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Abstract.

Ve formalize certain rules for deriving upper bounds on the stability
nunber of a graph. The resulting systemis powerful enough to
(i) enconpass the algorithms of Tarjan's type and (ii) provide very
short proofs on graphs for which the stability nunber equals the
clique-covering nunber. However, our main result shows that for al nost
all graphs with a (sufficiently large) linear nunber of edges, proofs

within our system nmust have at |east exponential |ength.
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1. I ntroduction.

By a graph, we shall mean what is sonetimes called a Mchigan graph:
one that is finite, undirected, wthout loops and nultiple edges. A set

S of vertices in a graph Gis called independent or stable if no two

vertices in S are adjacent; the largest cardinality a(G of a stable

set in Gis called the stability nunber of G. Now, let G be a graph

and let t be a positive integer such that
a(G) < t ; (1.1)

how | aborious is it to verify a proof of (1.1)? O course, this question

has a direct bearing on the conjecture that P # NP ; in particular, the

cel ebrated theorem of Cook [2] suggests that it is extremely tine-consum ng

to verify proofs of (1.1). W shall refrain from elaborating on this

interesting point; instead, we direct the reader to [2], [14] and [1].

As for evaluating a(G), the best available algorithmis due to Tarjan

and Trojanowski [10]: its running tine on a graph of order nis o(en/B) .
The framework of the present paper is quite nodest: restricting the

intuitive notion of a proof rather drastically, we shall study the resulting

system of "recursive proofs". This system renmains powerful enough to

“(i) enconpass a certain class of algorithns that includes the Tarjan-
Troj anowski al gorithm
(ii) provide very short proofs of (1.1) for every graph G whose set of

vertices can be covered by a(g) cliques.

Neverthel ess, we shall show that there are valid inequalities (1.1) whose
proofs nust be excessively long. Mre explicitly, for every sufficiently
large d there is a positive ¢ wth the follow ng property: for an

overwhel mng majority of all graphs G wth n vertices and dn edges



there are valid inequalities (1.1) whose recursive proofs must have
length at |east (1+s)n (The assumption that the number of edges of
G grows linearly with nis crucial: in fact, the conclusion fails as
soon as dis allowed to grom1beyqnd every bound. For details, see
Proposition L.1.)

At this nonent, it may be worth pointing out two shortcomngs that
practitioners sometimes find in results on conputational conplexity
the worst case criterion and the asynptotic point of view The first of
these objections does not apply to our result at all but the second one
certainly does: the numerical values of ¢ are very small. (One could
improve on them by taking a little nore care in the conputations but
even then the; probably would not be very inpressive.)

In Section 2, we point out those properties of random graphs which

appear in the proof of the main result: |looking at small subgraphs of G

and then extrapolating in a straightforward way, one would expect a(G to

be much larger than it actually is. In that sense, a(G) is very much a
"global parameter”. And it is precisely this global character which makes
the proofs of (1.1) so long. In Section 3, we describe a certain class of

crude algorithms for evaluating a(G and then touch briefly upon the
more sophisticated algorithm of Tarjan and Trojanowski. That section
provides the notivation for the definition of a recursive proof presented
in Section 4. The exponential that appears in our nain result originates
from an upper bound on the tail of the hypergeonetric distribution; it
finds its way into the theoremvia a |emm on binary trees which we set

aside in Section 5,



In the context of another NP-conplete problem (nanely, that of
satisfiability of Boolean expressions), there are many results simlar
inspirit to ours; nost of themcan be found in [3]. In particular, the
proof systeminvestigated recently by Galil [II] is very much |ike ours;

however, the simlarity does not extend beyond the superficial |evel



2. Random G aphs.

In this section, we shall deal with graphs whose vertices are |abeled

as vy,v,,..@ L. Two such graphs may be distinct even if they are
2n(n-l)/2

i sonorphic; hence their total number is

which a graph may or may not have then we shall denote by t(pn) the

nunber of those graphs with n vertices which'do have the property,

If Pis a property

Finally, we shall say that alnmost all graphs have the property P if the

n(n-1)/2

ratio t(P,n)/2 tends to one as n

statenent of this kind appears in the follow ng | ema.

seens to be a part of the graph-theoretical folklore.

tends to infinity. A typical

The lemma itself

It appears at |east

inplicitly in a 1947 paper by Erdds [5]; further refinements can be found

in works of Metula [17], Grimmett and MeDiarmid [12], Erd8s and Bollobas

[8] and perhaps ot hers.

Lenma 2. 1. Al nost all graphs G of order n have the property that

a(G < 2log n/log 2 .

Proof . Denote 2 log n/log 2 , rounded up to the nearest integer,

by

k(n) ., CQearly, the nunber of those graphs of order n for which a >k,

di vided by the number of all graphs of order n , does not exceed

( kn)g-k(k—l)/Q

By elenentary estimations, (2.1) is at nost

(_e_r_l_ o~ (k-1)/2 )k

k

For all sufficiently large n, we have

%2-(k-|),/2 - ek < .99

and so (2.1) tends to zero as n tends to infinity.

-

(2.1)

(2.2)



In the theory of random graphs devel oped by Erd¥s and Rényi [8],
[9], [10], one investigates graphs with n vertices and m edges.

