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1. Summary.
In [2] 0le-Johan Dahl and the author studied an algorithm for

priority queue maintenance, first used in the work with the |anguage
SIMULA in the beginning of the 1960's. The strategy uses special binary
trees called p-trees, and algorithms to mmintain those structures.

The main part of [2], as well as of the nore detailed treatnent in
[1] and[3], was devoted to a mathematical analysis of the efficiency of
the structure after n successive insertions. Each new key was supposed
to be independent of the other keys and to have equal probability of
falling in any of the intervals defined by those keys already in the queue.

This paper is concerned with the efficiency of the algorithm after a
| arge nunber of alternating renove-best/insert-random steps, starting
with the situation after n successive insertions.

The fanous ergodic theorem of Markov chain theory ensures us that
there exists a stationary state, called the stationary p-tree forest,
whi ch the process approaches. We will find approximte values for properties
of the stationary p-tree forest, as an application of general nethods
which will be developed for the analysis of such algorithns.

.Let F denote the normal p-tree forest and s the stationary

p-tree forest. The follow ng table conpares sone of the aspects of these

two random structures:

F S
Egtpﬁclteer?gtlﬁft 2Hn -1 %Hrzl * an + A1)
ﬁqr)rgcted i nsertion %H§+%Hn+q1) %H§+%Hn+q1)
E)égfﬁted recursion %Hml + % %Hn _ %+ o(%—)




The stationary p-tree forest S is nore "skinny" than the nornal
p-tree forest F. Near the root, S is approxinately equal to F ;
for exanple the expected right path length tends to the same linit, and
the probabilities of the value of the node next to the root are nearly the
sane. However at the end of the left path Sis quite different fromF .
The expected length of the left path of the last right subtree of the
left path is shown to approach 1 , while the corresponding value of F
approaches 53 Simlarly, the probability for the node next to the

left leaf to be a, is shown to have the approximte val ues:

. 2 1
In S: 3a-(a+l) * 3n(n-1)
_ <a <n-2
. . 1 1
in F: a(ar1) + a(a-1)
if a=23
H
1,2 ™n 1
St 3*3 7 F g
and if a =2
H
2 2 “n . 1
S '5'-3 -; F: 5

In Chapter 2, nore general aspects of the queuing phenomenon are
presented. It should be pointed out that the text primarily deals wth
t he particular problem of finding neasures of the efficiency of the
stationary p-tree forest, despite the fact that sone of the nethods have

obvi ous generalizations.



In Chapter 3 is found a detailed definition of the stationary p-tree
forest and its prerequisites. W also discuss a function, the characteristic
| eft path polynomial attached to the forest, which will be essentially
useful later in the paper. By argunents in Chapter 3 the function is
defined for S .

In Chapter 4 one will find a deductive proof of the probabilities
for the value of the node next to the left leaf. The derivation involves
techni ques from discrete mathematics, especially involving binom al
coefficients.

In Chapter 5 we collect the information to derive the neasures

for S .



2. Mbdels

2.1 The Queui ng Phenonenon.

In the general case of the queuing phenonenon we have a Source (9

consi sting of a nunber of independent devices, generating units to be

served at some Service Processor (SP) . SP for some reason (for

exanple, its capacity) will not serve the units at arrival, and therefore it

depends on some type of Queue Controller (QC) which arranges the units

in some kind of priority sequence according to key values assigned to
each unit. QC usual Iy nmakes use of some predefined strategy working
with special-types of storage structures in the queue itself (e.g. linear
lists, binary trees, index tables). At request, the qC rel eases the
unit having the best key value, for service by the SC (Best-In-First-Qut
(BIFO) strategy).

The process of placing a new unit in the queue is called an_lnsertion (1)

and-the process of taking the best unit out of the queue is called a Renove (R)

] i - QC SP S - Source
Qs - eue Storage
1 , = Q g
i QC - Queue Controller
{7 SP - Service Processor
QS ---- | nsertion
Em— Renove

Figure 1.



W shall deal only with the queuing process and will assune that

the units consist of the key value only.

A very sinple way of assigning key values is to define some kind of
tinme function according to the arrival at the QC . The best strategy
is then probably to use a sinple linear list in the QS . However, in
the general case keys enmanate from the source with values according to
some distribution function; they may be adjusted by the QC prior to
insertion and even be changed during their stay in the Q8. W wll
use the term key pattern for the conplex of rules according to which
keys are assigned.

The queuing process may be regarded as a discrete time sequence of
events. At each time t (t = 1,2,3...) either an insertion or a
renoval takes place. In general we may have a case where the event to
take place is subject to selection according to sonme distribution function.
Ve will use the termI/R-pattern for the conplex of rules according to
which the insert/renmove sequence takes place

Maintaining a priority queue requires selection of a strategy for
the structural ordering of the keys and algorithnms for insertion and
removal of keys. Linear lists, AVL-trees, and '"heaps" are exanples of
such strategies. Each strategy provides algorithnms for insertion and renoval,
as well as a mechanism for representation of the data, and we shall call it

t he queue strateqy.

The purpose of this paper is to study a specific conbination of the
three elenents in the queuing phenonenon, as described in the next
sections. Some of our nethods and resultshave obvious generalizations
however, we shall not attenpt such generalizations in this paper, but

concentrate on obtaining results for our special case.



2.2 Models for Key and |/R-patterns.

VW will assume that our source generates keys as an infinite sequence
of real nunbers

Xp5XpseeesKgs oo

bei ng independent random variables chosen according to the exponential
distribution with mean » (0 <), having the density distribution

function:
re M if  O<x
(2.2.1) f(x) =
10 ot herw se.
Furthernmore, we will adopt the follow ng assunption

| Upon entry to the queue controller, each new key is increased

(2.2.2) | by the value of the key last removed from the queue.

To denonstrate the effect of (2.2.2) we give an exanple.

Exanple 2.2.1.

Let the first five keys fromthe source be
08,19, 1.1,0.1, 2.0

and suppose the I|/R-pattern is

I 'l RI RRI
Key from Key to Last key
Time | I/R source the queue | The keys in the queue removed
1 | 0.8 0.8 0.8 0.0
2 .| | 1.9 1.9 0.8, 1.9 0.0
3 I 1.1 1.1 0.8, 1.9, 1.1 0.0
L R 1.9, 11 0.8
> I 0.1 0.9 1.9 1.1, 0.9 0.8
6 R 1.9, L1 0.9
T R 1.9 1.1
8 | 2.0 3.1 1.9, 3.1




Restricting ourselves to a source generating keys which'are independent
exponential random variables is not uncommon. Biasing
the keys as described in (2.2.2) needs some notivation. If no adjustment
were made we would run into cases where we woul d have smaller keys in the
queue than sone of those renoved on earlier stages. Not biasing keys
also neans that large keys will have a tendency to be trapped in the
queue, because smaller keys keep comng in wth non-vanishing probability.
The exanpl e bel ow, quoted from[2], gives a practical exanple of bias
occurrence:

Exanple 2.2.2.

Let the source contain n (n > 1) independent exponentially

distributed event patterns, with common parameter > 0 .

1 2 n

cee source

The n devices each deliver an event tine Xj (j =1,2,...,n) to an
initial queue. Fromthat tine on the best key, say Xy is executed and

the device k delivers a new key

t =
Xk Xk+E

where E is exponentially distributed. Since X, is the smallest of such
keys in the queue at the present time, we have a situation conforn ng

with (2.2.1) and (2.2.2). O

The key pattern described above is denoted K, -



Suppose a5 is sone fixed (i.e., not subject to probabilistic.
changes) |/R pattern, and let A(t) (1 < t) denote the t-th event
(T or R . (In Chapter 3 we will concentrate on a few such 4,
at present it is left unspecified.)

If we at any time t are left with an enpty queue (i.e., if the
number of I's having occurred is equal to the number of R s having
occurred up to and including time t ), we clearly are in a trivial
situation equivalent to the original state; previous counts have no
effect on the subsequent ones. Thus we may neglect this situation.

Ve will allowato be infinite, but will assume that it is bounded
in the sense that the queue never will contain a nunber of keys |arger
than some predeternined nunber M.

The latter two assunptions may be fornulated as fol | ows.

Let NA(t) be the difference between the nunber of I's

and the nunber of R's having occurred in A up to and
including time t . Then

(2.2.3) 0 < N,(t) < M

for all tines t = 1,2,... , Where Mis some predeternined

number .

Ko and A together uniquely define the queue at all times t = 1,2,... ,
when the initial stage (t = 0) is defined by the enpty queue. The

content of the queue will be denoted as foll ows.

n't (= NA(t))

X](.t),. :.ét) the keys in the queue at time t, in sequence
according to their arrival in the queue

By the value of the key last removed from the queue.



The notations apply to the situation after execution at time t- (A(t))
Initially

n, = '60 =0
Qur conbi nation of X, and A have the nice property of |eaving
invariant the sinultaneous density distribution function for the differences
between the keys and the value of the last renmoved key, as stated in

the follow ng proposition.

Proposition 2.2.1. Using the notations above, let 1 <t and define

the stochastic variables:
W = )
3 J

Then the wts have the follow ng sinultaneous density distribution function:

1<j<n =n

t t

A (W gt ...+Wn)

e 2 i f O-_gwl,wz,...,wn
(2.2.4)  £(WpoWgs LW )
0 ot her wi se.
Proof.  The proof follows fromstandard results and nethods of
probability theory.
As A(1) =1 , and the first X fromthe source is exponentially

distributed, we have n, = 1, &, = 0.0 and the correct distribution

function. So the proposition is true for t =1 .

Assune the proposition to be true for some t, 1<t .
[f a(t+1) =1 , let the new key from the source bhe
X = W+ 8

where the density function of Wis given by (2.2.1). At time t+1 we

will have:



nt+l = nt+ 1

Brir = By

and the queue sequence:

ap & A VERRED _ me @ @ oy
I 1,)(q ) 9 n, . (x IX nt) )

(1 1/3)2

The w's at time t+1 are therefore defined by:

t+1 t . ;
Wg ) = W§ ) J = l,2,...,nt+l—l
(t+1)
W -
Doy W
As Wi s independent of w&tﬂ),.gzawn(ﬁl) we obviously have the required
t

simul taneous density distribution function at time +t+1 .

If AM(t+1) = R, |et

t .
V( ) . mm(wgt),wét),...,wflt))
and
Y;(Lt):YgG): .o .,YI(I:)_l be the remining W) g » conserving
the sequence.
By symetry, the sinultaneous density distribution function

(t) (%) (t) -
for v >¥a ,...,vnt_l is:
n, _)‘(V+yl+ . ..+ynt_l)

n_b}\ e

(Voys¥pr - 0s¥y 1) =
b 0 ot her wi se.

Renmoving the-snallest of the X(t) 's is equivalent to renoving the smallest

of the V\,(t) 's, leaving us with the follow ng situation:

10

if O SVSYpeeoy

0y

-1



- v(®)

el = By "L o3 Ap oy 3
and
(t+1) (t) (t ) o
Wj = Y.j - V J _— 1,2,00-,n_t+l .

