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Abstract.

We formalize certain rules for deriving upper bounds on the stability

number of a graph. The resulting system is powerful enough to

( >i encompass the algorithms of Tarjan's type and (ii) provide very

short proofs on graphs for which the stability number equals the

clique-covering number. However, our main result shows that for almost

all graphs with a (sufficiently large) linear number of edges, proofs

within our system must have at least exponential length.
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1. Introduction.

By a graph, we

one that is finite,

S of vertices in a

vertices in S are

shall mean what is sometimes called a Michigan graph:

undirected, without loops and multiple edges. A set

graph G is called independent or stable if no two

adjacent; the largest cardinality a(G) of a stable

set in G is called the stability number of G . Now, let G be a graph

and let t be a positive integer such that

a@) 5 t ; (14

how laborious is it to verify a proof of (l.l)? Of course, this question

has a direct bearing on the conjecture that P # NP ; in particular, the

celebrated theorem of Cook [2] suggests that it is extremely time-consuming

to verify proofs of (1.1). We shall refrain from elaborating on this

interesting point; instead, we direct the reader to [2], [lb] and [l].

As for evaluating a(G) , the best available algorithm is due to Tarjan

and Trojanowski [lo]: its running time on a graph of order n is 43o(2 >*

The framework of the present paper is quite modest: restricting the

intuitive notion of a proof rather drastically, we

system of "recursive proofs". This system remains

'b> encompass a certain class of algorithms that

Trojanowski algorithm,

shall study the resulting

powerful enough to

includes the Tarjan-

(ii) provide very short proofs of (1.1) for every graph G whose set of

vertices can be covered by a(G) cliques.

Nevertheless, we shall show that there are valid inequalities (1.1) whose

proofs must be excessively long. More explicitly, for every sufficiently

large d there is a positive s with the following property: for an

overwhelming majority of all graphs G with n vertices and dn edges
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there are valid inequalities (1.1) whose recursive proofs must have

length at least (1+# . (The assumption that the number of edges of

G grows linearly with n is crucial: in fact, the conclusion fails as

soon as d is allowed to grow

Proposition 4.1.)

At this moment, it may be

beyond every bound. For details, see
. .

worth pointing out two shortcomings that

practitioners sometimes find in results on computational complexity:

the worst case criterion and the asymptotic point of view. The first of

these objections does not apply to our result at all but the second one

certainly does: the numerical values of s are very small. (One could

improve on them by taking a little more care in the computations but

even then they probably would not be very impressive.)

In Section 2, we point out those properties of random graphs which

appear in the proof of the main result: looking at small subgraphs of G ,

and then extrapolating in a straightforward way, one would expect a(G) to

be much larger than it actually is. In that sense, a(G) is very much a

"global parameter". And it is precisely this global character which makes

the proofs of (1.1) so long. In Section 3, we describe a certain class of

crude algorithms for evaluating a(G) and then touch briefly upon the

more sophisticated algorithm of Tarjan and Trojanowski. That section

provides the motivation for the definition of a recursive proof presented

in Section 4. The exponential that appears in our main result originates

from an upper bound on the tail of the hypergeometric distribution; it

finds its way into the theorem via a lemma on binary trees which we set

aside in Section 5.
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In the context of another NP-complete problem (namely, that of

satisfiability of Boolean expressions), there are many results similar

in spirit to ours; most of them can be found in [3]. In particular, the

proof system investigated recently by Galil [ll] is very much like ours;
. .

however, the similarity does not extend beyond the superficial level.



3

2. Random Graphs.

In this section, we shall deal with graphs whose vertices are labeled

as Vp$’  l l l Pn l
Two such graphs may be distinct even if they are

isomorphic; hence their total nwnber is 2
n(n-1)/2

. If P is a property

which a graph may or may not have then we shall denote by t(P,n) the

number of those graphs with n vertices which‘do have the property,

Finally, we shall say that almost all

ratio t(p,np
n(n-1)/2 tends to one

statement of this kind appears in the

graphs have the property P if the

as n tends to infinity. A typical

following lemma. The lemma itself

seems to be a part of the graph-theoretical folklore. It appears at least

implicitly in a 1947 paper by ErdBs [5]; further refinements can be found

in works of Matula [17], Grimmett and McDiarmid [12], Erdtis and Boll&as

[8] and perhaps others.

Lemma 2.1. Almost all graphs G of order n have the property that

a(G) < 2log n/log 2 .

Proof. Denote 2 log n/log 2 , rounded up to the nearest integer, by

k(n)  l
Clearly, the number of those graphs of order n for which a 1 k ,

divided by the number of all graphs of order n , does not exceed

( n )2-k(k-lp
k . (2.1)

By elementary estimations, (2.1) is at most

For all sufficiently large n , we have

T2-(k-l),/2 = e21i2 kI < .99

(2.2)

and so (2.1) tends to zero as n tends to infinity. Ll
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In the theory of random graphs developed by ErdBs and Renyi [8],

[91, [lOI, one investigates graphs with n vertices and m edges.

Clearly, the number of such graphs is

n( >
( >2 . .

.
m

(2.3)

We shall denote by t(P,n,m) the number of those graphs with n vertices

and m edges which have some property P . If m is a function of n

such that each m(n) is a nonnegative integer not exceeding n(n-1)/2

and if the ratio of t(P,n,m) to (2.3) tends to one as n tends to

infinity then we shall say that almost all graphs with n vertices and m

edges have the property P . The following lemma has been used by Erd&s in

[TV] and elsewhere. (Throughout the paper, log denotes the natural logarithm.)