Cearly, the number of such graphs is

(")
( 2 ) ‘ ‘ (2.3)
m

Ve shall denote by t(p,n,m) the nunber of those graphs with n vertices
and m edges which have sone property P. If mis a function of n
such that each m(n) is a nonnegative integer not exceeding n(n-1)/2

and if the ratio of t(p,n,m) to (2.3) tends to one as n tends to
infinity then we shall say that almost all graphs with n vertices and m
edges have the property P . The following | enma has been used by Erd8s in

[o] and el sewhere.  (Throughout the paper, |og denotes the natural |ogarithm)

Lemma 2. 2. If m(n) > 16n for all sufficiently large n then al nost

all graphs Gwith n vertices and m edges have the property that

a(@ % T logz . (2.4)
Proof . Denote the right-hand side of (2.4), rounded up to the nearest

-integer, by k(n) ; note that k(n) - «as n -« . Cearly, the nunber
of those graphs with n vertices and m edges for which o« > k , divided

by the nunber of all graphs with n vertices and m edges, does not exceed

((2)-(;‘))
—= (2.5)
()

By elenentary estimtions, (2.5) does not exceed

(%)




(%)k(l‘r%)m<(%e@(-§ﬂ )y

In addition, we have

m(k-
( n%nl;) nlogmn ex;p( log—+—-—>

Since the last quantity becones snaller than .99 for all sufficiently

large n , we conclude that (2.5) tends to zero as n tends to infinity. O

Next, let us digress a little. Wen m,n, s are nonnegative integers
such that m< n and when t is a positive real nunber, we shall set

p=nmn , denote by z* the sunmation over all integers j > s(ptt) and

HOIC A

» (DG
(")

define

B(m)n; s, t)

H(m)n: s)t) z

Thus Bis the famliar "tail of the binomal distribution" and His the
"tail of the hypergeometric distribution", The well-known interpretation

of these quantities goes as follows. Imagine a barrel containing n apples,
exactly m of which are rotten; take a random sanple of s apples.
Technically, the sanpling can be done in at |east two ways. W night pick
-and exam ne the apples one by one, each tine throwing the apple back into
the barrel before reaching in again: this is called sanpling with
replacement. O we might just grab the s apples at the sane tine:

that is called sampling without replacement. Wichever nethod we use, we

shoul d expect about ps rotten apples in the sanple. The quantities B
and H give the probability that at |east (p+t)s rotten apples will

appear in the sanple with and w thout replacenent, respectively.



An el egant argunent (apparently due to S. N Bernstein) shows that

ptt _ 1-p-t \s
B(myn, s,t) < ((P—%) ( f‘:‘—ﬁ%) ) .

A simlar bound for H seens to be far nmore difficult to establish.

A special case of a theorem of Hoeffding ([13], Theorem 4) states that

ptt _ 1-p-t \s
H(m,n, s,t)g( P—%) (1%-1-)1_'% ) ) (2.6)

It is aroutine matter to convert (2.6) into weaker but nore tractable

bounds; we are about to do that for t =p ,

Lema 2.3. H(m,n, s,m/n) < e-ms/hn
Proof . If p >1/2then the left-hand side vanishes. [|f p < 1/2 then
(2.6) inplies

1 1
5 | og H(myn,s,p) < 2plog 5+ (1-2p) I og (1 + l_-PE_fJ)

IN

2p |Ogl-2- + p < -p/h

which is the desired conclusion. O

Upper bounds on H are useful in proving statements about random

graphs, such as the follow ng one.

Lemma 2,4, Alnost all graphs G with n vertices and m edges have the

followi ng property: every subgraph of G induced by s vertices such that



2
s>in—|og— (2.7)

has fewer than 2ms2/n2 edges.

Proof . Cearly, the nunber of those graphs which do not have the property,

divided by the nunber of _all graphs with n vertices and m edges, does

not exceed

(9, (D ums (/D)) (2.8)

S

By Lemma 2.3, this quantity does not exceed
n ms(s-1 mg s-—l}
E(s)e@(— En%n—l; ) ( ) ’
By (2.7), we have
en m(s-1) em m m
exp( Lme > = In Tog(m/n) exp( lm2 lOgn) < .99
Hence (2.8), being bounded from above by

Z (.9)° < 100(.99)LLn2 log(m/n)/m
s

tends to zero as n tends to infinity. O



3, Agorithns.

In this section, we shall first describe a class of crude algorithns
for finding a largest stable set in a graph and point out that by the use
of appropriate data structures, the running time of these algorithnms can
be cut down considerably. Then we shall ‘briefly outline a class of nore
sophi sticated al gorithns which we shall call Tarjan al gorithns,

Let us suppose that, given a graph G = (V,E) and a subset S of V ,
we wish to find a largest stable subset A of S. W may begin by
choosing a vertex veS; the desired set A either does not contain v
or it does contain v . Inthe first case, A is a largest stable subset
of the set s = s-(v) ; in the second case, A-{v} is the largest stable
subset of the set ‘ég obtained fromS by deleting v with all of its

neighbors in S. W shall denote 8¢ by Sv and 8, by S*v ; wth

.this notation, we have
a(s) = max(a(S-v) , L+a(sxv))

Thus we have reduced the original probleminto two similar, but smaller,
subproblems: one for S-v and the other for S%v .

Now, an algorithmfor finding a largest stable set in G suggests
-itself: begin with S=V, do what we have just done and then sinply
iterate away. One may visualize a binary tree with nodes |abeled by
subsets of V. The root is labeled by Vitself; if a node is |abeled
by a nonempty set S then its left son is labeled by S-v and its right
son is labeled by S*v for some wveS . If G has n vertices altogether
and if each vertex has fewer than d neighbors then the tree will have at
| east 2n/d nodes. O course, that does not nean that the algorithm will

create at |east 2n/d subprobl ens: different nodes of the tree may have

10



the sanme |abel. (To take an extreme exanple, note that all the |eaves
of the tree will be labeled by ¢ .)

W shal | describe a possible inplementation of the algorithm For
definiteness, let us assune that we have a fixed "choice function" f
whi ch assigns to each nonempty subset S of V a vertex f(S) ES .
Such a function gives rise to an algorithm which we shall call the

f-driven algorithm

Inits first phase, the algorithmcreates a list of certain subsets
of v, which will be called subproblens. It will be convenient to keep
the list ordered, with larger subproblems preceding the smaller ones;
within each group of subproblens of the same size, the order may be
| exi cographic. At each moment, we shall have a partial list of subproblens,
with a pointer at one of them At the very beginning, V will be the
only subproblemon the list; the first phase will termnate as soon as
the pointer gets to § . \Wen the pointer is at a nonempty set S,
we define 8 = S f(S) and S, = Sf(S) . Then we add 81 and S, on
the list (unless they are already present), shift the pointer to the
successor of S and iterate.