The sinultaneous density distribution function for the V\,(t““l) 's is hence:

© n, “Angv+ (Wl+ ceo +wnt+1)
iy 0 manme, ) = [ o a " e dv
t+1 0
when O S Wy Woseees W (0 otherw se) because

t+1

V(t) +Y§t) + +Y(t)l = V(t) + (W§-t+l) +V(t) t o0ee +W(t+l) +V(t))

R D1

= n, v(t) 4 (wl(t+l) + 4 V%l(tﬂ) )
t+1

Sinple integration yields the desired density function.

Proposition 2.2.1 has now been proved by induction. g

Anot her useful property of our (Ky,a) conplex is the fact that a key
to be inserted has equal probability of falling jnto any of the intervals
defined by the keys already in the queue, as is readily seen from the

synmmetry properties of the density distribution fynction of Proposition 2.2.1:

Proposition 2.2.2, Using the notations above, assume

Alt+l) = |
Let X = W +8, be the key to be inserted, W being distributed according

to (2.2.1).
Let Z:Et),Zét),..., (:) be the ordering variables of &;‘_),Xét),.%){ét)
t
Then for | = 1,2, 0005m-1 ¢
(t)y - (t) (t) (t) 1
b = =
Prob(X < Z ) Prob(Zj < X< Zj+l) = Prob(Znt <X) = T



The results in Propositions 2.2.1 and 2.2.2 enable us to replace the
continuous key pattern K, by a discrete key pattern Dy descri bed
below. The replacenment is easily seen to carry no loss of generality,
for-queue strategies that depend only on the relative order of keys.

The key pattern D, involves renunbering of the key values in the

0
queue at each step. However this will not alter the internal arrangement
of the key

equivalent to those of Ky -

Key pattern Dy

-- At the end of each time t the queue contains a pernutation

of the integers l,2,...,nt.

-- If A(t+l) =1 , the source generates an X fromthe set
- 1 3 1
(2'2'5) Tnt - {—2' ) § 3 e nt + -é-}
with discrete probability distribution
Prob(X = x) = 1 VxeT
n +1 n,

Having inserted x in the queue the keys are renunbered
according to their size.

-- If A(t) = R, the key 1 is renoved and the remaining key

values are decreased by 1 .

Note that in D, (as in KO) all pernutations (all relative

orderings) are equally likely to occur, and that inserted X's (both in

D, and K, ) have the same probability of falling in any of the n+1

interval s defined by the queue keys.



2.3 The Queue Strategy: p-trees.

The queue strategy p studied in this paper is the use of p-trees
with algorithnms for insert and renove, as described in [1]
and [2]. In these papers, as well as in [3] and [6], one will find
theoretical and practical results concerning p . W W ll assume
famliarity with p .

using P, the queue structures are postfix ordered binary trees,
being elenents of a subset of the set of all binary trees. W will denote by

B(n) the set of all binary trees with n nodes (n > 1)

"J(n) the set of all p-trees.

(W recall that a tree Teﬁ(n) is a p-tree if and only if
each node having a right successor also has a left successor.)

VW will agree to define /3(0) and ?(O) to consist of one tree, viz.

the empty tree w .

Wien using p-trees we will adopt some conventional notations.

Let Tex™ (2<n) .
- The length of the left path will be denoted 7 .

- The values of the left path nodes in postfix order, from

top to bottom wll be denoted by

2.5. = * % —
(2.3.1) n q > a, >. > q 1
-- The right subtrees of the -1 first left path nodes (left

| eaf excluded) will be denoted by

Bl,BE, . '.’BTh-l

agreeing that node values are adjusted to range from1l

upwards (if nonenpty),

13



A p-tree forest F is defined as the pair of itemns:

(2.3.2) F o= (9(n),¢)

where 3 is sonme probability nodel containing for each tree T

in ?(n) a probability B, to occur.

Using the key pattern D sonme |/R-pattern A and @

0’ , Wil at
each time t leave us with a p-tree forest, denoted by

P8 = (5,500
wher e

Qgt) = {Pgt)(T) | T ex(®™y .

In [1] and [2] are presented theoretical results of the so-called

"normal p-tree forest”, being the pair

(n) = (g0) (n)
F (% ,@Agm)

wher e Agn)'—':'II. ..I1s the I/Rpattern consisting of n successive insertions.
One of the inportant properties of the normal p-tree forest, due to the

recursiveness of the insertion algorithmis that:

1k



The set of all right subtrees of a fixed left pat

(2.3.3) o ,
position is conposed of a set of copies of norma
This property is called the basic p-tree property (BPP)

BPP may be described as follows:

8 = {F, |7 es™)y

Llet 1<j < (n-l1) be any fixed left path node

define

for all trees U

n
Ue U %(8)
Let
(2.5.k) ORI el (0 <
Ue”w'(k)
and
(3)
. . 4 K
¢£J) _ QéJ) _ Z?ET Ues?( )
k

Q}({j) = (s«'(k),cpl({j))

are normal p-tree forests for all j, k :

1<j <n-1.

A proof of the fact that Fén) have the BPP is fou

15

h node

p-tree forests

Formal Iy, the

Let F = (3(n),§) be any p-tree forest (n > 2) wth

position, and

k <n-j-1)

Then F is said to have the BPP if the forests

0 <k <n-j-1;

nd in [1].



2.4 The Characteristic Left Path Pol ynom al.

Adopt the notations in the previous section and let T LD,
(n->2) . The polynonial
-1 q, aq,
(2.4.1) hp(z,w) = T =z S L
J=1

is called T's left path polynomal (LPP).

Let F = ("f(n),é) be any p-tree forest (n > 2) . The pol ynoni al

(2.4.2) HF(Z:W) = 2 PT hT(Z:W)

Te& n
iS called F's characteristic left path pol ynom al (CLPP),

Being a polynonial in z and whaving terms of the type zaP with

1<b<a<nw seethat we my wite

(24.3) Hyzw) = T A 2 P
l1<b<a<n” ’
wher e
(F) is the probability of a tree in F to have a and

(2.h.4) | "®P
b as values of adjacent nodes on the left path

For convenience we will adopt the conventions

hT(z,w)

From the CLPP of a p-tree forest F , Wwe may deduce the expected |eft

(2.4.5)

HF(z,w) = -z if n=o0.

path |ength- L, . Because- each tree T has exactly one nore node on its

left path than the nunber of terms in its LPP we find

16



T = 14 hT(l,l)

leading to

(2.4.6) L, = l+HF(l,l) (0 <n)

Assunme that F = (3(11),@) (n > 2) has the BPP, defined in the previous

section. We may then use F 's CLPP to establish the expected nunber of key

conpari sons (SF) necessary to insert a random xeJ, , being subject to the

equi probability distribution as in Dy, in the trees.
Ve split SF into two parts:
(2.4.7) Sp = SLp + SRy

wher e SLF is the expected nunber of key conparisons involving left path
nodes, and SRy, is the expected nunber of key conparisons involving nodes

in the right subtrees.

SLF .

Let T be any tree, and use notations as in (2.3.1):

if x <1 weuse T conparisons;
i f qj+l <x<q.J for some j = 1,2,...,7-1 We use j+l
conpari sons;

if n<x weuse 1 conparison;

leading to the expected nunber of left path comparisons in T :

T=-1
SLI' = (‘r + E(qa - q,j+l) (3+1) + l)/(n+l)

j=1
T-1
1
=1+=—= 2 q.
: n+l_j=l J

17



so that

1 | ong(zW)
STy =l+n+l[ 77

and obvi ously

(2.4.8) SL_ = 1+

1 [:BHF(Z,V?S
BZL I=w=1

SRF .

—

Let the number of key conparisons necessary to insert x in the right

subtree of left path node j of the tree T be

ST(X: 3)

+1
i nserting X- 0541 in B.‘_J (where node val ues have been adjusted), denoted

provided ay <x < a - This process is clearly equival ent with

by sy (x) , because of the BPP.

J
W then find
til .
SR, = 2 Z B, = s.(x,3)
F . T ntl TV
T e?(n) J =1 xely
qj+l<x<qf
n-1 n-‘3-1
- ¢ 3 > X s T e
-1 k=0 (x) xeq =t U (n) T
J= =Y Uegx X Ted
B, =U
J

18




Using the notations of (2.3.4), knowing that F has the BPP, we find

S op - O([(I;i) _ q[(J:J) A}({:J)

T
Te?(n)
B, =u
J
and hence
n-1 n-j-I .
k1 (3)
SR = 2 2 =AYy
wher e
_ _ > > @) L
Yok 0 xor W W ED %
UeZ k 0

because (?(k) ,qapg,j)) is a normal p-tree forest.

ald)i's the probability of finding a tree in F with right
. . , 95 9541
sub-tree j of size k . Each time a term z 9w with

qj-qj+l-1 =k occurs in the ILPP's of the trees in F we get a

contribution PT to the corresponding termin F's CLPP. Summng over all

possible j *s will correspond in the CLPP to summing the coefficients of all

possi bl e za\/\P with a-b-1 = k . Hence
n-k-1 . n-k-1
s A8 - T B(F)
j :l Ak b =l b+1{+l,b
and
n-2 n- k-1
k+1 (F)
(2.4.9) SR. = 2 ==8 T et
F k=0 n+l F(()k) b1 PrErLD
Bringing (2.4.8) and (2.4.9) together we find
i R G !
0

wher e

19



(2.4.11)

The p, 's My be found as follows:

n-2
ko_ 1 1
(2.4.12) kszkz = ZHF(Z,Z)

The quantities S (n) are known from[1] and [2]:
F

0
1.2 10 1. (2) _28

SF(n) sHu1t 91 "3 Bl T 3 (n > 2)

0
(2.%.13)

S =0 : s =1
(0) ' (1)

B Fo

Simlar to the nethods used above for Ly and S; We may establish

fornmulae for the quantities

R the expected length of the right path in F
RL,, the expected length of the left path of the last right
subtree
Cp the expected recursion depth

all quantities being examned in [2]. The appropriate fornulae turn out

to be
(2.4.14) R, = 1 + n2-32 R (F) (n > 2)
e F k=0 F(k) Bn,n-k-l n 2
0
(2.k.15) RL, = n-Z? L (F) 2
" Foo o Ty n(x) Pre21 (n>2)
=0 FO

20



n-2
(2.4.16) co= 1+ » &L ¢

P T 20 ) Y (k) P (n >2)

0
(with o defined in (2.4.11)).
V¢ shal | denonstrate the effects of fornulae (2.4.6), (2.k.10),

(2.4.14), (2.4.15) and (2.4.16) when applied to the normal p-tree forests.

W assume n_> 2 and Fén).

F(()n) has the BPP and the CLFp:

n
(2.’4’-17) HF(n)(Z,W) = Z
0

The latter formula was established in [2] on basis of considerations on
the correspondence between the set of all pernuations of the numbers
1,2,...,n and Fén).