.Lemma 2.2. If m(n) 2 16n for all sufficiently large n then almost

aU graphs G with n vertices and m edges have the property that

n2a(G) < -m-lo@;E . (2*4)

Proof. Denote the right-hand side of @A), rounded up to the nearest

-integer, by k(n) ; note that k(n) 3 a as n 4 03 . Clearly, the number

of those graphs with

by the number of all

n vertices and m edges for which Q! > k , divided

graphs with n vertices and m edges, does not exceed

(2.5 >

By elementary estimations, (2.5) does not exceed



( F)k(l - $j$f)m < (y eq(- ?a>)” .
In addition, we have

Since the last quantity becomes smaller than .99 for all sufficiently

large n , we conclude that (2.5) tends to zero as n tends to infinity. D

Next, let us digress a little. When m,n,s are nonnegative integers

such that m < n and when t is a positive real number, we shall set-

P = m/n , denote by C* the summation over all integers j > s&t) and

define
-=_

B(m,n,s,t) >

H(m,n,s,t) = C* .
n

( >S

Thus B is the familiar "tail of the binomial distribution" and H is the

"tail of the hypergeometric distribution", The well-known interpretation

of these quantities goes as follows. Imagine a barrel containing n apples,

exactly m of which are rotten; take a random sample of s apples.

Technically, the sampling can be done in at least two ways. We might pick

_ and examine the apples one by one, each time throwing the apple back into

the barrel before reaching in again: this is called sampling with

replacement. Or we might just grab the s apples at the same time:

that is called sampling without replacement. Whichever method we use, we

should expect about ps rotten apples in the sample. The quantities B

and H give the probability that at least (p+t)s rotten apples will

appear in the sample with and without replacement, respectively.
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An elegant argument (apparently due to S. N. Bernstein) shows that

B(m,n,  0) 5
((&)y &!$-p-t),  l

A similar bound for H seems to be far more difficult to establish.

A special case of a theorem of Hoeffding ([13], Theorem 4) states that

Hbn, 0) 5 (( &)pt(&cty-p-t)s  ’

It is a routine matter to convert (2.6) into weaker but more tractable

bounds; we are about to do that for t = p ,

Lemma 2.3. Hbww,m/n) 1. e
-ms/4n

.

Proof. If p > l/2 then the left-hand side vanishes. If p 5 l/2 then

(2.6) implies

1s log H(m,n,s,p) < 2plog $ f (l-2P) log
(I+ i%).

15 2p log 5 + p < -P/4

which is the desired conclusion. IJ

Upper bounds on H are useful in proving statements about random

graphs, such as the following one.

Lemma 2.4. Almost all graphs G with n vertices and m edges have the

following property: every subgraph of G induced by s vertices such that
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2
s >

4nm log i (2.7)

has fewer than 2ms2/n2 edges.

Proof. Clearly, the number of those graphs which do not have the property,

divided by the number of all graphs with n vertices and m edges, does

not exceed

By Lemma 2.3, this quantity does not exceed

(2.8)

By (2.7), we have

Hence (2.8), being bounded from above by

c (.99)s < loo(.99)4n2 l"g(m/n)/m
S

tends to zero as n tends to infinity. c3



39 Algorithms.

In this section, we shall first describe a class of crude algorithms

for finding a largest stable set in a graph and point out that by the use

of appropriate data structures, the running time of these algorithms can
. .

be cut down considerably. Then we shall briefly outline a class of more

sophisticated algorithms which we shall call Tarjan algorithms,

Let us suppose that, given a graph G = (V,E) and a subset S of V ,

we wish to find a largest stable subset A of S. We may begin by

choosing a vertex ES ; the desired set A either does not contain v

or it does contain v . In the first case, A is a largest stable subset

of the set sl = s-(v) ; in the second case, A-{v) is the largest stable

subset of the set -S2 obtained from S by deleting v with all of its

neighbors in S . We shall denote Sl by S-v and S2 by SW ; with

.this notation, we have

m> = max(a(S-v) , l+a(S+v)) .

Thus we have reduced the original problem into two similar, but smaller, *

subproblems: one for S-v and the other for P-v .

Now, an algorithm for finding a largest stable set in G suggests

-itself: begin with S = V , do what we have just done and then simply

iterate away. One may visualize a binary tree with nodes labeled by

subsets of V . The root is labeled by V itself; if a node is labeled

by a nonempty set S then its left son is labeled by S-v and its right

son is labeled by S+v for some vcs . If G has n vertices altogether

and if each vertex has fewer than d neighbors then the tree will have at

least 2n/d nodes. Of course, that does not mean that the algorithm will

create at least 2dd subproblems: different nodes of the tree may have
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the same label. (To take an extreme example, note that all the leaves

of the tree will be labeled by fl .)

We shall describe a possible implementation of the algorithm. For

definiteness, let us assume that we have a fixed "choice function" f

which assigns to each nonempty  subset S of V a vertex f(S) ES .

Such a function gives rise to an algorithm which we shall call the

f-driven algorithm,

In its first phase, the algorithm creates a list of certain subsets

of v, which will be called subproblems. It will be convenient to keep

the list ordered, with larger subproblems preceding the smaller ones;

within each group of subproblems of the same size, the order may be

--_
lexicographic. At each mment, we shall have a partial list of subproblems,

with a pointer at one of them. At the very beginning, V will be the

only subproblem on the list; the first phase will terminate as soon as

the pointer gets to $ . When the pointer is at a nonempty set S ,

we define s1 = S-f(S) and S2 = S*f(S) . Then we add Sl and S2 on

the list (unless they are already present), shift the pointer to the

successor of S and iterate.

In the second phase, we pass through the list in a reverse order

(from p to V ) and evaluate a(G) for each subproblem S . To begin

with, we have a($) = 0 ; for each nonempty subproblem S , we have

a(S) = max@(S,) Y l+4S2H l

In the third phase, we shall find a largest stable set A in G .