In the second phase, we pass through the list in a reverse order
(fromg to V) and evaluate a(G for each subproblem S . To begin
with, we have a(g) = 0 ; for each nonempty subproblem S , we have
a(S) = max(a(sy) » 1+a(s,)).

In the third phase, we shall find a |argest stable set Ain G.
To begin with, let us set A=pand S=V . Wth each iteration, the
set Swll shrink; when it will become enpty, A wll be the desired
largest stable set in G. Each iterationis sinple. If a(s) = oc(sl)

ot herwi se a(S) = 1+a(S

2) in which case we

then we replace S by Sy

add f(S) to A and replace S by s, .

11



It is crucial to use the appropriate data structures when inplenenting
the first phase. Trivially, the number of subproblens on the |ist never

exceeds 2" . If we inplenment the list as a balanced tree (see [15] or [1])

then each of the |ook-ups and insertions can be handled within a nunber
of set-conparisons proportional to n . -If each <£(s8) can be evaluated
within a steps and if the total nunber of subproblenms is b then the
running time of the algorithmis O(abng). For at least a few choices
of f that come to nmind, a is polynomal in n . In that case, b
threatens to be the decisive factor in the upper bound

Needl ess to say, the number of subproblens depends on the choice
function f ; for nmost functions f , that nunber seens difficult to
estimate. To sinplify the situation, we shall restrict ourselves to
very special choice functions: when the vertices of G are ordered as
V1sVps «sesVy » the function f chooses that vertex of S which has the

smal | est subscript. The resulting f-driven algorithmwll be called an

order-driven algorithm

The foll owing proposition and its corollaries (Propositions 3.2 -3.5)
are due to Szemerédi, Inits statement, N(k) denotes the number of
stabl e subsets of {v;;v,,...,v,} . Here and later on, we shall find it

-convenient to denote by S*T the subset of S resulting when all the

vertices in T and all their neighbors are deleted.

Proposition 3. 1. The order-driven algorithm applied to a graph with

vertices V15 Vps eeesVy creates at nost

n-|
1 + 2 min(N(k), 2
k=0

n-k-1
)

subpr obl ens.



Proof . For each subproblem S, let k be the largest subscript

such t hat {vl,vg,...,vk} ns=¢. It isnot difficult to see that
S o= [Vkﬂlvk.}?’ . m‘M@‘}I%M%

for some stable subset B of {vy,v,,...,v,} . Hence for each fixed k
there are at nost N(k) subproblems S . In addition, if k < n then

there are only 28-k-1 subsets S of {v

+l,...,vn} such that v, . eS .

k+1

Proposition 3,2, The order-driven algorithm applied to a graph G of

order n such that a(G < n/2 creates at nost

2 n
= {g(0)
subprobl ens. "
Pr oof . Trivially, we have
a(a@)

k n
N(k) < >13=(0 i) <00 g )
for each k ; the rest follows from Proposition 3.1, 0O

Proposition 3.3. For al nost all graphs G of order n , the order-

driven algorithm creates at nost

n2(1 + log n/log 2)

subprobl ems.
(The proof follows inmediately from Proposition 3.2 and Lemma 2.1.)

Proposition 3.4, If m(n)/n - « then alnost all graphs Gwith n

vertices and m edges have the following property: for every constant

¢c>1, the order-driven algorithmon G creates o(cn) subpr obl ens.

13



Proof. By Lemma 2.2, we have a(G) = o(n) for alnost all graphs with

n vertices and m edges; the rest follows from Proposition 3.2. g

Proposi tion 3.5. For every graph with n vertices, the order-driven

al gorithm creates at nost B-E(n'l)/2-1 subpr obl ens.

Pr oof . W& have

n-| n-1 L i
Y min(ns), 285N % min(eE, MKy < 5202,
k=0 T k=0

the rest follows from Proposition 3.1. d

Note that the bound of Proposition 3.5is sharp: it is attained

by the graph with vertices vy,v, ...,V ., and edges

Nevert hel ess, if we can choose the ordering

VlV2m+1, V2V2m, .o a,Vmeg .

of the vertices then the bound can be inproved.

Proposition 3.6, Every graph with n vertices can be ordered in such

a way that the order-driven algorithm creates 0(n25n/7) subprobl ens.

Proof . W shall first describe the ordering and then we shall show that
it has the desired property. Suppose that we have already constructed

the initial segnent vy,v,...,v), for somet >0 . If the graph

H= G-{vy,Vv,s...5V)4 } contains a path W W W, then we set v, . = w,

for 1 <i <4 and iterate. Qherw se each conponent of His a star
or atriangle. 1In that case, we denote Ut by mand enunerate the

vertices of H as .V, in such a way that

Vi1 Vmeo? o o
(1) the vertices of each conponent of order j are enunerated as

V. for some i ,

vi+l’ Vi+2} cees it

(i1) if that conponent is a star then Vil is its center.

1L



It is not difficult to verify that N(k) < 2(5k+l)/LL for each

k =1,2...,m. |f m>kin/7 then
n- |
% min(n(x) , 25y o on23%/7)
k=0

If m< in/7 then we resort to another argunment: note that each
subprobl em has the form {v, 1,V 550..,v }¥B such that 1 <k <n and
Bis a stable subset of {vi,v,...,v }. Since Nm < 2(3m+l)/h s

the total nunber of subproblens is o(n23n/7) .0

It is not unlikely that the bound of Proposition 3.6 can be inproved.
Let us call a nunber ¢ admssible if every graph with n vertices can
be ordered in such a way that the order-driven algorithm creates o(c")
subprobl ens; | et ¢, denote the infimum of all admssible ¢ . By
Proposition 3.6, we have c, < 23/7 , on the other hand, the main result
of this paper inplies that cog>1. What is the exact value of ¢y ?
Simlar questions apply to the wider class of f-driven algorithms and

to the even wider class of Tarjan al gorithns which we are about to outline.

