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ABSTRACT

Initial-boundary value problems for several systems of

partial differential equations from fluid dynamics are discussed.

Both rigid wall and open boundary problems are treated. B o u n d a r y

conditions are formulated and shown to yield well-posed problems

for the Eulerian equations for gas dynamics, the shallow-water

equations, and linearized constant coefficient versions of the

incompressible, anelastic equations. The "primitive" hydrostatic

meteorological equations are shown to be ill-posed with any

specification of local, pointwise boundary conditions. Analysis

of simplified versions of this system illustrates the mechanism

responsible for ill-posedness.
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0. Introduction

There is now considerable interest in initial-boundary value

problems for various systems of partial differential equations arising

in fluid dynamics. This interest stems , primarily, from efforts to

create useful computational models of various processes for the purposes

of prediction (atmospheric processes, ocean circulation, etc.) 'and the

detailed study of various phenomena (convection, flow in wind tunnels,

lee waves, eddies, etc.). Such calculations are not new. As these

computational models have become more accurate difficulties with the

boundary conditions have become more evident. This has led first to the

examination of the various discretizations used and then back to the

differential equations whose approximate solutions are sought.

Such a backward sequence of events may seem surprising. Naturally,

the initial-boundary value problems for the differential equations should

. have been carefully examined first since we cannot expect our approximations

to be reasonable if they approximate a problem which does not have

reasonable solutions. The reason it has gone this way is clear.

*
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It is natural to first examine the evidence where it appears and, as usual,

the computations have been ahead of the analysis. The initial-boundary

value problems for these systems of differen%ial equations are not easy

to analyze; and, in fact, adequate tools for a rather complete analysis

have only recently become available stemming from the work of Kreiss [l&131

The current interest has resulted in several works based on the

classical energy method (e.g., Elvius and SundstriSn  [Y], Davies [5,&l,

de Xvas [ 7 1 and Dutton [8] >, which follow the earlier work of Serrin

[17j, SundstrUm [lg] and Clampbell [l]. However, this method only works

for a limited class_pf equat,ions and boundary conditions. Some authors

have, unfortunately, ?nade unallowable assumptions (over-specification of

boundary conditions, omission of terms, etc.) in futile attempbs 50 mak?

their problems fit into this class. We will discuss SOKL? instances of

this in detail. This seems to be a real hazard in the use of the energy

m,ethod since the effects of such sssump-lions  are often well-buried in

intermediate estimates and consequently overlooked.

We begin with a general discussion of well-posedness followed by

a review of properties of the adiabatic, inviscid Eul?rian equations of

fluid dynamics (system A). We then study two approximations of the

Eulerian  equations: the hydrostatic "primitive equations" of meteoro.lobr;y

(sys‘tem Bl> and the incomp-cessible,  anelastic equations (system B2).

Finally, we discuss the shallow-water, or barotro2ic,  equations (system C>

which can be considered as ZI, further simplification of system Bl or B2.

It is interesting to consider these equations in this order so that the

effect of each successive approximation can be observed. The systems A
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and C are symmetrizable, hyperbolic systems but systems Bl and B2 are

not hyperbolic. These facts have profound influence on the well-posedness

of initial boundary-value problems for these systems.

We consider two types of boundary conditions which arise

naturally in many situations. Most of our analysis will deal with

certain quarter-space problems but we will always have the following

underlying situation. Let S-2 cR2 be an open, connected region with

smooth boundary, 30, and fi = R U &I. We will consider the system C

on the domain Dl
= fi x [O,T] and the systems A, Bl and B2 on the domain

D2
= .fi X I X [O,T] where I = [O,=J) or I = [OJ]. The two types

of boundary conditions we consider on ail are: (1) rigid wall boundaries

and (2) open boundaries. The rigid wall case corresponds to a physical

situation which requires the normal velocity to vanish at the boundary

and is the simpler of the two types. This situation is often encountered

in oceanography. Open boundaries occur in limited area forecasting,

wind tunnel flow, and studies of small scale or local phenomena in

meteorology and oceanography. Open boundaries do not arise from a

natural physical situation and a suitable form for the boundary con-

- ditions is not obvious. Boundary conditions which do not introduce

boundary layer phenomena are usually wanted in this case. That is, these

- boundary conditions should determine the interior flow as though, in fact,

the boundaries btere not there at all. In each case we give necessary

conditions for the form of the boundary conditions in order that the

problems be well-posed. We will also give particular boundary conditions

which yield well-p&sed problems. We show that systems A, B2, and C can

be treated satisfactorily and that system Bl is ill-posed for local,

pointwise boundary conditions. For the linearized,constant coefficient
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versions of systems Bl and B2, well-posed boundary conditions are

given. It seems reasonable to conjecture that these boundary

conditions also yield a well-posed problem for system B2. However,

the corresponding boundary conditions for system Bl cannot be easily
. .

implemented for the general problem.

As already mentioned, many of the presently used boundary con-

ditions specify more data than is allowed. These specifications preclude

the existence of smooth solutions except in very special, unrealistic

situations where the exact solution is known on the boundary without error.

Errors must, however, be expected in the boundary data arising from errors

in measurement, the use of constant boundary values, or from computations

over larger regions'if  some telescoping grid technique is used. We

will discuss the implications of such overspecifications.

Most of our analysis deals with inviscid systems of equations.

Viscous terms are added to these equations in many forecast integrations.

They are often motivated physically as representing "eddy diffusion"

of momentum and potential temperature. The effect of these terms on the

main part of the solution is usually small. The real motive for including

them is often non-physical. Since the equations are nonlinear,

initiallongwave phenomena can produce shorter wave phenomena which cannot

be accurately represented by the approximation used. To prevent result-

ingIaliasing errors and nonlinear instability the computational method

should be provided with a dissipative filter term, and the most primitive

form of filter is just such an "eddy diffusion" term.

In both cases, the viscous coefficients are so small that we

should expect the boundary conditions to be close to those valid for

the corresponding inviscid system. The viscous equations do, however,

require additional boundary conditions, and, as an effect, viscous
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boundary layers may occur at the boundaries. Such boundary layers may

sometimes be appropriate, as in the rigid wall situation. However,

at open boundaries, they are inappropriate. We shall therefore discuss

the formulation of boundary conditions when viscous terms are included

and show how these conditions can be chosen so that no singular boundary

layers result as the cofficients of the viscous terms tend to zero.

1. Well-Posedness

Our main goal is to establish the existence or non-existence of

certain a priori estimates, or energy inequalities, valid for the solutions--

of the various initial-boundary value problems under consideration here.

In this section we discuss the form of these estimates and some implica-

tions that follow from them.

For the purposes of this discussion let us write our problems

in the general form

LE = g in fi X I X [O,T] (the differential equation)

(1.1) u/ =U
- t=() -O

in fi XI (the initial conditions)

u,* = SJI + g in &X I X [OJ']N (the boundary conditions)

where L is a partial differential operator; 5, E and u
-0

are vector

functions of dimension k, u, = (u, >u,
I 1I)t I

; u, and 6 are of dimension R,

UII is of dimensionsion k-1; and S is a real R x (k-1) matrix.

For a linear, first order hyperbolic equation in R3 , L would take

the form

(1.2)
aL=--t

' bt
5
j=l

Aj(x_,t) & + R(& l

3
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The boundary conditions express the cl3mponents u,I of u, In term2

of the cmponents u,
II

of u, and the given function g. The matrix S
N

can be thought of as a generalized reflection operator. Changes of

variable may be necessary to bring certain desired boundary conditions

into the form given here but this does not introduce any essential

restriction. II tThe partitioning u, = (u,', u, > is based upon the

characteristic variables,or Riemann invariants,of the problem, that is, the

components of NU1 can be called "incoming" quantities and those of

UII can be called "outgoing" quantities. This partitioning of u,

will be discussed in detail for the problems we consider.

The estimates='we seek are of the form

where the norms are L' norms or weighted L2 norms over the regions indicated

by their subscripts, K :- 0 is a constant independent of T, and 6 = 0

or 1. We will refer to (1.3) with Fi = 0 as the weak form of (1.3). The

d:fferences in the properties of solutions 5 .which satisfy only the

weak form (1.3) from those which satisfy (1.3) with 6 -- 1 are discussed

by Kreiss [13], We will not belabor the distinction here and be satisfied

with the
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Definition 1.1. We will say that the problem (1.1) is well-posed if

the estimate (1.3) holds for all solutions u, of (1.1) with g, u+

and g in L2 .

Uniqueness and stability with respect to perturbations in the

data follow from the estimate (1.3). We refer to the works of Kreiss [12,

131, Majda and Osher[l4] and Strikwerda [lb] for detailed discussions

of the particular weighted L2 norms and the general theory for systems

of hyperbolic and incompletely parabolic equations.