To begin with, let us set A = p and S = V . With each iteration, the

set S will shrink; when it will become empty, A will be the desired

largest stable set in G . Each iteration is simple. If a(s) = a(s,)

then we replace S by Sl ; otherwise a(S) = l+a(s,) in which case we

add f(S) to A and replace S by S2 .



It is crucial to use the appropriate data structures when implementing

the first phase. Trivially, the number of subproblems on the list never

exceeds 2
n

l If we implement the list as a balanced tree (see [15] or [l])

then each of the look-ups and insertions can be handled within a number

of set-comparisons proportional to n . -If each f(S) can be evaluated

within a steps and if the total number of subproblems is b then the

running time of the algorithm is O(abn2) . For at least a few choices

of f that come to mind, a is polynomial in n . In

threatens to be the decisive factor in the upper bound.

Needless to say, the number of subproblems depends

function f ; for most functions f , that number seems

estimate. To simplify the situation, we shall restrict

very special choice functions: when the vertices of G

V17V2’ “‘7Vn 7
the function f chooses that vertex of

that case, b

on the choice

difficult to

ourselves to

are ordered as

S which has the

smallest subscript. The resulting f-driven algorithm will be called an

order-driven algorithm.

The following proposition and its corollaries (Propositions 3.2 -3*5)

are due to Szemeredi. In its statement, N(k) denotes the nwnber of

stable subsets of (vl,v2,...,vk] . Here and later on, we shall find it

-convenient to denote by S*T the subset of S resulting when all the

vertices in T and all their neighbors are deleted.

Proposition 3.1. The order-driven algorithm applied to a graph with

vertices v+2, "dn creates at most

n-l
1 + c min(N(k), 2n-k-1)

k=O

subproblems.



Proof. For each subproblem S , let k be the largest subscript

such that (vl,v2,.**,vk} fW = fi l It is not difficult to see that

s = (v,,,,vk+2�  l e*,vn]*B
for some stable subset B of {vl,v2,...,vk] . Hence for each fixed k ,

there are at most N(k) subproblems S . In addition, if k < n then

there are only 2n-k-1 subsets S of {v~+~,...,v~] such that v~+~ES . 0

Proposition 3.2. The order-driven algorithm applied to a graph G of

order n such that a(G) < n/2 creates at most

n2( c$G) >

subproblems."

Proof. Trivially, we have

a@)
N(k) < c ( 2, 2 n( $I) )

-isO

for each k ; the rest follows from Proposition 3.1. 0

Proposition 3.3. For almost aJl graphs G of order n , the order-

driven algorithm creates at most

,2(1 + log n/log 2)

subproblems.

(The proof follows immediately from Proposition 3.2 and Lermna. 2.1.)

Proposition 3.4. If m(n)/, 3 * then almost all graphs G with n

vertices and m edges have the following property: for every constant

c>l, the order-driven algorithm on G creates o(cn) subproblems.
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Proof. By

n vertices

Lemma 2.2, we have a(G) = o(n) for almost all graphs with

and m edges; the rest follows from Proposition 3.2. 0

Proposition 3.5. For every graph with n vertices, the order-driven

algorithm creates at most 3'2 (n-l>/2 -1 subproblems.

Proof. We have

n-l
c min(N(k),2n-k-1) <

n-l
Z min(2k,2

n-k-l ) < 3.2(n-1)/2-2  ;
k=O k=O

the rest follows from Proposition 3.1. 0

Note that the bound of Proposition 3.5 is sharp: it is attained

by the graph with vertices v17~27...7v2m+l and edges

v1v~+l,v2v2m,...,vmvm+2  . Nevertheless, if we can choose the ordering

of the vertices then the bound can be improved.

Proposition 3.6. Every graph with n vertices can be ordered in such

a way that the order-driven algorithm creates O(n23nl7) subproblems.

Proof. We shall first describe the ordering and then we shall show that

it has the desired property. Suppose that we have already constructed

e
the initial segment vl,v2,...,~4t for some t 2 0 . If the graph

H = G-(v17~2,...,~~t] contains a path wlw2w3w4 then we set v4t+i = wi

for 1 < i < 4 and iterate. Otherwise each component of H is a star- -

or a triangle. In that case, we denote 4-t by m and enumerate the

vertices of H as vmt,, VW27 l l l 7 vn
in such a way that

(i) the vertices of each component of order j are enumerated as

vi+l7  vi+27 l l l 7 vi+ j
for some i ,

(ii) if that component is a star then vi+1 is its center.
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It is not difficult to verify that N(k) < 2 (3k+l)/4 for each

k = 1,2,...,m . If m > 4n/7 then-
n-l
c min(N(k),2n-k-1) = O(n23n/7) .
k=O

If m < 4n/7 then we resort to another argument: note that each

subproblem has the form {vk+l,~k+2,...,~n)*B such that 1 < k < n and

B is a stable subset of {vl,v2,...,vm}  . Since N(m) 5 2 7

the total number of subproblems is 0(n23n/7) . 17

It is not unlikely that the bound of Proposition 3.6 can be improved.