As pointed out at the beginning of this section, every f-driven

algorithm applied to a graph gives rise to a bhinary tree whose nodes are

| abel ed by subproblens: if a node x is |abeled by a nonempty subproblem
S then the left son of x is |labeled by S-v and the right son of x

is labeled by s¥v for sone wves . Eimnation of duplicati ons on the
list of subproblens anmounts to pruning the tree: we sinply omt nodes
whose presence would result in duplicated labels. The idea of Tarjan [19]
leads to pruning of a different kind. In an f-driven algorithm each
subproblem S is generated in the form (V-A)*B such that Bis a stable
set; eventually, such a subproblemyields a stable set of size a(s)+|B| .

I'f another subproblems,; is generated in the fOI’m(V—Al)*Bl such that

15



5, < Sand |B| < |B] then s, can be discarded: in a sense, s, is

domnated by S. In terms of the binary tree, we mght index each node x
by the number r of right-hand turns on the path fromthe root to x ;

a branch rooted at a node x, (labeled by 8y and indexed by rl)

1
may be pruned off whenever there is another node x (labeled by S and

indexed by r ) such that s, cs and r; <r.

1
Now we have arrived at two kinds of pruning: these mght be called
"duplication pruning" and "dom nance pruning", the forner being (in a sense)

a special case of the latter. An f-driven algorithmwith the option of
using both duplication pruning and dom nance pruning to elimnate subproblems

will be called a Tarjan algorithm O course, systematic use of dom nance

pruning may shorten_ the |ist of subproblems quite considerably. 1In terns
of running tine, however, the means coul d defeat the purpose: in general,
it my take a very long time to decide whether the subproblem that has
been just created is domnated by at |east one of the subproblens already
on the list. Thus it may be wise to pass up the option of (possible)

dom nance pruning in nost cases, resorting to it only in those sinple
situations where the dom nating subproblemis almost staring at us.  Such
a strategy |ed Tarjan [19] to an al gorithm whose worst-case running tine
-for a graph with n vertices is 0(1.286n) . Later on, Tarjan and

Troj anowski [20] desi gned an inproved version of that algorithmwith
running tine o(:n/B). It may be worth pointing out that these upper
bounds cone out of rather rudimentary applications of doninance pruning
only: the argunment does not take duplication pruning into account at all.
Thus, it is not inconceivable that (with the subproblenms kept in a bal anced
tree, so that duplication pruning is easy to inplement) the worst-case

running tinme of the Tarjan-Trojanowski al gorithmis even better than

16



o(en/B) . Nevertheless, the main result of this paper inplies the
existence of a constant ¢ > 1 and arbitrarily large graphs G with
n vertices such that every Tarjan al gorithm applied to G nust create
at least ¢ different subproblems;'  (In fact, almst all graphs with n
vertices and dn edges have this property as long as d is sufficiently
| arge.)

One nore comment: fromthe practical point of view, the Tarjan -
Troj anowski al gorithm mght be preferable even to (hypothetical) f-driven
algorithns creating t subproblens for c fairly close to 1 . The
point is that the space requirements of such algorithns would be roughly
nc™ whereas the space required by the Tarjan - Trojanowski al gorithmis

only polynomal in n .

L7



4.1 Recursive Proofs.

For the nmoment, let us deal with an arbitrary but fixed graph
G=(V,E) . By astatenent, we shall nean an ordered pair (8,t) such
that Sis a subset of V and t is a nonnegative integer. (Such a
statenent is to be interpreted as the inequality a(S) <t which, of

course, may be true or false.) By a recursive proof of a statenent

(s,t) over G, we shall nean a sequence of statenents
(Si’ti) ) I = 0ylye0eym (h.l)

such that (so,to) = P, (sm,tm) = (8,t) and such that each statenent
(sk, tk) with k > 1 can be derived fromthe previous statenents (Si, ti) s

0 <i<k, by at least one of the follow ng two rules.

1. The dichotony rule: from (S—v,ti) and (S*v,tj) we can derive
(s, max(ti, 1+tJ.)) .
2. The nonotone rule: from(S,t) we can derive (S',t') whenever

S'c S and t' >t

Cearly, if (4.1) is a recursive proof of (S,t) then oz(si) <ty
for every i ; in particular, a(s) <t. Conversely, if a(S) <+t then
there is a recursive proof of (s,t). In order to see that, consider the
famly F of subproblens created by sone f-driven algorithm that has
just found a largest stable subset of S. Enumerate all the ordered pairs
(s%,a(s*)) with s*eF as (4.1) in such a way that |Si| < |Si+l| for
every i . (Cearly, the resulting sequence constitutes a recursive proof
of (S,a(s) ) ; if t >a(s) then one additional application of the
nonotone rule conpletes a recursive proof of (S,t) .

It will be convenient to define the length of (4.1) as m. Now,
Propositions 3.1-3.6 yield direct corollaries in terms of recursive

proofs. W shall state explicitly only one of them

18



Proposition 4.1, If ¢ >1 and if m(n)/n - =« then, for alnost all

graphs G = (V,E) with n vertices and medges, there are recursive
proofs of (v,a(g)) of length o(cn) .

In addition, every Tarjan al hgorithm applied to G = (V,E) yields
a recursive proof of (v,x(g)) . Hence for every graph G = (V,E) of

order n, there is a recursive proof of (v,a(g)) of length O(Qn/B) .

Now, we shall show that for a certain class of graphs G=(V,E) ,
there exist very short recursive proofs of (v,a(g)). This class
consists of all those graphs G for which a(G equals QG , the
smal | est nunmber of cliques whose union is V.. (Trivially, we have
a(G) < QG for every graph G.) It may be instructive to split the

argunment into three easy propositions.