From (2.4.17) we deduce

b1 n a-l 1 1
2.h4.1 1,1) = (
( ) HF(()n) & a:% Z]Z::(L " I%) (n0) © (a-Da )
= E’(Hn -1)
and (according to (2.4.12)):
n-2 n a-1
k 1 1 a-b-1
= >
k§0 pkz a§2 b=l((n+l'b) (n'b) * (a-l)a ) z
(2.4.19)
_ niz 2(n-k-1) k
- k=0 k+1l)n
and finally

21



OH (n) (z,w)

¥ n  a-l 1 N
oz J:Z =w=1 B a:Zé bz;l( (r+1-b) (n-b) ¥ (a-1l)a )a
(2.4.20)
= (m]_)Hn - ﬁmT3l

Inserting (2.%.18) - (2.4.20) in (2.4.6), (2.4.X)) and (2.4.14)- (2.4.16)

we find (n >2):

L =2 -1
chn) n
B (n-1) 2 M2
SF(gn) = )+ 5wy * alerD) k§o (n-k-1)8 (9
n-2 1 1
(2.k.21) RFén) =i k§O RFék) '(n<n-17 " D) (w2 )
n-2
_ 1 + 1 = 3 b 1
RLFC()n) B kgo LFék) (n(n-l) (k+l)(k+2)) 2 i ' n(n-1)
) niQ
CF(gn) = 1+ TS K=o <n-k—l)CF(§k)

These fornulae confirm those of [2]., Detailed treatment of (2,4,21),

may be found in [1] and [3].
The main advant age obtai ned by use of the CLPP relative to [1] is the

establishment of the term SL from (2.4.8).
@)
0
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3. The Stationary p-tree Forest.

3.1 Ceneral Considerations.

Consider the key pattern D, (see (2.2.5)), the queue strategy p

and any p-tree forest F = (?(n),é) where n > 1 and
(3.1.1) 8=(q(T) | T €?r'(n)} .

Let A be the I/R pattern consisting of an infinite nunber of alternating

insertions and renovals:
(3.1.2) A(2s-1) = | , A(2s) = R S =1,2,...

Suppose we start at tine O with F and apply o . At each tine t = 2s ,

S =1,2... we are left with a p-tree forest, denoted by

#(8) _ (g 405,

(3.1.3)
Q(S) = ®saFo®%0 l s € g(n)}
V¢ also define F(O) = F .
The sequence F(O),F(l),. . .,F(s), ... my be regarded as an infinite

Markov chain, where the possible stages are the trees of g(n) and where
the transition matrix

m= (my )
is an NxN matrix (N being the nunmber of elenments in g(n) ) whose
el ement s ml,j are the probabilities of mapping tree i from 9(])‘ to
tree j in "J(n) in one conplete insert-renove operation. (Ve

fix some nunbering of the trees in g(? )

To denonstrate this transition, let us consider the case when n = k& .
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Exanple 3.1.1. The left colum in the table bel ow contains the possible trees

in 9(h) , the horizontal line contains the possible x's and the table

entries are the resulting trees when inserting x and renoving the |eft

| eaves.

N

Nl
MO
1N ]
N

| Rl 7
d

Tlfj J i\;

SvaraArArar

FA AL
/

05

/

0 o

The transition matrix is therefore

1 1
%:’5}5:0

1 1
%)5:‘5‘:0

S 1 2
: 2
O)'S')‘S':g
5001 4, 1
5 7 57 5
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and one conplete insert-renove step may be described as

S(D) _ 5(8)
where P() is the row vector

@ (z)) o () o (2,008 2))
In the general case, if ve agree to denote

pS) _ (‘P(S)(Tl) , cp(s)(Te) , .. ~ep(s)(TN))

for some predetermned enuneration of the Ntrees in ‘i(n), we have

(3.4 B(s*1) | 3(s) (s >0)
and
(3.15) B = 3O of (s >0) -

Mmis a sparse matrix, the nunber of positive elements in each row being
at nost mt1 , while Nis very large (consult [2]). However it is easy

to see that
(3.16) n is a positive matrix.

This is deduced fromthe fact that Dy gives a positive probability of
reaching any tree Ty in n steps, regardless of what the original tree
T, was.

To see this, we refer to [1] where it is shown that any p-tree may
be created by selecting an appropriate pernutation of the nunbers 1,2,...,n
and then performng n successive insertions using P. (Conversely, picking

any pernutation, performing n successive insertions using p, of course

gives us a p-tree .) Let therefore (a'l’a?""’a'n) be a permutation of
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T O Y

of the nunbers 1,2,...,n corresponding to the tree i Sel ect the

X 's to be inserted: X oKps e es X into T, in such a manner that at

any stage the inserted nodes are larger than those fromT mai nt ai ni ng

0
the order according to the permutation (al,ag,...,an) . The tree T,
will then gradually be built in the upper part of the tree while the
original nodes will be renmoved one by one.

Since 9" is a positive matrix, fqis a regular matrix in the terninol ogy
of Markov chain theory (see for exanple [4]). The fanous ergodic theorem

of Markov chain theory then gives the followi ng statements:

"There exists a uniquely defined p-tree forest

S = {‘w’(n),‘l‘g

with

Y= (Y(T) | T e 50

such that F(%) — s in the sense that

S =

| > (8)¢py - _
(3.1.6) S e lo'3)(T) -¥(T)|

The probability vector P of Y is defined by

P=Pm , ZP=1.

S is independent of F .

Exanple 3.1.2. To find S for n = 4 we have to solve the equations:

P, -= 3P1+3 Pz} +é§Pl+
P, = 5p1+50 5B 5112



S R R -

2 1
P, = Sp+ip1
b 557500

1:P1+P2+P5+P,+.

The first four of these equations have a determnant equal to O , as the

colum suns in mare all 1. W find, for exanple,
P1+P2+P3+Ph=l
p) 3 3. _
--5-'131+-5E>2 +-5Ph = 0
1 L 1 1 _
-5—P1+‘5—P2+§P5+§P]+—0
1 1., _53 -
s ht5Hh-5H =0
giving us S for n = Lk
- L -1
Y‘15 Y—5
J
2 1
¥=3 f YT

S depends only on 7, defined by A, and it is therefore characterized
by A, Dy, P and the nunber n . W wll call S the stationary

p-tree forest (of degree n).
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Since starting with F = F , the normal p-tree forest, wll
maintain the BPP (basic p-tree property (see (2.3.3) and (2.3.4)) for
al H9 . itis easy to see that

S = 1im F(%)

S -
nmust have the BPP;

(3.1.9) The stationary p-tree forests have the basic p-tree property.

W also see that the characteristic left path polynomals (CLPP) of the
F(s)'s must approach the CLPP of the stationary forest, in the sense

that each coefficient in the CLPP of the F(s),s appr oaches the corresponding
coefficient in the CLPP of S . '\ shall later on establish a transition

matrix, corresponding to m for the coefficients of the cLPp's.

5.2 Defining st™ .

Prom now on we will assume that n > 2 . W shall be interested

only in the process of alternating insert/remve so we define:

8 (26-1) = | t

, 1,2,...
(3.2.1) 7

Al(2t) = R t = 1,2,... .

usi ng Dy s P and the initial forest Fén) (the normal p-tree forest)

28



The p-tree forest at time 2t (t = 0,1,2,...) will be denoted

() = g(n) (%)
(3.2.2) 1 e

and at time 2t+1 (¢t = 0,1,2,...)

According to the results of the previous sections

th) tends to a limt, the stationary p-tree forest, having

(3.2.3) | the BPP, and n elenents, denoted by

(n)
51
It is not hard to see that the sequence G£l),G](-2), ... also approaches
alimt, viz. that obtained by inserting a node in sin) , denoted here
by T(n+l).

1
L

Eventually we Will be interested in the average left path |engthy the
nunber of key conparisons to insert x in Sgn), etc. Using the methods

of Section 2.4 we will need the cLrp's of the forests. W will denote

CLPP of (FT:‘L) by:

(3.2.4) H§_t>(z,w) = Z aﬁt,:)) 22w
l<b<a<n'" '’

CLPP of (GTE‘L) by:

(3.2.5) 1) (2w - z a(t) o P
= l<b<a<nl P ’
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CLPP of Siﬁ by:

(n) _ (n) _a D
3.2.6 A s = > z W
(5.2.6) 1 (z,w) L Lo

and finally the CLPP of ¥ by:

(3.2.7) By&l) (z,w) = Z uén-;l) 2% WP
l<b<a<ntl ™’

The interpretation of the a's, g 's, N's and p's (see 2.4.4), together

with the statement (3.1.6), makes it easy to see that

(3.2.8) lim m{® (z,w) = 4™ (z,0)
{ =
and
5029 lim 1z = 30 (zw)

-0

In the next section we will establish relations between these CLFPP.

3.3 Rel ati ons Between the CLPP's.

Suppose we have any p-tree forest X with the BPP and the CLPP:

b
H(z,w) = z T 22w
l1<b<a<n ?

(X having n nodes).
W will establish the cLpp's of three p-tree forests Xi , XZ and

*
X

5z as functions of H(z,w) :

==y s the result of one single insertion in X . X, has

1l nodes.
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*
- X,

N %

is the result of one single removal in X. X, has n-|
nodes.

x5 is the result of the conmbination of an insertion and a

removal in succession.

In terns of the notations in the previous section, we then will have:

it xis K% (>0, then Xl is & and x is (Y

it xis &% then x5 is p(t+1)

if Xis S(n) , then X; is T(n+l) and X; is S(n)
it Xis T® then x5 is s
Havi ng established the equations for the CLLP's for Xéle, XZ and X*5

bel ow we may therefore concentrate on one single relation, viz. the one

arising fromthe relation
(3.5.1) it Xis s® then xjis §F,

as we indeed will in Chapter 4.
Below a and b are integers satisfyingl<b<a<n, and Tis

sone tree in ?(n) ‘

¥*
Case 1. Xl

The CLPP of X; wi |l be denoted H;(z,w). Let T have a and b

as values of two adjacent left path nodes:

P
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The tree T* resulting fromT is then:

if x<1: K
*
T
S\ 1
X+-é-
if 1 <x<b
*
|
.'LR+;1__
X+ 3

if b<x<a

oY

[OF

Nl -

if a<x<n

®
7

32

new | eft |[eaf

no new nodes on left path

no new nodes on left path

no new nodes on left path



if n<x

el B

X+

T e new root.

/

’

Summ ng over the entire forest we see:

* 1 2 1 1 n+tl n

Hl(z,w) =T 7 W ot =g W
(3.3.2)

b + b+ - + -
e A D

1<b<a<n v

*
Case 2. X2

The CLPP o f XZ wi || be denoted HZ(z,w) and we recall the CLPP's
of the normal p-tree forests: Hc()k)(z,w) from(2.4.17).

As in the previous case we assune T to have a and b as adj acent
left path node val ues:

If 1 <b we get ’
’

D)
&

7%

If b =1 we have

. (a)
o B(a_z)
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is the last right subtree of the left path having a-2

nodes (a >2) ., As B(a-e) is appended to the left path, we will

have the new left path of T

Ny

left path of B(22)

Summing over the total forest X, recalling that X has the BPP, we find

* -1 _b-1
H.(z,w) = > r 22w
N 2<b<a<n 2,b
(3.3.3)
. 2 (za.-l 22 . (a-2)(z W)
2<a<n® * i ’

(The latter formula being justified by the conventions made earlier:
H(O)(z,w) = -z

1D (z,w) = 0 .)