Let us call a number c admissible if every graph with n vertices can

be ordered in such a way that the order-driven algorithm creates O(c")
--.

subproblems; let co denote the infimum of all admissible c . By

Proposition 3.6, we have co 5 23/7 ; on the other hand, the main result

of this paper implies that

Similar questions apply to

to the even wider class of

As pointed out at the

co>l. What is the exact value of co ?

the wider class of f-driven algorithms and

Tarjan algorithms which we are about to outline.

beginning of this section, every f-driven

algorithm applied to a graph gives rise to a binary tree whose nodes are

labeled by subproblems: if a node x is labeled by a nonempty subproblem

S then the left son of x is labeled by S-v and the right son of x

is labeled by SW for some VES . Elimination of duplications on the.. f

. list of subproblems amounts to pruning the tree: we simply omit nodes

whose presence would result in duplicated labels. The idea of Tarjan [19]

leads to pruning of a different kind. In an f-driven algorithm, each

subproblem S is generated in the form (V-A)*B such that B is a stable

set; eventually, such a subproblem yields a stable set of size
a(s)+IBI l

If another subproblem Sl is generated in the form (V-Al)*Bl such that
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Sl 5 S and IB1\ 5 1~1 then Sl can be discarded: in a sense, Sl is

dominated by S . In terms of the binary tree, we might index each node x

by the number r of right-hand turns on the path from the root to x ;

a branch rooted at a node x1 (labeled by Sl and indexed by rl )

may be pruned off whenever there is another node x (labeled by S and

indexed by r ) such that SlcS and rl<r.-

Now we have arrived at two kinds of pruning: these might be called

"duplication pruning" and "dominance pruning", the former being (in a sense)

a special case of the latter. An f-driven algorithm with the option of

using both duplication pruning and dominance pruning to eliminate subproblems

will be called a Tarjan algorithm. Of course, systematic use of dominance

pruning may shortenthe list of subproblems quite considerably. Ikt terms

of running time, however, the means could defeat the purpose: in general,

it may take a very long time to decide whether the subproblem that has

been just created is dominated by at least one of the subproblems already

on the list. Thus it may be wise to pass up the option of (possible)

dominance pruning in most cases, resorting to it only in those simple

situations where the dominating subproblem is almost staring at us. Such

a strategy led Tarjan [19] to an algorithm whose worst-case running time

-for a graph with n vertices is o(1.286") . Later on, Tarjan and

Trojanowski [20] designed an improved version of that algorithm with

running time o(2 ."13) It may be worth pointing out that these upper

bounds come out of rather rudimentary applications of dominance pruning

only: the argument does not take duplication pruning into account at all.

Thus, it is not inconceivable that (with the subproblems kept in a balanced

tree, so that duplication pruning is easy to implement) the worst-case

running time of the Tarjan-Trojanowski algorithm is even better than

16



o(243 > l
Nevertheless, the main result of this paper implies the

existence of a constant c > 1 and arbitrarily large graphs G with

n vertices such that every Tarjan algorithm applied to G must create

at least cn different

vertices and dn edges

large.)

One more comment:

subproblems;' (In fact, almost all graphs with n

have this property as long as d is sufficiently

from the practical point of view, the Tarjan -

Trojanowski algorithm might be preferable even to (hypothetical) f-driven

algorithms creating cn subproblems for c fairly close to 1 . The

point is that the space requirements of such algorithms would be roughly

ncn whereas the space required by the Tarjan -Trojanowski algorithm is

only polynomial in n .



4.1 Recursive Proofs.

For the moment, let us deal with an arbitrary but fixed graph

G = (V,E) . By a statement, we shall mean an ordered pair (S,t) such

that S is a subset of V and t is a nonnegative integer. (Such a

statement is to be interpreted as the inequality a(S) 5 t which, of

course, may be true or false.) By a recursive proof of a statement

(S,t) over G ,

(sl t-7 i

we shall mean a sequence of statements

7 i = 0,1,...,m (4.1

such that (SoYto) = a 7 (sm7tm) = (S7t) and such that each statement

@kY $> with k > 1 can be derived from the previous statements- (‘j-7 ti)

O<i<k, by at-J-east one of the following two rules.-

1. The dichotomy rule: from (S-v,ti) and (S*v,tj) we can derive

(tS,IIlaX(ti,l+tj))  l

2. The monotone rule: from (S,t) we can derive (S',tf) whenever

S'c S and t' >t .

Clearly, if (4.1) is a recursive proof of (S,t) then a(Si) 5 t.1

for every i ; in particular, a(s) 5 t . Conversely, if a(S) < t then

there is a recursive proof of (S,t) . In order to see that, consider the

family F of subproblems created by some f-driven algorithm that has

just found a largest stable subset of S . Dnznerate all the ordered pairs

(i*,a(S*)) with S*eF as (4.1) in such a way that l’il I: Isi+ for
every i . Clearly, the resulting sequence constitutes a recursive proof

of (SYa9 > ; if t >a(S) then one additional application of the

monotone rule completes a recursive proof of (sYt> l

It will be convenient to define the length of (4.1) as m . Now,

Propositions 3.1-3.6 yield direct corollaries in terms of recursive

proofs. We shall state explicitly only one of them,

18



Proposition 4.1. If c > 1 and if m(n)/, --) = then, for almost all

graphs G = (V,E) with n vertices and m edges, there are recursive

proofs of (V,a(G)) of length o(c") .
. .

In addition, every Tarjan algorithm applied to G = (V,E) yields

a recursive proof of (V&G)) . Hence for every graph G = (V,E) of

order n , there is a recursive proof of (V,a(G)) of length 0(2"13) .

Now, we shall show that for a certain class of graphs G = (V,E) ,

there exist very short recursive proofs of (V&G)) . This class

consists of all those graphs G for which a(G) equals Q(G) , the

smallest number of cliques whose union is V . (Trivially, we have

a(G) < Q(G) for every graph G .) It may be instructive to split the

argument into three easy propositions.

Proposition 4.2. If G = (V,E) is a complete graph of order n then

there is a recursive proof of (V,l) whose length is n .