Proposition 4.2. If G= (V,E) is a conplete graph of order n then

there is a recursive proof of (v,1) whose length is n .

Proof . Enunmerating the vertices of G as ViUV define
8; = {vl,v2 yeeer vi} . Trivially, the sequence (¢,O),(Sl,1),...,(sn,1)

constitutes a recursive proof. O

Proposition 4,3, Let Gy

t hat vy NV, = B let G, UG, denote the graph (V]_UVQ’ ElUEe) T

= (V,E)) and G, = (VQ,EQ) be graphs such

there are recursive proofs of (vi,oa(GJ.)) of length m, for each
J - J
j=212then there is a recursive proof of (VlUVQ,oc(Gl)+Od(G2)) whose

| ength does not exceed m i,

Pr oof . | (S’;’ti) wth i =0,1,...,m is a recursive proof of

(Vo»a(Gy)) then a recursive proof of (V,a(G)), followed by the sequence

19



(Vl Us,, O!(Gl)+ti) , i=1,2,...,m,

constitutes a recursive proof of (VlUV2 ,oz(Gl)+oz(G2)). U

Proposition kL, Let F be a subgraph of G and let (4.1) be a recursive

proof over F . Then there is a recursive proof of (Sm,tm) over G

whose | ength does not exceed 2m,

Proof . W shall create the desired proof over G from (4.1) by inserting
a new statement inmmediately before each (sk,tk) that has been obtai ned
from the previous statenents by the dichotony rule. For every such (sk,tk) ,
there are subscripts i, j and a vertex ves, such that i <k, j<k,
ty = max(t; , 1+t,) and S; = 8V .. S =8xv in F . The statement to
be inserted immediately before (sk,tk) is (Sk, tk-l) such that

Sy =S v in G, dearly, (Sk, t,-1) follows from (Sj,tj) by the

nonotone rul e whereas (Sk,tk) follows from (si,ti) and (Sf;’tk’l)

by the dichotony rule. C

Proposition 4.5, For every graph G = (V,E) of order n there is a

recursive proof of (V, Q) whose length does not exceed 2n .

P;oof. Consi der the subgraph F of G consisting of e(G) cliques
whose union equals V. By Proposition 4.2 and by repeated applications
of Proposition 4.3, there is a recursive proof of (V, 0(G) over F

whose length equals n . The rest follows fromProposition bk

W shall close this section with another easy observation which will

be handy |ater. The proof can be left to the reader.
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Proposi tion k4.6, If (4.1) is a recursive proof over G = (V,E) and

if WCV then
(s;NW,t) i=01,..., M

is a recursive proof over the subgraph of G induced by W.
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5. A Lenma on Binary Trees.

Let a,b, r, s be nonnegative integers, A binary tree whose nodes

are colored red and blue will be called (a,b,r,s) -constrained if, along

each path fromthe root to a |eaf,

(1) exactly a nodes are followed by their left sons and exactly b
nodes are followed by their right sons,
(i) at nmost r nodes are red,

(iii) at least s red nodes are followed by their right sons.

If, for some choice of integers a , b, rand s , there is at |east
one (a,b,r, s) -constrained tree then we denote by f(a,b,r,s) the |argest
possi bl e number of-1eaves in such a tree; otherw se we set f(a,b,r,s) =0,

Trivially, we have

atb )

f(a;b:rys) < ( b

and
f(ayb,rys) = 0 whenever s>b or s >r .
The purpose of this section is to derive the follow ng upper bound on

f<a‘)b)r’ S) .

-Lemma 5. 1. If s >2br/(atb-1) , s > r-atl and s > 1 then

+b -b +b
f(ayb)r,s) < ( ab ) —:.i;b € r/h(a )
First of all, we shall establish a sinple recursive bound.

f(a-1,b,r,s) + f(a,b-1,1,s)
Fact 5.2. f(asbyry,s) < max
f(a-1,b,r-1,s) + f(a,b-1,r-1,s-1)

Pr oof . Let T be an (a,b,r,s) -constrained tree. [f its root is blue

then the left sub-tree is either enpty or (a-1,b,r,s) -constrained and the
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right sub-tree is either enpty or (a,b-1,r, s) -constrained. If the root

is red then the |eft subtree of T is either enpty or (a-1,b,r-1,s)
-constrained and the right sub-tree of T is either enpty or (a,b-1,7-1,5-1)

-const rai ned. Hence the desired conclusion. O

Next, for every choice of nonnegative integers a , b, r, s such that

s<b , s<r |, S > r-atl
we define
b-s .
b atb-r-1-i
F(a,b,r, 8) = ? (0 st+i ) ( b-s-—i )

It is easy to verify that

atb )
)

F(a,b,r,0) = ( Y

F(a;b:r:b) = (;) )

+b-
F(aybyr;r) = (a ar) )
atb r
F(a,b,r,r-atl) = ( a ) = ( a.) ’

F(a-1,b,7,s) + F(a,b-1,r,s) = F(a,b,r,s) ,
F(a-1,b,r-1,s) + F(a,b-1,r-1,5-1) = F(a,b,r,s)
whenever the left-hand side terns are defined.

Fact 5.3. \% have f(a,b,r,s) < F(a,b,r,s) whenever the right-hand side

is defined

This inequality can be proved by induction on atb in a straightforward

way; we omt the tedious details. |t is not unlikely that there is a

direct conbinatorial proof of Fact 5.3. Furthernore, it is not difficult
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to show that f(a,b,r,s) = F(a b,r,s) whenever the right-hand side is

defined: however, that is irrelevant for our purpose.