In this case we could use "geonetric" considerations as in the two

previous cases. However we may establish H; by neans of (3.3.2) and

(3.3.3) . -
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I ntroducing the convention

Tob = 0 if (a,b) {(c,d) |1 < d <c< n}

we have from (3.3.2)

* - zZ W
Hl(z,w) = 2 () ((b-l)ra-l,b-l + (a-l-b)ra-l,b + (n+l-a)r

)
1<b<a<ntl a,b

1 2 .1 1 n+tl n
s I S

Inserting this in (3.3.3) we obtain

* _ 1
3w = l<b§a<n i (m (Borg,pt (8-l gt (n—a)ra‘fl)b*l))

(3.3.4) + 22<) <in+{zawa'l+Héa'l)(z,w))((a—l)ra l+(n-a)r
a<n ?

a+l,l)

+ 1 A Wn-l
nt+l

(m)

3.4 The CLPP of Sy

From (3.3.1)and (3.3.4) we obtain the follow ng polynomial identity
for the CLPP of the stationary p-tree forest s(n), usi ng the notation

1
(3.2.6):
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n a-1
a?zzé b=1 n*(i?l)o 2o AJ(.H)(Z’W)
1 n a-l b (n) (
= = . 2 b b-1) ) —a) n(®)
Gan | T a2 ovoy (oMot (801 T pun® (32) Ty i)
1 & ) -1 -1
1 2 (DI o) Ty (g™ (2)
+ __n%_i Zn Wn—l
Here we recall
x = &l 1 1 ab
Bo " = a§2 bgl((kﬂ_-b)(k-b) * (a-l)a) zW (k > 2)
(3.4.2)
B =0 (k = 1)
and the convention:
(3.4.3) T]S;.l,)b = 0 if (a,b) £{(r»s) |1 <s <r <n}

(3.4.1) is in fact a set of M= n_ﬁg—'ll si mul t aneous | i near

equations in the M variables

'ﬂéjl% (L<b<a<n)

The uni queness of the solutions follows fromthe existence of < ) but

we could also prove it directly from (3.4.1).

The solution of 3.4.1 for the first fewn's proves to be:
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n=|j a 1 2
3
2 %
1 3
5 I I
\b
n =1, a \ 12 3
) 31
L5
1 7
3 5 15
1 2 2
4 9 9 3
b
n=>5 a 1 2 3 4
\
2 — T5H4 _
N N = 3888
3 698 1555
N N
4 363 624 1443
N N N
5 243 405 810 2430
N N N N

There seens to be no sinple solution to (3.k.1), except for:

(n) _ _1
n,1l (n-l)2

For example, we may show the general fornulae:
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Wi = Te [
1,1 = (a-1)(n-2) (1)1 (C )1 D)

2 8
néﬂ) L n- 2y 5 . 3 | n’ -on+ 3 |
L= (no1)2 > p1y (DHDUDD + <<§>-l)<<g>-l)(<§>-l>|

W will therefore settle for approximate solutions. Fortunately
we need not have solutions for all ﬂg% to establish the quantities
described in Section 2.4, it will turn out in Section 5 that in order to
establish L., S, R, RL and C for sin) we need only the values of
the corresponding quantities for Fék) (k >0) and the né?i 's and
t he (?% 's.

In the next chapter we shall deduce from (3.4.1) an equation for the

nén‘)l 's and find an approximate solution for them

)
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4. Approximate Probabilities for the Next Last Node Value on Left

Pat hs of sin).

4.1 Summary.
In this chapter we will prove the following fornulae to be true.

Proposition 4.1.1. W& have

| (n) _ 2 1 (n) | 1
(4.1.1) JER - oyl vy SN o(n (b <t <n)
m _ 1,25 (8, %.@\1, [
(k.1.2) ”3,1 = 9+5 = 27+5Hn_ = 0 ;F
m _2_ 2,20, (%
(k.1.3) 'ne’l = 5-3 'rT+9n+O -IF
Hn and Hr(12> are the harnoni ¢ nunbers:
n
k=1

n
o33
k=1 k

The Q(f(n)) notations should be interpreted as follows:
g(n) = 0(f(n))
iff there exists a constant that

lg(n)| < M|£(n)| for all n = 1,2,,..
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During this and the follow ng chapter we will make extensive use

of standard fornulae from conmbinatorics and discrete mathematics, referring

for exanple to [5].

Pl ease notice the difference between the nén)l 's above and the
2

corresponding probabilities in the normal p-tree forest:

1 1
tTE-D T onmeD)

4.2 Linear Equations Involving Only T]‘n) 's.

The goal of this section is to prove

2 a-2 _(n) ,n-2 - -2
A0 Qe = (@)

(1.2.1) +a§ (17 (a-1) + 1) | (-8)) (a1 (242) 2

D (’T](n)(a 1)+ 1) (m-a))x(@ D 2y + y(@D) 5y

a0 atl,1

wher e T]r(::) =0 and

(x) k r-1 1 s-1 r- -1

(4.2.2) x'7(2) =r§2 Sz:Jl (Z(Jfk+)1 s)(k-s) (n'Hl)(n r+1)
k r-1 s-1 r-s-1

(4.2.3) ¥F(z) RN e (D) (7))

for 1< k- (k =1 leaves enpty sums, being 0 ).
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In(3.4.1) we multiply both sides with (nt1) and nove the double
sumto the left, obtaining the equation:
hy

n \
azé bzzlz W (e b)n(n%)' (a-b-1)0 00y - (n'a)ﬂgi{,b+1)

(h.2.h)

RS (@017 + eangd) IE 4 ).
Z,

Ve introduce the new quantity:

(k.2.5) O’S}% = (n-at+2) (n—a+l)(§ Z:_;)’\'](n) for all a,b .

The left hand side coefficients then transformto (provided 1< b < a-2 <n-3) ,

(n+1-b) ﬂa(,f% - (a-b-1) ngf;l - (0-2) M1 pea

(n)(n -b+1) Oy pr1(a-0-1) Oqr1,pr1 072

i (n-a+1) (n-a+2) ( 2_::;) (n-a+1) (n—a+2)(n a_|_2) (n-a) (n-atl) ( nil;fl )

1
= nb (9,5 = %,b+l ~ Oor, br1)

(n-at)( poan

This transformation is easily checked to be valid for the cases a = n ,

and b = a-2 or b = a-I with 2 <a <n also.

b

W use this result in (4.2.4) and multiply each termz%" with

(n- a+l)( )

a+ l

obt ai ni ng
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2 a'z'”((m_ (M) my

a b+l a+l, b+l

a=2 b=1
(4.2.6)
n
- A S (e end] D (@t * KD )
wher e
) (x) S 1 .
( 27) K (Z’W) _r=2 S=Zl> <k+l-b) RV * (a.-l)-a , (n"' I‘) ( n- I‘+l)
Now,
n a-1
&0 +(0)
a§2 bgl 2 ("(n) a.nb+l afl,b+1)
_ 75 ail - c(n) % 8%1 a b-1 (n) ail ;o1 0-1 +n)
a=2 b-1 &b T3 pop b 23 p=p

n
5 %P U(n% (l . _ZI_._) 5 A c(ni
l1<b<a<n & 2/ a=2 &

0
~
]
£l
1
2=

so that by putting W:Z-J-r-zL , followed by division of z+(z+1l) we obtain

from (k.2.6)

= (z+l)n_2

(a-1) 241
n K
+ 2 (@01 ¢ ) ) | e (@) z((z+1) =)

W have from (4.2.7)
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r-1 .

k
2 2 1 + l) )(n-rl-l) (nr_l;fl) (Z_'_l)s-lzr-s-l

K(k)( Z , zl )
r=2 s=1 (k+1-b) (k-b) (a-l)a

z(z+1) - B

= X(k)(z,w) + Y(k)(z,w)
so we arrive at (k.2.1), having realized from (4.2.5):

Ui?g_ = (n-a+2) (n-a+1) n_2+2 )T]E(:{ = ( 2:2 )n(n—l)ngl]).

4.3 Properties of X(k)(z) and Y(k)(z) .

The conplexity of (4.2.1) is primarily due to the sums involving the
functions XU (2) and Y(®) (2) as defined in (4.2.2) and (k.2.3).
In this section we shall concentrate on sinplifying these polynom als.

Ve will nake use of the following differential operator:

(4.3.1) dj={j-(z+l) 2 . 0<j

so that dJ, applied to a function f(z) is
a2(z) = f(2) - (z+1) af(z) |

In particular we will nake use of

(1:3.2) @.(z))’ = (3-1)(z+))" (all i ).

This section contains the proof of the following three statenents,

all valid for 1 < k < n-|
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k
L 5 - @) -(5)

3.5 a_, xF ()

=~

(k3.5 a @@y - 2 2 )

s=2

1)L 1 )

(4.3.5) @,_p(x® () +¥® (2)) = %_1(2Y(k)(z) =)

From (4.2.2) we obtain:

(k) k=l (41)5 (n-s r-s-1, n- )
x\(z) = 4 K-5) (K=S+1 z r-s-1

s-1

The inner sumof this expression may be witten as a polynomal in (z+l) :

k r-s-| ‘
-5- -5= -5~ t ~g-t-1
v zr's'l(”r _SS_'I) Y = (_’;_Z_%) (73 Ly (m)b-p™®
r=stl r=st1 t=0
k-s- | k :
_ t n-s-1,, n-s-t-1 r-s-t-1l
- L CTTHELEEDEY
k-5:1 t, n-s-1 | , n-s-t-2 Kk~§-t-1
= t?o (Z+l) ( t ) ( k-‘S't‘l) ( 'l)
so that

k-1 k-s-1 . s+t-1, -s=1 -g-t-2
(z+1) (n-s) (P (R

X),
x(¥) (z) = _El ,Eo (ios) (E=s+ 1)

L

k~s-t-1



Now :

n-s-| n-s-t-2 n-s-| n-s-t-1 k-s-t
€ t )(k—s—t—l) (n-s-t-l)( k-s-t )n-s-t-l

I

n-s-| n-s-t-1 _k-s-t_
(n-s-t-l ) ( n-k-| ) n-s-t-I

n-s-| k-s k-s-t
= Okt 2Wwestt ) prsrt

oo Ms oy kestd . k-s-1 ) K-
- n-k-1 n-s K-s-t-1/n-s-t-1

so that
x(k)(z) i kZ—:| k—%—l (Z+l)s+t-1 1 k—s—t—l( nes ) Kes-| )
s=1 420 (n-s-t-1) n- k- | k-s-t-1
Applying a, o to (Z+l)5+t_1 we obtain
a, 2(z+1)s+t'l - (n-s-t-1) (z+1)5Tt"L
so that
(k) k- n-s g1 K&l t k-s-1-t, k-s-1
an_2 X (Z) = Z (n-k-l)(Z+l) Z (Z+l) ("l) ( t’ )
s=1 - t=0
_ kz_:| n-s ) (z+1) s-1 Zk-s-l
B s=l( nokel /U
k-1 s-I |
.5 > Z(k-s-l)+(s-'t-l)( n-s )( s-1)
s-1 £-0 n- k-1 t
_ kis JE=t-2 kil ( n-s )(s-l)
t =0 s=tel BELT T
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k-2 k1 |

5
t =0 s =t+1

k-2 k-t -2 n k-1 k
tz_:o z [( n-k+t ) - (n'k)( k-t—l) = ( k-t )]

Changing the summation index to k-t we obtain (4.3.3).