The equations we are considering are all quasi-linear.

However, we can obtain our a priori estimates a posteriori over intervals-

[O,T] --when a smooth solution exists, i.e., we can consider coefficients

A (u_(x_,t),z,t> as functions of &,t if u_(x,,t)  is known. Furthermore,
3

iterations based upon the linearized variational form of the problems

can be used to establish existence for those t-intervals where the

iterations converge. We will not pursue this here, but rather assume

the existence of smooth solutions over the interval of consideration.

We must prescribe boundary conditions that do not preclude the

existence of such smooth solutions. This is the case if too many

conditions are specified. Too few conditions preclude uniqueness, of

course.

The results by Kreiss [12] and Strikwerda [18] also show that

the systems (A) and (C!> are stable to perturbations by lower order terms.

This implies that we need not consider the effects of terms such as

undifferentiated frictional terms and coriolis forces in our analysis.



q

It is essentially due to this fact that the analysis of variable coefficient

problems can be reduced to that of corresponding constant coefficient

problems via the construction of appropriate pseudo-differential operators

(Kreiss [ 121, Taylor [20], Majda and Osher ~[14],Strikwerda  [lb]). This

stability property also allows us to red:lce .problems on our general

domain R with smooth boundaries to families of quarter-plane problems

by making local changes of coordinates such that, e.g., &l is mapped

into *1 = 0 and !J into x1 > 0.- Such mappings only introduce new

terms which are of lower order. More detail about this process can be

found in Majda and Osher [lb] and Strikwerda [la].

Existing theoretical results cover problems with a smooth non--=.

characteristic boundary for classes of equations which include A and

C and their modifications resulting from the inclusion of the usual eddy

'viscosity terms (tieiss [12], Majda and Osher [lb], Strikwerda [lti]).

Extensions to problems in regions with corners and uniformly characteristic

boundaries have been studied by Majda and Osher [l&l. However, the

important case where the velocities change sign on the boundary and do

not vanish in a neighborhood of such a boundary point is not covered by

existing theory. This often occurs in the applications we consider,

e.g., the solid-wall type of boundary conditions,and  when the flow direc-

tion reverses to change an inflow or outflow section of the boundary

to an outflow or inflow section, respectively. There must be character-

istic points on any smooth boundary of a simple connected region with

open boundaries which has both inflow and outflow sections of the boundary.
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We cannot treat the influence of such points on as2 here but conjecture

that no important modifications are usually necessary for problems like

those we treat here.

We will use both the classical energy method and Kreiss' normal

mode analysis to establish the well-posedness of these problems. The

solid-wall boundary problems are all treated using the energy method

which provides us with estimates of the form (1.3) directly. Some

boundary conditions for the open boundary problems can be treated in

this way, but, in general, we must use normal mode analysis for these

problems.

2. The Eulerian Questions (System A).

The basic hydrodynamic and thermodyanmic laws governing the

motion of an adiabatic and inviscid  fluid are given by the Eulerian

equations

(2.1) &a - c&Pu,  = 0

d
dtp+pJV'u,=O

where u is the three-dimensional velocity vector, u, = (u ,u ,u >
t

1 2 3 ,

cl is the specific volume, and p the pressure of the fluid; r = c /c
Pv

is the lapse rate of the fluid, F, represents zero-order and forcing

terms, e.g., coriolis and gravity forces, and



d =a, u.yy=-a+dt at at 3 3.
j=l 2 axj

In vector notation, the equations are

(2.3)
a 3

+ c A.(q) &- q + $2) = 0
ate j=l J- j-

where s = (ul,u2'u3'a'P P 9 and

u1

0

0

0

i

u3 0 0 0 0

0 u3 0 0 0

e A3= 0 0 u3 0 a

0 0 -a u
3

0

0 0 Pr 0 u3

? A2 =

0

u2

0

-a

m

0

0

u2

0

0 0

The matrices A.
J

all have real eigenvalues u., u.> u.~ u. + c, and

Y
with distinct eigenvectors, c = (p& l/2J

3 J J

is the sound

speed of the fluid. The matrices are not symmetric but it is easy to

find a symmetric, positive definite matrix
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R = a--l

0

. 0

0

a2pr/a:

2j
a

0

0

0

a2

(l+a2 a> -
w

= Ty-lT’l

where a2 is an arbitrary real, non-zero parameter such that the trans-

formed matrices TmlAjT are all symmetric. The system A is thus a

quasi-linear system of hyperbolic partial differential equations, see

e.g., Courant and Hilbert [4 1. Since no closed-form expression for

the solution to this system is known, a rigorous evaluation of the

effects of different approximations, inhomogeneous terms,and  boundary

conditions is, in general, impossible. For the problems we are con-

sidering the solutions are usually continuous and smoothd The matrices

A
j

and R are then also smooth. As long as the deviations 9' (x_,t)

from the exact solution c&t) are small, they should then approximately

satisfy the linearized variational equations

where 3' = (ut t1' u;, u" cl" P') ,
3
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ihI1
3X1

bU2
3X1

223X 1

\

ba
3X1

\ap
3X1

bU1
a*2

hU2
&2

3 3U

ax2

aa
3X2

2-
--. 2

&1
bx

3

&.l2
dX

3

&J
3
i3X

3

aa

ax3

a?-

&3

and the term F' can representN

$51

$F2

2
3

3 au.
- w
j=l j

0

0

0

0

0

3 au.

Y-C
j=l

2
j

other low-order terms. This system is

/

a linear hyperbolic system in q', and the well-posedness can be studied
N

by either the classical energy method or by Kreiss' normal mode analysis.

In the energy method, the basic idea is to show that a suitable norm for

2' satisfies a growth equation of the form

-(2.5) g Is II 5 KII$ II + IIF_’ II

where lII II is an inner-product norm 11%’  11 = (/, q’+ Mq’ 9dx2~3)1’2

equivalent to the Euclidean L2-norm (.f, lq'12 dx;dx2:3Pj2* We can

show the well-posedness of the pure initial-value or Cauchy problem

in the L2-norm for the Eulerian equations by choosing M as the matrix

R given above. From



(2.6) $ (q'*Rq')
N N

3
(q'*RAq') + q'* {g + c RA.-RC-C*R] q'-q'*RF'-F'*Rq'
N 3~ w j=l J N N NN N

we get

(2.7) & dxl dx2 dx3

(RAj)-RC-c*~] q' * *
N

- 9' Rc'-z R:']dxldx2dx3

and since R, RA., etc.,
J

are bounded, slowly varying matrices, we can

easily establish a growth equation of type (2.5).

This inequality and energy norm is essentially equivalent to that

used by Serrin [17] in his uniqueness proof for compressible fluids.

He wanted the estimates to be valid for large deviations a', which

complicated the structure of the proof. However, at one step in his

s calculations, (eq. 25)' he had to make an assumption which essentially

meant that the deviations must be small. Furthermore, in the analysis of the

limited-area case, an over-specified set of boundary conditions was

‘used on the inflow portion of the boundary, thereby invalidating this

part of the proof. The computational effects of such an overspecification

will be discussed later.

For the initial-boundary value problem, we can use the growth-m

equation (2.6) as before if and only if the boundary integral provides a

non-negative contribution, i.e., if
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§ q'*RAnq' ds >_ 0
&2- -

where A = z; lAjg*e., nn = "3 N
is the unit vector in the outward normal

direction, and e.
"J

is the unit vector in the xj-direction. Note that if

the boundary conditions are such that this inequality is satisfied, then

well-posedness is proved, otherwise no conclusions can be made.

The integrand q' *Ry$ is a quadratic form in the five variables
N N

ui, ~6’ ~$9 a', and p'. However, the number of boundary conditions is

only equal to the number of inward characteristics, that is, the number

of negative eigenvalues of An, see Kreiss [12 I.-=. These boundary conditions

must be such that the related combinations of 9' (the Riemann invariants)

are given in terms of known quantities and combinations corresponding to

outward characteristics.

The initial-boundary value problems for the Eulerian equations

arise from two different situations which must be studied separately:

1. A solid-wall boundary. Here, the physical boundary condition is

3that the normal velocity vn = c.J=l "j2 '%j should vanish at the

e boundary. This condition is consistent with the number of inward

characteristics (one). Since it also gives qf*RAnqf = 0 identically,
N N

the well-posedness of the initial-boundary value problem follows

directly.