Proof of Lenma 5.1. Wemayassunme s <b and s < r for otherw se

the left-hand side vanishes. Then, by Fact 5.3,
f(ayb,ry8) < F(ayb,r,s)

Since r > s > 2br/(atb-1) , we have 2b/(atb-1) < 1 and

. r+i
S+l > 2b o1
for every nonnegative i , Hence, with the notation of Section 2,

( 1;.'1 ) ( a"'g'_rs-_l i.i ) < H(r+i,a+b-1,b, (r+i)/(a+b-1))-( a+z-l )

By Lemma 2.3, we hé&e

b-s
f(a,b,r, §) <. Z
l=0

(a+b 2 -br/L(atb)

b) atb

which inplies the desired result.
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6. The Main Result.

A graph G of order n will be called (d,¢) -sparse if

(i) every vertex of G has degree less than d ,
(ii) every subgraph of G induced by mvertices such that m > en

has fewer than d1n2/n edges.

Theoremé6.1., Let n,t be positive integers and let d, ¢ be positive
real s such that

n < 10td ,

n > s00t2/3 d |

100t/ /4

S
kv

n > 2000t ,

e < n°/1810t° o ;

let G = (V,E) be a (d,¢) -sparse graph of order n, Then every recursive

proof of (v,t) has length at | east

od
9ﬁ exp 2022 : (6.1)

Pr oof , W shall set

Ln?/h5000t%4° | , b = |n°/900td? |

a

and show that every recursive proof of (v,t) has length at |east

2
ath b
P e (6.2)

The reader may easily verify that a > b_> 200 and so

200 n 200 n®

a > . B > .
201 )5 0ootPa? 201 900142

o’

Then it follows that (6.2) is at |east (6.1).
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Let us outline our strategy. Wth each recursive proof of (v,t),
we shall associate a binary tree T whose nodes will be |abeled by
statenents fromthe proof, The assignnent of |abels to nodes will not
be one-to-one (to take an extreme exanple, all the leaves of T will be
| abel ed by ¢ ) and so the number of nodes of T may be nmuch greater
than the length of the proof. W shall find a node z with a certain
conveni ent property and then we shall construct a new binary tree T° .
Even t hough T will not be a subtree of T in a strict sense, its nodes
Wl come fromT ;in particular, z will be the root of T* . Finally,
we shall show that within the set N of |leaves of T* , no label is
repeated too often. . Mre precisely, for each subset S of V we shall
define

N(S) = {xeN: x is labeled by (s,t') for some t']}

‘and prove that
2

|N(s)| < || .a—a_‘% exp(- %) . (6.3)

Since Nwll be nonenpty, (6.3) will inply the desired result: indeed,
the nunber of those sets S for which N(S) # ¢ nust be at |east (6.2).

Before going into the details, the reader may welcone a preview
of the idea behind the proof of (6,3), however vague such a preview may
have to be. Let (w,t*) be the statement that labels z . |In the
absence of the nonotone rule, the tree T js constructed in such a
way that every subproblem S labeling a leaf of T* is obtained from
Wby sinply deleting a vertices and by deleting b vertices with
their neighbors. |If we had our way, the subgraph H i nduced by WS

woul d consist of a isolated vertices and b disjoint stars: jn that
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case, we could reconstruct the two sets of vertices, proving that
|v(s)] = 1 . Actually, we shall be content even if things are not all

that clear-cut, as long as we can approximately reconstruct the two sets.

That will be the case as long as His reasonably large. (If His
large then nost of the b vertices nust have large degrees. At the same
time, the second defining property of a (d,€) -sparse graph inplies
that the average degree in His rather small. Hence the vertices of
| arge degrees are quite conspicuous.) In order to guarantee that H wil |
be large, we have to choose z appropriately. In general, the rules
for constructing T are designed to neutralize the desultory effects
of the nonotone rule. Now that the poor reader is properly confused,
we can proceed to the details.

Constructing T, we shall find it convenient to call certain statenents
in the proof eligible: a statement will be called eligible if it is (8,0)
or if it follows fromsome two earlier statements by the dichotony rule.
tmly the eligible statements, with a possible exception of (v,t) , will be
used to label the nodes of T . The construction of T is recursive; the
r oot ‘of Tis labeled by (v,t) . Suppose that we have constructed a node
x labeled by a statenent (sk,tk) and having no sons at this nonent.
If (sk,tk) = (4,0) then x will be a leaf of T. Qherw se there are

eligible statenents (Si,ti) ; (Sj,tj) and a vertex ve§, such that
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i,j <k, 8§ 28

KV S. 2 8 *v , t_> ma.x(ti ,l+tj) .

JjJ = "k k

In that case, we shall create both sons of x , label the left one vy
(Si,ti) and label the right one by (Sj,tj) . For further reference,
we shall set S(x) =8, t(x) =ty and* v(x) =v . It will be useful
to note that

b, <ty and tJ. < el (6.4)

Next, we shall find the special node z. A node y will be called
a descendant of a node x if there is a path LN SPREREE N such that
X=Xy, ¥ =x and each X1 is a son of X, [f, in addition,
exactly b nodes x, are followed by their right sons X, then 'y

will be called a b-descendant of x . Repeated applications of (6.4) show
t hat

if yis a b-descendant of x then t(y) < t(x)-b . (6.5)
Vi claimthat

there is a node =z such that S(z) > n/2 and such that
(6.6)

|s(¥)| < |s(z)| bn/2t for every b-descendant y of z ,

A node with this property can be found by constructing a certain sequence
Yor¥preee of nodes of T such that Yo is the root of T, [f the nost
recently constructed y, has a b-descendant y such that

|s(¥)| > |S(yi)| -bn/2t then set ¥i,1 =Y ; otherwise stop. By (6.5)and
by the construction of the sequence, we have

lS(yi)l > n(l-bi/2t) , t(yi) < t-bi

for every i . Since ‘t(yi) >0, we nust have i <t/b and so
ls(yi)l >n/2 for every i . In particular, the very |ast Y4 in the

sequence has the properties required of z. W shall denote S(z) by W.
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Wth each descendant x of z , we shall associate two subsets

A(x), B(x) of' V : considering the path XopXqs e eos Xy from X = Z
to x = x we shall define
A(x) = {v(x): 0 <i <kand x,, is the left son of X; 3
B(x) = {v(x;): 0<i <kand x, . istheright son of x, }.