From (k.2.3) we see:
ril r-s—l( +l)s-l( n-s )
Ry Z V4 n-1+l .

M

W o % o

H
1l
no

The inner sum may be transforned as fol | ows:

r-1
r-s-1 s-1, n-s

22T e T

r-1 s-|

s-1, s-t-1 r-s-1, n-s )

Lz ( t )z z ( n-r+l

s=1 t=0

r-2 r-1
Y s;l) ( 2%)
t =0 s =t+1

r-2
r-t-2 n
= tZ:OZ ( n r+t+2)

-2
= T &)

t =0

Using this transformation, and applying a, we obt ai n:

k r-2
4, 70@ = 3 T Iy (6 e s 2T
k r-2 r-2
B n-r+l o n-ly s o=l sl
- rZ=>2 r-(r-1) [ Z‘;on ( s )z” - SZ:On ( s-l)Z
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_ 3 omml o n-lyored
= rt-JQ r-(r-1) -2

k
- T (D

r=2

and (4.3.4) i s proven.
From(4.3.3) and (4.3.4) we find:

k k
2o @+ 1™ @) o DMy (0 k) PR E ) 502K
+ (q, v (2)) + 2 1M (2)
k-1 k )
- E(dnY(k)(Z)) -2 Y(k)(z) - (n_ k) z+1 - -1 (Z+l) kz-1

Now :

@, t® (=) -1®(z) = gy 1@
and ‘

k-1 1)1 (k-l)(z+l)km2 (z+l)k-l -1
q B2 = (n1) (2 () 7

_ (n-k) (z+1)"F -1 (2+1) - ¥z -
Z

Z

proving (%.3.5).

4.4 Revision of Equation (k.2.1).

In this section we will obtain a sinplified version of (k.2.1),

using the results of Section 4.3. Ve will use a new notation for the

)
unknown quantities T]kn) :
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(4.4.1) e

pa —'a,l *

The main result of this section is:
n-2 r

r r+l r n-1 r-s
ZE @) -2 ) D) ee (1)

n-1 1
(4.4.2) | = 2( > zr) -(n = (01, )z
r=0

n=2 r+1
+ r§0 (z7 (r+2) -2 (x*i-l))(pr(n-r--l)+pr__l r)

As before we use the convention

p. =0 if a<0 or n<a.
a

Ve will split (4.2.1) into three suns

n

(4.4.3) s =aZ:2za-2 ntn) ) (28 n(n-1)

(4.4.4) s, = (z1)"°

(4.4.5) s, - ée () (e-1) + 73 L(n-2)) (-1 (2+1) 22 + x50 (2) + 1001 (2))
s; that

(4.4.6) S = S+ 5

W also introduce the notation

n n-a-2 (n) S-a-2
(4.4.7) K = 2 ( s-a—2) (1)

a S = at?

n (4.3.1) we defined the differential operator aj . The corresponding

integration operator wll be denoted ,Bj . W& have
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(4.4.98) a5 15 £(z) = £(2)

(k.k.9) :rj 0 = C(z+l)j (C constant)
(4.4.10) 3’3.(7.+1)5L = (T.%—jj(zﬂ)i + C(z+J.)j (C constant and i # j) .

VW will apply the operator

(4.4.11) b=z aq b

n n-ld

n-2

to (k.2.1), and then rearrange the polynonm als using (z+) as variable.

For 82 we find

ws, =C z2(z+l)n_:L

(4.4.12)
= o((z+1)™ - 2(z1) P (1)

where the constant C is assuned to represent the integration constant
for the entire equation.

For s, we find

1
s, = a§2 bai (z+1)b(a;2)(-1)a'2'b(gﬁé)ﬁaﬁ)l n(n-1)
] n:ie (241 zm T aen (228 ()72 )
-2
-z (z+1)*( "% )n-(n-1)K,
and
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n=2 5 -a-2) (n- -2
ws, = T (08 ;n_g_<ga>) (2+2)*( "2 n(n-1)x,
leading to
-2
(b.4.13) v 5, = nE (z+1) %2 _o(z+1)% 1+ (z+l)a')(n-a-2)(n-a.)(n;l)n K, -
a=0

For 83 we will have to involve ourselves in nore conplicated

calculations, (see (4.3.4) and (4.3.5)).

w( (n-a+1) (2+1) * 2 + X (2)+7, ;(2))

2wty 22D w2 (g (o v, 0 - 222201 )

(n-a+l)

y
(n-8+2) (n-a) (z+1)%2 22 + > (D)
s =2

N S e (- I i L )

z 2
z

A ,
=2 Z§Zs( o)+ (n-a) (n-a#2) (2+41)%2 2% - (n-8+2) (2+1)%72 7 - (z+1)%"%
s =0

+ nz+(z+l) -2nz-2 .

Hence we may wite

1} S5 = ut+v+w
where
n
(4.4.14) U = a:ZZ X, U,
n
(4.4.15) vV = a:ZZ X, Vg
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a=0 a a
wher e
= () + 1) (n-a))
a-| -
u = 2S Z e (%)
Vy = (n-a) (n-za.+2)(z+1)a'2 22 - (n-a+2)(z+1)a'2 z - (z+l)a":L
W, = noz+ (z+1) -2nz -2
Now
U=2ai|zs(n)—_—2a-2| 2 t s=t, ny, s
a s 2o s s—o t§o (z+1)"(-1)""( ) ()
a-| a-1
= 2 Z ()%]) T (DT
t =0 s=t
a-|
= 2 2 ()Y (-t
t=0 =vE
a-1
-2 E et & O
=0
= 2n(™l) T (Y (1)t
a-1 t20 t (n-t)
so that
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n
u = 2 X, U,
a=2

& “t-1 %
= 2 e )tZ_O( e 2y
n ‘n) a-|
+ Z) Tord, 1 (n- a)En( ) > (® &
_2 £ =0
a-1

en(n-[ 2 T WD (T (D ) bty

n - o )
+ § ’?:on"(f),( n_e)( tg)( _1)252 50yt z‘_yJ

a

3

a -2 a-t-1
Qn(n'][ ai’z 60 ’n(n%_( : D ) ( l) ( t- l )( +l) -t

M) (P ()20 () .1 L

n

. (n) -2 _ 1 -2y, a-2 t
gn(n l[azz tzona‘n;'( l)a n-t-1 (:_2)( at )(Z+l) +l-2(n-l)n2,l

I

n- 2 n
_ t+1 -2 1 ) a-t-2, n-2-t
= en(n-l)[ DTN i D LSRG R G ]:e(n-l) (=)
And hence
2
(4.4.17) b= 20 B (el X, -2(a-1) 16,

a=0

For the sumWwe find

n
= Z x (-nz+z-1)
a=2
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g

= (-nz+z-1) 2% T](n‘)(a.-l)+ % T](n)(n—a+l) '
a=2 a,l a=3 a,l

(-nz+z-1) % T](n) n - Tlén)(n-l)
| a=2 Al sl

n

Knowi ng t hat 2 T];ﬁi): 1 we obtain
a=2 v

(4.4.18) w= (n- (n-l)?]z l)((n-2) - (n-1) (z+1)) .

Applying w to (4.k.6), inserting (k.k.12), (k.4.13), (4.4.17) and
(4.4.18) we obtain equality between two pol ynonials where the maximm
exponent of (z+l) is (n+l)' , occurring only inws, (k14.12). Hence
the integration constant C = 0 and we have transformed (4.2.1) to the

equival ent identity:

-2
nZ ((z+1) 2 - 2(z+1)% 1+ (241)®) (n-a-2) (n-8) ( n;l ) nk
a=0
n-2 n-
(4.4.19) | = E;O(z+l)a+l( n;l ) 2nK,_ -2(n-1)n2i1i + a:Z%O X, v,

# (0 = (@D M) (n-2) - (n-1) (242))

wher e
xa = (M (a-1) + 12 (n-e))
and
vy = (n-a) (n-a+2)(z+l)a‘"2 22 - (n-a.+2)(z+l)a-2 z - (z+l)a”_:L

= (n-a) (n-a+2) (2+1)® - 2(n-a+1)2(2+1) %1+ (n-a) (n-a+2) (2+1)22

- (n-a+1) (z+1)% 1+ (n-at2) (z+1)272 .
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n (k.4.19) the first sumon the right hand side is nmoved to the
left hand side, and we use & throughout the identity to sinmplify

the terns:

5 L((z+1)%2 —2(2+1)* 14 (2+1)%) (n-a-2) (n-a) - 2(z+1)*]

Tn[(Z+l)a+2(n- a-2)(n-a) -2(z+1)% (n-a-l) + (z+1)%*(n-a-2) (n-a) ]

a+l
(n-

[(2+1)*2(n-a) -2(2+1) -a-1)+ (z+1)*(n-a-2) 1+ ¢ (z+1)"

2[(241) ™ (1) - (2+1)%(n-a-2) ]+ C(z+1)"

for some constant C .

Furt her nore

]

b v (n-a+2) (z+1)? - 2(n-a+1) (z+l)a-l+ (n-a) (z+1) -2 _ (z+1) a-l, (z+1) a-2

na

2((n-a+2) (2+1)>"L = (n-a+1) (2+1)%")
*(neglecting the integration constant).
Application of 5 to (k.k.19) hence yields

n-2
2 z[ (z+l)a'+l(n-a) - (z+l)a'(n-a-2) In( n-l) K
820 a a

(b.h.20) | - 3 2(n-l)’r}§r.11)_, +(n - (n-1) (n))( n-2 (z+l))

* Z (n(n (a-1) +n(31). l(n'a))((n'a+2)(2+1)a-l - (n-a+l)(z+l)(a-2))z
a=

+ c(z+1)"

n

The coefficients of z are seen to be

(m-(@-2)) 0 (230K 5 = (T(a-1))-(n-m2)
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Now, followng (4.4.7)

oz - R D2 L o)

¢ = M ,lea(n-1) -2(n-1)] = 2(n-1)2 nn.nl) .

Going back to (4.2.1) easily gives us nrkln) )
»1°
Tlr(l?%_( g:g)n(n-l) =1+ T]I(lilg_(n-l)(n-nﬂ)

(n) 1
M -
n,1 (n-l)2

and hence C =2 in (4.4.20).

We insert this last result in (k.k.20), divide by z , and then

change our variable from (z41) to 7 . optaini ng

n- | atl
S 2% M) - ¥(n-a-2)1n( M) x
a=0 a a
n
(b.k.21) - a§2 (ﬂé?:)'_(a-l)+ néﬂ,l(n-a))((n-we)za‘l- (n-a+ )% 2)

I

+ 2 Z;_-ll - (n- (n-l)'{]?, l) .

Recalling the definition of the p_ rsin (k.h.1) we find from (k.k.2)

L= a -1
2 (27 7(n-a) -z2%n-a-2)) n("7) K,
a=0
= %2(za+l(n-a) 2®(n-a-2)) n( 271 ‘E (B3 s-a-2
a=0 aS=a+2 5-3 Q pn-s(-l)
n-2 a1 n-g-2
P R DL Gt R B G DENC s
s=0
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_ nee n-a~-1 n-a-2 n-1 & a-8

= I (a+2) - a)n(27) 0 0)g()
a=0 & s =0

and
n
2 e+ 1) e (neas2)a® - (e )

_ nEE( (a+2)zn-a-l _ (a.+l)zn-a‘-2) ( (n) (n-a-1) + T](n) a)
a=0 nﬂ"a:l -n-a+l,1
nijz n-a-1 n-a-2 1)+

= azb(@waz - (atl)z )@M(ma-) p&la)

Inserting the two last results in (k.k.21), dividing by 2™ and

finally changing the variable to I/z we obtain (4.4.2).