Proof. Enumerating the vertices of G as v1,v2, . . . . vn , define

si = {v1,v2 ,..., vi3 . Trivially, the sequence (~,O),(Sl,l),...,(Sn,l)

constitutes a recursive proof. 0

Proposition 4.3. Let Gl = (Vl,El) and G2 = (V2,E2) be graphs such

that VlnV2 = $8 ; let GlUG2 denote the graph (VluV2, ElUE2) . If

there are recursive proofs of (V.,a(Gj)) of length m, for each
3 J

j = 1,2 then there is a recursive proof of (VlUV2,a(Gl)+a(G2)) whose

length does not exceed ml+m2 .

Proof. If (S,t;) with i = 0,1,...,m is a recursive proof of

) , followed by the sequenceP574G9

A I

) then a recursive proof of (Vl,a<Gl)

19



(‘1 u ‘i 7 a(Gl)+ti) , i = 1727 l -7%

constitutes a recursive proof of (VlUV2 ,a(Gl)+a(G2))  l ti

Proposition 4.4. Let F be a subgraph of G and let (4.1) be a recursive

proof over F . Then there is a recursive proof of (S,,t,) over G

whose length does not exceed 2m ,

Proof. We shall create the desired proof over G from (4.1) by inserting

a new statement immediately before each (Sk,tk) that has been obtained

from the previous statements by the dichotomy rule. For every such (Sk,tk) ,

there are subscripts i, j and a vertex veSk such that i < k , j<k7
--

tk = max(ti  7 l+tj) and Si = Sk-v, S. = Sk*v in F . The statement to

be inserted i,mmediately before (9'th)J is (Sk, tk-1) such that

I
% = SkscV in G , Clearly, (Sk, tk-1) follows from (S.,t.) by the

3 3
monotone rule whereas (Sk,tk) follows from (Si,ti) and (Sk,tk-1)

by the dichotomy rule. Cl

Proposition 4.5. For every graph G = (V,E) of order n there is a

recursive proof of (V, Q(G)) whose length does not exceed 2n .

e

Proof. Consider the subgraph F of G consisting of 0(G) cliques

whose union equals V . By Proposition 4.2 and by repeated applications

of Proposition 4.3, there is a recursive proof of (V, 0(G)) over F

whose length equals n . The rest follows from Proposition 4.4, Cl

We shall close this section with another easy observation which will

be handy later. The proof can be left to the reader.
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Proposition 4.6. If (4.1) is a recursive proof over G = (V,E) and

if WCV then

(Sinw,ti) y i = 0,1,..., m

is a recursive proof over the subgraph of G induced by W .
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5. A Lemma on Binary Trees.

Let a,b, r, s be nonnegative integers, A binary tree whose nodes

are colored red and blue will be called ( a,b,r,s) -constrained if, along

each path from the root to a leaf, . .

(9 exactly a nodes are followed by their left sons and exactly b

nodes are followed by their right sons,

(ii) at most r nodes are red,

(iii) at least s red nodes are followed by their right sons.

If, for some choice of integers a , b , r and s , there is at least

one (a,b,r,  s> -constrained tree then we denote by f(a,b,r,s)  the largest

possible number of-leaves in such a tree; otherwise we set f(a,b,r,s) = 0 ,

Trivially, we have

fb7b7r7s)  5 ( sib >
and

f(a,b,r,s) = 0 whenever s>b or s>r.

The purpose of this section is to derive the following upper bound on

f(a,b,r,  s) .

-Lemma 5.1. If s 2 2br/(a+b-1) , s 2 r-a+1 and s > 1 then-

f(a,b,r,s) < ( 'hb) z e-br/b(a+b)
a+b l

First of all, we shall establish a simple recursive bound.

- {

f(a-l,b,r,s)+  f(a,b-l,r,s)
Fact 5.2. f(a,b,r,s) < max

f(a-l,b,r-l,s)+f(a,b-l,r-l,s-1)  .

Proof. Let T be an (a,b,r,s) -constrained tree. If its root is blue

then the left sub-tree is either empty or (a-l,b,r,s)  -constrained and the
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right sub-tree is either empty or
b,b-17  r7 s) -constrained. If the root

is red then the left subtree of T is either empty or (a-l,b,r-1,s)

-constrained and the right sub-tree of T is either empty or (a,b-l,r-1,s.1)
. .

-constrained. Hence the desired conclusion. 0

Next, for every choice of nonnegative integers a , b , r , s such that

s<b , s<r , s > r-a+1-

we define

b-s
F(a,b,r, s) = c ( 2: ) ( "~-~o:-i ) ..

0
0 0

1=

It is easy to verify that

Fb,b,r,O) = ( a;b > ,

F(a7b,r,b)  = (;) 7

a+b-r
Fb7b7r7r) = ( a > ,

F(a,b,r,r-a+l) = ( afjbb(;)  7

F(a-l,b,r,s)+F(a,b-l,r,s)  = F(a,b,r,s) ,

F(a-l,b,r-l,s)+F(a,b-l,r-1,s.1)  = F(a,b,r,s)

whenever the left-hand side terms are defined.

Fact 5.3. We have f(a,b,r,s) < F(a,b,r,s) whenever the right-hand side-

is defined.

This inequality can be proved by induction on a+b in a straightforward

way; we omit the tedious details. It is not unlikely that there is a

direct combinatorial proof of Fact 5.3. Furthermore, it is not difficult
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to show that f(a,b,r,s)  = F(a,b,r,s) whenever the right-hand side is

defined; however, that is irrelevant for our purpose.

Proof of Lemma 5.1. Wemayassume ssb and s < r for otherwise-

the left-hand side vanishes. Then, by Fact 5*3,

fb7b7r7s) 5 F(a,b,r,s) .