Cearly, we have

|s(x) nw| > |w| - [(A(x) -B(x)) NW| - Z  (1+d(v)) (6.7)
veB(x)
for every descendant x of z, |n particular,
if |[(A(x) -B(x)) nw[ < a and [B(x)| < b then s(x) # ¢ : (6.8)

j ust observg t hat
atb(l +d) < 2a+bd < 3bd <n/2 .
Before proceeding to construct T, we shall associate a node x*
with each descendant x of z suych that
|(A(x) -B(x)) NW| < a and |B(x)| < b

Consi der the path X ¥pr o eer Xy such that x X is aleaf of T

and each X541 1S the left son of X;  Note that B(xi) = B(x) for
every i . There nust be at least one i such that 0 <i < k and
v(x;) €W, v(xi) ¢ A(x) U B(x) (6.9)

for otherw se
(A(x) -B(x) ) W = (A(x) - B(x)) NW  and  B(x) = B(x)
but S(Xk) = § contradicting (6.8). W shall denote the first X;
satisfying (6.9) by x* ; note that
(A(x") -B(x*))NW = (A(X) -B(X)) NW .
At last, we are ready to construct T . Each of its nodes x will

cone fromT and satisfy
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v(x) eW , v(x) ¢A(x) UB(x) ,

| (A(x) - B(x))nW| <a, [B(x)| <Db,Bx)cV,

The construction of T is recursive; therootof T* is z. Suppose
that we have already constructed sone node x of T* ; |et X denot e

the left son of x in T and | et X denote the right son of x in T .
If |(a(x)-B(x))NwW|= a then x will have no left son in T* ; ot herwi se
we shall nake x; the left son of x in T* . 1If |B(x)| = b then x
will have no right son in T* ; otherwise we shall nake x; the right son
of x in T . It will be useful to make note of the follow ng property

of T :

al ong each path from the root to a |eaf,
exactly a nodes are followed by their left sons,

(6.10)
exactly b nodes are followed by their right sons,

and these a+b nodes x give rise to distinct vertices v(x) .

Finally, we shall prove the inequality (6.3). Wthout |oss of
generality, we may assume that N(S) # ¢ and so S = S(y) for some yeN .
Denote by H the subgraph of G induced by WS(y) and denote by mthe
order of H. Sincey is a b-descendant of z in T, (6.6)inplies that
) m > bn/2t .

On the other hand, (6.7)inplies that
m < a+b(l+d) < 2a+bd < 3bd .

Enunerate the vertices of H as gy Uy 0 cos U in such a way
dg(ug) > aguy) > ... > dy(uy)

Since bn/2t > n5/1809t2d2 and since Gis (d,¢) -sparse, the graph H

has fewer than dme/n edges. That is,
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nMs

dH(u.) < Edm/‘”’/n
. i
i=1

Itis now easy to see that,

for every positive integer r , we have
d.H(ui) < Qdmg/nr whenever i > r

(6.11)
W shal |

use (6.11) with
r = |am/bbq |

Let us note at once that r > 200 and so

r > 20 am
201 ° Lbd

[t will be also useful

2rbd
B ’

to note that

(6.12)
2br

b 1
atb-1 Za 2

(6.13)
And while we are at it, let us also verify that

. 201, bn 201

< ., mm
200 50t 200 25 ’
1 bn m
P < 500 . 3% 1000

- So much for high-school

algebra. Now, we shall set R = {u,u,, o)
and prove that
2rb
|B(x) NR| > SEoT (6.14)
for every xeN(s) .

To begin with,(6.7),(6.11)and B(x) < w inply

m < a+b+d|B(x) NR| +2dm2b/nr
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If (6.14) failed then we woul d have
m < a+b+2rbd/a + 2d1n2b/nr :

However, the right-hand side of this inequality is at nost

201 1 1 1 201 \2 k4
m(m-§5—+m+2—+(m)-§)<m.

Hence (6.14) must hol d.

The rest is easy, Consider the subtree of T* consisting of all
the paths fromthe root z to leaves in N(S) ; color each of its nodes
x red if v(x) er and blue otherwise. By (6.10) and (6.14), this tree
is (ayb,r,2br/(a+b-1)) - constrai ned. Because of (6.12) and (6.13),

Lenma 5.1 applies and shows that

- 2
atb ab b
W) 1< (7). 5% exf(‘ aﬁ)

By virtue of (6.10), this is the desired inequality (6.3).

Theorem 6.2. Let mbe a function of n such that n(n) = o((n/log n)e)

but m(n) >_1010n for all sufficiently large n , Then, for alnost all

graphs G = (V,E) with n vertices and m edges, every recursive proof

of (Vv,a(G)) has length at |east

2
36gm exp n
- n m(BSO log %)5

Proof . By Lemma 2.2 and by Lemma 2.4, alnost all graphs with n vertices

and: m edges have the following two properties:

2
n m
(P1) a(a) < - log =
(P2) every subgraph i nduced by S vertices such that
2
s > Bn_ log E
m n

has at nost 2m;2/n2 edges.
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Ve shall show that all sufficiently large graphs with these o

properties satisfy the conclusion of Theorem 6.2. Let us define

k(n) = L%(So Log g)i‘, |

a(n) = Mm/m®
2
e(n) = % | og %1

Firstly, we shall show that every graph with n vertices and m > 107%

edges satisfying (P2) contains an induced (d,¢) -sparse subgraph Of

order k . To begin with, 2k(n) <n . Next, an easy averaging argunent
shows that G contains an i nduced subgraph Hy with 2k vertices and

at nost hmkg/ne- edges. Beginning with Hy, we shall construct a sequence

Hy, H

O’ l,o..
H, has a vertex v of degree at least d then set Hi,q = H-v, Ot her wi se

of induced subgraphs of H, as follows: if the last constructed

stop. Cearly, if an H, gets constructed then Hy, had at |east di
-dges and so i <k . In particular, the very |ast HJ in the sequence
has at least k vertices; in H.J, we shall choose an induced subgraphH
of order k . Let Wdenote the set of vertices of H. By (P2), every
subgraph of Hwth s > ek > hnglog(m/n)/m vertices has at nost
gmsg/n2 < dse/k edges. Hence His (d,e) -sparse.

