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ABSTRACT

Initial-boundary value problens for several systems of
partial differential equations from fluid dynamcs are discussed.
Both rigid wall and open boundary problens are treated. Boundary
conditions are formulated and shown to yield well-posed problens
for the Eulerian equations for gas dynamcs, the shallow water
equations, and linearized constant coefficient versions of the
i nconpressi bl e, anelastic equations. The "prinmtive" hydrostatic
met eor ol ogi cal equations are shown to be ill-posed with any
specification of local, pointwise boundary conditions. Analysis
of sinplified versions of this systemillustrates the mechani sm

responsible for ill-posedness.






THEORETI CAL  AND PRACTI CAL ASPECTS
OF SOME | NI TI AL- BOUNDARY VALUE PROBLEMS
IN FLU D DYNAM CS

by

e KK
Joseph Oliger* and Arne Sundstrom

0. Introduction

There is now considerable interest in initial-boundary val ue
problens for various systems of partial differential equations arising
in fluid dynamcs. This interest stems, primarily, fromefforts to
create useful conputational nodels of various processes for the purposes
of prediction (atnospheric processes, ocean circulation, etc.) '"and the
detail ed study of various phenomena (convection, flow in wind tunnels,
| ee waves, eddies, etc.). Such calculations are not new. As these
conput ati onal nodel s have become nmore accurate difficulties with the
boundary conditions have becone nore evident. This has led first to the
exam nation of the various discretizations used and then back to the
differential equations whose approximate solutions are sought.

Such a backward sequence of events may seem surprising. Naturally,
the initial-boundary value problens for the differential equations should
have been carefully examned first since we cannot expect our approximations
to be reasonable if they approximate a problem which does not have

reasonabl e solutions. The reason it has gone this way is clear.
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NOOO14-75-C-11%32 and the National Science Foundation under grant
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It is aatural to first examne the evidence where it appears and, as usual,
the conputations have been ahead of the analysis. The initial-boundary
val ue problens for these systens of differential equations are not easy
to analyze; and, in fact, adequate tools for a rather conplete analysis
have only recently become available stemming fromthe work of Kreiss [12,13]

The current interest has resulted in several works based on the
classical energy method (e.g., Elvius and Sundstrom[9], Davies [5,6],
de Rivas [ 71 and Dutton [&]), which follow the earlier work of Serrin
(171, Sundstrtm [19]) and Campbell [1]. However, this nethod only works
for a limted class_of equations and boundary conditions. Some authors
have, unfortunately, made unal |l owabl e assunptions (over-specification of
boundary conditions, omssion of terms, etc.) in futile attempss to make
their problems fit into this class. W wll discuss soma instances of
this in detail. This seenms to be a real hazard in the use of the energy
method since the effects of such assumptions are often well-buried in
internediate estimates and consequently overl ooked.

Ve begin with a general discussion of well-posedness followed by
a review of properties of the adiabatic, inviscid Eulsrian equations of
fluid dynamcs (system A). W then study two approxi mations of the
Eulerian equations: the hydrostatic "primtive equations" of meteorology
(system B1) and the incompressible, anel astic equations (system B2).
Finally, we discuss the shall owwater, or barotropic, equations (Systemc)
whi ch can be considered as a further sinplification of systemBl or B2.
It is interesting to consider these equations in this order so that the

effect of each successive approxination can be observed. The systens A



and C are symmetrizable, hyperbolic systens but systems Bl and B2 are
not hyperbolic. These facts have profound influence on the well-posedness

of initial boundary-value problens for these systens.

V¢ consider two types of boundary conditions which arise
naturally in many situations. Mst of our analysis wll deal wth
certain quarter-space problens but we will always have the follow ng
underlying situation. Let 52 c®¥ be an open, connected region wth
snmoot h boundary, 32, and & = auan. W will consider the system C
on the domain D, =0 X [0,T] and the systems A, Bl and B2 on the domain

1
D, =0 X1 X[QT] where | =[0,o) or | =[0,1]. The two types

2

of boundary conditions we consider on 32 are: (1) rigid wall boundaries
and (2) open boundaries. The rigid wall case corresponds to a physical
situation which requires the normal velocity to vanish at the boundary
and is the sinpler of the two types. This situation is often encountered
in oceanography. Open boundaries occur in limted area forecasting,

wind tunnel flow, and studies of small scale or l|ocal phenonena in

net eorol ogy and oceanography. Open boundaries do not arise from a

natural physical situation and a suitable form for the boundary con-

ditions is not obvious. Boundary conditions which do not introduce

boundary |ayer phenonena are usually wanted in this case. That is, these

. boundary conditions should determne the interior flow as though, in fact,

the boundaries were not there at all. In each case we give necessary

conditions for the form of the boundary conditions in order that the

probl ens be well-posed. W will also give particular boundary conditions
whi ch yield well-pgsed problems. \& show that systens A B2, and C can
be treated satisfactorily and that system BL is ill-posed for I|ocal,

poi ntwi se boundary conditions. For the linearized, constant coefficient
3




versions of systens Bl and B2, well-posed boundary conditions are
given. It seenms reasonable to conjecture that these boundary
conditions also yield a well-posed problemfor systemB2. However

t he correspondi ng boundary conditions for systemBl cannot be easily

i mpl enented for the general problem

As already nentioned, many of the presently used boundary con-
ditions specify nore data than is allowed. These specifications preclude
the existence of snooth solutions except in very special, unrealistic
situations where the exact solution is known on the boundary without error.
Errors nust, however, be expected in the boundary data arising fromerrors
in measurenent, the use of constant boundary values, or from conputations
over |arger regions™if sone telescoping grid technique is used. W
will discuss the inplications of such overspecifications

Most of our analysis deals with inviscid systems of equations

Viscous terns are added to these equations in many forecast integrations

They are often notivated physically as representing "eddy diffusion"
of monentum and potential tenperature. The effect of these terms on the
main part of the solution is usually small. The real notive for including
themis often non-physical. Since the equations are nonlinear,
“initiallongwave phenomena can produce shorter wave phenomena which cannot
be accurately represented by the approximation used. To prevent result-
ing aliasing errors and nonlinear instability the conputational nethod
should be provided with a dissipative filter term and the most primtive
formof filter is just such an "eddy diffusion" term

In both cases, the viscous coefficients are so small that we
shoul d expect the boundary conditions to be close to those valid for
the corresponding inviscid system  The viscous equations do, however

require additional boundary conditions, and, as an effect, viscous
I



boundary |ayers may occur at the boundaries. Such boundary layers may
sometimes be appropriate, as in the rigid wall situation. However,

at open boundaries, they are inappropriate. W shall therefore discuss
the fornmulation of boundary conditions when viscous ternms are included
and show how these conditions can be chosen so that no singular boundary

| ayers result as the cofficients of the viscous terns tend to zero.

1. VeIl -Posedness

Qur main goal is to establish the existence or non-existence of
certain a priori estimates, or energy inequalities, valid for the solutions
of the various initial-boundary value problenms under consideration here.

In this section we discuss the form of these estimates and some inplica-
tions that follow from them

For the purposes of this discussion let us wite our problens

in the general form

Iy = F in @ x1 x[o0,T] (the differential equation)

in @ X1 (the initial conditions)

u =Sg +g inadex | xX[0,T] (the boundary conditions)

where L is a partial differential operator; u, F and u, are vect or

, , , | : :
functions of dinension k, y = (gl,gH)t; u and g are of dinension ¢,
u™ is of dinensionsion k-g3 and Sis a real 2 X (k-2) matrix.

For a linear, first order hyperbolic equation in R L woul d take

the form

(1.2) L,=%‘+ i A (x,8) 50— + Blx,t).
au J:l J axj
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The boundary conditions express the components EI of u in terms

of the components g” of u and the given function g. The matrix S
can be thought of as a generalized reflection operator. Changes of
variable may be necessary to bring certain desired boundary conditions
into the form given here but this does not introduce any essential

I t

restriction. The partitioning u = (a, II‘I,I) I's based upon the

characteristic variables,or R emann invariants,of the problem that is, the

I

conponents of uw~ can be called "incomng" quantities and those of

wIT can be called "out going" quantities. This partitioning of u
will be discussed in detail for the problens we consider.

