k

u= c -
k&j n+l

(k-2) .

Referring to (5.3.2), we see that

(5*3*5) U n-l
=K---+i

and hence, by insertion in (5.3.4)

S* n-lCL*-= .

Using the approximate value of L* from the previous section gives us

(5.307) S* = 5 Hz + 5 Hn - Hn(2) 7 + 0-
3

The expected number of key comparisons is hence slightly less than the

eqected left path length, and has the same dominating term as the

corresponding quantity of the normal p-tree forest, being

S
1 2

=3Hn+ FHn 10
1

28- 7 Hn (2) _ 27 l

Formula (53.6) is surprisingly simple, indicating that there should be

an easier way to prove it than the one we have been using here.

5.5 The Expected Length of the Right Path.

From (~4.14) and (5.1.ll) we find the expected length of the right

path to be

(5.4.1) - R* = n-2l+ c R n
( k )  (n=l)(k+l)(k+2)  lk=O F.
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In

(5.402)

[2] is quoted the recursion formula for R
( >n

being

FO

n-2
Rn= '+ k:. RF(k)

1
( > (k+l)o + & '

FO 0

From these two equations we find

(594.3) R" = R n +-&(R
( >

FO
cn) - ') - (n-l1)" ;$) RFik) '

FO

From (5.4.1) we find

(5.404) Rn+l-R, = + (R n +1-R;) .
n ( 1

FO

Rn( >
is known to be a nondecreasing sequence of positive real numbers,

FO

_ approaching the limit

.

Rm= ;
2J

j =0 ((j+l)!)2
= 1.6261... .

(5.4.3) and (5.4.4) show that the R+n have the same properties as R
( >

.

FO

n

5.5 The Expected Length of the Left Path of the Last Right Subtree.

morn (2.4.15) and (2.4.21) we find the expected length of the left

path of the last right subtree in the stationary p-tree forest to be:

m* =
n-l

c 5 l 5 l 1-)
( 1

-,c, ?k:2 l(2Hk-1) '3

Referring to (5.1.12) we find
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RL* = 2 g ?/I(H,-,( > - 1) + r: @)
k=3 k=3 kyl

ntl=-
n %31

(1-712  1)
3

(5-5-2) RL* (‘3-r]21)  l

3

Inserting the approximate value for 1, 1 in Proposition 4.1.1we
3

find

(505.3)

5.6 The Expected Recursion Depth.

Inserting the values of the expected recursion depth in the normal

p-tree forest:

(596-l) ' n
1

( >
FO

= $Htil+g b 2 2)

c (0)
= C

(1)
=l

FO FO

in (2.4.16), yields

(516.2)
n-2

C* =l+& hg+2hl+ c l

k=2

using (5.1.8) the latter sum becomes:
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n-2
c
k=2

(k+l)hk 5 Hk+l+ $)

- 2(Hk,l -Htil $Hfil+$

Hk-l +k-12+-

Again using (5.1.8) for r = 0 and 1 we see

c*=1+-&p2+-& 5
k=3

4Hk1+k-12+&+$+Hkl+2H
1

+ 3k-7
k-l - 2Hkwl+2H2

and eventually

(596.3) C* =l+-& 2 pk(k-1) .
k=2

Inserting the values from (5X.1) we find:

c* = $&-$+O
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