2. An "open boundary," or a boundary located in the interior of a body

of fluid. In this case the normal velocity is non-zero on the

boundary, except at certain points. For supersonic fluids, all-

quantities ul, u2, u3, a, and *p should be specified at inflow

points, giving ql*RAql = 0. At outflow points, no boundary
N N
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conditions should be

For subsonic fluids,

prescribed and q'*Mnq' is always > 0.-N N

An has four negative eigenvalues with distinct

eigenvectors at inflow points so that four quantities have to be

specified. At outflow points, the number of negative eigenvalues

and quantities to be prescribed is only one. In both cases no

obvious physical boundary conditions are known. The characteristic

combinations of q' may be found from the eigenvectors of A
N n, but

it is easier to proceed as follows.

The quadratic form

-1'2 2 2 22
= una {un

+Uil+U;2 +a a' py/a+ (l+a2)p'2a/pT+2a2a'p'  1 + 2U3’

‘“II and u
12

are the velocity components in two orthogonal tangential

directions) can be rearranged as

-1 2= una {u' + u' L+ a2kxf (p&l l/2
ll + p'(alpr) l/212 ]

+ -1c+gh (u; + p’kx/pr) l/2)2 _ $ ( c-u,) a-1(u'-p'(oIj/J3J)1'2J2
n

As before, c = (p& l/2 is the basic sound speed.

At an inflow part of the boundary(un < 01, t h e  c h a r a c t e r i s t i c- -

combinations corresponding to negative eigenvalues of A are thus

uily u;2’ u: - p’ (a/-d l/2 ,  a n d  a ’  (pdq) l/2 + p'(a/m) 172 = c@'/0, where

8 is the "potentialtemperature" 8 = (p;-'/u/, ),'h. The four boundary

conditions should give relations of the form
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uh = alhA + p’ (c&d l/2, y

uh = a2(“,: + p’kdd l/2 ) Y

u' - l/2
n p’k&Y-)  = a3(uA + P'(&r) 1'2)'

a’ (prla) l/2 + p'k&r) l/2 = a4(uk + p' (a/pd l/2 )

for deviations from the basic solution.

Before studying specific examples of boundary conditions giving

relations of this type, it should be noted that not all such conditions

give well-posed problems. With the classical energy method, we can

actually only prove well-posedness when

u (a2 + a: + a2at) + jj-
n 1

' Cc - un)ag 5 $ (c + u )
n

since only then is q'*RAql >, 0 at these inflow points. In this expres-N

sion a2 is the arbitrary, real and positive parameter of the matrix R.

If we want to investigate the well-posedness for other values of

al’ a2’ a3, a4, we have to use the normal mode analysis of Kreiss,

see Oliger and Sundstrijm [15].

The classical energy method certainly works if the boundary

conditions are such that a1 = a2 = a3 = a4 = 0. We can obtain these

relations by prescribing (at inflow points) the two tangential velocity

components, the potential temperature 8, and the combination

The inequality is not satisfied if we have a1 = a2 = a4 = 0

and a3 = + 1, that is, if we try to give the tangential velocity
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components, the potential temperature, and either the normal velocity

or the pressure at these inflow points. A third possibility for which

the energy method does not work is a1 = a2 = 0, a = -1, and a4 = 1,
3

that is, if we give all three velocity components and the specific

volume a. As shown in Oliger and Sundstrsm [15] using the normal

mode analysis technique, this last combination actually gives a well-posed

problem.

At the outflow part of the boundary(u, > O>, o n l y  o n e  q u a n t i t ym-

should be prescribed. It should give a relation of the form

u; -

= bluh + b2ub + b3’u; + p’(a/pr) 1’2 > + b4 (a’ (*p&d 1'2+P'k2/pd l/2 )

for the linearized variational equations. It is simplest

to prescribe the normal velocity so that bl = b2 = b4 = 0, b
3

= -1.

The well-posedness of this boundary condition follows immediately from

the positivity of q'*RAq'. We may instead prescribe the pressure p,
N N

-
corresponding to bl = b

2 = b4 = 0, b = 1,
3 .

or actually any combination

of un and p such that (u',-P'(a/PT) l/2)2 (C-Un > <, (u;'p' <a/pY- ) u2 )2 (c'", > .

17



3. Basic Approximate Forms of the Euleria:? Equations (Systems Bl and B2)

Although the Eulerian equations are the fundamental system of

equations for most fluid flow problems, they are often used in modified

approximate forms. In fact, they have almost never been used in the

complete form given in the last section for geophysical calculations.

The reason for this is simply a matter of economics and time, which

are not unrelated. To compute an accurate approximate solution of the

Eulerian equations for a relatively small problem requires quite a lot

of computer time. These equations are an extremely "stiff" system of

hyperbolic equations with a wide range of eigenfrequeneies and zharacter-

istic phase velocities. The ratios between the largest and smallest

eigenvalues of the coefficient matrices A.
3

in (2.3) are often as

large as lo2 or 10
4

. The high-frequency eigensolutions (sound-waves)

are often absent in the initial data and the solution,but their presence

in the set of eigensolutions imposes a severe upper limit for the time-

step in explicit numerical integration procedures. Implicit techniques

that do not suffer from this difficulty lead to data structures which

are difficult to manage and systems of nonlinear equations that are

expensive to solve.

A second special aspect of many geophysical problems is the

strong balance between the gravitational and vertical .pressure gradient

forces which is responsible for the basic stratification of the

atmosphere and oceans. The vertical acceleration terms are usually much

less than 10 -4 times either of these terms. Even if we first subtract
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the time-independent part of the pressure field, we must still know

the specific volume and pressure extremely accurately in order to compute

the time derivative of the vertical.velocity with even moderate accuracy.

Similar, but less extreme, balances exist in the other equations. In

the two remaining equations of motion there is a near balance between

the horizontal pressure gradient and coriolis terms, and in the continuity

equation there is a near balance of the components of divergence. These

relations are often swnmarized in the statement that the atmosphere is,

to a large extent, not only quasi-hydrostatic but also quasi-geostrophic

and quasi-nondivergent.-=

To obtain a reasonable computational problem we must either:

(1) find a more efficient numerical integration procedure, or (2 >

modify the equations in such a way that the high-frequency solutions

are eliminated. The first alternative leads to integration methods of

implicit type. The nonlinearity of the resulting implicit system and

the difficulty of incorporating the near balance of the equations have

not been successfully dealt with so far. A strict version of the second

B alternative is actually even more difficult to construct, if we try to

eliminate only the solution of sound-wave type and obtain a system which is

still hyperbolic. The main difficulty stems from the fact that the eigen-

vectors corresponding to the large eigenvalues are different for the

different Aj's. The nonlinearity of the system and the effects of

variable coefficients are further complications.

Various approximate versions of the Eulerian equations have

been derived by intuition, scale analysis, energy conservation
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considerations, and experience. The near balance of the equations simplifies

this approach considerably. We shall study two such approximate sets of

equations: the hydrostatic equations and the incompressible anelastic system

of equations. Unfortunatelyyin  both cases,the hyperbolic character of
-.

the system is lost.

The hydrostatic system is derived from the Eulerian equations

by neglecting the vertical acceleration terms in the third equation of

motion. One so obtains the "hydrostatic equation"

(3.1) 32%,+g=o,
-=.

Here, and from now on, we use the notation z for x
3

as a distinguished

vertical coordinate and w for u
3

as the vertical velocity. This

approximation is extremely accurate for the large-scale motion of the

atmosphere. The wide-spread use of the hydrostatic approximation

actually led meteorologists to calling the resulting system "the

primitive equations of motion." This was motivated by a comparison

with the still more approximate "quasi-geostrophic" system, but the term

"primitive" is certainly misleading.

The use of the hydrostatic approximation has several important

consequences. First, we no longer have

vertical velocity. Second, to maintain

the time-changes of a and p must be

a (ap/az > is constant. This means that

a prognostic equation for the

the hydrostatic equilibrium,,

coordinated in such a way that

the pressure at any point in

the model atmosphere can be determined from the pressure at any reference
Z

level and the mass of the separating layer, the integral I a-1dz.
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With this approximation, we obtain the hydrostatic system,

system Bl,

Pat + ?d,, + a VIHp t-. F = 0
"H

(3.2)

Pat f u,*o)p + pY-7'~ = 0

where ~=(~,,u~)~, U, = (%,wjt, gH = (F1'F2)t, and VH = (a/&x,, &x2jt.

This is a much more complicated system than it may seem at first glance.