The estimates~we seek are of the form
(1‘5) (”E“QX X [O,T] * 6”2”89){ X [O,T] + ”E(T)“Q)

KT
S € (”E ”QX X [O,T] + “%”aﬂx IX [O,T] + ”u~O”QX I)

where the norns are L norms or Wei ghted 1° norns over the regions indicated
by their subscripts, K 0 is a constant independent of T, and 8 = 0

or 1. W willrefer to (1.3) with & = 0 as the weak formof (1.3). The
d:fferences in the properties of solutions y which satisfy only the

weak form (1.3) fromthose which satisfy (1.3) with 8 -- 1 are discussed

by Kreiss [13]. W will not bel abor the distinction here and be satisfied

with the



Definition 1.1. We will say that the problem(1.1) is well-posed if

the estimate (1.3) holds for all solutions y of (1.1) with E, u,
2

and g in L°

Uni queness and stability with respect to perturbations in the
data follow fromthe estimate (1.3). W refer to the works of Kreiss [12,
13], Majda and Osher [14] and Strikwerda [18] for detailed discussions
of the particul ar weighted 1° norns and the general theory for systens
of hyperbolic and inconpletely parabolic equations.

The equations we are considering are all quasi-Ilinear.
However, we can obtain our a priori estimtes a posteriori over intervals
[0,T] when-a snooth solution exists, i.e., we can consider coefficients
A (a(x,t),x,t) as functions of x,t if u(x,t) is known. Furthernore,
i?erations based upon the linearized variational form of the problens
can be used to establish existence for those t-intervals where the
iterations converge. W will not pursue this here, but rather assume
the existence of snooth solutions over the interval of consideration.
W nust prescribe boundary conditions that do not preclude the
exi stence of such smooth solutions. This is the case if too many
conditions are specified. Too few conditions preclude uniqueness, of
cour se.

The results by Kreiss [12] and Strikwerda [18] al so show t hat
the systems (A) and (C) are stable to perturbations by |ower order terns.
This inplies that we need not consider the effects of terns such as

undifferentiated frictional terms and coriolis forces in our analysis.



It is essentially due to this fact that the analysis of variable coefficient
probl ens can be reduced to that of corresponding constant coefficient
problenms via the construction of appropriate pseudo-differential operators
(Kreiss [ 12], Taylor [20], Majda and Gsher [14],Strikwerda [18]). This
stability property also allows us to redice problems on our general

domain @ with snooth boundaries to famlies of quarter-plane problens

by making |ocal changes of coordinates such that, e.g., 3% is nmapped

into x, = 0 and @ into x, > 0. Such nappings only introduce new

1 1
terms which are of |ower order. Mre detail about this process can be
found in Mjda and Gsher [14] and Strikwerda [18].

Existing theoretical results cover problems with a smooth non-
characteristic boundary for classes of equations which include A and
C and their nodifications resulting fromthe inclusion of the usual eddy
'viscosity ternms (Kreiss {12], Majda and Csher [14], Strikwerda [161]).
Extensions to problems in regions with corners and uniformy characteristic
boundaries have been studied by Myjda and Gsher [1k]. However, the
i mportant case where the velocities change sign on the boundary and do
not vani sh in a neighborhood of such a boundary point is not covered by
existing theory. This often occurs in the applications we consider,
e.g., the solid-wall type of boundary conditions,and when the flow direc-
tion reverses to change an inflow or outflow section of the boundary
to an outflow or inflow section, respectively. There nust be character-
istic points on any smooth boundary of a sinple connected region with

open boundaries which has both inflow and outflow sections of the boundary.



W cannot treat the influence of such points on 3¢ here but conjecture
that no inportant modifications are usually necessary for problens |ike
those we treat here.

W will use both the classical energy nethod and Kreiss' nornal
mode analysis to establish the well-posedness of these problenms. The
solid-wall boundary problems are all treated using the energy nethod
which provides us with estimates of the form(1.3) directly. Sone

boundary conditions for the open boundary problems can be treated in

this way, but, in general, we nust use normal node analysis for these

probl ens.

2. The Eulerian Questions (System A).

The basic hydrodynam ¢ and thernmodyanm ¢ |aws governing the
motion of an adiabatic and inviscid fluid are given by the Eulerian

equati ons
4+ ovp + F =0
dt~ ~

W.

bis]
]
o

(2.1) at & -

d
- Veu =
ac P + prveuy = 0O

where u is the three-dinensional velocity vector, u = (ul,QQ,uﬁ)t‘
o is the specific volume, and p the pressure of the fluid; v = (::p/cv
is the lapse rate of the fluid, F represents zero-order and forcing

terns, e.g., coriolis and gravity forces, and



3
—d—'—E,g--*- u'Vs‘i+ 2 ou, 2
at ~ Jt ot g1 9 axa.
In vector notation, the equations are
d
@.5) St 51’* (9 5, 4" &l =0

t
wher e % = (ul’uE,HB’a,p) ’ and

1
o w 0 0 O U 0 0 «

A, 7 o 0 wu 0 O ) A, = 0 w, 0 O
- 0 0 u 0 a 0 U, 0
pr 0 O O uy pr 0 O U,
Uy 0 0 0 O
0 ug 0 0 O

A3= 0 0 Uy 0 a
0 0 - u5 0
0 0 P 0 115

The matrices A.J all have real eigenval ues Ugy W U UJ + ¢, and

us=Cs with distinct eigenvectors, ¢ = (proc)l/g is the sound
speed of the fluid. The matrices are not symmetric but it is easy to

find a symretric, positive definite matrix

10



0 1 © 0 0
- ] -
R=ocl O 0 1 0 0 —TlTl
0 0 0 a‘pr/a a®
\
2 2
0o 0 o0 a (1+a”) g%

where a° is an arbitrary real, non-zero paraneter such that the trans-
formed matrices T—lAJ.T are all symetric. The systemA is thus a
quasi -l inear system of hyperbolic partial differential equations, see
e.g., Courant and Hilbert [4 ]. Since no closed-form expression for

the solution to this systemis known, a rigorous evaluation of the
effects of different approximations, inhonogeneous terms,and boundary
conditions is, in general, inpossible. For the problems we are con-
sidering the solutions are usually continuous and smooth. The natrices
A; and R are then also smooth. As long as the deviations g' (x,t)
from the exact solution g(x,t) are small, they should then approximately

satisfy the linearized variational equations

11



Bul aul Bul 3p .
Bxl 8}(2 BXB axl
Z)uz Buz 5112 3 .
Bxl 5x2 BXB sz
T
axl ax2 Bx5 BX5
. % a2 .
axl sz ax5 jzlaﬁ.
2 du,
N e g};r_ 0 I
axl 3 bxz 3 j=1 Xj'

and the term F'  can represent other loworder terms. This systemis

a linear hyperbolic systemin g’, and the well-posedness can be studied
by either the classical energy nethod or by Kreiss' nornmal node anal ysis.
In the energy nmethod, the basic idea is to show that a suitable norm for

q' satisfies a growh equation of the form

~

“(2.5) o < kg I+ IF |

. . ¥ 1/2
where |[.|| is an inner-product norm |[g'| = ([p~q' Mg d.xldxedXB)
equivalent to the Euclidean 12 -norm (IQ lq'l2 d.xldxngB)l/g. V¢ can

show the wel | -posedness of the pure initial-value or Cauchy problem

in the IP-norm for the Eulerian equations by choosing Mas the matrix

R given above. From



3 - 3
=- g}%— (q'"RA.q") + g {g% + ¥ RA,-RC-C'R} q'-q' RF'-F' Rg'
T B =1 Sl
we get
9 | 4t Ryt
(2.7) atj% Rq' dx; dx, dx,
= Jig* (R« 3 (RA,)-RC-C R 'q' RF'-F Rq'
= g (3t gy j/~RC-C R} d&a F*-F Rq ] dxy dx, dx

and since R RAJ’ etc., are bounded, slowy varying natrices, we can
easily establish a growth equation of type (2.5).

This inequality and energy normis essentially equivalent to that
used by Serrin [L7] in his uniqueness proof for conpressible fluids.
He wanted the estimates to be valid for large deviations g', which
conplicated the structure of the proof. However, at one step in his
calculations, (eq. 25), he had to make an assunption which essentially

nmeant that the deVi at | ons nust be Srml | . Furt her nor e, | n the ana| ys| S Of the

linmted-area case, an over-specified set of boundary conditions was

‘used on the inflow portion of the boundary, thereby invalidating this
part of the proof. The conputational effects of such an overspecification
w |l be discussed later.

For the initial-boundary value problem we can use the growth

equation (2.6) as before if and only if the boundary integral provides a

non-negative contribution, i.e., if

13




(2.8) q' RA q''ds > 0

s~ O~
where A, = Z§=l Ajgt-gj, N is the unit vector in the outward nornal

direction, and & is the unit vector in the x,-direction. Note that if

the boundary conditions are such that this inequality is satisfied, then
wel | - posedness is proved, otherwise no conclusions can be made.
The integrand q'*RAnq' is a quadratic formin the five variables

~

ui,ué,ué, a', and p'. However, the nunber of boundary conditions is
only equal to the number of inward characteristics, that is, the number

of negative eigenval ues of A, See Kreiss [12]. These boundary conditions

nust be such that the related conbinations of g' (the Riemann invariants)
are given in terns of known quantities and conbinations corresponding to
outward characteristics.