L.5 Series Expansion of the g 's-

The polynom al equation (4.4.2) contains n equations and the (n-1)
vari abl es (po,.--,pn_e) . However, by putting z = 1 we will see that
the equations are dependent. Furthernore, it is not hard to see that the

equation Obtained fromthe coefficients of 2"

may be ruled out,
| eaving an independent set of |inear equations

In this section we shall obtain series expansions for the Py 'S
making it possible for us to obtain approximte solutions

The followng facts are trivial
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0 <p, <1 0 <a<n-2
P, = O a<0 or n<a
(k.5.1) n-2
2 p. =1
a=0 °
o 1

VW shall prove the follow ng proposition:

Proposition 4.5.1.  Define for 1 <t < n-2

(0) _ 2 42
(-8 07 = sy s
+
% k
(4.5.3) ozé”l) - 1 - T2 ( Byranal®) (0 < r)
6(t+1) () k=1 j=1 J J -
e o - & ()
R A L ol a) ©<»
Then
1 = r
(4-5.5) oy = (n—l)2+r=20 51(;) 1<t <n-2
(495.6) 0 < aér) < q.(o)(% )r 1<r 1<t <n-4.

The constant (%) is uniformfor 1 <t <n-4, and is not very
wel | optimzed. As we shall see later, (4.5.6) does not hold for

t = (n-2) or (n-3) .
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Proposition (k.5.2) below gives, for each t = 0,1,2,...,n-2,

e, as a linear function of P12Ppr *t 3Py 1

Proposi tion 4.5.2.

(ory) (-1
(4.5.7) =Ll< o B ) 0 <t < n-2
& (aﬂr-ll)'l by u=Opu e -
wher e
_1 2 1 1
% T 3 Ta-t) (n-t+1) © n(n-1) 0<t<n2
and
5 (hwe
Pe,u = ny " n
’ (1) (oo ) (n-u-2)
, t (4
- ‘—n-:l—l (uwtl) (ut2) 2 S

- r =wl re(re1) (z2) (1)

(0 <u<t-1 , 1<t <(n-2))

Solutions of equations like (4.4.2) often involve one or nore cleverly

selected substitutions. |n our case, the follow ng sequence of

substitutions are not unnatural choices:

¢y = (n-t-l)pt+t Py
(4.5.8) ‘ d, = (t+2)ct-t 1
t
- t=3, t
e, L d.(-1)"7I(%)
t - j=O J dJd
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The direct correspondence between the e,

to be:

i t=j, by, & t=j, by
e, = jéo('l) 703 (F+2)ey -jZ=O<-1> (3)3 ey

: -3 . oy
2 (DI 2) + Cyp ) (3¥D))ey

t .
t+2) = (-1)"I(Fye,
J' =0 J J

t

j =0 i =0

3 ((0m3-1) - (6-3))

(t+2) T (-1)% o
j =0 ’

SO

"

(h:5.9) e = (2t D (DT

From (4.5.9) we easily deduce

3

t (
(4.5.10)

e e. /3 - <
t 50 10+ (n-)-1)

Inserting (4.5.8) into (4.4.2) we obtain

n- 2
ZO (2% (r+2) = 2" H(2+1)) (o (n-b-1) + op 1 1)
r =

-2
b (2" (x+2) -2 H(r+1))e,
r=0

n-2 .. n-1
Lz ((rl-2)cr-r Cr_l)-z (n-l)cr12
r=0

1]
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t . N
<t+e>[ 0 Dmane + 2D ’(‘pjpj_l].

's and the £y 'S i s seen

= 7 J 0<t<n-2.



n-2

= ;2" d, - Zn-l(n-l)cn o
r=0
n-2 r
= L & T :‘)er - zn_l(n—l)cn o
r=0 t =0
and from (4.5.9)
v (n-l )n
~ ,n=1,,r r-s _ 1
SZ’:O(Hl)( s)nps(-l) = (r+25(n—r-l eI‘
leading to
n-2 . r+1 ntl, 1
(2 (x+2) -2" 7 (2) T ey
r=0
- r n- | niE T é r)
= 2 zo +z  [(n-1)p -n- (n-l)c_ )+ z (:)e
r=0 n 2 n-2 P =0 t=Ot t
From whi ch we obtain
r
-1
(4.5.11) (5 )e. - =7 (2)e, | = 2+ L (i )e, 0<r<n-2

t =0

when neglecting the terns 2"

Multiplying each equation (4.5.11) with r.-(r+1) and sunming from

3 through s (0 <s < n-2) we obtain

s s
n -1
Z:/O( Hl)r(rﬂ')er -r ?O%%% ( g)er-l r(r+l) = ( S_?l)s(s+l)er
s s r
= 2 2 r(r+l) + Z ( E)et r(rt+l)
r=0 r=0 t=0



The first sum being s(s+l)(s+2) we see

N[O

S r

s%r-l2 , 1 . 2 5
s+l) s(s+l)(s+l) r=0 t=0

e, = % ( ( ch‘)r(rl-l)e_b
(4.5.12)

if(1 <s< n-2)

As (L4.5.9) gives

we see that (4.5.12) leads to

2 1 S e by
(4.5.13) e = 2B Ste 4 2 (D)r(r+l)e
S an-li (s-lzl) S(S+l)( S:ll) r=1 t=1 t t

From the definitions (4.5.2) and (4.5.3) we see that if we define

r
e - B Y © <)
we find
ugﬁl) = oco + S a(")
a=1
t k
- a, - 1 _ T2 ( Fyx@e) i oLa
s+(st1)( 7)) k=1 j=1 | a=0
SO
(r+1) 1 LoL g (v)
e - = — 2 T (k) (e, -uy’) .
="V s(s+1)( 1) k=1 j=1 R
AS -
(0) 2 +2
ey ~Ug = e, - B(nr_ll) ( sn : >0
s+1-7
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i nduction shows

(4.5.14) ugr) < e (0 < 1) (1<s<n2)

uéo) s ugl) PR i's hence an increasing bounded sequence and therefore

converges for all s =1,2,...,n-2 . The fact that

(k.5.15) limul® = e (1<s<n2)

Ir -

follows fromthe fact that ug‘”) satisfies (4.5.12):

RO
S r=0 S

[ ]

o+ » oD

0 s
r=0

s r

Ay * = n Z Z (z)r(ﬁl)ugm)
s(s+l)(s+l) r=1 t=1

From (4.5.10) we find for 1 <t <n-2:

% ()
TS S TR
t
t (3) o

2 1
= o1 2 §1(3+2) (21-3 -1) ai}) O"ga)
N S i 5(2)

(n-l)2 a=0 b

proving (4.5.5)of Proposition 4.5.1.

Now assune: 1<t <n2, w find from (4.5.3)
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t t
o)) L— = ol (¥ (5xee
t(61) () 3-1 k=i
t
_ 1 z (55 ) (52)36+D)
(g s (O
t
R T ¢S A W O N B |
hence
t
(h.5.16) oD < 2 3 a§r>(§)j+2 (1<t <n2;0<r) .
(1) d=1

Now, from (4.5.4) we easily deduce

t

(4.5.17) o) = (w2)(ns-1) T (51" 8P

=1 /
SO
t t . . . .
(r),ty 1 Jy (3+2)(n-j-1) , .yJ-k < (r)
R SHE SRR i
t t-k .
S ACANPIN G G EED
k=1 j=0 Y

£ t-k
- T sl >[ Z (n-k-1)( T (1)
j =0

t-k

SRNC ) (VT (! 1
J:

= o) (Netel) + ¢ 5f2)
provided 1 <t .
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rrom (L.5.4) we casily see

(7 5 (T)
5.1 < ¢

so ror 2 <t <n-¢ we find from (4.5.16):

(4.5.18) ol < B2 5P (1<t <n2)
(441

(the latter formula easily being checked for validity when t =1 ).

*From (4.5.2) and (k.5.4) we find

S N
50 {‘ en LI Lil
j=1 5(1’1-15 (jf_ ) (J+2) (H-J—l)
a1 L | e OGO
3(n-1) n(n-1) ( nt-2 y | 5= ( n:_jz : .
t
2 1 1 -2= 1 )
- 5(n{-11) n(n-1) (n-Q) [ ?O (2_2_{1)(31 ) - (nt )
£ =
2n 1 <tn)
= X(n-1) a1 | w7y 1
(")
and hence

0 2 L L
(4.5.19) 61(; ) = B(nr.l]_) ((n-t)(n-t-l) i n(n—ﬂ) )

Using (4.5.18) in (4.5.%) we get, when 1 <t < n-4:
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t
O L T (O J ()
K i=1 (4 7 (5+2) (n-3-1)
[~ t t
: : ’ t .
- g n 5 . .( B ) . -z _ (!J )
150 (0= (=) (n-]-1( g41) ] =0 (555)(n=3-1)n(n-1)

. [ 5 () I

< 3 =z

31000 (R (nedel) (neg2) (neg-3) | 2D [ (Bt (nst)

e J+l
2 1 e (IO 1 1

= 5 (R a0 (12) (n-3) (oo T T (ko) (net

=0 n(

-2
(") 1 1
n( n-1) (n-2) (n-3) ( n;h) 3(n-1) (n-t-1) (n-t)

_ 2 1 1

- 3(n-1) [(n-—t-B) (n-t-2) =~ (n-t-1) (n-t)_]
Hence we find

(4.5.20) 51(:1) < %F‘O)

VW will use this as a starting point in an inductive proof of (4.5.6).
(4.5.20) shows (4.5.6) to be true for r =1 . Suppose it is true for
r =x . Then, from(4.5.4) and (4.5.18) we find

65



t
b (j+2) (%)
o < D A () 83 mmyter
J =l ( -L_\."IJ_)
x t . /\ (O)
< % Zz ‘th%%' (n-1) j+2) (n=-j-1) J

x x+l
ANGANONS ( 2)7 8
<(2)GP-(2) =
as in the proof of (4.5.20). This is (4.5.6) and hence Proposition 4.5.1

IS proven.
V¢ proceed to prove Proposition 4.5.2.
Inserting (4.5.12) in (%.5.10), using (%.5.9):

o a
Py = 2(n-1) + rz—}l €y T[r*2) (n-r-1)

€ 55 ( i) 2 +2
"D LY, (FOE-D 3 ()
= 1
a T s t ( a) 1 5
r ©T = Iz F— (1 )s(s*l)
" 221 520 150 w-o (FPOFL (2

e

(4+2) (n=t-1) (-1) "N ey

From (4.5.10) we see

€

1
P = - =
0 2(n-1) (n-l)2
and fromthe proof of (4.5.19) we have:
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rz_)l (r+2\(1;1-r-l) () 7 (=2 n = 0 ( 1 i 1 )
- () (n-a)(n-a-1) ~ n(n-1)
r+1
S0 we obtain:
(4.5.21) _ 2 1 — L T
e Pa = 3 | (n-a)(n-a-1) n(n-1) / + (n_l)e + Ta

wher e Ta is the last sumin the previous fornula for Py As Ta. =0
when a = 0 (sum being enpty), we see that (4.5.21) is valid for a =10
al so.

