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ABSTRACT

W have studied previously a generalized conjugate gradient method
for solving sparse positive-definite systens of linear equations arising
from the discretization of elliptic partial-differential boundary-value
problems. Here, extensions to the nonlinear case are considered. W
split the original discretized operator into the sum of two operators,
one of which corresponds to a nore easily solvable system of equations,
and accelerate the associated iteration based on this splitting by
(nonlinear) Eonj ugate gradients. The behavior of the nethod is illus-
trated for the mnimal surface equation with splittings corresponding
to nonlinear SSOR, to approximate factorization of the Jacobian matrix,
and to elliptic operators suitable for use with fast direct nethods.

The results of nunerical experiments are given as well for a mldly
nonlinear exanple, for which, in the corresponding linear case, the finite

termnation property of the conjugate gradient algorithmis crucial.






0. [ ntroduction

In earlier papers [8,9] we have discussed a generalized conjugate
gradient iterative method for solving symetric and nonsymetric positive-
definite systens of linear equations, wth particular application to
discretized elliptic partial differential boundary-value problens. The
met hod consists of splitting the original coefficient matrix into the
sum of two matrices, one of which is a symetric positive-definite one
that approximtes the original and corresponds to a nore easily solvable
system of equations; the associated iteration based on this splitting
is then accelerated using conjugate gradients. The conjugate gradient
(cg) acceleration algorithm has a nunmber of attractive features for
linear problens, among which are: (a) not requiring an estimation of
paraneters, (b) taking advantage of the distribution of the eigenvalues
of the iteration matrix, and (c) requiring fewer restrictions for optinal
behavi or than other commonly-used iteration nethods, such as successive
overrel axation. Furthermore, cg is optimal anong a large class of
iterative algorithms in that for linear problens it reduces a particular
error normnore than does any other of the algorithnms for the same
nunber of iterations.

In this paper we study an extension of the generalized conjugate

. gradient method to obtain solutions of systems of equations arising
fromelliptic partial-differential boundary value problens that are
nonlinear. For such systens--which correspond to the mnimzation of
convex nonquadratic functionals, as opposed to quadratic functionals for

the |inear case--optimality and orthogonality properties of cg need no



longer hold. Some algorithms for the nonquadratic case have been
proposed [e.g., 10, 11, 14,16, 20, 22] that preserve one or nore of
the quadratic case properties of finite termnation, monotonic decrease
of the two-normof the error, conjugacy of directions of search, and
orthogonality of the residuals. The nethod we discuss only approxinates
these properties, but is found to be effective for solving the discrete
nonlinear elliptic partial differential equations of primary concern
inour study. The method is closely related to the one studied in
(3] for solving mldly nonlinear equations using a particular splitting.
W discuss in Sec. 1 several nonlinear conjugate gradient
algorithms and in Sec. 2 same convergence properties. In Sec. 3
possible splitting choices for the approximating operator are described.
A test problem for the mninmal surface equation is discussed in Sec. L,
and experinmental results for several splittings are sunmarized in Sec. 5.
In Sec. 6 are given experinental results for a test problem for a midly
nonlinear equation, for which, in the corresponding |inear case, the
finite termnation property of cg is crucial
Mich of the work reported here conprises a portion of the |ast-
named author's doctoral dissertation at Stanford University [23].
W wish to thank the Mathematics Research Center, University of Wisconsin -
Madi son for providing the first two authors the stimulating and hospitable
surroundings in which portions of the manuscript were prepared. W
thank H Gaz for preparing the conputer program and for carrying out
the nunerical experiments for the second test problem and R Hockney

and D. Warner for suggesting the problens from which this test problem




was derived. W thank also R Bank, B. Buzbee, P. Swarztrauber, and
R Sweet, who made available to ustheir excellent conputer prograns for
solving separable elliptic equations with fast direct nethods. The work
reported here was supported in part by the US Energy Research and
Devel opnent  Administration, by the Fannie and John Hertz Foundati on,

and by the National Science Foundation.

1. Nonlinear Conjugate Gadient A gorithns

In the linear case, the generalized conjugate gradient nethod

[9] solves the N X N positive-definite system of equations
(1) AX =b

or, equivalently, nininmzes the quadratic form

T

(2) £(x) = % x"Ax - x7 .

-

Let M be a positive-definite symretric N X N matrix, chosen

to approximate A Then for symetric A the algorithm as described

in[9]inits alternative form is:

(0)

Let X be a given vector and define arbitrarily 69~).

For k =0, 1, . . .

(k) (k)

(1) Calculate the residual r =b- AX

and sol ve

(3) Mz, =r



(i) Conpute the paraneter

and the new direction p& - ;&) k(l’)p(k'l)'

(111> Conpute the paraneter

a
k = T ’
k k
p T, ()
and the new iterate x &) = (k) ak(l)p(k)_
In place of the paraneters a.él) and bl(;l)' one nmay use instead
equi val ent ones [18,26], such as
T
a(E) _ p(k) r(k)
k T
p(k) ap (B
or
T
blgg) _ Z(k)Aé)(k—l)
k- -1) .
,p( 1) Ap(k 1)

I nstead of conputing the residual r (k) explicitly for x > 1,

as in (i), it is often advantageous to conpute it recursively as
(®) _ (k1) ko)
T =r - ak_l!{p .