The initial-boundary value problenms for the Eulerian equations
arise fromtw different situations which nust be studied separately:

1. A solid-wall boundary. Here, the physical boundary condition is

that the normal velocity v = Z?zl ujrj’-gj shoul d vanish at the
boundary.  This condition is consistent with the number of inward
characteristics (one). Since it also gives &'*RAnq' = 0 identically,
the well-posedness of the initial-boundary value problem follows
directly.

2. An "open boundary,” or a boundary located in the interior of a body

of fluid. In this case the normal velocity is non-zero on the

boundary, except at certain points. For supersonic fluids, all

quantities u Uz Qs and p should be specified at inflow

1’ Y
poi nts, giving q'*RAnq' = 0. At outflow points, no boundary

1L



condi tions should be prescribed and q'*RAnq' is always > 0.

For subsonic fluids, A has four negative eigenvalues wth distinct

ei genvectors at inflow points so that four quantities have to be
specified. At outflow points, the nunber of negative eigenval ues
and quantities to be prescribed is only one. |n both cases no

obvi ous physical boundary conditions are known. The characteristic

conmbi nations of q' my be found fromthe eigenvectors of

~

It is easier to proceed as follows.

The quadratic form

2 2 2

- 2
- uo l{u' +u's+u'_ta og'zpr/oﬁ- (]—+3~2)P'206/PY+232(1'P' }+ 2ux'l'p'

n n 11 12

(u_l_1 and u, are the velocity conponents in two orthogonal

directions) can be rearranged as

/2

2

B 2%l (pr/a)?t 1/2]2

=uo ?‘uﬁ+ u' + p' (o/pr)

}

+ % (c + un) o[l(ur'l + p’(oz/mr)l/g)2

As before, ¢ = (pm)l/2 is the basic sound speed.

At an inflow (u t 9f 0)2 bouhdery characteristic

conbi nations corresponding to negative eigenval ues of An are thus

1/2 )1/2 1/2

u_;_l, uJ'_Q: ur'l - p' (a/pr) , and a’ (pfr/q + p! (oc/pY)

o i's the "potential tenperature’ ¢ = (p>"*/"/r )op!". The tour boundary

condi tions should give relations of the form

15

tangenti al

- % (c-u,) a'l(u'n-p' (a/pr)

= ¢6'/8, where

1/2)2



u'. = a (uI'1 + p' (oc/pY)l/g) s

11 1
uig = ae(u.;1 + p'(Ot/PY)l/e) s
0= pt /o) = e+ pt (/o))
MRS C% SR MU N7 ORP
a’ (W/a)l/e +p' (oc/p\r)l/2 = zauu(ur'l + p'(a/pr)l/g)

for deviations from the basic solution.

Before studying specific exanples of boundary conditions giving
relations of this type, it should be noted that not all such conditions
give well-posed problems. Wth the classical energy nethod, we can

actually only prove well-posedness when

2 22 2 1
+ + + = - < =
n(al a a ah) (c un) 3 5 (c + un)
since only then is q'*RAnq' > 0 at these inflow points. In this expres-

sion &% Is the arbitrary, real and positive parameter of the matrix R
If we want to investigate the well-posedness for other values of
81, 855 8z, 3), W have to use the normal mode analysis of Kreiss,
see Aiger and Sundstrém [15].

The classical energy method certainly works if the boundary
conditions are such that a, =a, = a

1 2 3
relations by prescribing (at inflow points) the two tangential velocity

=8 = 0. W can obtain these

conponents, the potential tenperature 6, and the conbination
u - % (proz)l/z.
The inequality is not satisfied if we have a; T a, =y = 0

and as =+ 1, that is, if we try to give the tangential velocity

16



components, the potential tenperature, and either the normal velocity

or the pressure at these inflow points. A third possibility for which
the energy method does not work is a) = a, = 0, g = -1, and 8, = 1,

that is, if we give all three velocity conponents and the specific

volume a. As shown in Oiger and Sundstrom [15] using the nornal

node analysis technique, this last conbination actually gives a well-posed
probl em

At the outflow (u t of to),boandatyy one quantity

should be prescribed. It should give a relation of the form

wt - 3" (afor) M2

1/2 ) /2 1/2 )

= b.u'. + but + bs(u;l+p’(a/pr) +b,+(05'('pr/a)l +p'(Oé/PY)

1 2 12
for the linearized variational equations. It is sinplest
to prescribe the normal velocity so that by = Db, = b = 0, b3 = -1
The wel|-posedness of this boundary condition follows inmediately from
P *, . .
the positivity of q' RA q'. V& may instead prescribe the pressure p,
corresponding to b, = b2 = = 0, b3 =1, or actually any conbination

of u, and p such that (ur'l—p' (oc/pr)l/g)g (c—un ) < (uh+pt (a/r ) 1/2 )2 CHI

17



3. Basic Approximate Fornms of the Euleriax Equations (Systems Bl and B2)

Al though the Eulerian equations are the fundamental system of
equations for nost fluid flow problens, they are often used in nodified
approximate forms. In fact, they have alnost never been used in the
conplete formgiven in the last section for geophysical calculations
The reason for this is sinply a matter of economcs and time, which
are not unrelated. To conpute an accurate approximate solution of the
Eulerian equations for a relatively small problemrequires quite a |ot
of conputer tinme. These equations are an extrenely "stiff" system of
hyperbolic equations with a wide range of eigenfrequeneies and character-
istic phase velocities. The ratios between the largest and smallest
ei genval ues of the coefficient matrices A.J in (2.3) are often as
| arge as 10° or 10u‘ The high-frequency eigensolutions (sound-waves)
are often absent in the initial data and the solution,but their presence
in the set of eigensolutions inposes a severe upper limt for the time-
step in explicit nunerical integration procedures. Inplicit techniques
that do not suffer fromthis difficulty lead to data structures which
are difficult to manage and systens of nonlinear equations that are
expensive to solve

A second special aspect of nany geophysical problems is the
strong bal ance between the gravitational and vertical pressure gradient
forces which is responsible for the basic stratification of the
at nosphere and oceans. The vertical acceleration terns are usually nmuch

| ess than 10'LL tines either of these terms. FEven if we first subtract

18



the tine-independent part of the pressure field, we nust still know
the specific volume and pressure extremely accurately in order to conpute
the time derivative of the vertical velocity With even noderate accuracy.
Simlar, but less extreme, balances exist in the other equations. In
the two remaining equations of notion there is a near balance between
the horizontal pressure gradient and coriolis ternms, and in the continuity
equation there is a near balance of the components of divergence. These
relations are often sumarized in the statenment that the atmosphere is,
to a large extent, not only quasi-hydrostatic but also quasi-geostrophic
and quasi - nondi ver gent.

To obtain a reasonable conputational problem we nust either
(1) find a nore efficient nunmerical integration procedure, or (o)
nmodify the equations in such a way that the high-frequency solutions
are elimnated. The first alternative leads to integration nethods of
inplicit type. The nonlinearity of the resulting inplicit system and
the difficulty of incorporating the near balance of the equations have
not been successfully dealt with so far. A strict version of the second
alternative is actually even nore difficult to construct, if we try to
elimnate only the solution of sound-wave type and obtain a system which is
still hyperbolic. The main difficulty stems fromthe fact that the eigen-
vectors corresponding to the large eigenvalues are different for the
di fferent Aj's. The nonlinearity of the system and the effects of
vari abl e coefficients are further complications.

Various approximte versions of the Eulerian equations have

been derived by intuition, scale analysis, energy conservation

19



consi derations, and experience. The near balance of the equations sinplifies
this approach considerably. W shall study two such approximte sets of
equations: the hydrostatic equations and the inconpressible anelastic system

of equations. Unfortunately,in both cases,the hyperbolic character of

the systemis |ost.

The hydrostatic systemis derived fromthe Eulerian equations

by neglecting the vertical acceleration terms in the third equation of
nmotion. One so obtains the "hydrostatic equation”

(5.1) aBrg=0.

Here, and from now on,A we use the notation z for x5 as a distinguished
vertical coordinate and w for u5 as the vertical velocity. This
approximation is extremely accurate for the large-scale motion of the
atmosphere.  The wide-spread use of the hydrostatic approximation
actually led neteorologists to calling the resulting system "the
primtive equations of nmotion." This was notivated bya conparison

with the still nore approximte "quasi-geostrophic" system but the term
"primtive" is certainly nisleading.