The equations (3.2) are not a hyperbolic system. To show this we form

the variational equations

a(x + g.0) l& + cIVHP' + E'*% + cX'VHP + Fy; = 0

Pat + l$v)p + pyV$ + u,‘*vp + p’yVw = 0 l

The corresponding constant coefficient problem has periodic eigensolutions

u’ =
1 G; exp(i(Vt + alXl + m2x2 + m z)], etc., for large

3 al
and CJJ

2

if and only if
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(3.4)

where

det D - 0

iV

0

where ;r=v+‘F2Aj=l"j-"j +

0

pm + ap
x2 x2

b
32 u1

a
aZ u2

gcxz + c
2 2
cc3

Prazfapz

a@
2

%X2(1

a- i7
@;

wr:, .
3

This determinant is a cubic polynomial in
N w

the modified eigenfrequency V. It is easy to see that the roots V.'
J

j = 1,2,3, of (3.4) have the asymptotic behavior

71 = @Cl)

and

a

as W -+O”.
k Thus, the system admits solutions with arbitrarily

large signal speeds and is not hyperbolic. We cannot use the general

methods and results for hyperbolic systems to find a well-posed set of

boundary conditions.

Davies [5] tried to avoid this unfortunate effect of the hydro-

static approximation using a direct energy method approach similar to

the one used in Section 2 for the Eulerian equations. The absence of

the terms coming from dw/dt changes (2.6) to
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a
(3.5) x ($H k*R '>

2
j=l

a

3X.
J

(~yRA.Q
3 A

+ 8’ (z* a (x;;,, - RE

$- (q’*Rii,cJ’) + $* (E f $-N -. x1 (y)+& m,Hq
2 1-1

?I? )a.’ - s'*RF' - F'*R$

where 3; = (Ui,U;,O,O',V')t and the matrices x
3

and ? are obtained

by deleting the terms arising from w(&/az> in the original third

equation from the matrices A
3

and C, respectively. Integrating

(3.5) over the region s2 we obtain

(3.6) $ $ llq$i2

L KlI$L’ II2 + Ila’ II l IIF,1 II - I, & ‘gJ*RqQ + $
1

-% ‘s’;R42Q

+ $ ($*a3g') dxldx2dz .

Davies tried to find a set of boundary conditions such that the contri-

bution from the boundary integral is non-positive,proceeding in the same

tiay as we did with the Eulerian  system A. He first conjectured that the

number of boundary conditions could be chosen equal to the number which

are required for the Eulerian equations. However, this conjecture is

false. If this numberofboundary conditions is used the solution cannot

be expected to satis.fy the hydrostatic relation at the boundary. The

23



problem is overspecified and the existence of continuous solutions is

precluded. There is a further problem with this approach. The energy
-.

method is based upon norm equivalences and the norms of CJ' and c&

are not equivalent. To obtain an adequate energy estimate, a bound for

the term al*& @A,) - R? - ?R)qf of (3.5) in terms of
h) II9 IIiI

instead of 1II8 II is necessary, but this is not possible. Consequently,

we cannot draw any conclusions about the well-posedness of these equations

from the reduced energy equation (3.6) for either the initial boundary

value problem or the Cauchy problem.

-=.
Since the energy method does not work, we now turn to the normal

mode analysis technique.

Normal mode analysis of the general equations here is rather complicated.

If the motion is essentially horizontal we may instead consider linear-

ization about an underlying basic state a(z), p(z) which satisfies

apz + g = 0. . Due to this simplification, we cannot establish sufficient

conditions for well-posedness in our succeeding analysis. However, we

will at least be able to establish some necessary conditions and we cane

also expect the variational equations to reflect the main properties

of the system. We use the notation a = a(z) + a', p + t(z) + p' and

write-the horizontal velocities as %I
=v+ '

- %I
where v, = (v,,v*P

is constant. If we neglect all of the nonlinear terms in primed quantities,

we obtain the approximate system
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- ap’a ’  _ 0- -
QZ -g-

a

(3.7)
aatat + 2 a-(-p _-

j=l 2 axj
QS7$ +aw'=o

Z

We can then transform (3.7) to obtain the following equations in

uiJ ";J and ap',

bat % .+ + VH(;Fp') + F' = 0N

L(&'> + VH'$H= 0

where

L(&) = - g &- (--EL- -a- (TJp’)

pTa,-g az J
= _ a a (G a (&))

g2 az * az

and -1-2 aa=-g a s In 0 is the"static stability"of the basic state.

We will always assume u > 0, i.e., we are only studying perturbations

of a stable stratification. The boundary condition at z = 0 is
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W' = 0 which implies 'pUal + &' = 0. As an upper boundary condition

we have p--+0 as z + 00. Our condition at z = 0 can also be

written as gap’/; so, for arbitrary q',

Co

r $q' L(G') dz = - fin q’
b 0

03= I
0

a F $ (&’ )dz + (1
g2u z @;a

-=.

which shows that the operator L is self-adjoint and half-bounded.

Therefore, the system (3.8) is separable. If we expand the variables

u '9-I
and &' in the eigenfunctions FV(z) of L, we then obtain,

for each V,

A

(b+ F

bt

-Q u'

j=l 2 axj * H(V)
+ Vf$?'+v) + F,(v)

i 0

(3.9)

(L+ 5at j=l 2 b⌧j

a )  h☺&�  +v) + v l

H
$(V)

= 0

where the h, are the eigenvalues of L, i.e.,

(3.10) LF$z) = A&,(z) .
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Since c > 0, this eigenvalue problem is of Sturm-Liouville type

and the eigenvalues h
V

are distinct, positive, real numbers. For

each value of V the system (3.9) is hyperbolic and has the same

form as the shallow-water equations to be discussed later. The
. .

characteristic velocities are + c
2' 2 v

and v. - c where
J V

. Under standard atmospheric conditions co = 322 m/s.,

c1 = 34 m/s., c
2
= 1.7 m/s. and cv+ 0 as V + ~0 , see Wiin-Nielsen

[221. From this it follows that, for small V, two of the character-

istic velocities will be positive if vj > 0 and one will be positive

if vj<O.- When V is so large that cv < Iv.1, then all three
J

characteristic velocities are positive if vj > 0 and negative

if vj<Oo.

It follows that the appropriate number of boundary conditions

for our simplified problems must be different for these two classes

of eigensolutions. For those components with cv < I"& all variables

should be prescribed if vn < 0 (inflow) and no variables should be prescribed

if v, > 0 (outflow). For the other components, the appropriate number of

boundary conditions is two if vn <

forms for these boundary conditionsB

equivalent shallow-water equations.

conditions is probably to give both

0 and one if vn > 0. Possible

are examined later for the

The simplest choice of inflow

velocity components,

%49
for all V and &$,I for those values of V with

cv < Iv& At outflow, vn > 0, the normal velocity component can be

given for those V with cv > /vjl. In the special case of a solid-

wall boundary there is only one class of eigensolutions, since ctr > Iv,1
for all V. The condition un(z) = 0 yields u' = 0 for all V

Yv)
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which, as shown later, yields a well--posed problem

consequently, for the entire system, We reiterate

elusions are only valid for our simplified version

for each V and,

that these con-

of the variational

equations and that we have no proof of their validity for the complete

system. However, the conclusion that the boundary conditions mllst

be separated in terms of the vertical eigenfunctions is valid for

the complete system since that system admits particular solutions of

the type that we have discussed. Our inability to provide sufficient

conditions for the complete system is essentially due to the fact

that we cannot show that all solutions of the complete equations

can be expressed in terms of the eigenfunctions of (3.12). It follows

from this discussion that local, *po-intwise  boundary conditions cannot----- .- -P----m - - -

yield 5 well-posed problem for the open boundary Skzoblem for the- -

hydrostatic equations; well-.posed problems can only be obtained

(1) if the boundary conditions are formulated in terms of local

eigenfunction expansions or (2) nonlocal boundary operators are used.

We know of no successful formulation of the second type.

A convenient byproduct of the hydrostatic approximation is

a the possibility of using variables other than z as the vertical

coordinate (e.g., pressure, p, potential temperature, 8, etc. >. If

pressure is used as the vertical coordinate the equations (3.2) become

(3.11)

d
dr; ct + cua

F
= 0

&
vp*u+ + ap =  0
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where

d a adt = at + &fvp + cu &y 7

CD= 9
dt J cp = gz f

and V
P

denotes the horizontal gradient/divergence operator on

constant pressure surfaces.

The p-system has the advantage that the region of integration

has a limited vertical extent, 0 < p < pst where ps is the surface-

pressure, instead of 0 < z < 00- for the original system. The

meteorological data are also collected and analyzed as

functions of pressure which simplifies the construction of initial data

fields on constant pressure surfaces. One disadvantage is that the lower

boundary condition, w = 0 at z = 0, becomes dcp/dt = 0 at the unknown

surface p = ps(x,t) where cp = 0. The usual way to overcome this

difficulty is to prescribe

(3.Q)
e

+Lu

at a constant pressure surface P = PO' usually chosen as lOOOmb,

instead of at p = p,. The upper boundary condition simply becomes

a=0 at p=O.