The effectiveness of the algorithm (i, ii, iii) is discussed in
[9] for cases in which Ais a sparse matrix arising fromthe dis-
cretization of an elliptic partial differential equation and M is
one of several sparse matrices arising naturally fromA

For the nonlinear case, we consider solving the system of equations
(k) g(x) =0

arising from mnimzing f(x), where g¢(x) is the gradient of f(x).
(For the linear case (1,2), g(x) = AX - b; in either case, g(x) is
the negative of the residual.) W assune that the Jacobian matrix J
of (4) is positive-definite and symetric, and, as for the linear case
we are interested in those situations for which (4) is a discrete form
of an elliptic partial differential equation and, correspondingly, J

IS sparse

The approximating matrix Mfor the linear case is chosen in
[9] to be one of several positive-definite symetric matrices approximating
A naturally in some nmanner. For the nonlinear case, we consider related
choices for Mto approxinmate J, although sonetimes M may not be
linear, symmetric, or everywhere positive definite. W pattern after
(i, ii, iii) the followi ng algorithm (see also [3]).

Let X(O) be a given vector and define arbitrarily p(-lz For
k =0,1,..

(Ni) Calculate

and sol ve

) i (6) _ L (%)



(Nii) Compute b = bél) or big),

wher e T
(k)" (k)
blEl) _z rT N , K> 1
, (k1) Ak-1)
T
bli2) _ Z(K)TJp(k—l) ’
(k-1) Jp(k—l)
b, =0,
and
p(k) —, (k) bkp(k-l)
(Niii) Compute a, = alg) or al(f) s
wher e
@ ®
T E T )
Jp
e) pl) ()
- %k = T
(k) Jp(k)
and
X(k+1) _ (k) akp( )
The algorithm (i, ii, iii> for the linear case is generally

iterated without any restarts (setting of b to zero
for some value of k > 0); however the nonlinear algorithm (N, Ni, Niii)

is usually restarted periodically to enhance convergence (see Secs. 2 and 5).
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For sone of the splittings we consider and in the presence of roundoff

( .
error, the nunerator of akg) may not be positive for some values of k.

If it is not, then we find it convenient for these values of k to

(k)

repl ace p by its negative.

2. Convergence.

In the form (N, Nii, Niii) the algorithmof Sec. 1 cannot be

guaranteed to converge. However, by introducing a line search to choose

a, SO t hat ) f(x) is mnimzed along the line X(k) + akp(k)’ by
ensuring that Mis positive definite, gand by restarting the iteration
periodically, convergence can be guaranteed. Convergence in this
case can be shown by application of Zangwill's spacer step theorem [30],

which states that if a closed algorithmwith descent function fis
applied infinitely often in the course of another algorithm that maintains

the property
f(x(k+l))* < f(x(k))

for all k, and if

{x:f(x) Sf(X(O))

}
is conpact, then the conposite algorithm converges.

V¢ have the foll ow ng:




Theorem 1. If the nonlinear conjugate gradient algorithmis nodified

to cal cul ate 8, by

(k)

a min {Q:f(x

k =

opt
2k

]

and if the iteration is restarted every a steps, then the algorithm
is globally convergent (i.e., will converge fromany initial point xo)

: o N
to x  such that £(x) is a ninimum of f(x) over E .

Proof.  The sequence {f(x ( )n i s monot one non-increasing, and every o
steps we take a scaled steepest descent step. Since scaled steepest
descent is a convergent algorithm we can conclude by Zangwill's space
step theorem that our algorithm converges.

This algorithm can be quite slow due to time consumed in |ine
searches. In order to avoid a line search at every iteration, we inpose
addi tional constraints on the stepsize SO that we can guarantee that
f is monotone nonincreasing at each stage of the iteration. W have

the follow ng theorem

Theorem 2. If the conjugate gradient iteration is restarted every
o steps with the first step length in each cycle calculated by a line
search, and if no conjugate gradient step causes an increase in the
function f(x), then the iteration will be globally convergent to X

that mnimzes f(x)



Proof. By direct application of the spacer step theorem

(k) )

If the function f(x is explicitly available, then we can

accept our original definition of a i f

f(x(kd-l) )

and do a line search if this test fails.

Lemma 1. Let a_ be chosen by the rule

k
(
2V Cor 2@ i2 2 4 o W0y o (),
&y = < (or f(x(k) + aé2> (k>> < f(x(k)))
\ opt ot her wi se.

Then f(x) is nonotone nonincreasing at the kth step.

If we have available only values of g(x) and J(x) at our
iterates and not f(x), we nust make use of conditions that inply that
f iIs decreasing.

Because f is convex,

T
ple)" 51+ apli))

will be a monotone increasing function of 4 that js negative at

a=0 andis 0 at a=a§pt. the Point at which f attains its

m nimum on the line from x (&) in the direction p(k)‘



If a is chosen such that
max

By = Mn{a > aEPt:f(x(k)g ap)) = 2(x{8)))

)y Wil be less than £y it

then we can deduce that f
0 <ac< B Wthout further information (e.g., that obtained through
a line search), we cannot calcul ate a . V¢ can, however, easily

verify whether a<a§pt and this will give us a sufficient condition

for convergence:

Lenmma 2. Let a,_ be chosen by the follow ng rule:

Kk
T
a}({l) (or a}gz)) it (k) g(x(k) + %(l%(k)) <o
T
8y = (or P(k) g(x(k) + EK(zez) (.&)) < o)
: aEpt ot her wi se.
Then f(x<k+l)) < f(x(k)).