The use of the hydrostatic approxi mation has several inportant
consequences. First, we no longer have a prognostic equation for the
vertical velocity. Second, to maintain the hydrostatic equilibrium,
the tine-changes of o and p nust be coordinated in such a way that
a (p/3z) is constant. This neans that the pressure at any point in

the nodel atmosphere can be determned from the pressure at ?ny reference

|l evel and the mass of the separating |ayer, the integral f o[ldz.
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Wth this approximtion, we obtain the hydrostatic system

system Bl,
(—- + gVu’H + aVHp hEH: 0
o %5*‘8 =0
(3.2)
(£ + gV - vy = 0
(§E+u7)p+p‘f‘7u =0
where .= ( l,u )t, = (ggow)”, By (F sFy )®, and Yy (a/ax a/ax2>t

This is a nuch nore conplicated systemthan it may seem at first glance.
The equations (3.2) are not a hyperbolic system To show this we form

the variational equations
a . ] 1 T, 1 | J—
(¥+EV)EH+QNHP +EVE’H+GHP+F~‘H_O

(3.3) ’

(—— +ur V - Q(V-E' + E"Va - a'V'E =0

(___ + uV) 't + PYV'E' + E"VP + p'YV’l_l, =0.

The corresponding constant coefficient problem has periodic eigensolutions

| - A, .
uj = Uy exp(i(vt + WX+ OX, + waz)], etc., for large @ and o,

if and only if
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(3.4) det D~ 0

wher e
i; 0 g% Uy
. 0 iV =y,
-aiwl (g + ceiw5 ) -aiw2 (g+ c?'iw5 ) 8, * Czofl%
pYakl+ apxl pTQ&2+ Opxg PYaZ+'aPz

-052 (1+y)iw Vey

a .z
2 3vig+e
g g

3
2

~ 2 . . . . .
where Vv =v + 25 uw_ +w_ This deterninant is a cubic polynoma

J=1"373 3

~

the nodified ei genfrequency V.oIt s easy to see that the roots V;

j =1,2,3, of (3.4) have the asynptotic behavior

@(l)

<
|
11

and

<
i

- ) te\ & ) s i =23,
J w w J 2
3 5

as & - *®, Thus, the system admts solutions with arbitrarily

| arge signal speeds and is not hyperbolic. W cannot use the genera

)

met hods and results for hyperbolic systems to find a well-posed set of

boundary conditions.

iw, )

3

in

Davies [5] tried to avoid this unfortunate effect of the hydro-

static approximation using a direct energy method approach simlar to

the one used in Section 2 for the Eulerian equations.

the terns coning from aw/dat changes (2.6) to

22
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+ g,'*(g (RKB) - RC - CR)g' - g'*Rg' - F'*Rg,‘

where gl = (ui,ué,o,oz',v')t and the nmatrices KS and C are obtai ned
by deleting the terms arising from w(dw/dz) in the original third
equation from the matrices A5 and C, respectively. Integrating

(3.5) over the region ¢ we obtain

S g2
St 1%

MO =~

(3.6)

»*

ot 1P+l e - £ 2 (o Raygy) + g2 (o pangp)

IN

* o~

(g ‘59') dx, dx,dz .

&l

1

Davies tried to find a set of boundary conditions such that the contri-
bution from the boundary integral is non-positive,proceeding in the sane
way as we did with the Eulerian system A. He first conjectured that the
nunber of boundary conditions could be chosen equal to the number which
are required for the Eulerian equations. However, this conjecture is
false. If this nunberofboundary conditions is used the solution cannot

be expected to satisfy the hydrostatic relation at the boundary. The
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problem is overspecified and the existence of continuous solutions is
precluded. There is a further problemwith this approach. The energy
method i s based upon norm equival ences and the norms of q' and o
are not equivalent. To obtain an adequate energy estinate, a bound for
t he tern1g}*(§%(RA ) - RE-—E*R)qLOf (3.5) in terms of g

3
instead of |[g'{l is necessary, but this is not possible. Consequently,

we cannot draw any conclusions about the well-posedness of these equations
fromthe reduced energy equation (3.6) for either the initial boundary
val ue problem or the Cauchy problem

Since the energy method does not work, we now turn to the norm

mode anal ysi s technique.

Normal node analysis of the general equations here is rather conplicated.

If the notion is essentially horizontal we may instead consider |inear-

i zation about an underlying basic state ¢(z), p(z) which satisfies
&ﬁz +9g=0 . Due to this sinplification, we cannot establish sufficient
conditions for well-posedness in our succeeding analysis. However, we
will at least be able to establish some necessary conditions and we can
al so expect the variational equations to reflect the main properties

of the system W use the notation o = a(z) + a', p + p(z) + p' and
wite-the horizontal velocities as w, =y + u) where y = (Vl’ve)t

is constant. If we neglect all of the nonlinear terms in primed quantities,

we obtain the approxinmate system

ol



o 2 .
atEH)rlevJa Wt oV * I =0

O‘gz -g=-0
a
(3.7) \ 5 \
g.t.'.al+ V._a_}z_ '-QV'E""O[W':O
J=1 J
5 2

W can then transform(3.7) to obtain the following

' equations in
u:'L, ué, and op',
Qs Zv < u' + v (op')+ F =0
3t YH lJBX Ry g P ~
>, § .
(g + K \ ax—_) L(o:p)+vH-1~1'H=0
J
wher e
- xy > [_pr_ _a a 9 -
L(otp')—-g-—-< = ozp) = (——(ap'))
g oz PYoc-g oz P 0 dz
and -1-2 a

0 =-g % In 8 is the'static stability'of the basic state.
Ve will always assume ¢ >0, i.e

of a stable stratification.

., We are only studying perturbations
The boundary condition at z =0 1is
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w' = 0 which inplies pra' + gp' = 0. As an upper boundary condition
we have p >0 as 2z - w.

witten as gaz— (op') = gop'/a so, for arbitrary q',

Qur condition at z = 0 can al so be

‘rw&'l|L(' 1) dz = _foo q' _a_<_§:__ .é.(— ID d
o & R 0 EN\p, = P 2

[29]

= f '
0]

27 _55; (&P‘ )z + (é;c a'op’ )z=O

2

o
g0

Q/

which shows that the operator L is self-adjoint and hal f-bounded.

Therefore, the system (3.8) is separable. |f we expand the variables

u g, and ap' in the eigenfunctions Fv(Z) of L, we then obtain,

for each v,

> . & \
e ¥ JEIVJ ) Hey) © ') (y) * K(w) =0
(3.9)
&+ 2 v A @Gt )yt VL
at 3=1 dx v op (V> H E’H(

(3.10) LFV(Z) = )\VFV(Z) .
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Since o >0, this eigenvalue problemis of SturmLiouville type
and the eigenval ues A, are di stinct, positive, real nunbers. For
each value of vthe system(3.9) is hyperbolic and has the sane
formas the shallowwater equations to be discussed |ater. The

v J
c, = )\;1/2. Under standard atnmospheric conditions ey 322 m's.,

characteristic velocities are vj, vj+c and v._ - CV wher e

clsz, ms., ¢, =17 ms. and cv—>0as v-> o , see Win-Nielsen

2
[22). Fromthis it follows that, for snmall v.two of the character-
istic velocities will be positive if v > 0 and one will be positive
i f vy < 0. Wen Vis so |arge that e, < IV'IJ’ then all three
characteristic velocities are positive if vy > 0 and negative
i f vy < O

It follows that the appropriate nunber of boundary conditions
for our sinplified problenms nmust be different for these two classes
of eigensolutions. For those conponents with c, < lvnl, all variables
shoul d be prescribed if v < 0 (inflow) and no variables should be prescribed

if v,> 0 (outflow). For the other conponents, the appropriate nunber of

boundary conditions is two if v, < 0 and one if v, > 0. Possi bl e
forms for these boundary comitions are examned later for the

equi val ent shal | ow-water equations. The sinplest choice of inflow
conditions is probably to give both velocity conponents,

', for all vand ap! for those values of vwith
v

c, < |vn

given for those vwth c, > |vj|. In the special case of a solid-

. At outflow, v, > 0, the normal velocity conponent can be

wal | boundary there is only one class of eigensolutions, since e, > |vn1

for all v. The condition un(z) = 0 yields ur'l( ) =0 for all v
v
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which, as shown later, yields a well--posed problem for each vand,
consequently, for the entire system W reiterate that these con-
clusions are only valid for our sinplified version of the variational
equations and that we have no proof of their validity for the conplete
system  However, the conclusion that the boundary conditions mast

be separated in terms of the vertical eigenfunctions is valid for

the conplete system since that system admts particular solutions of
the type that we have discussed. Qur inability to provide sufficient
conditions for the conplete systemis essentially due to the fact

that we cannot show that all solutions of the conplete equations

can be expressed in terns of the eigenfunctions of (3.12). It follows

fromthis discussion that local, pointwise boundary conditions cannot

yield a well-posed problem for the open_boundary problem for the

hydrostatic equations; well-posed problens can only be obtained

(1) if the boundary conditions are fornulated in terns of |ocal
ei genfunction expansions or (2) nonlocal boundary operators are used.
W knowOf no successful fornulation of the second type.