Since r 2 s 2 2br/(a+b-1) , we have 2b/(a+b-1) < 1 and

.
s+i > 2b -$&-

for every nonnegative i , Hence, with the notation of Section 2,

( r+i
>(

a+b-r-l-i
s+i

) < H(r+i,a+b-l,b,(r+i)/(a+b-l))~(a~~-l)  .
b-s-i -

By Lemma 2.3, we h&e

“c” (f(a,b,r,  4 5 .
a+b a
b )

e -br/b(a+b)

0
a+b

1=

which implies the desired result.
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6. The Main Result.

A graph G of order n will be called (d,s) -sparse if

( >i every vertex of G has degree less than d ,

( >ii every subgraph

has fewer than

of G induced by m vertices such that m > sn-

dm2/n edges.

Theorem 6.1. Let n, t be positive integers and let d, s be positive

reals such that

n < 1Otd ,

n > 500t2/3 d ,-

n > 100t3/4d3/4 ,2.

n > 2000t ,-

E < n2/1810t2 d2 ;

let G = (V,E) be a (d,s) -sparse graph of order n , Then every recursive

proof of (V,t) has length at least

gOdexp  n
n

20d2
.

Proof, We shall set

a =

. and show that

a+b
ab

(6.1)

Ln3/45000t2d2J  , b = Ln2/900td2J

every recursive proof of (V,t) has length at least

2

(6.2)

The reader may easily verify that a > b > 200 and so- -

200
a 'F5i0

n3 200 n2

45 OOOt2d2 ' b %zi*
900td2 '

Then it follows that (6.3 is at least (6.1).
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Let us outline our strategy. With each recursive proof of (V,t) ,

we shall associate a binary tree T whose nodes will be labeled by

statements from the proof, The assignment of labels to nodes will not

be one-to-one (to take an extreme example, all the leaves of T will be

labeled by $ ) and so the number of nodes of T may be much greater

than the length of the proof. We shall find a node z with a certain

convenient property and then we shall construct a new binary tree T* .

Even though T* will not be a subtree of T in a strict sense, its nodes

will cOme from T ; in particular, z will be the root of T* . Finally,

we shall show that within the set N of leaves of T* , no label is

repeated too often. More precisely, for--

define

each subset S of V we shall

N(S) = (xEN: x is labeled by (S,t') for some t' )

*and prove that

(6.3)

Since N will be nonempty, (6.3) will imply the desired result: indeed,

the number of those sets S for which N(S) # $ must be at least (6.2).

Before going into the details, the reader may welcome a preview

-of the idea behind the proof of (6,3), however vague such a preview may

have to be. Let (W,t*) be the statement that labels z . In the

absence of the monotone rule, the tree T* is constructed in such a

way that every subproblem S labeling a leaf of T* is obtained from

W by simply deleting a vertices and by deleting b vertices with

their neighbors. If we had our way, the subgraph H induced by W-S

would consist of a isolated vertices and b disjoint stars: in that
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case, we could reconstruct the two sets of vertices, proving that

IN(S)1 = 1 . Actually, we shall be content even if things are not all

that clear-cut, as long as we can approximately reconstruct the two sets.

That will be the case as long as H is reasonably large. (If H is

large then most of the b vertices must have large degrees. At the same

time, the second defining property of a (d,s) -sparse graph implies

that the average degree in H is rather small. Hence the vertices of

large degrees are quite conspicuous.) In order toe that H will

be large, we have to choose z appropriately. In general, the rules

for constructing T* are designed to neutralize the desultory effects

of the monotone rule. Now that the poor reader is properly confused,

we can proceed to the details.

Constructing T , we shall find it convenient to call certain statements

in the proof eligible: a statement will be called eligible if it is ($70)

or if it follows from sOme two earlier statements by the dichotomy rule.

Only the eligible statements, with a possible exception of (v,t> 7 will be

used to label the nodes of T . The construction of T is recursive; the

root of T is labeled by (V,t) . Suppose that we have constructed a node.

x labeled by a statement @k'-$) and having no sons at this moment.

If (s7tk) = (jb,O) then x will be a leaf of T . Otherwise there are

. eligible statements (Si,'i) 7 (Sj,tj) md a Vertex vcsk such that
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i,j<k , si 2 Sk-v ,
3 2 sk*v '

tk 2 max(ti ,l+tj) .

In that case, we shall create both sons of x , label the left one by

(Si,ti) and label the right one by (Sj,tj) . For further reference,

we shall set S(x) = Sk , t(x) = tk and“ v(x) = v . It will be useful

to note that

ti 5 tk and
% 5 'k-l ' (6.4)

Next, we shall find the special node z . A node y will be called

a descendant of a node x if there is a path x0,x1, l . l , xk such that

x = xo , y = xk and each xi+1 is a son of xi . If, in addition,

exactly b nodes xi are followed by their right sons xi+l then Y
--

will be called a b-descendant of x . Repeated applications of (6.4) show

that

if y is a b-descendant of x then t(y) _< t(x)-b . (6.5)

We claim that

there is a node z such that S(z) > n/2 and such that

IS(Y)1 < Is<z>l - /bn 2t for every b-descendant y of z ,
>

(6.6)

A node with this property can be found by constructing a certain sequence

YOYYlJ”’ of nodes of T such that y. is the root of T , If the most

recently constructed yi has a b-descendant y such that

Is( 2 Is( -bn/2t then set yi+l = y ; otherwise stop. By (6.5) ad

by the construction of the sequence, we have

IS( 2 n(l-bi/2t)  , t(yi) < t-bi

for every i . Since t(yi) > 0 , we must have i 5 t/b and so

IS( 1 n/2 for every i . In particular, the very last y. in the1

sequence has the properties required of z . We shall denote S(z) by W .
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With each descendant x of z , we shall associate two subsets

A(x),B(x) of' V : considering the path x xo, l,,..,xk from x0 = z

to xk'x we shall define

A(x) = (v(xi): 0 < i < k and xi+1 is the left son of- xi } 7

B(x) = (v(xi): 0 < i < k and xi-c-l is the right son of x; } .
I

Clearly, we have

Is(x) nwl 2 [WI - I@(x) -B(x)) nwl - c (l+d(v) >

veB(x)

for every descendant x of z , In particular,

if I(A(x) -B(x)) nW/ <: a and /13(x)1 < b then S(X) # fl :- -
-..

just observe that

(6 7. )

(64

a+b(l+d) < 2a+bd <3bd <n/2 .-

Before proceeding to, construct T" , we shall associate a node xx

with each descendant x of z such that

I(A(x)  -B(X)) nwl 5 a and IBM 5 b .