If we have information on the curvature of the function f, we

can derive an alternate condition. Consider the Taylor series expansion

of . f at x<k+l):

©) ple )y a (e)y - g(x(k)) (k) % ai p(k) (W p(k)
where w is a point between x<k) and x(k+ >: and suppose we know t hat

10




0 <dc< M (x))

for all x in a convex set including all iterates. Then the right

hand side of (6) can be guaranteed to be negative if

T
a <—2 g(x(k)) p(k)
k T
a o) ()

This gives an alternate condition for convergence:

Lemm 3. Let a,_ be chosen by the rule

K
T
(a0 @ ) gl < 2 g6 o
. _
a plE) (&)
a, = ¢ Gy, (k)
k (or aég) < 2 el 7 ) p )
a pE) o)
opt .
\ 8y ot herw se .

Then f(x) is nonincreasing at that step.

In general, each of the conditions in Lenma 1 through Lemma 3
is quite restrictive, but verifying any one is sufficient for descent
at a given step. Thus an algorithm nmight incorporate facilities for

testing each of the conditions successively if the preceding ones did
not verify descent. This would keep the additional operational overhead

for the algorithmlow.
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Notice that we do not need constraints on the by (other than
b # 0), the paraneters that determine the step direction, in order
to guarantee convergence. In our nunerical experinents (Sec. 5),
we have observed that for the test problem considered here the algorithm
is less sensitive to choices of the parameter b_ than to choices of

k

2, - It was found, on the other hand, for the problemstudied in [25]

with small N (~ 100), dense Jacobi an, and exact |ine searches for a,

that the cg algorithmcould be quite sensitive to the choice for b.

3. Choice of Splitting Qperator

V¢ consider several choices for the splitting operator M All
the choices attenpt to approximate the Jacobian J with an operator that
Is conputationally easier to invert.

First, we consider choices related to the nonlinear block
successive overrelaxation method, which has been found to be efficient
for solving nonlinear elliptic equations [6,7,24,27]. This method obtains

- fromthe residual r<k) an i ncrenent z(k> = M'lr(k>

X(k)

that is added to

to obtain a new approximation

L) G+ (k)
Equation (7) is the underlying first-order iteration that is accelerated

by means of the conjugate gradient algorithmin (N, Ni, wmiii).

12



Let X, g(x), and J be subdivided into bl ocks, for exanple

those corresponding to rows of points on a rectangular mesh for the

finite difference approximation to a partial differential equation

Xl gl Jll le Jlm
X

2 & Jo1 I92 Jom
. ; g(x) = . ) J =

X

m €m Jml JmE Jmm

For standard discretization of elliptic equations, J has small bl ock
bandwi dth, and its blocks are sparse. |n two di mensions on a rectanglar
mesh, for the nine-point discretization we shall consider here for the

mninal surface equation, J is block tridiagonal with tridiagonal

bl ocks [6].

Ve consider first the one-step block successive overrelaxation-
Newt on (BSOR-Newton) iteration [2k]. For it, the (k+l)th approxi mation

to X, is obtained fromthe (k)th by

1

X(k+l) (k)
B jgj’

= X -(DJ__
J

5 5 ] = L,2,...,m ,

(&)

where g(x) and 'J are evaluated at the latest values for X, and
@ is an acceleration paraneter. |f we partition the residual

r =-g(x) in the same manner as g(x), then we can wite (8) as

13



N

J J Ji

1,29---,11’1

to correspond with our earlier notation. The banded, positive-definite

system of equations

T33%
can be solved efficiently in a numerically stable manner using Gaussian
elimnation, wthout pivoting, or Cholesky factorization.

For linear problems, BSOR is not suitable for use wth
conjugate gradient acceleration because its iteration matrix is not
simlar to a synmet‘}ic one. A symmetrized variant is suitable, however.
This variant corresponds to ordering the equations alternately from

blocks 3 =1 to j = mfor one sweep and then from blocks j = m

toj =1 for the next sweep; it is termed block symetric SOR (BSSOR).

For BSSCR the solution of Nt(k) = r<k) reduces to the solution of
CTRE%DT (D + wL) D_l(D + wy) z (k) = rU{), O<w<e,

where D is the block diagonal of A,1 (U) is a strictly block |ower
(upper) triangular matrix, and A=L + D+ U  Conjugate gradient
acceleration has been found to be particularly effective for BSSOR

because of the distribution of the eigenvalues of the iteration matrix

[1,12,17].

14




For the nonlinear case we consider the correspondingly symetrized
variant of the one-step BSOR-Newton iteration, and we denote it by BSSOR-
Newt on.

Vi consider also another extension of the BSSCR method. For the
case in which the calculation of the elenents of JJ_J_ in(8) is
costly, the symetric formof the one-step Newton-BSOR nethod [24]

can be nore efficient. This algorithm applies a back and forth sweep

of BSSOR to the Newton iteration step

ax(8))y = p8) L)

to obtain the increnent z(k) in (7). As we did above for A

we wite J(X(k)) ~L +D + U, where D is the block diagonal of
J(x(k)) and T (T) is strictly block lower (upper) triangular. Then
for the choice of zero as initial approximation for z, and for z
partitioned in the same manner as r, the back and forth BSSOR sweep is

forward sweep:

(k) — Q)J-l(r(k) - [fi’(k)] )

) 3347 3/ ] = L2,...,m

pA

foll owed by

backward sweep:

ng) , va(_;:) + ‘Mﬁ(l‘ék) CmlE) + o) + ﬁZ(k)w J = mm-1,...,1 .

Here J and r are eval uated at x(k). Note that the nost
recently obtained values of z are used in the conputation of [JZ]J.

on the right hand sides.