A conveni ent byproduct of the hydrostatic approximtion is
the possibility of using variables other than z as the vertical
coordinate (e.g., pressure, p, potential tenperature, @, etc. ). If

pressure is used as the vertical coordinate the equations (3.2) becone

a
at % " P TR0

d o _
dtoc+pf—0

(3.11)

X _

va’H+5p_ 0
ap



wher e

d
dp ’

and VP denotes the horizontal gradient/divergence operator on

constant pressure surfaces.

The p-system has the advantage that the region of integration
has a limted vertical extent, 0 <p < P, wher e P is the surface
pressure, instead of 0 <z <~ for the original system The
met eor ol ogi cz;I data are also collected and analyzed as
functions of pressure which sinplifies the construction of initial data
fields on constant pressure surfaces. (ne disadvantage is that the |ower
boundary condition, w= 0 at z = 0, becones dg/at = 0 at the unknown
surface p = ps(g,t) where ¢ = 0. The usual way to overcone this

difficulty is to prescribe

(3.12) %=(§+%{'Vp+w %)q;:o
at a constant pressure surface p = Py usual Iy chosen as 1000mb,
instead of at p = p,- The upper boundary condition sinply becones
w=0 at p = 0.

It is easy to show that the transformation to the p-system
does not change the nonhyperbolic character of the equations, and

again an upper bound cannot be found for the rate of growth of
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di sturbances on the solution in any conventional energy norm As
before, we have to limt the detailed study to an approximate system

of variational equations. These are given by

X .
J

2
9 Oy ' BOL ady =
(5.13) CAFE A
Lot

where o = qlp). W are only considering the nean translatory part
of the advection terms. The system (3.13) will retain the essential
features of the conplete variational equations if the solution is close
to steady-state and the motion is quasi-horizontal.

If we elimnate «' and o', the system (3.13) can be

witten in terms of u,;{ and o' as follows:

G B )u e

(3.14)
(a’*-%v-—-a)L"FV-u':O
3t -1 J X, ? p ~H
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wher e

Lo' = - -a% (o7t g—g’—)
with
- (X, a
0= - (5+ pY)

To show that (3.14) is also a separable system we nust show that the
upper and | ower boundary conditions are consistent. At p = 0 we
have ®' = 0 so U_l(aqa'/ap) = 0. At p =p, the condition (3.12)
may be transformed,using the equation (3.13) for a', to obtain

d O y(pr - 02y _
(3.15) (_+j§l vy Sx—j-)(cp - F) =0

so that

-1 09! 4+ =-1, = -
g > a o' =0 at p-—po

if this condition is satisfied initially. Then

PO PO 13" Jo'

f '‘Lo'dp = o”- & 99 dp + ==L i

, Y g % » @ *laa'e J=p6
which shows that L is self-adjoint and hal f-bounded. V& can now

expand wh and o' in the eigenfunctions of L. The sinplified

variational equations then beconme a fanmly of hyperbolic systens,
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. 2 ,.
ot jo1 9 axj p (V)
(3.16)
2
3 3 e o w
B a3 T T 70

where the «, are the eigenvalues of L, i.e.,
(3.17) LG, (p) = KVGv(p)

with corresponding eigenfunctions G, (p).
Again, the horizontal boundary conditions must be fornul ated
differently as the normal conponent of velocity is larger or snaller

-1/2
t han KV )

Al'l of the conclusions made for the z-coordinate system
apply in this case

Ve now consider the second approxi mation of the Eulerian
equations of notion, the inconpressible, anelastic system (B2).
Approxi mations of this type have been used in many areas of theoretica

and applied fluid mechanics. In their nost sinple form the equations

for an inconpressible fluid are

!
I~
+

OQ
S

I

o

(5.18) at ~

wher e is aconstant. This systemis usually derived from basic

%0
physi cal considerations,but it can also be obtained from the conplete



Eulerian equations by letting o approach a limting constant val ue, 0y

The nmore general anelastic approximation, often used in studies of convective
systems in the atrmosphere, is based upon the follow ng assunptions:

1) the potential tenperature of the fluid is nearly constant (we

denote this constant value by & in our followi ng discussion);

2) the pressure deviates only slightly from a hydrostatic stratifi-

cation; and 3) the typical horizontal and vertical length scales

are simlar. |If the characteristic length scale is nuch smaller than

the "scale height," cpé/g, we obtain the system

d%(:—u" + BT =0
- §

aqgw+9g—rzr-g:=0
6

(3.19) a5
dt

vy =0

where & is the deviation of the potential tenperature from a basic

state 8, T = cP((p/pO)l’l/Y - (fa/po)l'l/Y), p denotes the isentropic

_pressure profile corresponding to &, and

d _ 9o ) 3
Eralilr il T TR v

W note that, expect for the equation for 8, this systemis essentially
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the sane as (3.18). A third system of the sane basic formis the

Boussi nesq system waich is often used in oceanography.

The linearized variational equations corresponding to the system

(3.19) are, deleting the small zero-order terns,

(3.20) dt

The existenceofnontrivial periodic eigensolutions of the form

Z

~

exp[i(vt + f{xt ot @ z)] is equivalent to the determinant

condi tion
iv 0 0 Giwl 0
0 iv 0 giw2 0
(3.21) det 0 0 iv éia)3 -g/8 =0
38 3 36 ~
- = 0 iv
Bxl ax,, dz
ﬂbl ﬁbz icb5 0 0
wher e
~ 2
V = Vv + L u (D‘ + wd
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Equation (3.21) is third order in vand of fifth order in the ..
If the lower order terns are neglected, then the resulting equation has

v = -Z?zlujmj - wo, as a triple root. Thus, the anelastic equations

3
are not a hyperbolic system but their eigensolutions have, to highest

order, time dependent behavior which is like that of hyper‘bolic syst ens.
W cannot obtain sufficient conditions for well-posedness of

the initial boundary value problem for tine-singular systens |ike
(3.20) using the normal node anal ysis technique. The theoretical
justification is lacking at present. However, rigorous results on
the necessary form of the boundary conditions can be obtained since
it is clear that pat hol ogi cal solutions can be constructed via the

normal node technique follow ng Agmon's construction [12].

Anal ysis of the eigensolutions of (3.20) shows that four
boundary conditions must be given at inflow parts of the boundary and
that one condition nust be given at outflow parts of the boundary.
Furthermore, pathological behavior like that exhibited by solutions
of the approximte system BL is not present. It can be shown using
the energy method that the physical boundary condition u, = 0

for a rigid-wall boundary yields a well-posed problem with an energy

u'2 + u‘2+ w 2 + 329'2)1/2‘
1 1
For the constant coefficient problems (3.20), I* estinmtes

norm of type (

for the well-posedness can be obtained directly using Fourier-Laplace

transformtechniques for the initial boundary val ue problem on a quarter-space;
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t > 0 X > 0 =®<x,,z <« |t follows that these problens are

1
wel | -posed if g and & are given at inflow and if u, is given

at outflow. However, as nentioned above, the reduction of the general
problem to quarter-space problens and the variable coefficient
problens to constant coefficient problems via freezing arguments

i's not covered by existing theory

4. The Barotropic or "ShallowWater" Equations (Systemc).

A third approximation to the Eulerian equations, the shallow

wat er equations which are our system C, may be witten

]
@]

d
T PPt L

1
O

d .
at Oty T

wher e a

0
- 5t T &Yy

and . and cp are functions of tine, t, and the horizontal space

coordinates, x, and X F represents any zero order or forcing

2l
ternms such as, e.g., the coriolis forces. The variable ¢, the geopotential,

is always positive. In nost geophysical problem the flow is subsonic
so that C,D>ui + ug, but the opposite relation holds for both

supersonic flow and for sone of the subsystems derived from the

hydrostati c equations (B1) by separation of variabl es.
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At least three different names exist for systemC In
met eorol ogi cal applications it is usually called "the primtive
barotropic equations.” |n oceanography the npst common name is
"the shallowwater equations.” This system accurately describes wave
motion on the surface of a honmpbgeneous fluid when the horizontal
wave length is much longer than both the vertical scale of notion

and the depth of the fluid. The vector formof systemCis

3 2
— + —— =
(k.2) ) El Aj(g) - et E=0

t
where ¢ (ul:u?:CP) ’

ul 0 1 U, 0 0

A, = 0 u 0 s and A2 =\ 0w 1

® 0 Uy O ¢ ﬁ2

The ei genval ues of JA. are U f + ¢ and u -c wthc =09

They are all real and have distinct eigenvectors. The symetric and

positive definite transformation matrix

o e
o O

R=

o |8 O

= T*'l

O
—

simul taneously symretrizes A1 and Ae' Thus, the system C
has retained (or regained) the basic property of the original Eulerian

equations (systemA) of being a quasi-linear systemof hyperbolic

equations.
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As before, we are only discussing problenms with snooth
solutions. The basic properties of the system may then be found from

the corresponding linearized variational equations

4.3) _3% 9"+'Zl Aj (9.) 5—2— g' tCcg' +F =
i= *

where g is a solution of (4.2), and the small disturbance g (xl,xp,t)

may be generated by the inhomogeneous termE' or be caused by an

initial disturbance gq' (Xl’XE’O)' The matrix C has the form

- du du
1 1
/ _a_ _].: - f + g_g_ 0

du, du.
C= f + _a..g 5_2 0
S )
3 30 e
a‘xl 8}(2 axl dx 5

The matrix C, the coefficient matrices Al(g) and Ae(g), and the
transformation matrix R(g) are slowy varying in space and tine.