Next, by (Pl'), we have
0 < n” log 2
a(g — log - .
On the other hand, we have
a(G > a(H > k/(atl) .
For all sufficiently large n , Theorem 6.1asserts that every proof of

(Ww,a(g)) has length at |east
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2
90d k 260m n
exp > =5 exp
k 20a° n® rr( 350 log = )3

By Proposition 46,this is also a |ower bound on the Iength of every

recursive proof of (v,a(G)) . g
Let us state a special case of Theorem6.2in a conpact form

Theorem 6.3. For every sufficiently large integer d there is a
constant ¢ > 1 with the following property: for alnost all graphs
G=(V,E) with n vertices and dn edges, every recursive proof of

(v,a(G)) has length at |east et

In closing, two remarks may be in order. Firstly, it would be interesting
to construct an infinite class ¢ of graphs for which there is a constant
c >1wththe following property: for every graph G = (V,E) in ¢ and
with n vertices, every recursive proof of (vVv,a(G)) has length at
n

| east ¢ . Secondly, it is somewhat frustrating that Theorem 6.2 does

not apply to graphs with n® edges. Perhaps the following is true.

Conjecture 6.4. There is a positive constant ¢ with the follow ng

property: for almost all graphs G=(V,E) wth n vertices, every

recursive proof of (v,a(G)) has length at |east ¢ log n
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7. Concl udi ng Remnar ks.

There are many "natural" proof systens which extend our system of
recursive proofs; we shall mention just a few |t would be interesting
to strengthen our results by proving their analogues for the extended
proof systens.

To begin with, one mght adjoin the follow ng inference rule:

from (sl,tl) and (Se’tg) we can deduce (Slusg,tl+t2) .

Proposition 4.3 shows that, to some extent, this rule is inplicit in the
system of recursive proofs. Nevertheless, its addition just night make
the system considerably nore powerful. Along this line, further extensions

lead to the system of cutting plane proofs which we are about to describe

briefly. Let us consider a graph G= (V,E) with vertices Vl"’e’--. Ok |
none of which is isolated. A cutting plane proof of (V,t) is a sequence

of inequalities

la‘ljx'a<—b'1 (i = 1L,2,...,m)

n
z
j=
such that
(i) all the nunbers . and b, are nonnegative integers,
(ii)  for every k =1,2,...,m, either the k-th inequality reads
xFx, <1 for some edge v.v, or else there are nonnegative

multipliers Vr¥pseees ¥y such that

k-1 k-1
2 V.a.. > . 2 y.b. <D
PR e S akJ PR ! - "k 7’

(iii) the last inequality reads 2 xSt
J=1

It is not difficult to see that a(g) < t whenever there is a cutting plane

proof of (V,t) . The converse is easy as well: in fact, every recursive
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proof of (v,t) can be converted into a cutting plane proof of (V,t) ,
(The details are left to the reader.)

An inference rule which strengthens the nonotone rule and is not
subsunmed in the notion of a cutting plane-proof goes as follows. Let us

wite s, < S, if there is a one-to-one nmapping f: 8 =5, such that

1
f(u) and f(v) are adjacent only if u and v are. dearly,

from (S,t) we can derive (s',t') whenever g§'<s§ and t' >t

Again, it would be interesting to find out whether the addition of this
inference rule nmakes the system of recursive proofs considerably stronger.
Colin McDiarmid [18] investigated a proof system sinmilar to our system

of recursive proofs,‘mfor deriving |ower bomds on the chromatic nunber of
graphs. W shatl describe his systemvery briefly. Let G be a graph
whose vertices are |abel ed by nonempty and pairwise disjoint subsets of
{1,2,...,n} 3 let u and v be two vertices of G. W shall denote hy

G the graph obtained from G by adding the edge uv ; we shall denote by
G" the graph obtained fromG by identifying u with v (in which case
the | abel of the new vertex is the union of the labels of u and v ).

As usual, w(G) denotes the order of the largest clique ing¢. pBya

recursive proof of [Gm,tm] , we shall nean a sequence
[Gi;ti] ’ | = l,2,¢.-,m

such that, for each k , either by <_w(Gk) or else there are subscripts
i, j <k such that G; = G » GJ = Gi; and by = min(ti,tj) . Qearly,
if there is a recursive proof of [Gm,tm] t hen X(Gm) >t, . MDiarnmd
has proved that, for alnost all graphs with n vertices, every recursive
proof of [Gx(G] has length at |east

exp(.157 n (Log n)+/2)
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Hs result inplies that the average running time of the Corneil-G aham
algorithmfor finding the chromatic nunmber of a graph [4] grows faster
than every exponential. On the other hand, Law er [16] has designed an
al gorithmfor finding the chromatic nunber of a graph of order n \ithin
0(2.45") steps. (OF course, these facts are of an asynptotic nature and
imply nothing about the relative nerits of the two algorithms applied to
graphs with, say, 200 vertices.)

Finally, I wsh to thank several friends for their help with my work
on this paper. To Colin McDiarmid and FEndre Szemerédi | am indebted for
many stinulating conversations. Persi Diaconis told me about Hoeffding's
paper [13].” David Avis, Don Knuth, |vo Rosenberg, and Bob Tarjan read
various versions of the manuscript and made many hel pful suggestions to

i nprove the presentation.
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