15




Ei ther BSSOR-Newton or Newton-BSSCOR are reasonable choices
for the operator Mfor the conjugate gradient iteration. Wen x(k)
approaches the solution x* the Jacobian approaches J (x') so that 1,
whi ch changes from iteration from iteratibn, approaches a linit also.

As a possible alternative, one could fix Mfor a number of iterations
by keeping J fixed at a value froman earlier iteration, updating
only occasionally.

Anot her choice for M that we consider approxi mates the
Jacobian matrix directly. W choose Mto be the approximte sparse
oLt (Cholesky) factorization of the Jacobian, as devel oped by Meijerink
and van der Vorst for the solution of linear elliptic problens [21].

The matrix L is chosen with a sparsity pattern resenbling that of the

| ower triangular part of J, and the elenents are obtained systematically
fromJ by enforcing the sparsity structure as the approxi mate factor-

i zation proceeds. For linear problems this splitting has been found to
yield an iteration matrix with eigenvalues favorably distributed for

conj ugate gradient acceleration [21].

For "M" matrices, Meijerink and van der Vorst proved in [21]
that the approxi mate factorization can be carried out in a stable manner.
For the problems we consider, the Jacobian nmay not be such a matrix;
however, we did not encounter difficulty in carrying out the approxinate
factorization for our test cases.

Finally, we consider approximting the Jacobian by a discretized
separabl e operator, for which fast direct nethods can be used [2,5,13,19].
For our test problens we consider as a choice for Mthe discrete

Helmholtz operator, possibly scaled by the diagonal of the Jacobian.

16



4, First Test Problem

The first test problem for which the above splittings are
conpared, is that of solving nunerically the miniml surface equation
on a rectangle. This problem was used previously for studying the
behavi or of nonlinear relaxation methods [6,7] and is of interest
because of its strong nonlinearity. The minimal surface equation arises
in finding a single-valued twice continuously differentiable function
v(x,y) that attains given values on the boundary of a region R and

mninzes the area integral over R [15]. This equation is

(9) diviryv) = 0 on R,

-1/2

where y = (1 + [wv]?) , wWith the boundary condition

(10) vV = s(x,y on oR .

We consider the domain

0<x<2, 0<y<1.

If s(x,y) i's symetric about X = 1 then the problem need only be

solved on the unit square with the symetry condition

(11) S—X:O on x = 1.



W discretize (9,10,11) in the same manner as is done in [6].

A square nesh of size h =1/nis placed on the donain, and u denot es

y
the approximtion to wv(x,y) at the mesh point x =ih, y =jh.  Then

at the interior points we obtain, after nultiplication by —on®

2

(12) 9,5 = Y{,j(zui’j R ui,j-l) + Yiﬂ_,j(eui’j - Usia, 5 i,,j—l)
' Y£,5+1(2u’3 S S S
1 = 1,2, ,n-1; ] = 1,2, -1,
where v_ = Y(lwlf _) approximtes r{wl®) at (G-1/2)n, (3-1/2)n),
with " o
. lezi,j =2—r-1l§ [(ul;J - Ui, g 24 (ug 5 - ui,’j_l)2
Py ui—l,j—12 g ui—l,j-l)e]

Along the symetry boundary we obtain

16



+y._ uo-w -uw ) =0, | =1,2,...,n-1.
n,Jj+l

In (12,13) we do not group together explicitly the coefficients
of U 5 and of uiil,jil’ as is customary for the linear case, in order

to enphasize that the problemis nonlinear and that the y are

. i,J
t hensel ves functions of the u.l.J. ’

The Jacobian matrix J is given by

og, .
J = _§£Ll

auk, 2

a positive-definite symretric matrix that is block tridiagonal, wth

each block being tridiagonal. For this test problem the calculation

of y'  =dy_ _/dlwlé _and of J can be carried out with only a nodest
1 i,J i,J

amount of conputational effort in addition to that required for calculation

of the 94 5
2

5. Experimental Results for the First Test Problem

The test problemof Sec. 4 was solved nunerically for the sane

boundary data as was considered in [6,7],

V=0 on x

I

0O and y =1,

el X
V = SIn 7

on y =0,

and the symmetry condition (11). The following algorithms discussed
in Sees. 2 and 3 were used:
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. One-step block SOR- Newt on
. One-step block SSOR-Newt on
[11.  One-step block Newt on-SSCR .
V.  Conjugate gradient algorithm (with Mthe identity matrix)
v. Conjugate gradient algorithm with M the BSSOR- Newt on
operator.
VI.  Conjugate gradient algorithm with M the New on-BSSCR
operator.
VIl. Conjugate gradient algorithmwith M the Meijerink-
van der Vorst approxinmate sparse factorization of J,
renewed every restart. The sparsity pattern of the approximate
factor is chosen to be identical with that of the l|ower tri-
angul ar part of J (the 1ccc(o) variant [21]).
VIII. Conjugate gradient algorithmwth M = _, 2n° tines
the discrete Laplace 5 point operator [y = 1 in (12,13)].

1/2 ot KI)Dl/g,

IX. Conjugate gradient algorithm with M =D
where & is the operator of VIII and D is the diagonal
of J, renewed every iteration. « is a constant chosen
so that the average of three sanple values of the diagonal of
J equal s the diagonal of M
For the conjugate gradient algorithms each test used either
a(l~ or a@x‘ and either b(l) or b@), with no line searches and

none of the convergence safeguards developed in Lenmmas 1-3 of Section 2.
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The al gorithms are conpared in terms of operation counts required
to decrease the residual to specified values. |n Table 1 are gvenapproxi-
mate operation counts for various phases of the iteration. |n Tables 2
and 3 are given the results of experinents carried out in double precision
with FORTRAN programs on the |BM 360/168 conputer for grids wth spacing
h = 1/16 and h = 1/32, for initial approximation u(0) = 0. The
suppl enental tables give the results as obtained originally in terns of
nunber of iterations, which were converted subsequently to multiplication
counts by neans of the cost factors. The cost factors relate to our test
prograns, which are not generally optinmal but nevertheless should give
a reasonable basis for conparison. Note that an iteration of one of the
SCR algorithnms requires half the nunber of operations of an iteration of
the corresponding symretric form which requires both one forward and one
backward sweep.