It is easy to show the well-posedness of the Cauchy problemin the
L2_'-norm by the classical energy nethod. This 'was done by E vius

and Sundstrém [9] and Davies [5]. They also showed the well-posedness
of the initial-boundary value problem for some possible sets of
boundary conditions using the energy method. However, as pointed out
by de Rivas [7 ], Davies overspecified the boundary conditions in his

paper. For this reason our discussion follows that of Elvius and

Sundstrtm.

~
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The growth equation for the energy normof g¢'is
a |* t B
) 5 ég Rg' dx, dx,

5o (Ray) - RC - C*R]g'dxl ax,
5=1 %5 .

*
- f Q,'* RF\,' + E'*Rg" d_xldxp - f g_' R/\Lng" ds
Q - N

Since

OR d
v z‘; g;”—(RAj)—RC-CR
Jj=1 7]
du du du
1 1 2
2% axl cP(BX2 Bx) o
- cp(a'll . ?i‘_g_) 20 ?2_ 0
axp zy X,
du du
1 2
0 0 =

we can rewite (4.%) as

g'* Rq' dxl dx

(4.5) g% -

f
Q

Bl u du
- I {(— ) (pw? + ug?) + 9r2) cp@-?k - aj)(uv’c‘-ué%
2(5 ) l 2)} dxl dx2

-fg,RF'+F'Rgdxdx2—fiRA ds .
Q a0
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The first integral is bounded by

Au du 2 aul bue 2
[( s=-s0 ) "I
AAYASE TR R T

1/2 du du
1 2 , 2 2 2
T, SZ;) (pa}® + uy”)+ ot Jax, dx,

if we can neglect the contribution fromthe inhomogeneous term and

if the boundary conditions ensure that the integral q‘;chAng'ds >0 .

The growth rate of [ g"*Rg' dx, dx, Is then bounded by the maxi num
0

value of the quantity

3, aw\° S o \NTNV2 3w, o
1 __2 S 1,2 I
SZi Bx2 = sz Bxl Bxl Bx2

the difference between the deformati on and divergence of the basic flow

i

Results of this type may also be found for finite disturbances (which
was not possible for the Eulerian equations)  Wthout any linearization,
the complete variational equations are

2

S+

J

I ' roo
lAJ_(g.+g')ang. + Cq' + F 0.

Using the conplete transformation matrix R(g + g'),we get
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9 i S
St "g Q' Rg dxldX2
2\ . 2
= gag {2 (0 + Cp')(u_ig + U.é ) # o' d.xld.x
= _ T t 02 2 2
o {(ul +u2)[(CP+CP)(ul +u) ) + @'¢]
du du
\ 1 9% 2 2
+ o+ o) [(axl axp> (ul e )
ou ou
1 _2 1.1
' 2(“8 N ‘“‘ax) “flen P
N i/ 17
39" 39" o /O ow
h20 (WS- +yg )ro (57 ——— dx, dx,,
Q 1 2 1

—fg “RE' + 7R ax

dx-quAq'ds.
1 30

Since

t 1 all' 511'
f t ] a_(E . |a@ |2 __l_ 2 . X
Q = Gl oKy " ax2> e (axl i 5X2> ey

_ [ o 2y L O (o) 4
éa (u ® ax (112CP ) dx.,dx
=6 u'tp'g ds ,
d@ "

we again obtain a growh estimte
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(4.6) 5% ! q'” Rql dx dy

2 2. 1/2 ]
Bul 5-12 6u1 Bug 8111 &12
< max ox. | Ox. % T & T dx. .
1 ) ) 1 1 o
x f ' Rg' dx.a
g' Rq' dx,dx
0 12

if F' =0 and the boundary integral [ g' RA g - ulllcp'g ds > 0.
30

Note that we now have.a hound for the growth rate which is valid for

di sturbances of arbitrary size_and_only involves the_defornation and

divergence of the undisturbed flow. The solutions g and g + g

may thus be any pai r of solutions to the shall ow water equations.
o , , ¥ _ 2. 2
For finite g',the integral ,f q' Rg'dx dx, = Ez(cp+ cp')(u'l +ul )

o
1}
5 t o dx,dx,

is no longer the square of an LE-equivalent norm for g', but as long
as ¢ + @' (the thickness of the fluid layer) is strictly positive we

can apply the corresponding Liapunov theorems. Usually, |o'|is

so much smaller than |o| that the difference between

)1/2

(g R(g + g')g’ dx, dx,, 1/2
8

*
and the energy norm (Qf q' Riglg' dx dx, )
is negligible.
Al these estimates are valid if and only if the contribution
fromthe boundary is strictly nonpositive. For the |inearized

variational equations we had to require f g'*RAng'ds >0, i.e.,
k1Y)

2 2 2
f 'vn(q)(ur'm + ouy )+ ') + 2q)u1§1(p'ds

= gg i{uncpuf + ;—p (¢ +u ) + ¢'/c)? - 2 (e-u ) (o - 9'/c)7} ds > 0

ho



For the conplete variational equations, the integral is instead

gﬁ W +u  [le+o) (w? + uf®) + %)+ o + 9 Julg' ds
Q 4

= (o Tt ey

rElore) (przo)/eru +u) @ +o/e))
-i(cp+cp')((cp+lcp')/c-u - u) (- 9'/e)?) ds
2 2 n n n

where now c-= (o + @')1/2. W again study the two different types

of boundary conditions separately.

1. Solid-wall boundaries. Since the normal velocity vanishes at

the wall we have [ g' §An g'ds = 0, and the matrix A has only
39 .
one negative eigenvalue at the boundary. The well-posedness

of the problem then follows directly (also without linearization)

for the boundary condition u, = 0.

2. Open boundaries. From the number of negative eigenval ues of A

it follows that at an inflow boundary (un < 0), two boundary conditions
shoul d be given in the subsonic region where ul<_c

(Iurl + ur'll < (o + % ®')/c), and three conditions in the supersonic
region. At an outflow boundary, one boundary condition is required

if the flow is subsonic, and no condition should be given if the

flow is supersonic.
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If the flow is supersonic, the boundary conditions should be
such that, for the variational equations, the values of all three of

the variables wu!, u! and o' are prescribed at inflow points.

1’ 2
For subsonic flow, the jnflow boundary conditions should

determ ne the value of two quantities of type u - al(ur’1 + o'/c)
| t - t 1 t t _ t
and u! o' /c ag(un + ¢'/c) since u! and ut o'/c are the

characteristic conbinations corresponding to the negative eigenval ues
of A, Not all such conbinations give well-posed problens, but if

2 2 o
ct+u, + 24§ - (c - un)a2 >0, the limted growth rate for the

energy norm of q' gives a direct proof of well-posedness. V& may,

e.g., choose a, =a, = 0. This condition can be achieved by pre-

1~ %
1/2

scribing uy and u at these inflow points, see Elvius

)1/2

n - 2%
1/2

and Sundstrom [9], since then ui = 0 and ur'l -2(p + o + 20

=y - 207/ (62 + (o + 9)M2) = wr - g /et? 20, Actually, this
boundary condition ensures that only bounded growth can result for
all finite disturbances, as long as min{q)l/e, (¢ + o )1/2) +un + ur']
Is positive. Inserting the conplete expressions for uj and w

in the boundary integral, the integrand becomes

(un + ur'l)[ (o + cp')(ur'l2 + u_',_e) + cp'e] + (29 + o )u;lcp'

= ¢ {(u, + w1+ ko + o) ((p + o

+ 2(2p + 9') ((p + cp')l/.2 + cpl/e)_l}

1/2 , /22 12 1/2)

= 02 ((p + o) {(u +ur'1)(6cp +50 + 2(p + 9')

n

+ 2(20 cp')((w+cp')l/2+cpl/2)} )
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If 0 <o <o+ ¢, the value of

2(2p + ¢')( <<2_t_<2';2%/2

6p + 50" + 2 (tp * q)')

N 1/2)
1/2 ;0172"

is always larger than cpl/2 while if 0 <o+ ¢ <o, this expression

)1/2 1/2 )]./2}> 0,

has (¢ + o' as its lower bound. For u_+ u' + Min{0'", (o+ o
n n CP

the inflow part of the boundary then provides a nonnegative contri-
bution to the boundary integral.