Consider the path x0,x1, . l ., xk such that x
0

= ⌧ , xk is a leaf of T

and each xi+l is the left son of x
i l

Note that B(xi) = B(x) for

every i . There must be at least one i such that 0 < i < k and

v(xi) EW 7 v(xi) { A(x) u B(x) (6.9)

for otherwise

(A(xk) -B(xk) > nw = (A(X) - B(X)) nw and B(J$) = B(X)

but s(xk) = p contradicting (6.8). We shall denote the first xi
satisfying (6.9) by x* ; note that

(A(x++) -B(x*))nW = (A(x) -B(X)) I7W .

At last, we are ready to construct T* . Each of its nodes x will

come from T and satisfy

29



v(x) EW Y v(x) &A(x) UB(x) Y

1 (A(x) - B(x))  nwl < a Y lB(x) 1 5 b Y B(x) 5 w Y

The construction of T* is recursive; therootof T* is z. Suppose

that we have already constructed some node x of T* ; let xL denote. .

the left son of x in T and let s denote the right son of x in T .

If J(A(x)  -B(x))nwJ  = a then x will have no left son in T* ; otherwise

we shall make x*L the left son of x in T* . If IHx>l = b then x

will have no right son in T* ; otherwise we shall make < the right son

of x in T* . It will be useful to make note of the following property

of T* :

along each path.from the root to a leaf,

exactly a nodes are followed by their left sons,
(6.10)

exactly b nodes are followed by their right sons,

and these a+b nodes x give rise to distinct vertices V(X) .

Finally, we shall prove the inequality (6.3). Without loss of

generality, we may assume that N(S) # $ and so S = S(y) for some YEN .

Denote by H the subgraph of G induced by W-S(y) and denote by m the

order of H . Since y is a b-descendant of z in T , (6.6) implies that

m > bn/2t .

On the other hand, (6.7) implies that

m 5 a+b(l+d) < 2a+bd < 3bd .

Enumerate the vertices of H as ul,u2, l *., urn in such a way

Since bn/2t > n3/1809t2d2 and since G is (d,s) -sparse, the graph H

has fewer than dm2/n edges. That is,
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It is now easy to see that, for every positive integer r , we have

s(ui) < 2dm2/nr whenever i > r .

We shall use (6.11) with

r= Lam/4bdJ .

Let us note at once that r > 200 and so-

200
-⌧i�% l

It will be also useful to note that

2rbd
a?- <; 7

2dm2b
5

201 8b2d2
200'
-.m < 4m

nr an - l 9 �

r<a,-

2br br
a+b-1 2 -y>l.

(6.11)

(6.12)

(6.13)

And while we are at it, let us also verify that

a < !$&a% < Se-
200 2; '

1 bn
b < im l 2t < lo"00 l

- So much for high-school algebra. Now, we shall set R = (uL,u2,...,urj

and prove that

\W nRl L $f& (6.14)

for every XEN(S) . To begin with, (6.7),  (6.11) and B(x) 5 w imply

m 5 a+b+dlB(x)nRI+2dm2b/nr .



If (6.14

,
However,

) failed then we would have

m < a+b+2rbd/a + 2dm2b/nr .

the right-hand side of this inequality is at most

(

201 1

m 200*25+
1
- + ?I+ ($$$)2 . a) < m ,
1000 2

Hence (6.14) must hold.

The rest is easy, Consider the subtree of T* consisting of all

the paths from the root z to leaves in N(S) ; color each of its nodes

X red if v(x) ER and blue otherwise. By (6.10) and (6.14), this tree

is (a,b,@br/(a+b-1)) -constrained. Because of (6.1~2) and (6.13),

Lemma 5.1 applies and shows that

--_

INS) 1 < ( aEb > l $ eq - $

( 1

.

By virtue of (6.x0), this is the desired inequality (6.3).

Theorem 6.2. Let m be a function of n such that m(n) = o((n/log n)')

but m(n) > 10
10
n- for all sufficiently large n , Then, for almost all

graphs G = (V,E) with n vertices and m edges, every recursive proof

of (V&G)) has length at least

Proof. By Lemma 2.2 and by Lemma 2.4, almost all graphs with n vertices

and: m edges have the following two properties:

2
a@) < +1og; ,

l

(W every subgraph induced by s vertices such that

24ns > 7 logi

has at most 2 22ms /n edges.
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We shall show that all sufficiently large graphs with these

properties satisfy the conclusion of Theorem 6.2. Let us define

k(n) = [$(5OlogEj'] ,

d(n) = 4hn/n2 ,

4n
2

E(n) = K log ; .