It is easy to show that the transformation to the p-system

does not change the nonhyperbolic character of the equations, and

again an upper bound cannot be found for the rate of growth of
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3

disturbances on the solution in any conventional energy norm. As

before, we have to limit the detailed study to an approximate system

of variational equations. These are given by

(3.13)

a cp’i--=.

+ E’ = 0

$1 = o

t -&K L 0
dP

f a' - 0

. where & = G(p). We are only considering the mean translatory  part

of the advection terms. The system (3.13) will retain the essential

features of the complete variational equations if the solution is close

to steady-state and the motion is quasi-horizontal.

If we eliminate W' and a', the system (3.13) can be

written in terms of '
%f

and CJ? as follows:
d

(j.14)

(A+ 5at a )j=l vj axj $J + 'pT' + g' = O

(L Eat j=l 3 axj
L)Lq' + "p'u; = 0
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where

with

To show that (3.14) is also a separable system we must show that the

upper and lower boundary conditions are consistent. At p = 0 we

have a = 0 so a-'(&&&) = 0. At p = p9 the condition (3.12)

may be tra.nsformed,using the equation (3.13) for a', to obtain

(325) (A+ 5at j=l 2 axj

L)(cpl - $) = 0

so that

0-1 acp' + a-$,
ap

=0 at P'P0

if this condition is satisfied initially. Then

PO pO
s q'lcp'dp = J d-'
0 0

$$- $ dp + (a-ls'cp' Jpzp
0

which shows that L is self-adjoint and half-bounded. We can now

expand G and QI' in the eigenfunctions of L. The simplified

variational equations then become a family of hyperbolic systems,



(3.16)

where the Kv

(3.17)

+ v ‘7’
p w

+ Fkv) = 0

are the eigenvalues of L, i.e.,

LG, (p) = KvGV(p)

with corresponding eigenfunctions
-=.

GV(p).

Again, the horizontal boundary conditions must be formulated

differently as the normal component of velocity is larger or smaller

-l/2
than KV . All of the conclusions made for the z-coordinate system

apply in this case.

We now consider the second approximation of the Eulerian

equations of motion, the incompressible, anelastic system (B2).

Approximations of this type have been used in many areas of theoretical

and applied fluid mechanics. In their most simple form, the equations

for an incompressible fluid are

(3.18) & u, + ao’Sp  = 0

V’k = 0

where ao is a constant. This system is usually derived from basic

physical considerations,but it can also be obtained from the complete
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Eulerian equations by letting (2 approach a limiting constant value, a
0.

The more general anelastic approximation, often used in studies of convective

systems in the atmosphere, is based upon the following assumptions:. .

1) the potential temperature of the fluid is nearly constant (we

denote this constant value by 8 in our following discussion);

2) the pressure deviates only slightly from a hydrostatic stratifi-

cation; and 3) the typical horizontal and vertical length scales

are similar. If the characteristic length scale is much smaller than

the "scale height," c e/g,
P

we obtain the system

& %3 + evHa = 0

(3.19)

d &T- e"
dt
w+L---g-=0

i3Z e

V’u, = 0

e where F is the deviation of the potential temperature from a basic

state 0, T = c Up/p,) l-l/y - (P/P,)=h), 5 d
P

enotes the isentropic

_ pressure profile corresponding to 0, and

d b+ p&VH + w 3
dt = at z?

We note that, expect for the equation for g, this system is essentially
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the same as (3.18). A third system of the same basic form is the

Boussinesq system tilich is often used in oceanography.

The linearized variational equati-ons corresponding to the system

(3.19) are, deleting the small zero-order terms,

d
dt%!f

' f BVH7r' = 0

(3.20) d
d-t"

'+O a-rr'- Yo
& gB

-=
& et + u_‘.VZ 0

“‘I&’ = 0 .

The existenceofnontrivial periodic eigensolutions of the form

exp[i(Vt + 0 X + W X + (+Z)l
11 22 /

condition

d

(3.21) det

where

i7

0

ia1

0

i7

0

a;
ax2

1aJ2

N

is equivalent to the determinant

0
0
N

iV

as”--
3Z

W
3

2T-J

0

0

V = v + L u.fJJ. + w .
j=l J J 3

34



Equation (3.21) is third order in V and of fifth order in the a..7

If the lower order terms are neglected, then the resulting equation has

v = -x2j=luj'"\j - w3 as a triple root. Thus, the anelastic equations. .

are not a hyperbolic system, but their eigensolutions have, to highest
.

order, time dependent behavior which is like that of hyperbolic systems.

We cannot obtain sufficient conditions for well-posedness of

the initial boundary value problem for time-singular systems like

(3.20) using the normal node analysis technique. The theoretical

justification is lzcking at present. However, rigorous results on

the necessary form of the bor;mdary conditions can be obtained since
--

it is clear that pathological solutions can be constructed via the

normal node technique following Agmon's construction [12].

Analysis of the eigensolutions of (3.20) shows that four

boundary conditions must be given at inflow parts of the boundary and- -

that one condition must be given at outflow parts of the boundary.- -

Furthermore, pathological behavior like that exhibited by solutions

of the approximate system Bl is not present. It can be shown using

the energy method that the physical boundary condition un = 0

for a rigid wall boundary yields a well-posed problem with an energy-- ----

norm of type (u' 2 2 2
1

+ u' + w'
1

+ a2p2)l/2 .

For the constant coefficient problems (3.20), L2 estimates

for the well-posedness can be obtained directly using Fourier-Laplace

transform techniques for the initial boundary value ,problem  on a quarter-space;
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t > 0; x1 1 0; -00 < xp z < 00.- It follows that these problems are

well-posed if u and 8 are given at inflow and if u
n is given

at outflowa However, as mentioned above, the reduction of the general

problem to quarter-space problems and the variable coefficient

problems to constant coefficient problems via freezing arguments

is not covered by existing theory

4. The Barotropic or "Shallow-Water" Equations (System C>.- -

A third approximation to the Eulerian equations, the shallow--=.

water equations which are our system C, may be written

ddtu++VH~+F=O

(4.1)

where

and %II and cp are functions of time, t, and the horizontal space

coordinates, x
1 and x

2' E represents any zero order or forcing

terms such as, e.g., the coriolis forces. The variable cp, the geopotential,

is always positive. In most geophysical problem, the flow is subsonic

2
so that 'p>uF + u2, but the opposite relation holds for both

supersonic flow and for some of the subsystems derived from the

hydrostatic equations (Bl) by separation of variables.
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At least three different names exist for system C. In

meteorological applications it is usually called "?,he primitive

barotropic equations." In oceanography the most cormnon name is

"the shallow-water equations." This system accurately describes wave

motion on the surface of a homogeneous fluid when the horizontal

wave length is much longer than both the vertical scale of motion

and the depth of the fluid. The vector form of system C is

(4.2)
a
x 4 + Aj(a) $- a+F=O

j=l xj -

. Al -(6' il E,, and A2 =c :2 )

u2

The eigenvalues of A. are u., u. + c and u. - c with c = ~pl'~.
3 J J J

e They are all real and have distinct eigenvectors. The symmetric and

positive definite transformation matrix

R = = T*-l

simultaneously symmetrizes A1 and A
2.

Thus, the system C

has retained (or regained) the basic property of the original Eulerian

equations (system A) of being a quasi-linear system of hyperbolic

equations.
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As before, we are only discussing problems with smooth

solutions. The basic properties of the system may then be found from

the corresponding linearized variational equations

where CJ is a solution of (4.2), and the small disturbance 9' (xl'xpfJ)

may be generated by the inhomogeneous term E' or be caused by an

initial disturbance g' (x1,x2,0). The matrix C has the form

C =
&.I

2

i3X2

&-
dX2

&J1-+3X1

The matrix C, the coefficient matrices Al(~) and A2(g), and the

e transformation matrix R(a) are slowly varying in space and time.

It is easy to show the well-posedness of the Cauchy problem in the

L2+orm by the classical energy method. This 'was done by Elvius

and Sundstr'dm  [y] and Davies [5]. They also showed the well-posedness

of the initial-boundary value problem for some possible sets of

boundary conditions using the energy method. HOwever, as pointed O1;Lt

by de Rivas [7 1, Davies overspecified the boundary conditions in his

paper. For this reason our discussion follows that of Elvius and

Sundstrum.
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The grklwth eqllstion for the energy norm of 2' is

(4.4) a r
at flQ

'* Rg' dxl d-x2

&- (RA.) - RC - C*RJg' dxl dx2
j ._ J

F_'*Ra' dxldx, - J gt*
afl

R/Q' ds

Since

aR+

at
& (RA.) - RC - CXR

j=l j J

0

0
au au
1+ -2.
ax1

ax2

we can rewrite (4.4) as

1* Ra' dxl dx2
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The first integral is bounded by

if we can neglect the contribution from the inhomogeneolJs term and

if the boundary conditions ensure that the integral $J q7Mng_'ds 2 0 l
N

The growth rate of i $*R$ dxl dx, is then bounded by the maximum

value of the quantity

the difference between the deformation and divergerce of the basic flow.