The colums, fromleft to right, in the tables correspond to
successively larger values of ||r(k )HZ' the two-norm of the residual.
()

The initial residual is approximtely 0.47 for the coarser nesh

I
and 0.34 for the finer one. (Recall that the residuals are for (12,13),

which are obtained from (9) after multiplication by a factor proportional

to hg-)

From the tables, one observes that for this test problem the
conjugate gradient algorithmwth discrete Leplace operator splitting,
with or without shift or Jacobian diagonal scaling,, produces an algorithm
favorably conpetitive with nonlinear block SOR in terns of operation
counts.  On the larger problem the conjugate gradient algorithm with

one of the nonlinear BSSCR splittings is also faster than nonlinear BSCR

21



(10)

(11)

TABLE 1

COST FACTORS PER STEP FOR M NI MAL SURFACE ALGORI THVB

n x (n-1) unknowns, n(n-1) = N

Costs consider only multiplications, divisions, and square roots
and include only the highest order terms in N

Conj ugate gradient overhead is 5N

SOR Overhead is N

The cost of calculating y__ is 3N.

The cost of formng ¢ Ps Ly (given 'rr_).

The cost  of calculating4yl_ is 2N (give# y£¥L

20N operations are needeadto calculate J (giien ﬁ””?i')'
12N operations are needed to calculate only the tridi;gon;
portion of J. (&v for the diagonal only.)

To factor and solve a tridiagonal system takes 5N operations.

To formJp takes 9N operations given J.
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TABLE 2

COWPARI SON OF ALGORI THVS BY NUMBER OF MULTI PLI CATI ONS
PER MESH PO NT TO OBTAIN A RES| DUAL

”r(k)”2 < EPS: h = 1/16  MNML SURFACE EQUATI ON

Al gorithm
(Oo%t Fact or) w EPS = 107 107 107 107 107
| BSCR- Newt on 1.1 5(ol 4448 3072 1696 220
(32) 1.2 4704 3616 2496 1376 28K
1.3 3776 2880 1536 1120 o2k
1.4 2976 2272 1600 £96 19
1.5 o2l 0 1728 1216 704 192
1.6 1568 1248 896 544 160
1.7 1056 &30 640 448 19
1.6 1536 1216 960 544 255
1.9 306l 2560 1920 1184 512
|1 BSSOR- Newt on 1.1 5601 whEly 3127 1770 413
(59) 1.2 4597 3717 2596 1475 354
1.5 4130 31207 2183 1295 295
1.4 3451 2655 1888 1062 205
1.5 3009 2301 1652 944 236
1.6 2655 2065 1475 g06 236
1.7 25% 2006 1416 826 236
1.8 3066 2419 1711 1003 295
17T Newt on- BSSOR 1.1 5643 4384 3078 1767 456
(57) 1.2 4731 3648 2565 1482 399
1.3 3990 3016 2166 1254 399
1.4 3420 2622 1881 1083 342
1.5 2964 2280 159 969 342
1.6 2622 2052 1ko5 855 342
1.7 2565 1995 1366 7% 342
1.5 2964 2280  15% 969 344
1.9 5358 4104 2850 1655 570
IV CG apl 11997 9331 6794  Lost 1677
(13) 22b? 11762 9331 6751 4214 1763
ab! 10492 786y 5762 3612 1075
an® 10444 16569 5762 3612 1548
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TABLE 2 Conti nued

Al gorithm 5 4 = - 1
(Cost Factor) w EPS=10 10 10~ 10 10

V CG+
BSSOR- Newt on 1.1 2346 oohk 2040 1632 918
afpt 1.2 2346 2142 1938 1530 918
Restart ¢ 1.3 224k 2142 1836 1428 918
(102) 1.4 ookl 2040 1632 1428 918
1.5 2142 1938 1632 1326 1020
1.6 2040 1836 1632 1224 918
1.7 2040 1836 1530 1224 1020
1.8 onlk 20L0 1636 1326 1020

1.9 no convergence
Restart 13 1. 65 1632 1326 1122 98 510
vV CG+ .

BSSOR-Newton  a“b* 2040 1836 1530 122k 1020
o = 1.7 a%p? 1530 1326 1122 816 510
(102) oot 173k 1530 1326 1020 612
. 175k 1428 1224 1020 612

VI CG +
Newt on- BSXCR 1.1 1704 1562 1491 1136 710
alpt 1.2 1633 1441 1349 1065 634
(11) 1.3 1562 1441 1349 1065 639
1.4 1562 1420 1207 994 639
1.5 1441 1278 1136 99k 639
1.6 1633 20 1278 1065 710
1.7 1646 1633 1420 1278 781
1.8 2059 1846 1633 1b20 1207
1.9 2201 1968 1846 1h91 1207

VT ¢cg
Newt on-BSSOR  a“p' 1562 1420 1207 994 7110
w=14 a%p° 1349 1207 1065 %1 5%
(11) alvt | b46 1633 1420 1278 761
a™ " 1562 1276 1065 %3 568