Anot her possi bl e inflow boundary condition is to prescribe
both u and u;, so that al =0, a, =-1. This conditionwas
apparently first suggested by Rousseau [16]. The val ue of ]aL,I is
then so large that we cannot use the classical energy nmethod, but
as first shown by Elvius and Kreiss (private communication), well-
posedness can be proved using Kreiss' normal mode anal ysis technique.

An alternative boundary condition, discussed in the paper by
El vius and Sundstrom [9] is to give u, and ¢ at inflow points. This
corresponds to the choice a =0, a =1 For problens in only
one space dinension this is a well-posed condition. The value of a2
I's, however, so large that we cannot use the energy nethod as above.
For the conpl ete two-dinensional problem E vius and Sundstrom did
not analyze the well-posedness properties, but numerical experinents
indicated that it mght actually be an ill-*posed set of boundary

conditions. This conjecture has been confirmed by a conplete analysis

by Elvius and Kreiss (private conmunication).
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At outflow parts of the boundary (un > 0), we should, in
the subsonic case, give one boundary condition. For the variational
equations this condition should *prescribe the value of a conbination
_ ot _ . ‘v _
of the formy' - o /e b,ut be(ur'1 + 9'/c). As before, well
posedness follows directly from the positivity of the integrand

* . . .
g' RA g' in the growh equation if

(c + un)(ux'1 + Cp'/c)2 + 2unu'2

1% - (c- un)(blu_'l_ + bz(u' +o/c))? > 0

n

for all w and ul + ¢ /c. The sinplest choices of the paraneters
12 by satisfying this condition are: 1) b, =Db,=0 i.e., gi ving

U - ®'/c, which may be achi eved by specifying u - 2(91/25 2) b, = 0,

b, = -1, i.e., giving u'; and B)bl:O, b, =1, i.e., specifying o

also yields a well-posed problem

b

Al of these conditions guarantee bounded growth for finite
di sturbances.  In each case, the integrand g'*RAn(g +g¥g'is
strictly positive as long as u +ou > 0.

For the open boundary problens we have several possible
sets of boundary conditions which all satisfy the necessary and sufficient
wel | -posedness conditions. If the problemis part of a telescoping
technique or nested integration, or if any arbitrary type of boundary
data can be obtained from measurenents, the choice between these

different possibilities may be difficult.
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The experinents reported by Elvius and Siindstrom [9] do
not show any large differences between the results from a nunerical
model, using either boundary conditions giving the value of the conbination
ur - 9'/c and u! at inflow and u, - '/c at outflowor u'  and u

n L
at inflow and up o at outflow  Their results examned a |ong-wave
solution with small |ong-wave or short-wave disturbances.

Further experinents by Elvius (private conmunication) indicate
that for solutions with a |ess pronounced |ong-wave character, the
first alternative is less susceptible to boundary disturbances which

may arise when the normal velocity is small and changes sign.
In one of the first papers on linted-area integration of the

shal | ow-wat er equations, Charney [2] suggested a quite different

set of boundary conditions. Since it is both inefficient and
difficult to inplement, this set is now primarily of historical
interest. It is still worth analyzing, since it illustrates the
hazards of intuitive deductions. At that time, nost experinental

and routine work on nunerical weather prediction was done wth

"bal anced" forecast nodels. The sinplest version, the barotropic
vorticity equation, can be considered as a further sinplification of
t he shallow-water equations. In the derivation of this approximtion,
system Cis first transforned into a set of three *prognostic

equations for the divergence D = v-u, the vorticity

c:aue/axl - aul/axg, and o, respectively by differentiating the
equations of notion with respect to x and y and conbining the
results. This differentiated systemis then sinplified by using a
steady-state approximation in the first and third of these equations

and by keeping only the nondivergent advection terns in the vorticity

47



equation. By this approximation, the whole systemis condensed into
one prognostic equation in one dependent variable, the stream function
y. For this vorticity equation, Charney, Fjgrtoft, and von Neunann [3]
concl uded that two boundary conditions should be given at inflow points
of an open boundary and one condition atnoutflow points.  They suggested
that the stream function (and thus the nornmal conponent of the velocity)
shoul d be specified at all boundary points, and in addition, the
vorticity at inflow parts of the boundary. |t is, easy to show that
their conclusion on the nunber of boundary conditions was correct and
that the suggested conditions make the problem well-posed, cf.
Sundstrdm [19].

Charney's p;oposed boundary conditions for the shallow water
equat i onswer eapparent|y based on the idea that since the nunber of
boundary conditions is the same for the vorticity equation and the
shal | ow water equations, the type of conditions should be similar,
He therefore suggested that w  should be prescribed at all boundary
points, and as the second quantity to be given at inflow parts of the

boundary he chose the "potential vorticity"

M M,
bxl ax2

P=
®

If the differentiated version of the shallowwater equations is
formulated in terns of P, D, and ¢, one of the three equations is
(d/at)p = 0. This differentiated system requires three boundary
conditions at inflow points, one nmore than the number required for the
single vorticity equation, and one of these conditions may be the
prescription of P.  However, this is not a valid argument for the
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useful ness of the potential vorticity as a boundary condition for the
undifferentiated system W cannot just pick two of the three
necessary inflow conditions for the differentiated system and expect
themto form an appropriate set of boundary conditions for the
shal | ow-wat er equati ons.

The danger of wusing the boundary conditions that Charney
suggested can be shown directly. For the variational equations, they
give u' =0 and  (3/dn)u} - Po' =0 if u < 0. The last condition
cannot be used directly, but it can be conbined with the prognostic
equation for uj to yield an equation for the inflow boundary val ues of
(d/3t u

1
velocity is then determned by integrating this equation from t = Q.

which involves only boundary quantities. The tangential

This is a very conplicated way of conputing the inflow val ues of
uj. Additionally, this approach has the liability that a small error
coomitted initially, or at any later tine tys will influence the
boundary values at all later times. These errors will spread into the

region of integration contaminating the solution.

5. Effects of Viscous Terns

As described in the introduction, small viscous terns are
~often added to the systems of equations we are considering. They
are often introduced to provide a dissipative filter for a nunerical

approximation. In other cases there is a physical motivation for
using viscous terms to represent diffusive transport (eddy flux)

of momentum and heat. Both the viscosity and heat conduction coefficients'
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are usually very small, but since these terms change the character
of the differential equations, we have to reinvestigate the boundary
condi tions.

For system A (the Eulerian equations) the general viscous
formof (2.1) is the conpressible Navier-Stokes equations, here

witten in the special form

é% u+aovp+E = a[uvag CONE IV IR

(5.1) - Qv = KH.p-l/rve (apl/Y)

a‘_EQ’

aggp *prvu =0

where , and )\ are the Lane/constants, and where the heat exchange
term represents eddy flux of potential tenperature. Using the
potential tenperature 6 = (pi'l/Y/R) apl/Y as dependent variable

instead of ¢, the second equation may then be sinplified to

d —
a‘g 6 = KHVQQ

Here, we shall only study the sinple viscous form obtained when

= A = Va_l. In vector notation, we have

3
%g+.ZlAj (q)gxi_.g,+E=BV2g
J= J

. t
w th q '—'(U-l:U-E;U-B:G:P) ’

50



1 2
0 u c 0 0 0
] 0 0 w 0 O . 0 g ‘32 g 0
0O 0 0 uy 0 2 0 0 U, 0 ’
o0 0w - N
0 0 0 0 o f 0 o 0
u; 00 0 £ 00 o 0
i 0 u; 0 a “l o 00 o 0 ,
0 0 u; 0 o o0 o 0
0 P 0w o 00 o 0
" 0] 0 0 0
0 n 0 0 0
and B =q 0O 0 u 0O 9
o 0 0
0o 0 0