Results of this type may also be found for finite disturbances (which

was not possible for the Eulerian equations)

the complete variational equations are

g' + CCJ' +

Without any linearization,

F'=O.

Using the complete transformation matrix R(cJ, -I- CJ,'),  we get
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$ I ,l*R,’ dxldx2R

a
s (=zn Cp + Cp’)(Ui2 -t u’ 2

2)
t’ cp’ 2

Tdx2

E - I- (u,
i-2 c

+ q)[ (0 + tp’)(Ui2  + U;2) + (pt2]

+ r 29'
c

u’ a;p’ + ut av
R i alxl 2dX2)+m.2(~+&dxldx;

$*RA&ds .

Since

= S-Q 2)+na U’T’

x1 IL
& (upt2) dxldX2

2

= 43 utcpt2 ds ,
as2 n

we again obtain a growth estimate
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(4 .6 )

XS gt*
R

RCJ' dxldx2

if F' = 0 and the boundary integral [ a'
as2

* Mn%t - u;'p
t2 ds > 0.-

Note that we now have a bound for the growth rate which is valid for- - - - - - - - ------I

disturbances of arbitrary size and only involves the deformation and- - - - - - -

divergence of the undisturbed flow. The solutions- - - - CJ, and CJ + CJ'

may thus be any pair of solutions to the shallow-water equations.

For finite C-J,', the integral r g'*Rgtdxldx2 = /- (rp+ ~p')(u;~+u;~)+ cp'
i-2 s-2

is no longer the square of an L2-equivalent norm for s*, but as long

as cp + cp' (the thickn ess of the fluid layer) is strictly positive we

can apply the corresponding Liapunov theorems. Usually, [Cp' 1 is

so much smaller than 1~~1 that the difference between

(f9’+ R(g + CJ')CJ' dxldx2) l/2 and the energy norm ( 1 ~T*R(~~~l dx dx
1 2

> l/2

i-l L-2

is negligible.

All these estimates are valid if and only if the contribution

from-the boundary is strictly nonpositive. For the linearized

variational equations we had to require f
An

$*RA$ds 2 0, i.e.,
VJL

r v#ut2 + uL2) t cpt2) + 2cpu'cp'ds
3.Q

n n

= r

as2
ryq2 + ; (c + “,‘(u; + q/cj2 - ; (c-u,)(u’  - cp’/cd2] ds >_ 0

n

42



For the complete variational equations, the integral is instead

6 (U + u
$2 lr n

[ (up + C/J’) (u:* + ui*) + (P’*] + (2~ + up’ )u’(P’ ds
n

= I uu,
an

+ u;‘(cp + cp’ hi2

+ $ (cp + cp’ > ((cp + ; cp’ J/c + un + u’ 1 (u’ + cp’/ci2J
n n

- -2' (cp + T')((cp t $- cp')/c - un - u;h; - q'id*l ds

where now C--= (cp + cp'F2. We again study the two different types

of boundary conditions separately.

1. Solid-wall boundaries. Since the normal velocity vanishes at

*
the wall we have I 8( RAn c~'ds = 0, and the matrix A

3Q
n has only

one negative eigenvalue at the boundary. The well-posedness

of the problem then follows directly (also without linearization)

for the boundary condition un = 0.

2. Open boundaries. From the number of negative eigenvalues of An

it follows that at an inflow boundary (un < O), two boundary conditions

should be given in the subsonic region where u < cI In -

(I Un and three conditions in the supersonic

region. At an outflow boundary, one boundary condition is required

if the flow is subsonic, and no condition should be given if the

flow is supersonic.
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If the flow is supersonic, the boundary conditions should be

such that, for the variational equations, the values of all three of

the variables ";9 "; and cp' are prescribed at inflow points.

For subsonic flow, the inflow boundary conditions should- - -

determine the value of two quantities of type u; - al(uL + cp'/c)

and u' -n v/c - a2(un + cp'/c) since uj- and u' - cp'/c are the
n

characteristic combinations corresponding to the negative eigenvalues

of An* Not all such combinations give well-posed problems, but if

c + un + 2u a2 - (c -n l ~,)a: > 0, the limited growth rate for the-

energy norm of q' gives a direct proof of well-posedness. We may,N
-=.

e.g., choose a1 2=0.= a This condition can be achieved by pre-

scribing ul and u l/2
n - *cp at these inflow points, see Elvius

and SundstrGm [PI, since then u' = 0 and un - 2((p + cp'> l/2 l/2
I + *cp

= u' - 112
n WV (cp + (cp t cp'p) = "A - ypJl/2 = 0. Actually, this

boundary condition ensures that only bounded growth can result for

all finite disturbances, as long as min{cp l/2 ) kp + cpf >
l/2 ) + u  +u'

n n

is positive. Inserting the complete expressions for u; and un

in the boundary integral, the integrand becomes

(un + UA)[ (Cp + Cp’)(U~*  + Ui*) + C/l’*] + (2Cp f Cp’)U~Cp’

I = cp’*{hn f $)[l + 4(cp -t cp’>((cp  + qd’* + (p1/*)-*1

+ 2(2Cp t cpoucp + q?) l/2 + cpl'y)

= (p~2(((p + cp+i2 + $‘*)-*((u
n

+ u;)(6cp + 5cp’ + 2kp + qd'* ,pl'*)

-I- 2(2Cp + cp�) ((cp -+ qd�* f $�*)I  l

44



If 0 < cp < cp + cp', the value of

2(2(p + cp'H(q + q')
l/2 + l/2)

-I ---
6cp + 5cp’ + 2 (y .” -+cpo 'i 2 J/T

is always larger than cpm while if 0 < cp + cp' < cp, this expression

has (cp + q&'* as its lower bound. For un f u; f Min(q l'*, (cpt cp'P'*): 0,-

the inflow part of the boundary then provides a nonnegative contri-

bution to the boundary integral.

Another possible inflow boundary condition is to prescribe

was

I Ia, is

both un and uL, so that al = 0, a
2

= -1. This condition

apparently first suggested by Rousseau ['6]. The value of

then so large that we cannot use the classical energy method

as first shown by Elvius and Kreiss (private communication),

L

, but

well-

posedness can be proved using Kreiss' normal mode analysis technique.

An alternative boundary condition, discussed in the saper by

Elvius and Sundstrgm [P] is to give uL and cp at inflow points. This

corresponds to the choice a = 0, a = 1. For problems in only

one space dimension this is a well-posed condition. The value of a2

is, however, so large that we cannot use the energy method as above.

For the complete two-dimensional problem, Elvius and Sundstr& did

not analyze the well-posedness properties, but nlxnerical experiments

indicated that it might actually be an ill-*posed set of boundary

conditions. This conjecture has been confirmed by a complete analysis

by Elvius and Kreiss (private communication).
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At outflow parts of the boundary (un > O), we should, in

the subsonic case , give one boundary condition. For the variational

equations this condition should *prescribe the value of a combination
. .

of the form u' - cp'/c - b u' - b2(un + (p'/c).
n 11 As before, well-

posedness follows directly from the positivity of the integrand

!L’* RA,%’ in the growth equation if

(C + U,“UA + (p’/C)* + 2u un i* - (C - Un)(blUL + b2(Un f (p’/C))* > 0-

for all u' and un + V/c. The simplest choices of the parameters

bl' b2
satisfying this condition are: 1) b = b = 0, i.e.,

1 2
giving

u' -
l/2

n CP'lct which may be achieved by specifying un - 2~7 ; 2) bl= 0,

b2 = -1, i.e., giving un; and 3) bl = 0, b2 = 1, i.e., specifying cp

also yields a well-posed problem.

All of these conditions guarantee bounded growth for finite

disturbances. In each case, the integrand CJ,' *RA& + ~~34' is

strictly positive as long as un + un > 0.

For the open boundary problems we have several possible

sets of boundary conditions which all satisfy the necessary and sufficient

well-posedness conditions. If the problem is part of a telescoping

technique or nested integration, or if any arbitrary type of boundary

data can be obtained from measurements, the choice between these

different possibilities may be difficult.
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The experiments reported by Elvius and Siindstrom  [P] do

not show any large differences between the results from a numerical

model, using either boundary conditions giving the value of the combination

u' -n v/c and u_I at inflow and u' - cp'/c at outflow or u'n and u'n I. .
at inflow and u' at outflow.n Their results examined a long-wave

solution with small long-wave or short-wave disturbances.