TABLE 2 Conti nued

{2Si?r¥22?hr) EPS=10"" 1074 107 107 w07t
VIl CG + a“bt 1318 1065 562
sparse o’ a%p° 152k 1374 1068 112 462
(50 + 6 per awbt 157k 1216 1018 662  Leo
restart) av® 142k 1268 968 762 Lée
VITI co + 2t 1045 1045 880 605 220
Lapl aci an a“1p° 880 880 715 385 220
(55) 2ot 825 825 715 385 220
alp? 825 825 15 440 220
I X ¢cc + .azbl 754 754 696 522 290
Laplacian + ag’b2 638 638 522 406 290
J diagonal ato’ 696 696 580 406 232
+ shift a'v” 754 754 638 52 2%

(58)
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SUPPLEMENT TO TABLE 2
COMPARI SON OF ALGORI THVE BY NUVBER OF | TERATI ONS TO
OBTAIN A RESI DUAL Hr(k)Hg < EPS,

h=1/16

Algortthm ®  EPS=107 0% 1072 10° 1w
| BSOR- Newt on 1.1 182 139 96 53 10
1.2 147 113 78 43 9

1.3 118 90 48 35 7

1.4 93 T1 50 28 6

1.5 70 54 38 22 6

1.6 49 39 28 17 5

1.7 33 26 20 14 6

1.8 48 38 30 1 9

1.9 102 80 60 31 16

I BSSOR- Newt on 1.1 94 6 53 30 1
1.2 83 63 44 25 6

1.3 70 53 37 22 5

1.4 59 45 32 18 5

1.5 51 39 28 16 4

1.6 45 35 25 14 4

1.7 44 34 ok 14 4

1.8 52 41 29 17 5

[l Newt on- BSSOR 1.1 94 I 54 31 8
1.2 83 64 45 26 I

1.3 70 54 38 22 T

1.4 60 46 33 19 6

1.5 52 40 28 17 6

1.6 46 36 25 15 6

1.7 45 35 ob 14 6

1.8 52 40 28 17 7

1.9 94 72 50 29 10
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SUPPLEMENT TO TABLE 2 Conti nued

Al gorithm

w EPS=10" 1wt 102 107 107
1V CG atpl 279 217 158 49 39
827 274 217 157 98 41
alo! 244 183 3L 84 25
ab? 243 183 134 8l 36
vV CGH 1.1 23 22 20 16 9
BSSCR- Newt on 1.2 23 21 19 15 9
. 1.3 22 21 18 14 9
Restart 9 1.4 22 20 16 14 9
1.5 21 19 16 13 10
1.6 20 18 16 12 9
1.7 20 18 15 12 10
1.8 22 20 18 13 10
1.9 no convergence
Restart 13 1. 65 16 13 11 9 5
v CG +
BSSOR-Newton  a‘bt 20 18 15 12 10
® = 1.7 a"b? 15 13 11 8 5
aot 7 15 13 10 6
a” T 14 12 10 6
VI CG + 1.1 ol 22 21 16 10
Newton - BSSOR 1.2 23 21 19 15 9
oot 1.3 22 21 1915 9
1.4 22 20 17 14 9
1.5 21 18 16 14
1.6 23 20 18 15 10
1.7 26 23 20 18 11
1.8 29 26 23 20 17
1.9 31 28 26 21 17
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SUPPLEMENT TO TABLE 2 Conti nued

Al gorithm _ -
EPS=10" 10° 102 107 10

VI CG + a2t 22 20 17 14 10
Newt on- BSSOR ~ a°b° - 19 17 15 11 8
o=14 abt 26 93 20 18 11
alp? 22 18 15 13 8

VIl CG + a“pt 26 21 11
sparse o1’ a"1° 30 27 21 16 9

albt 27 ol 20 13 9

atne 28 25 19 15 9

VIl CG + a“pt 19 19 16 11 4
Lapl aci an aZp° 16 16 13 1 4

abt 15 15 13 7 4

alv? 15 15 13 8 4

X CG + a“pt 13 13 12 9 5
Lapl aci an 8°1° 11 11 9 1 5

+J diagonal  a'v! 12 1 10 7 4

+ shift atp? 13 13 11 9 5
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TABLE 3

COVPARI SON OF ALGORI THVB BY NUMBER OF MULTI PLI CATI ONS
PER MESH PO NT TO OBTAIN A RESI DUAL

Hr&mgglw&rlQlBEMmHMLSmHmEBMMNN
Al gorithm 5 - - - - -2 -1
(Cogt Factor) EPS=10_8 10 " 10 6 10 ° 10 b 10 7 10 10
| BSOR- Newt on 1.3 >11200 105 60 6944 3328 192
(32) 1.4 >11200 8384 5536 2656 160
1.5 >11200 10912 8704 6496 4288 2080 160

1.6 >11200 9696 8096 6464 4832 3232 1600 160
1.7 1732 6624 5536 4448 3360 2272 118+ 160
1.8 4000 3328 2976 2464 1952 1440 &6k 192
1.4 5408 4832 4096 3296 2752 2048 1152 640

I BSSOR-Newton 1.5 15812 13570 11328 9086  678.5 4543 2301 236
(59) 1.6 12626 10856 9086 72.57 5487 3658 1888 236

1.7 | 0148 8673 7257 5841 Lhkes 2950 1534 236

1.75 9204 7670 6608 5310 L4012 2714 1416 236

1.8 8673 7434 6254 5015 3776 2596 1416 236

1.85 8791 7552 6313 5074 3894 2655 1534 295

1l Newton-BSSOR 1.4 19038 16302 13566 10887 8151 5472 2736 285
(57) 1.5 15276 13110 10944 8778 6555 4389 2223 285