This is an inconpletely parabolic system see Strikwerda [18]. As
before, the matrices 4), A, A, and B can be sinmltaneously

symetrized by nultiplication fromthe left by
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R=q o o 1 0 0
o o 0 a°Ea
o2
o 0 0 0 a
pr

wher e a2 Is the sane positive parameter which occurred in the
transformation matrix Rin section 2. |f the solution (and then
also R and the coefficient matrices) are slowy varying in space
and tine, we can use the general results of Strikwerda [18] from
which it follows that, forwell-posedness, it is necessary and

sufficient that the famly of linearized variational equations
d S d P
_gl + A(ﬂ) = g' + F' = B E,‘
ot jo1 9 8x.j

f ormawel | - posed probl em

Ve first study the rigid wall problem A normal - node
anal ysis shows that four boundary conditions are required. (ne of
these conditions, u! = 0, follows inmediately from the solid-vall

condi tion u, = 0. The three remaining conditions may be chosen as

+ (l-al)u—azaull= 0, au', + (1-a )u _5%1 u.lz = 0, and

1
1% oo o

N .
o1 - O gt -
ad' + (1 aB)KH 55 = 0 for sone nonnegative a,, a5, and e
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| f a; = a, = a3 = 1, these conditions correspond to a "nonslip",

perfectly conducting wall, while if a) =8, = a3 = 0, they represent
a "perfect slip", thermally insulated wall. The well-posedness of
the solid-wall *problem with these boundary conditions can be denonstrated
by the energy nethod.

For small values of u and X, we can expect boundary |ayers
of thickness 3(u1/2) and @'(K&lm) at the solid wall. If some
a, # 0, the value of the corresponding variable can be expected to
change by a finite amount Within the boundary layer. |n such cases,
we nust use a numerical approximation that resolves the boundary
| ayer satisfactorily. If all a; = 0, the variables will only change
by an anount proportional to the boundary |ayer thickness, and the
difference between the solutions to the viscous and inviscid
equations is then always small for small u and Ko
physical boundary conditions. As before, we have sone freedom in
choosing the nost suitable mathematical boundary conditions. For the
viscous equations, it is not sufficient to 'prescribe a set of con-
ditions that makes the problem well-posed. Since we know that there
shoul d be no boundary |ayers at the inflow and outfl ow boundari es,
we have to choose the mathematical boundary conditions accordingly.
This problem has been studied by Gustafsson and Sundstrom [11].
" They showed that for ., K, - 0, the conditions nust yield a well-
posed set of boundary conditions for the inviscid equations, i.e.,

singul ar boundary layers should not occur.
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At an inflow boundary, the normal-nmode analysis shows that

five boundary conditions should be prescribed while only four were
appropriate for the inviscid equations. Using the energy nethod, we can show
that the followi ng set of boundary conditions gives a well-posed problem
with no essential boundary |ayer:

1
' - ,( / )1/2 -0 u'. = u'_ = @ ou
n P \o/pr ) 11 10 = 0, and L= o 0.

A simlar set of conditions consistent with the other type of inviscid
o C_r -t — oo . o . .

condi ti ons (un =uj; =y, 0) is less trivial to find. This

I s because none of these inviscid conditions include the pressure

di sturbance p'.

At an outflow boundary, the viscous equations require four

boundary conditions and the inviscid problemonly one. |f we prefer

to give uw =0 as the inviscid condition, we can now prescribe
) d )
t = — ] e — 1 — -~ 1 =
U =0 Uy TH ;Y Kian ® 0

1/2

The invisecid condition ur'1 - p* (o/or) = 0 can also be extended

to the viscous case by giving

pe Vs WS T T

CH P_'L(OC/PY u.(Ot/PT) S T 0, ‘azu_]'_l=u o J-Z

n

In both these cases, we can use the energy nethod to prove well-
posedness, and the absence of boundary |ayers as |, KH—>O

follows directly.
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Al'l these boundary conditions may be expressed in terms of

a and p' instead of &' by using the identity

o _ o (g__p_>
a Pr

which is valid for small perturbations.

For the hydrostatic approximation (Bl) to these Eulerian
equations, the analysis is at least not sinplified by including
viscous terms. Even if we could find a set of boundary conditions
that make tae linearized variational equations with constant coefficients
wel | - posed, we would not know if this is, in some sense, true for

the conpl ete equations.

For the anel astic equations (B2), viscous terms may easily

be included. To find the 'proper nunber of boundary conditions, we
may as before study only the linearized variational equations with
constant coefficients. The result of the analysis is that at all

boundaries, four boundary conditions should be prescribed. At an

i nflow boundary this is the same nunber as required by the inviscid

equations. W may use the sane conditions as before, ut=u' =yt = gt = ¢
n 11 12

for the linearized, constant coefficient equations.

At an outfl ow.-boundary, the inviscid equations required one boundary

condi tion, u, = 0. This may now be supplenmented by

O w1 =, S =g oo
pamth Tr e T w70

55



For the solid-wall case, we may either choose the inflow or outflow
type of conditions. The choice depends on whether we have nonslip

or perfect slip and a perfectly conducting or a thermally insulated
wall. The well-posedness of cthese conditions is easily denmonstrated.

For the shal | owwater eguations (C), we have the same type

of behavior as with the Eulerian equations (A). At a salid wall,
t he obvi ous condition ur'1 = 0 nust now be supplenented by one nore

11

by choosing al = 1 and a, = 0 are simlar to the results for

boundary condition; a,u! + (l—al)u a%nui = 0. The effects caused

system (A).

At an inflow boundary, the boundary condition u;l -9'/c =0,

uf =0 is easily modified by adding the required third condition
" 5% w = 0. If the inviscid conditions are u' =0, u!l =0, we
cannot find a suitable viscous form by our energy nethod analysis.

At outflow boundaries, we need two conditions which can be

: t = 3 r =
chosen to be w' =0 and M o§g U 0 or

(P' 9 ;l a

ut - L — u' =

n C C é_—ll and 5_11 0

dependi ng on what type of condition is pr eferred for the inviscid

equations. Vel |-posedness is easily proven by the energy nethod,

and no artificial boundary |ayers are generated.
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| mplications for numerical nethods

The analysis of various initial-boundary value problenms contained
in this paper was notivated by difficulties arising in conputationa
nmodel s of the problens we have discussed. It is appropriate to comrent
on the inplications these results have on these nunerical nodels.

"The stability analysis and related error estimtes for the
approxi mate nethods are the discrete anal ogues of our well-posedness
analysis and estimates of the form(1.3). For a given well-posed problem
of the types discussed here, we can always find stable difference
approxi mtions and nunerical boundary conditions. Exanples are given
in Gustafsson, Kreiss and Sundstrdm [10] and El vius and Sundstrom [9].
Conversely, an approximation cannot have a norm which behaves reasonably
iIf it accurately approximates an ill-posed problem

When, for a given problem the nunber of boundary conditions is
overspecified, the difference approximation may well be stable. However
the effective boundary conditions which influence the solution are,
in general, difficult to determne, especially for problems in severa
space dinmensions. They may well be a conplicated function of the
conditions given and bear little resenblance to them

An additional conplication induced by overspecification is that the
underlying solution being approximated is not generally continuous. The
phenonena associated with approximations to discontinuous solutions have
been studied by several authors, a good discussion and summary of these

results can be found in section 10 of Thomée [21]. These results may
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be summarized as follows. If a non-dissipative approxination is used
then high frequency waves emanate from the region of the discontinuity
and travel across the domain without |osing appreciable anplitude.
They will usually travel with the highest fundanental wave speeds and
rapidly cover the domain with error. |f scalar equations are being
approxi mated, then this region of error can be restricted to the vicinity
of the discontinuity by using dissipative approximations. However, these
results do not apply to systems of equations as we have here. The errors can
propagate away from the discontinuity through other conponents of the
solution. Boundary value overspecification may be regarded as a
stationary source of such discontinuities.

In order to avoid the problens associated with the proper selection
of boundary conditions, the order and type of the differential equations
is often raised to obtain a problemthat is easier to analyze and
approximate.  The equations are usually rmodified by adding dissipative
terms so that the number of boundary conditions is appropriate. Unfortunately,
this idea sel domworks. |f a spurious boundary |ayer of appreciable size
results, the effects are not unlike those discussed above for discon-
tinuities and, unless the dissipative ternms are very large, the error
introduced at the boundary will again propagate into the interior.

If the boundary conditions are underspecified there are no
a priori estimates for the differential equations. |n order for an

approximation to be conputable there nust be a sufficient nunber of
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boundary conditions specified for the approximation. This cannot be
fewer than the nunber required for the differential equation.

Addi tional conditions are usually constructed by neans of extrapo-
lations. For an underspecified problem the extrapolation of quantities
that should be prescribed results in an unstable or inconsistent

approximation of the wong differential equation.
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