Further experiments by Elvius (private communication) indicate

that for solutions with a less pronounced long-wave character, the

first alternative is less susceptible to boundary disturbances which

may arise when the normal velocity is small and changes sign.

In one of the first papers on limited-area integration of the

shallow-water equations, Charney [2] suggested a quite different

set of bomdary conditions. Since it is both inefficient and

difficult to implement, this set is now primarily of historical

interest. It is still worth analyzing, since it illustrates the

hazards of intuitive deductions. At that time, most experimental

and routine work on numerical weather prediction was done with

"balanced" forecast models. The simplest version, the barotropic

vorticity equation, can be considered as a further simplification of

the shallox-water equations. In the derivation of this approximation,

system C is first transformed into a set of three *prognostic

equations for the divergence D = V*u,, the vorticity

( = &I~/&c, - &@x2~ and cp, respectively by differentiating the

equations of motion with respect to x and y and combining the

results. This differentiated system is then simplified by using a

steady-state approximation in the first and third of these equations

and by keeping only the nondivergent advection terms in the vorticity
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equation. By this approximation, the whole system is condensed into

one prognostic equation in one dependent variable, the stream function

$0 For this vorticity equation, Charney, Fjbrtoft, and von Neumann [3]

concluded that two boundary conditions should be given at inflow points
-.

of an open boundary and one condition at outflow points. They suggested

that the stream function (and thus the normal component of the velocity)

should be specified at all boundary points, and in addition, the

vorticity at inflow parts of the boundary. It is, easy to show that

their conclusion on the number of boundary conditions was correct and

that the suggested conditions make the problem well-posed, cf.

Sundstr'& [lP].

Charney's proposed boundary conditions for the shallow-water

equationswereapparently based on the idea that since the number of
- -

. boundary conditions is the same for the vorticity equation and the

shallow water equations, the type of conditions should be similar.

He therefore suggested that un should be prescribed at all boundary

points, and as the second quantity to be given at inflow parts of the

boundary he chose the "potential vorticity"

P =

If the differentiated version of the shallow-water equations is

formulated in terms of P, D, and rp, one of the three equations is

(d/dt)P = 0. This differentiated system requires three boundary

conditions at inflow points, one more than the number required for the

single vorticity equation, and one of these conditions may be the

prescription of P. However, this is not a valid argument for the
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usefulness of the potential vorticity as a boundary condition for the

undifferentiated system. We cannot just pick two of the three

necessary inflow conditions for the differentiated system and expect

them to form an appropriate set of boundary conditions for the

shallow-water equations.

The danger of using the boundary conditions that Charney

suggested can be shown directly. For the variational equations, they

give u: = 0 and (a/&l)Ui - PCp' =0 if un<O. The last condition

cannot be used directly, but it can be combined with the prognostic

equation for Ui to yield an equation for the inflow boundary values of

(a/& )Ui which involves only boundary quantities. The tangential
--.

velocity is then determined by integrating this equation from t = 0.

This is a very complicated way of computing the inflow values of

Uie Additionally, this approach has the liability that a small error

cormnitted  initially, or at any later time
t0J

will influence the

boundary values at all later times. These errors will spread into the

region of integration contaminating the solution.

50 -_Effects of Viscous Terms

As described in the introduction, small viscous terms are

- often added to the systems of equations we are considering. They

are often introduced to provide a dissipative filter for a numerical

approximation. In other cases there is a physical motivation for

using viscous terms to represent diffusive transport (eddy flux)

of momentum and heat. Both the viscosity and heat conduction coefficients'
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are usually very small, but since these terms change the character

of the differential equations, we have to reinvestigate the boundary

conditions. -.

For system A (the Eulerian equations) the general viscous-

form of (2.1) is the compressible Navier-Stokes equations, here

written in the special form

is.11

d
at p f .pyV=u = 0

where 1-1 and h are the Lame/constants, and where the heat exchange

term represents eddy flux of potential temperature. Using the

l-l/Y-potential temperature 8 = (pL /R) apl/Y as dependent variable

instead of a, the second equation may then be simplified to

Here, we shall only study the simple viscous form obtained when

r? = -A = jl&l. In vector notation, we have

a 3 a
a*U% + c Aj (9) ax ~ +E=B&

j=l j

with s = (~1,u2~u7'8,P)tl
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A3 =

and

/
ul

0

0

0

0 0 0

u1 c 0

0
u1 O

0 0 u1

0 0 0

0 0 0

u3 0 0

0
u3 O

0 0
u3

0

0

a

0
\

0 PY 0
u3 /

B=a

0

0

P

0

0

0 0 c 0

l-5 0 0
0 u#2 0

a \
0

0 0

pY 0

-f 0

0 0

0 0

0 0

0 0

0 0
0 0
0 0 l

5 - I 0

0

0 0

/

9

u2
0

0

0

0

0

0

0

w

0
0
0

/

Y
0
0

This is an incompletely parabolic system, see Strikwerda 1181. As

before, the matrices Al, A*, A ,
3

and B can be simultaneously

symmetrized by multiplication from the left by
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0

1 0 0

0 a*ti 0
e*

0 0 a
5f

2
where a is the same positive parameter which occurred in the

transformation matrix R in section 2. If the solution (and then

also R and the coefficient matrices) are slowly varying in space

and time, we can use the general results of Strikwerda [x8] from

which it follows that, forwell-posedness,  it is necessary and

sufficient that the family of linearized variational equations

b 3

ata’ -+ c Aj(a) $- 3' + ET = B&J,'
j=l j

formawell-posed problem.

We first study the rigid wall problem. A normal-mode- ---

a analysis shows that four boundary conditions are required. One of

these conditions, u: = 0, follows immediately from the solid-wall

condition u = 0.n The three remaining conditions may be chosen as

a a
alGil + (l-aJ~ s Ui1 = 0, a2ub f (1-a2)p - u*

an .l2
= 0, and

a3eT + (l-a,)% xa 8' = 0 for some nonnegative al9 a*, and a3.
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If a1 = a2 = a
3

= 1, these conditions correspond to a "nonslip",

perfectly conducting wall, while if al = a2 = a
3

= 0, they represent

a "perfect slip" , thermally insulated wall. The well-posedness of

the solid-wall *problem with these boundary conditions can be demonstrated

by the energy method.

For small values of IJ- and 5, we can expect boundary layers

of thickness @(, I/* ) and J%KHm-  ) at the solid wall. If some

a.1 # 0, the value of the corresponding variable can be expected to

change by a finite arnoTk?t within the boundary layer. In such cases,

we must use a numerical approximation that resolves the boundary
-=.

layer satisfactorily. If all ai = 0, the variables will only change

by an amount proportional to the boundary layer thickness, and the

difference between the solutions to the viscous and inviscid

equations is then always small for small 1-1 and K,
lr

In problems with open boundaries, there are no obvious---------

physical boundary conditions. As before, we have some freedom in

choosing the most suitable mathematical boundary conditions. For the

viscous equations, it is not sufficient to 'prescribe a set of con-

ditions that makes the problem well-posed. Since we know that there

should be no boundary layers at the infloYd and outflow boundaries,

we have to choose the mathematical boundary conditions accordingly.

This problem has been studied by Gustafsson and SundstrEm  [ll].

'They showed that for II., 5 -3 0, the conditions must yield a well-

posed set of boundary conditions for the inviscid equations, i.e,,

singular boundary layers should not occur.
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At an inflow boundary, the normal-mode analysis shows that

five boundary conditions should be prescribed while only four were

appropriate for the inviscid equations. Using the energy method, we can show

that the following set of boundary conditions gives a well-posed problem

with no essential boundary layer:

"II - P'W?X)
l/2

au'
= 0, uil="_;2=e1 =o, and ;L=$zo,

A similar set of conditions consistent with the other type of inviscid

conditions (u'
= "Ii = ui-.2 =

9' = 0) is less trivial to find. Thisn

is because none of these inviscid conditions include the pressure

disturbance p'.

At an outflow boundary, the viscous equations require four

boundary conditions and the inviscid problem only one. If we prefer

to give un = 0 as the inviscid  condition, we can now prescribe

The inviscid condition un - p' (a/p~) l/2 = 0 can also be extended
a

to the viscous case by giving

u’ -- l/2
bU’

pi(CJPY) +
n

p(~/py) l/2 2= 0, p &Uilz aU’ = s &@’ = 0.
"an J2

In both these cases, we can use the energy method to prove well-

posedness, and the absence of boundary layers as J-L, S-)O

follows directly.
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All these boundary co;lditions may be expressed in terms of

a' and p' instead of 0' by using the identity
. .

which is valid for small perturbations.