1.6 12198 10431 8721 7011 s2hk 3534 1824 285

1.7 9747 8379 7011 5643 4275 2850 1482 285

1.8 8322 7125 598 4788 3591 2394 1254 399

1.9 10146 8721 7239 561k 4389 2964 1653 570
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TABLE 3 Conti nued

(Aolo%?”FtaE{nor) Eps=10"0 107 100 107 10 1077 10? 107t
v oo+ 3570 3366 3060 2058 2550 2040 1734 816
BSSOR: Newt on M6%  TuLES 4182 3078 3468 3060 2754 2346
Restart 13 3570 3366 3162 2856 2346 1038 1632 1cok
o 4182 3876 3468 3162 2058 2754 2346 1938
(102) 3774 3468 3162 2856 2652 2142 1438 1ho8
3078 3468 3162 2856 2550 2142 1836 1122
no convergence
VI OG- 3053 080 2556 2272 2130 1704 1278 852
Newt on- BSSCR 2627 2414 2272 2130 1917 149 1278 1065
270" 2769 2556 285 2130 1775 1633 1278 710
Restart 13 2011 2769 2343 2272 2130 1917 1633 1065
(72) 3053 2840 2627 2343 2130 1917 1704 1278
no convergence
| X OG +Laplacian 2623 2440 2318 2135 1952 1769 1403 o15
+ 3 g agonal 2623 2501 2379 2196 2013 1830 13k2 915
Restart 16
(61)
Restart 9 2074 1891 1647 1525 1281 1159 915 549
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COWPARI SON OF ALGORI THVS BY NUMBER OF | TERATIONS TO

SUPPLEMENT TO TABIE 3

OBTAIN A RESI DUAL [))], < Eps
h =1/32
Al gorithm ppse108 1077 1076 107 o™ 1070 102 107t
| BSOR-Newton 1.3 >350 330 217 104 6
1.4 >350 262 173 83 5
1.5 >%50 341 272 203 134 65 5
1.6 >350 305 253 202 151 101 50 5
1.7 241 207 173 139 105 71 37 5
1.8 125 104 93 17 61 45 27 6
L9 169 151 128 103 86 64 36 20
|| BSSOR-Newton 1.5 268 230 1% 154 115 7 39 4
1.6 214 184 154 123 93 62 32 4
1.7 172 147 123 99 75 50 26 4
1.75 156 130 112 90 68 46 ol 4
1.8 147 126 106 85 64 44 ok 4
1.85  1k9 128 107 86 66 45 26 5
[11 Newton-BSSOR 1.4 334 286 238 191 143 96 48 5
1.5 268 230 192 154 115 17 39 5
1.6 214 183 153 123 % 62 32 5
1.7 171 147 123 99 75 50 26 5
1.8 146 |.25 104 &l 63 4o 22 1
1.9 178 153 127 102 17 52 29 10
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SUPPLEMENT TO TABLE 3 Conti nued

Al gori thm © BSP-10-8 10-7 10-6 107 10-4 -3 2 -1
V CGt 1.5 35 33 30 29 25 20 17 8
BSSOR- Newt on 1.6 46 44 41 39 34 30 27 23
Restart 13 1.7 35 33 31 28 23 19 16 12
a%b° 1.75 41 38 34 31 29 2T 25 19
1.8 37 34 31 28 26 21 19 1k
1.85 39 34 31 28 25 21 18 11
1.9 no convergence
VI CG + 1.4 43 40 36 32 30 2L 18 12
Newt on- BSSOR 1.5 37 34 32 30 27 21 18 15
a“b° - 1.6 39 36 35 30 25 23 18 10
Restart 13 1.7 41 39 33 32 30 27 23 15
1.8 43 ko 37 33 30 27 24 18
1.9 no convergence
| X CG + Lapl aci an aZpt 43 40 38 35 32 29 23 15
+J diagonal  a'bt 13 41 39 3% 3 30 22 15
+ shift
Restart 16
Restart 9 a®pt 34 31 27 25 21 19 15 9
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As has been observed also for |inear cases [1,12,17], the symetric
SCR al gorithms accelerated by cg are less sensitive to the choice of
relaxation paraneter ® than are the corresponding unaccel erated SOR
al gorithns. |
Of course, as with any higher order nethod, the storage require-
ments of cg are greater than those of the basic unaccelerated iteration.
It should be noted also, that for nonrectangul ar domains nore operations
woul d be required to obtain the solution of (5) for cases VII1 and IX
The results for initial approximations other than u(O> =0
are not included in the tables: however, there were indications in our
experiments that poorer initial approximations could result in divergence
for some of the nethods, wthout the safeguards of Section 2, as woul d
“be the case also for the unaccel erated nonlinear SOR nethods [6,7].
In the experinents, the algorithms exhibited some sensitivity to the
l ength of the conjugate gradient cycle between restarts. Restarting
every 9 iterations, which is the case reported in Table 2, seemed
effective for the coarser grid. For the finer grid 13 to 16 iterations
were better.

Limtations of time prevented us from investigating Case VI
for the finer grid and frominvestigating either a variant of the o1t
approxi mate factorization allow ng one nore subdi agonal nonzero band
in L (anal ogous to 1cca(3) in [21]) or a variant utilizing block

t echni ques devel oped recently in [29]. Either of these variants m ght
yield results superior to those reported for Case VII, as they have been

found generally to be nore efficient for Iinear problens.
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VW conclude from these experiments that the generalized
conjugate gradient algorithm wth nodifications to ensure convergence
hol ds prom se of being favorably conpetitive with relaxation techniques

for solving strongly nonlinear elliptic problens.