To eval uate Ta we shall consider the suns

S DT (5)(s(sr0)) (842) (nm-1) (D) P
r TS, (S e (8+2) (n-8-1) (-1) " ()
so that
LR (3
T =
a r=1 u=0 r(r+l) (r+2)n( r;;i) Py My, r
Now :

D (842 (52) (1) 7 58
=u

D (62) (net-) (27 ()P
t =u

= ()

u

sy 5 s-u t
= () T ((n-u-1)(wr2) + t(n-2u-k) -t(t-1))( ¢ )(-1)
t=0
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T ()t - (meeub(sew) 2 (5N (bl
t =0

t =0

- () [ (n-u-1) (w2)

- (s-U)(s-u-1) :i( S;‘.‘;Ex-l)""“]

-
(n-u-1) (u+2) if s=u

= ( -(n-2u-b)(urd) if s = ul

-(ur2) (utl) if s = we

and hence

a
+ Z T 1 [o]
r=2 r(r+l)(x+2)n( 2;1) u=0

a Mu,r

= % o r r(r+l) (n-r-1) (r+2)

a
= . L 1) (r+2) (r+1 )
+ Z e o) (me2)m l;:i ) ((r+1) (z+2) (r+1) (x)

a
- |
+ 55 ( r) ) [ rZZ pu[u(u+l)(n-u-l)(u*2)
=1 r(r+l)(1~i-2)n(r+l) u=0

- (wl) (w2) (n-2u-4) (uwl) - (w2) (u+3) (u+2)(u+l)]].
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r=1 (r:-ll) r=1 IHL]_)(n-r-l)
a-1 a ( i)
- 2 o (wl)(w2)(m2) T )
u=o “ r=utl r(r+l)(r+2)(r+l)n
Inserting this in (4.5.21) yields
o g( 1 1 ) 1 R 1
a 3\ (n-a-1) n-a) - n(n-1/+ (n—l)e + Pa ( aril-l) - n(n-l)2
a a
a-1 () a- | ( ) (r+2
+ Tetr B,
r=0 © (.7 ) r=0 (o (N-7-2)
a-1 a (2
-z pu(u+l) (u+2) %l 2 z )
u=o0 r =utl r(Hl) (I‘FE)( I‘+l)
and we easily see that we have proven Proposition 4.5.2.
4.6 Proof of Proposition 4.1.1.
From (4.5.6) we find
- 4 (0) 5_ . (0)
0 < Z 8y <5y 1 <t <n-4 .
r:l
So, bringing in (4.5.19) together with (4.5.5) we find
2n 1 1
- Py = — — — _ € (1_<t <_.n'4)
t 3(n-1) (n-t)(n-t-1) 3(n-l)2 + &

wher e
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2n 1 1 2
0 < €t < 3(n-1) \ (n-t) (n-t-1) ~ n(n-1) ) (n-5)

S0, as pt_nnt21 we find

(n) _ 2 _,_ 1 @ 1,
51 3t(t+1l)  3n(n-1) n

M A<t <n-2, 0<M <M
where M is some uniform positive constant (at least less than 26 ).
This proves the first statement of Proposition 4.1.1, as the
fornula for t = n-2 is trivial.
(4.5.6) is not valid for t = n-3 ort =n-2, so w have to treat

these two cases separately.

W introduce the notations:

) % ()
(4.6.1) 8¢ = t?lst (0<r) 1<t<n-2

and shall concentrate on S(r) first.

n-2
& have
2t (4
(r) - n-z s (r) J
2 T, P E % FReeD
n-2 (5.7)
_ (r) g+l
= 0% BT
(r) %° ), ntl
(4.6.2) s :ijl (JIT (T8 =Ty
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W find from (k.5.3)

) ]
s = Ga) $ o) (i) (312 + (er1) (2 (12
i =1 (o) ng(3+1)(

1]

TI[E T dhes T o]
=1 j=k 2 i=x £ 4

k

(r)
n-2 «
ey o e B[ v g ]

Inserting (4.5.2) in (4.6.3) we find

(1) 2 4 k+2 1 -2
Sp-2 }El n 5(n1-11) [(1&2) ( k )+ (k+3) (£+1)]
k+l

2 nie (kt1) (n-k-1) _ (&+2) (n-k-1) (n-k-2)
3(n-1 kol n(n-1) (k+3)n(n-1)

and eventual ly

@ _2@nmafi f, 17 4 (e
(h6.4) 570 = 3 §7_)_()_ln_ln 2 a1t a1 " 9n(ma

Simlarly, as

(1) 1 L J I \ara 2n k+2
SN Z 2D ()
t t(t+1) ( tfl) j=1 k=1 k J 5(n-1) (k+l)
+ (B k- ) o2
. 5(n-1)t(t+1)(tfl) j =1 ( ~0 n ‘o
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4n (n+1) (m+2) &

_ 3(5+1) 2 (0
S(=1) g () (

1 @3 (@-3+2) ~ 3t

Doy
1 J =

we find from (4.6.3)

-2
(2) (1) (m2) [ & 1 ,n-2 1, n-p 1
s() - M) | (L (m2) 4 (3D
n-2 3(n-1)n £o1 t+2 t t+3 N t+l £(t+1) (

ge1)
5 5(5+1) 2 ()
j=1 (n-3) (n-j+1) (n-j+1) 3n "ne2
_kmn(e) [ 5 5 3(+1)
T T s@fn \t21 jo1 (gD (-3

,((n-t—l) N (n-t-1) (n-t-2) ) _Q_S(]_)
£t (t+2) t(t+1) (3+3) " 3n n-~2

After tedious conputations we find

2) _ 17 1 8 55 2 16 88
(4.6.5) sr(l_% = - gy n(o1)2 (' 5? R T €:5) BT ) )

H
n 2 2 L o 2 1€
+n(n~l)2(5n +3n+3+9n+ ﬁ9n+5 m)

Ve shall, however use approximtions and wite

» v _ 1 2 5w Hy
(4.6.6) Sn_2 = 3-3 —IT+_+O -a
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(2
and Sr\l) we will use

In order to find approximations for(Js\ 5

n 2
the followng formla

(1.6.8) 8T 5() - oy 5(x) , 2nd (o)

From (4.5.4) we have

n-2
) %2 @ () w2y na 1
B2 j§l o FEterD - jzzl %5 ) FaED

and simlar to the proof of (L4.6.3) we find

-2
(r+1) 1 R (r) k (n-1) + 1 (n-2) + k1 (n-1) +_ 1 (n-2
6n-2 = n(n-1) j§1 O‘j k+2  ktl k+2 k kt3  kt+2 k+3 k+l)

Now

-1 1 n 1 1 2n-1 1 1 -2 1 n-2
(") mED - o (we) i E(ﬁ( x )t 3 (k+l))

1 Kk n-| 1 n-2 k+l ,n-1 1 n-2
n(n-1) [-k+2 (1) * 52 Ck )+k+_5(k+2)+ﬁ3(k+1)]

_ n-l) 1 1 n 4 2n-1_ n-k-1 k(n-k-1) (n-k-1)
= () ey | oD B DED t D (D) - (&DnE-D) EYREY:

+ n-2, 1 2n-1 n-| kt+l 1
(1) %35 | (oD - (@2) a(m-D) ~ a(e-D) 1

-1, 1 -k~1) (n-k-2 -2 1
(nk ) ¥ (r;l(n-l))((nkﬂ)) B (rk11+l) n(kt+2)

il
O

So, according-to (%.6.2),(4.6.3) and the two formulae above for Bl(ll_%

and 81(121) we have (4.6.8).

>



From (4.5.19) we have

1 2
0) = Tato - .2 1 <t n-2
at() 3(—%_1% (n-t-1) (n-ty 5(n:l) <t <
S0
(4.6.9) (—5)
0 B, 1\
and al so
H
(h.6.10) s© - 5 - ( n)
n-2 32403 \3
n
From (4.6.6) - (4.6.8) we then find
(1) _ «(0) n 40) , 2n-1 (1)
6n—2 B EP]—Z - n- n- n- | Sn—2
giving
4 H
(1) _ 1 _ “mn . 2k n
(k.6.11) 6n—2 3 n 9n 0 02
and simlarly
(2) (1) n (1), 2n-1 (2)
6n—2 - z3n—2 - F’ n-§ n- | Sh—2
giving
H H
(2.2 »_I1 2
(46 12) 61’1-2_ 5 —n—-%-l'o n2

From the above formulae (4.6.6), (4.6.7), (4.6.9) - (4.6.11) we easily

obtain
(o) _ 1_1
(4.6.13) Sn-3 = 3-3
H H
(1) - 2 n_2 _n
(4.6.14) Sn-3 = 3 % 9n+0 n2
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W al ready know 61(1(3% from (4.5.19)
(4.6.16) 50) 1, 1,4
U n-3 =~ 9 9 n°

and (4.6.15) inplies

H
(4.6.17) ar(f% - o(—g-)
(1)

To find Brg_l% we inspect S W use (4.6.1), (4.5.4) and the

formula for oz(l) establ i shed bel ow (4.6.4) above to obtain:

t
n-k (B-2) t
s(1) _ 4(ntl) (n+2)n » t+1 _ j(:j+l) .
n-h Sl Ty () (net-)a(er2) (B)) g -1 (R (il (mege)
-3
.2 Zn +(0) (2+1)
3n o _qt (t+2)(n t- 1)

So
(D) 2 0 | Mmlme) B & 3(3+1) (n-5-3) (n-t-2)

n-4 + 3n H-4 - 3n(n-1)(n 1 (n-3) (n-j+1) (n-j+2) t(t+1)(t+2)

=) 21 -

b (@) n_
= 3" n _@+00n2

Now, (4.6.13) and (4.6.14) give

H
() _2_10 _n
(4.6.18) Sach = 5 9n+0( )

n

V)

we find
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"
(4.6.19) s, = 28?2

= H

:

Srol (o=
B
——

Toget her with (4.6.14) we arrive at

H H
1 2 11 L (2 1 n
(4.6.20) aé_)s -z —nli - (7 + gﬂé )) =+ o(?)
From (4.5.1) and (4.5.5) we see
1 = £ + i s(r)
n-1 r=0 n-2
so that from (4.6.10), (4.6.6) and (4.6.7) we see
® H
(4.6.21) »slm) o 1L g0 ) @ ol 2
r=3 0= n-1 = "p-2 ” "n-2 7 Pp-2 = n
proving
H
1 (0) , &1 (2) _n
(k-6.22) Pn2 ~© (n-1)2 POt Rt h2t O 2

| eading to the value for (n)l stated in Proposition 4.1.1.
>

From (4.6.15) we see that

2 _ "
4 -(3)

and from (4.6.21) we see

R
" ™Ms
N

o
= o~
=
W ~—
I
o
/‘-—\
o

ol

()

so that

Dn_5

H
1
= m+ Sr(]og + 8r(11% + O(%)

jn]

2(n)