For the hydrostatic approximation (Bl) to these Eulerian--_I. -e---m-

equations, the analysis is at least not simplified by including

viscous terms. Even if we could find a set of boundary conditions
-=.

that make the linearized variational equations with constant coefficients

well-posed, we would not know if this is, in some sense, true for

the complete equations.

For the anelastic equations (B2), viscous terms may easily

be included. To find the 'proper number of boundary conditions, we

may as before study only the linearized variational equations with

constant coefficients. The result of the analysis is that at all

boundaries, four boundary conditions should be prescribed. At an

inflow boundary this is the same number as required by the inviscid

equations. We may use the same conditions as before, ut = u' = 8' = 0
n 11 = ui*

for the linearized, constant coefficient equations.

At an outflow boundary, the inviscid equations required one boundary- -

condition, u' = 0.n
This may now be supplemented by
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For the solid-wall case, we may- -

type of conditions. The choice

or perfect slip and a perfectly

either choose the inflow or outflow

depends on whether we have nonslip

conducting or a thermally insulated

wall. The well-posedness of r;hese conditions is easily demonstrated.

For the shallow-water esations (C>, we have the same type--.-

of behavior as with the Eulerian equations (A). At a solid wall,----- -

the obvious condition u: = 0 must now be supplemented by one more
.

boundary conditioc; alui + (l-a& $- "; = 0. The effects causedn

by choosing al = 1 and a1 = 0 are similar to the results for

system (A).

At an inflow boundary, the boundary condition un - Cp'/c = 0,

u: = 0 is easily modified by adding the required third condition

ap 3; u; = 0. If the inviscid conditions are u; = 0, ui = 0, we

cannot find a suitable viscous form by our energy method analysis.

At outflow boundaries, we need two conditions which can be

- chosen to be %l
a=0 and vsu'=O or

and a
qp'=O,

depending on what type of condition is preferred for the inviscid

equations. Well-posedness is easily proven by the energy method,

and no artificial boundary layers are generated.
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Implications for numerical methods

The analysis of various initial-boundary value problems contained

in this paper was motivated by difficulties arising in computational

models of the problems we have discussed. It is appropriate to comment

on the implications these results have on these numerical models.

'The stability analysis and related error estimates for the

approximate methods are the discrete analogues of our well-posedness

analysis and estimates of the form (1.3). For a given well-posed problem

of the types discussed here , we can always find stable difference

approximations and numerical boundary conditions. Examples are given-=.

in Gustafsson, Kreiss and Sundstr"om  [lo] and Elvius and SundstrGm [g].

Conversely, an approximation cannot have a norm which behaves reasonably

if it accurately approximates an ill-posed problem.

When, for a given problem, the number of boundary conditions is

overspecified, the difference approximation may well be stable. However,

the effective boundary conditions which influence the solution are,

in general, difficult to determine, especially for problems in several

e space dimensions. They may well be a complicated function of the

conditions given and bear little resemblance to them.

An additional complication induced by overspecification is that the

underlying solution being approximated is not generally continuous. The

phenomena associated with approximations to discontinuous solutions have

been studied by several authors, a good discussion and summary of these

results can be found in section 10 of Thome(e [21]. These results may
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be summarized as follows. If a non-dissipative approximation is used,

then high frequency waves emanate from the region of the discontinuity

and travel across the domain without losing appreciable amplitude.

They will usually travel with the highest fundamental wave speeds and

rapidly cover the domain with error. If scalar equations are being

approximated, then this region of error can be restricted to the vicinity

of the discontinuity by using dissipative approximations. However, these

results do not apply to systems of equations as we have here. The errors can

propagate away from the discontinuity through other components of the

solution. Boundary value overspecification may be regarded as a

stationary source of such discontinuities.

In order to avoid the problems associated with the proper selection

of boundary conditions, the order and type of the differential equations

is often raised to obtain a problem that is easier to analyze and

approximate. The equations are usually modified by adding dissipative

terms so that the number of boundary conditions is appropriate. Unfortunately,

this idea seldom works. If a spurious boundary layer of appreciable size

re-sults, the effects are not unlike those discussed above for discon-

tinuities and, unless the dissipative terms are very large, the error

introduced at the boundary will again propagate into the interior.

If the boundary conditions are underspecified there are no

a priori estimates for the differential equations.- In order for an

approximation to be computable there must be a sufficient number of



boundary conditions specified for the approximation. This cannot be

fewer than the number required for the differential equation.

Additional conditions are usually constructed by means of extrapo-
. .

lations. For an underspecified problem the extrapolation of quantities

that should be prescribed results in an unstable or inconsistent

approximation of the wrong differential equation.

59



REFERENCES

Dl

121

[31

[ 41

[ 51

[ 61

I71

hl

[93

i101

ml:

c 12 1

D31

N. Campbell, "Stability analysis of a difference scheme for
the Navier-Stokes equations," Numer. Math. 14 (1?70), pp. 435-447.---.- ----

J. Charney, "Integration of the primitive and balance equatio,rs,"
Proceedings of the International Symposium on Numerical Weather- - - -  - - - - -  -7

Prediction,- - - - Tokyo (ig$~~-fQ-lp .-------------'- ---.---

J. Charney, R. Fj$rtoft, and J. von Neumann, "Numerical integration
of the barotropic vorticity equation," Tellus 2 (1950),
pp. 237-254.

- -  -

R. Courant and D. Hilbert, Methods of lMathematica1 Physics,---
Vol. II, Interscience Publishers, New%rk(lg6r

- -

H. Davies, 'On the lateral boundary conditions for the primitive
equations," J?, Atmos.me- SC& 30 (1973), pp. 147-150.--

H. Davies, "Reply" to "Comments 'On the lateral boundary conditions
for the primitive equations'," J. Atmos. Sci. 31 (1974), pp. 596-597.- - - - -  -

E, de Rivas, "Comments 'On the lateral boundary conditions for
the primitive equations'," J. Atmos. Sci. 3_1 (1974), p. 596.--e--e__

J. Dutton, "The nonlinear quasi-geostrophic equation: existence
and uniqueness of solutions on a bounded domain,' J. Atmos. Sci.
s (1974), ppe 422-433.

T. Elvius and A. Sundstr&, "Computationally efficient schemes
and boundary co;lditions for a fine-mesh barotropic model based
on the shallow-water equations," Tellus 25 (1973), pp. 132-155.--

i3 . custafsson, H.-O. Kreiss and Arne Sundstrom, "Stability theory
of difference approximations for mixed initial boundary value
problems, II," Math. Comp. 26 (19721, pp. 649-686.--

B. Gustafsson and A. Sundstr'dm, 'Incompletely parabolic systems
in fluid dynamics," to appear.

H.-O. Kreiss,
equations,"

"Initial boundary value problems for hyperbolic
Comm. Pure and Appl. Math. 23 (1970), pp. 277X.98.

H.-O. Kreiss,
equations,"

"Initial boundary value problems for hyperbolic
Conference on the Numerical Solution of Differential---

Equations,
__-- .--

e d s .- - A. Dold and B. E&man, Lecture Notes in
Mathematics, No. 363, Springer-Verlag, Berlin (1974).

60



D41 A. Majds and S. Osher, "Initial-boundary value problems  for
hyperbolic equations with uniformly characteristic boundaries,"
Comm. Pure and A&@. Math. 28 (1975), pp. 607-675.------ - - -  -

051 J. Oliger and A. Sundstrti', )SThe initial-boundary value problem
for the inviscid Eulerian e'quations for fluid dynamics," to
appear.

Cl61 D. Rousseau, "Experience preliminaire a l'elaboration d'un
mod?le numerique de p&vision regionale," Notes de l'&~blissement--- ---
d'etudes et de recherches meteorologiques, 259- - ~&SPiT--

- - I -
- - - - -

n7 1 J. Serrin, "On the uniquenes.3  of compressible fluid motions,"
Arch. Rat. Mech. Anal. 3 (1959!, pp. 271-288.PI_ --

[181 J. Strikwerda, "Initial boundary value problems for incompletely
parabolic systems,' Ph.D. Thesis, Dept. of Math., Stanford
University (1976).

[lPI A. SundstrZn,
equation,"

"Stability theorems for the barotropic vorticity
Mon. Wea. Rev. 97 (1969), pp. 340-345.m--p- .--

[201 M. Taylor, Pseudo Differential Operators, Lecture Notes inw--
Mathematics, No. 416, Springer-Verlag, Berlin (1974).

c211 V. Theme/e, "Stability theory for partial difference operators,"
SIAM Rev. 11 (1969), pp. 152-195.

ml A. Wiin-Nielsen, "On the propagation of gravity waves in a
hydrostatic, compressible fluid with vertical wind shear,"
Tellus 17 (19651, pp. 306-320.