6. Second Test Problem

For the second test problem we consider a mldly nonlinear

equation arising fromthe theory of sem conductor devices,

(14) Vo —VYY+ (1-e_5X)ev=l.
Equation (1) is to be solved on the unit square subject to the boundary
conditions

on x =0 V=0

on x =1: v=1

on y = O: ov/dy = 0
(15)
3v/oy = 0 for 0O<x<a<l/0e
on y = 1: v = -1 for a<x<Il-a
ov/dy = 0 for I-a <x <1.

O particular interest is the mxed boundary condition on the edge
y =1, as it would preclude the imediate use of one of the basic fast

direct algorithnms for solving (5) if Mwere chosen to be a discrete

Hel mhol t z operator with boundary conditions (15).
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W place a uniform nesh of width h on the unit square and
denote the approximtion to v(x,y) at the mesh point x =ih, y =jh
by Uy 50 Then at an interior point we obtain, using the standard

J

five-point discretization,

+ Ly

1 1
— (- - - + - :
(16) 2 (-u i,] u'i*l-l 3 ui jﬁ'l) (I-e 1]

. - u, .
n i,j-1 i-1,]

At the Neumann boundary points the difference equations specialize in the
usual manner, as in Section 4.
Ve choose for M the equivalent discretization of the Helnholtz

operator H

but with the boundary condition along y = 1 in (15) repl aced by

(17) ==0 on y=1 for 0<x<1.

This permts the use of standard fast direct nmethods for carrying out
the nunerical solution of M = r. A'so, we augnent the system (16)
with-the equations

5X. I - BX.

(18) fg— gt (1-e explu, ) = - 2 + (l-e %) exp(-1)

for the Dirichlet points ony = 1, so that the Jacobian of the augnented

system and M have the same rank. The constant « is chosen to be 1,

36




a value that is meant to approximate (1 - e'BX)ev on the square, so
that M approxi mates, in this manner, the Jacobian of the augmented
system (16,18).

This choice for M does not approximate the Jacobian well
in norm because of the differing boundary conditions ony = 1. However,
because the nunber of nesh points at which the boundary conditions differ
is small, a corresponding |linear problem-say with (1 - e %)’ in (1)

repl aced by v
(19) -v_-v__+v=1,

with corresponding replacenments in (16) and (18), and with k=1 in
M-wll converge conpletely in only a noderate number of iterations. At nost
ep + 3 iterations are required in this (linear) case to reach the solution
(in the absence of round-off errors), where p is the nunber of
Dirichlet boundary points ony = 1, because of the finite termnation
property of cg [9]. For our test problem our interest is in
obtaining an indication of the degree to which the introduction of a
mld nonlinearity alters the convergence rate from that for the
corresponding |inear problem (see also [4]).

In Table 4 are given the observed nunber of iterations at which

the residual norm (r(k),z(k))l/2 = |r(knl_l was first reduced to

(0) _ 0.

| ess than EPS, for the initial approximation u The val ue of

a Wwas taken to be 5/16, and the problens were solved using a FORTRAN

program on a CDC 7600 conputer for mesh spacings h = 1/16, 1/32, 1/6k.
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The paraneters a(l), b(l) were used, and there was no restarting.

The solution of M = r was carried out at each iteration using either
the program GVA with marching parameter K = 2 [2] or the program package
from ncar [28]. (These two prograns give slightly different rounding
errors; we observed no inportant difference between themin their

(o>“

effect on the cg iterations.) The initial residual norms |r 1

were of the order of 10° for h = 1/16 and 10° for h = 1/6k.
Problem| is the discretized linear problem (15, 19) augnented
with the equations
. &
NCIE O B ¥ X
for the Dirichlet boundary points ony =1, with Mas descri bed
above with «k = 1. Problem Il is the discretized nonlinear equation (1)
with the same boundary condition (17) ony =1 as that for Mand
with the sane Mas for Problem|. Problem Il conbines the boundary
condition of Problem | with the nonlinearity of ProblemIl; it is the
di scretized nonlinear problem (1L, 15, 1&), again with the sane M
The nunber p of special boundary points for Problens | and I1I1
is given in Table 4 for each of the nesh spacings. The finite term na-
tion behavior of cg for the linear problem can be observed clearly
for the coarsest nesh; for the finer nmeshes some contam nation resulting
from rounding errors occurs. For the finest nesh, a residual snall

enough for practical purposes occurs well before 2m+ 3 iterations

have been carried out.
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The results for Problem Il indicate that convergence is rapid
for this choice of Mwhen the mld nonlinearity ispresentandthe
mxed boundary conditions on y = 1 are absent. As one would expect
for this case the nunber of iterations to reach a given residual is
essentially independent of nesh size. The results for Problem Il]
indicate that with the mixed boundary condition on y = 1, the con-
vergence rate for the mldly nonlinear case is slowed noderately from
that for the linear case, Problem 1. One could likely inprove the results for
Problens | and Il in terns of nunber of iterations by choosing «
to be, instead of a--constant, the sumof a function in x and one
in y, which would still permt the use of fast direct methods. W
did not include such choices in our experiments, however. W repeated
sone of our experiments for an initial approxination u(O) equal to

pseudo- random numbers in [0,1] and found no substantial difference from the

results of Table 4.
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