Referring to (4.6.16) and (4.6.20) we have then proven the value of 3.1
5

in Proposition k.1.1.
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(n)

5. Measures of Efficiency in Sy

5.1 General Formul ae for Basic Probahilities.

(&r) :

In order to obtain the neasures for S

A} (n) - the expected left path length
S n
1
s = s (n) - the expected nunber of key conparisons
51
R =R (n) - the expected right path Iength
S
1
RL' = RL (m) " the expected length of the last right subtree
51
¢ = (n) - the expected recursion depth
S
1

N\
(see Section 2.4) we need know edge of sone properties of the CLPP of s]‘_n :

n a-1
A:(Ln)(z,w) = o X nén% 2%°
a=2 b=1 "’
: . fn)
Formul a (3.4.1), together with the approxi mate val ues for ﬂ;’l proven
/N
in Chapter L4 could give us val ues of T];n) for general 1 <b<a<n.
However, it turns out that we may express all the quantities needed in
‘n)
ternms of T}in) 's, without know ng the 1% s in general .
asl b

To establish the neasures above we need fornul ae for

n-1-r
_ (n) -
(5.1.1) A, = b?jl n1+b+l,b 0 <r <n-2
1.2) - aZ.)l n») 2<a<n
(5' M p‘a - b=l a,b - —_

T



(5.1.3) T = (”t)) 1<b <n-|

Knowi ng t hat

(5.1.4) a1, = T o - >
1 ’ r=0 T Ta=2 Ha,
1 (n) 1 ni)E r
(5.1.5) Z Al (Z 3 _Z—) = 2 7\.r Z
> al™ (z,) n
(5.1.6) “———az——- = Z} a p,a
z=w=1 a=2

we see that we then will have the sufficient know edge to establish the

nmeasures needed (see Section 2.4).

W will use the notation
(5.1.7) By = (a1 + (-2 |

First we prove

n
_ 1 51{-21"'5 -2 - )
(5.1.8) A rs =T k=2 . B\ THo1— (Hk_l H l)

Using w=1/z in (3.4.1) we obtain

n a-1
) Z (n) a-b
a-2 b=1 Ta,b ®
1 3 % ab, p(n) (n) (n)
= i a:ZZI b%l Za (b T]S:b + (a'-b_l),na’-b,*_l + (n-a)na+l,-b+l)

1 2 a-1 1 z
= az—é Ba(z+H(() )(g E)) =1 -
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We have

(5.1.9) Héa-l)(z s }z:) = z :%20 (I:gi - E%)zr (2 < a)

Rearranging the general equation we find

n-2 n
. j _ (n) (n) -1 1 _(a-1) 1
j@o (J+1)sza(1-z) = 1-(n-1)n2,l+az=32 Ban (1-za *EHoa (z, E))

From this we see

n
. . 2 2 .
(J+2)>\‘j+l et (J+l)>\'3 = _Bj+2+ Z% ( Fé' - m )Ba (O S J S n-2)
8 = J+5
. . . 1 n-1 . .
when regarding the coefficients of z,2 ,...,z . Summing these equations

from j =r to j = n-2 eventually proves (5.1.8).

For the By 's we will find

k-r

n
1
(5.1-10) MI‘ = m [l'i'k:al Bk(Hk-r+Hk-l-Hr-l - 'I':T]-_' )] 2 <r<n.

Putting w =1 in (3.k.1) we have

P oL, 1 B ol o (n) (n)
aZ:>2 S a§2 z bélb na.,b + (a"b'l>na,b+1 + (n_a)na+l,b+l
1 n 1
+ D op (PP (5,1))
a=2
where
-1 r-1
(a"l) é r 1
H = Z
- © r=2 ’ s§1 (a-1-5) (a-s) * (r-1)r
) a-1
1 1 1
B régzr(;f-.a_-—l-‘-;) (2 < a)
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giving
n

a§2 (g (m+l-a) - uamul(n-&l))za 2

]
N
o)
+
M
™
Y
Om/\
o
1
l_l
p—
N
-
'_l
-

As for N above we obtain for 2 <

N

=
In

=}

n-1 n
1 1 1
(m-l_r)p‘r ST kzjr a.=2k+l 68‘< k- ! ' E)

leading to (5.1.10).

The Ty 's turn out to be

b ~ (n-l)(rr!-:-b)(n-b) =PZ

(5.1.11) T

as proven by isolating the terns in (3.k.1) having z to the power (n-l) :

n- n-1 n-1
b 1 b 1 n-1, . W
2 Y= T 2w (b’rb+ (n-l-b)'rb+l) oV (n-l)'rl T
b=1 b=1
yielding
2T, 4 = 1+ (n-l)'r:L
and
-rb(n+l-b) - (n-l-b)'rb+l =0 1<b<n2.
As 1, = T](n) - 1 is found earlier we easily see (5.1.11).
17 17 )2

W will also prove the useful relation

n
(5.1.12) ng‘i - 2.2 25 ‘ngl;_(ﬁ 1)

ntl " ol C a2~

This is seen from (5 .1.10) and the fact that

ho = (ni
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Ve find

1Bt = 14 2 (D + @01 H(2m, ,-2)

2
1+ k (kl)ﬂ(n)<2H 24 '1)+ E (nk+1)nkn)(2H -2

H

- (n
1+ 2nk25 ﬂk,l(Hk2 1)+2(1-n2,l)

fromwhich 5.1.12) follows easily.

5.2 The Expected Left Path Length.

The B_ 's defined in statenment (5.1.7) are approxi mated from

Proposition 4.1.1 by

H
2 (ntl) 1 1\.(n)
5t:3tt+l+5_n+o(n)5t 3<t<n .

Inserting (5.1.10) in (5.1.4) gives

(n) 2 1 n e N
(5:22) 47 (L1 = T n+l-a<l+ z ﬁk(tZ:)a Tl %R

where, according to (5.2.1)
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¥
¥
e
F
r

z
1
[}
VY
W[
.‘34E
+
3] -
\\——/
O |
+
=
O
N

~
\
L

n-1 n k-1
) 5 (l ;__1_) 1
N‘[Z = R Gl

Straightforward calculations lead to

W

(5.2.3) N =

2|5
-

2,2 (@ _1
H o +sH -H -3+o(
and hence from (2.4.6)

*

(5.2.k4) L =

B Ismm

)

The expected length of the left path has increased from

2,5 (2) _ &
B, + gH -H -5+o(

n

NI+

2H -1
n

in the normal p-tree forest to the value given in (5.2.4).

5.3 The Average Nunber of Key Conparisons.

The formula for the expected nunber of key conparisons in the

stationary p-tree forest is found from (2.4.10), (5.1.6) and (5.1.1) to be
* 1 n
(5.3.1) S =l+77 Joap +t T

where S (%) Is the corresponding value for the normal p-tree forest,
F
0

defined in (2.4.13).

To establish a fornula for

Wwe see
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o ml
wher e
(5.3.2) K = —ni—l[rég(l+k=%+l Bk(Hk_r“LHk-l'le'%))J
= E‘Bk(kg) Moyt 3
Def i ni ng
(5.3.3) v = éiﬁ% s £ M

we have from (5.3.1) and (2.k4.6)
*
(5.3.4) S* = 1 - K+ U

To evaluate U we use (5.1.8) and (2.4.13):

n

1 3k-2r-5 1,2 2
L2 - § k-1 'Q(Hk-l'Hﬂl))(E(Hﬁl x(+i)+—'

k=14

The latter inner sum sinplifies nicely and we obtain eventually

n
_ 2 1 1 L
U =& >‘1+k§h mlﬁk(ka-l-Qk_5+R—-_l—)
= Py (km 1 b 3ke7
= 2 —_— - _
1 k-1 T BE-S g YR - 2(H ) -Hy))

from (5.1.8) with r =1 .
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Rearranging the terns yields

Py 1
= 2w (2 (e - 3 )

Referring to (5.3.2), we see that
n-L

(5.3.5) U=K-—=3

and hence, by insertion in (5.3.4)

(5.3.6) S =L -—=

. . * . . .
Using the approximate value of L fromthe previous section gives us

(%)
(2) 7T +
Hn-HrE)'S O?n

The expected nunber of key conparisons is hence slightly less than the

WI\N

s
(5.3.7) 5 =3 H

expected | eft path length, and has the sane dominating termas the

corresponding quantity of the normal p-tree forest, being

2 — -}. \ —
H + 9Hn10 sh (2 _ 57

W=

S =

Formula (5.3.6) is surprisingly sinple, indicating that there should be

an easier way to prove it than the one we have been using here.

5.4 The Expected Length of the Right Path.

From (2.4.14) and (5.1.11) we find the expected |ength of the right

path to be
- n-2 N
(5-4.1) Rz RFé k) oD (B (%) .
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In [2] is quoted the recursion formula for R (n) bei ng
F
0

n-2
1 1
(5.4.2) RF(()H) = 1+ }Eo RFék)( (kt1) (k+2) + n(n-1) )

From these two equations we find

% n-2

- 1 3 1 )
(5-4-2) tT RF(gn) " BT (RFén) g (n-1)° k§o RF(()k)

From (5.%.1) we find

(5.4.1) R, -R :—%(R(n)+l-R:)
FO

R (n) I's known to be a nondecreasing sequence of positive real nunbers,
F

- 0

. approaching the limt

® J
R, = U 2—2 =  1.6261...
j =0 ((3+1)1)

(5.4.3) and (5.4.4) show that the R: have the same properties as R (n)
F
0

5.5 The Expected Length of the Left Path of the Last R ght Subtree.

From (2.4.15) and (2.4.21) we find the expected length of the left

path of the last right subtree in the stationary p-tree forest to be:

n_
(5..1) R = %
k=1

()

v 1(2H -1)

Referring to (5.1.12) we find
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R* = 2 zil) n}ﬁ l(Hk-E- 1) +—ZB:, T](,)

(5.5.2) RL

*
:‘JH—J

(3-Tp,1)

Inserting the approximate value for T, ; in Proposition 4.1.1 we
J

find

H
* L n
(5.5.3) RL. = 1-3-+ O( 2)

5.6 The Expected Recursion Depth.

Inserting the values of the expected recursion depth in the nornal

p-tree forest:

5.6.1 C -2y 1 ( 2)
(5-6-1) () T3ty "2

= C
C(0) T T )

in (2.4.16), yiel ds

(5.6.2) ¢ o= 1+ ——(x +2N 4 Z (k+1))\.k(-§- Hoq %))

using (5.1.8) the latter sum becomes:
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n- 2
2 1
22 (kﬂ))‘K(? Hp * 5)

k =
n k-2

- Jk-2r-5 _ - 2 1

) kzzju Bk(r§2 ( k-1 Pl Hr”l)) ( 3 Tre1 §) )
n

- 6

= k§3 Bk(h H _;*tk-12 + =T )

Again using (5.1.8) for r = 0 and 1 we see

I 15 6 . 3k-5
¢ s =P }EB Bk(h Hygtk-l12+ g9+ 55 - 2H _,+2H
2k=7
+ T - 2Hk_l+ 2H2 )
and eventual ly
* 1 n
(5-6-5) C = 1+ ol k?g Bk(k—l)

Inserting the values from(5.2.1) we find:

H
Hy - %+ O(_nE)

Q
I
W
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