Firstly, we shall show that every graph with n vertices and m > lO"n-

edges satisfying (P2) contains an induced (d,s) -sparse subgraph of

order k . To begin with, 2k(n) <n . Next, an easy averaging argument

shows that G--contains an induced subgraph Ho with 2k vertices and

at most 4mk2/n2. edges. Beginning with Ho , we shall construct a sequence

Ho,Hl,- of induced subgraphs of Ho as follows: if the last constructed

Hi has a vertex v of degree at least d then set Hi+l = Hi-v , otherwise

stop. Clearly, if an Hi gets constructed then Ho had at least di

Ages and so i<k.- In particular, the very last H. in the sequence
J

has at least k vertices; in H. ,
J

we shall choose an induced subgraph H

of order k . Let W denote the set of vertices of H . BY (E>, every
d

subgraph of H with s > sk > 4n210g(m/n)/m vertices has at most- -

2ms2/n2 < ds2/k edges. Hence H is (d,e) -sparse.

Next, by (Pl), we have

n2a(G) < m log ; .

On the other hand, we have

a(G) 2 a(H) 2 k/(d+l) .

For all sufficiently large n , Theorem 6.1 asserts that every proof of

(W&G)) has length at least
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gOdeqk -> 360m eq
n2

k 20d2 n2 m 350 log t 3
.

By Proposition 4.6, this is also a lower bound on the length of every. .

recursive proof of ha(G)) . 0

Let us state a special case of Theorem 6.2 in a compact form.

Theorem 6.3. For every sufficiently large integer d there is a

constant c > 1 with the following property: for almost all graphs

G = (V,E) with n vertices and dn edges, every recursive proof of

(V&G)) has length at least cn .

In closing, two remarks may be in order. Firstly, it would be interesting

to construct an infinite class @ of graphs for which there is a constant

c > 1 with the following property: for every graph G = (V,E) in @ and

with n vertices, every recursive proof of (V+(G)) has length at

least cn l Secondly, it is somewhat frustrating that Theorem 6.2 does

not apply to graphs with cn2 edges. Perhaps the following is true.

Conjecture 6.4. There is a positive constant c with the following
-

property: for almost all graphs G = (V,E) with n vertices, every

recursive proof of (V&G)) has length at least
c

n
log n

l
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7 Concluding Remarks.

There are many "natural" proof systems which extend our system of

recursive proofs; we shall mention just a few. It would be interesting

to strengthen our results by proving their analogues  for the extended

proof systems.

To begin with, one might adjoin the following inference rule:

from (Sl,tl) and (S2,t2) we can deduce (SlUS2,t,+t2) .

Proposition 4.3 shows that, to some extent, this rule is implicit in the

system of recursive proofs. Nevertheless, its addition just might make

the system considerably more powerful. Along this line, further extensions

lead to the system of cutting plane proofs which we are about to describe

briefly. Let us consider a graph G = (V,E) with vertices
vyp  l l l ☺Vn

none of which is isolated. A cutting plane proof of (V,t) is a sequence

of inequalities

5 a..~. < b.
j=l 'J 3 - 1 ( i = 1,2,...,m)

such that

( >i all the numbers a.. and b
=J i are nonnegative integers,

(ii) for every k = 1,2,...,m , either the k-th inequality reads

xr+xs < 1 for some edge vrvS or else there are nonnegative

multipliers ylJy2,...tyk-l  such that

n
(iii) the last inequality reads c

xPt*j=l -

It is not difficult to see that a(G) < t whenever there is a cutting plane

proof of (V,t) . The converse is easy as well: in fact, every recursive
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proof of (V,t) can be converted into a cutting plane proof of (V,t) ,

(The details are left to the reader.)

An inference rule which strengthens the monotone rule and is not

subsumed in the notion of a cutting plane-.proof  goes as follows. Let us

write Sl < S2 if there is a one-to-one mapping f: Sl 3 S2 such that

f(u) and f(v) are adjacent only if u and v are. Clearly,

fram (S,t) we can derive (S',t') whenever S' <S and t' >t .-

Again, it would be interesting to find out whether the addition of this

inference rule makes the system of recursive proofs considerably stronger.

Colin McDiarmid [18] investigated a proof system, similar to our system
--_

of recursive proofs, for deriving lower bounds on the chromatic number of

graphs. We shall describe his system very briefly. Let G be a graph

.whose vertices are labeled by nonempty and pairwise disjoint subsets of

Cl 29 ,...,n} ; let u and v be two vertices of G . We shall denote by

G' the graph obtained from G by adding the edge uv ; we shall denote by

G" the graph obtained from G by identifying u with v (in which case

the label of the new vertex is the union of the labels of u and v ).

As usual, U(G) denotes the order of the largest clique in G . BY a
e
recursive proof of [Gm,tml > we shall mean a sequence

[Gi)ti] 9 i = 1,2,...,m

such that, for each k , either tk < w(Gk) or else there are subscripts-

i, j < k such that Gi = Gk f G. = Gi and tk = min(ti,tj) .
J

Clearly,

if there is a recursive proof of [G,,t,] then x(G,) >tm . McDiarmid

has proved that, for almost all graphs with n vertices, every recursive

proof of [G (,X G)] has length at least

eq(.157 n (log n) l/2) .
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His result implies that the average running time of the Corneil-Graham

algorithm for finding the chromatic number of a graph [4] grows faster

than every exponential. On the other hand, Lawler [16] has designed an
. .

algorithm for finding the chromatic number of a graph of order n within

0(2&n) steps. (Of course, these facts are of an asymptotic nature and

imply nothing about the relative merits of the two algorithms applied to

graphs with, say, 200 vertices.)

Finally, I wish to thank several friends for their help with my work

on this paper. To Colin McDiarmid and Andre Szemeredi I am indebted for

many stimulating conversations. Persi Diaconis told me about Hoeffding's

paper [13].= David Avis, Don Knuth, Ivo Rosenberg, and Bob Tarjan read

various versions of the manuscript and made many helpful suggestions to

improve the presentation.
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