
SU326 P30-50

NUMERICALSOLUTION OF
NONLINEAR ELLIPTIC PARTIAL DIFFERENTIALEQUATIONS

BYA GENERALIZED CONJUGATE GRADIENTMETHOD

bY

Paul Concus, Gene H. Goluband Dianne P. O'Leary

--

STAN-CS-76-585
DECEMBER 1976

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

’ I

NUMERICAL SOLUTION OF
NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

BY A GENERALIZED CONJUGATE GRADIENT METHOD

bY

Paul Concus
Lawrence Berkeley Laboratory
University of California
Berkeley, CA 94720

Gene H. Golub
Computer Science Department

Stanford University
Stanford, CA 94305

Dianne P. O'Leary
Department of Mathematics

University of Michigan
Ann Arbor, MI 48109

Also issued as Lawrence Berkeley Laboratory Report LBL-5572,
University of California, Berkeley.

Research supported in part under Energy Research and Development
Administration Grant E (04-3) 326 PA #30 and in part under National
Science Foundation Grant MCS&13497-AOl.

ABSTRACT

We have studied previously a generalized conjugate gradient method

for solving sparse positive-definite systems of linear equations arising

from the discretization of elliptic partial-differential boundary-value

problems. Here, extensions to the nonlinear case are considered. We

split the original discretized operator into the sum of two operators,

one of which corresponds to a more easily solvable system of equations,

and accelerate the associated iteration based on this splitting by
--_

(nonlinear) conjugate gradients. The behavior of the method is illus-

trated for the minimal surface equation with splittings corresponding

to nonlinear SSOR, to approximate factorization of the Jacobian matrix,

and to elliptic operators suitable for use with fast direct methods.

The results of numerical experiments are given as well for a mildly

nonlinear example, for which, in the corresponding linear case, the finite

termination property of the conjugate gradient algorithm is crucial.

0. Introduction

In earlier papers [8,9] we have discussed a generalized conjugate

gradient iterative method for solving symmetric and nonsymmetric positive-

definite systems of linear equations, with particular application to

discretized elliptic partial differential boundary-value problems. The

method consists of splitting the original coefficient matrix into the

sum of two matrices, one of which is a symmetric positive-definite one

that approximates the original and corresponds to a more easily solvable

system of equations; the associated iteration based on this splitting

is then accelerated using conjugate gradients. The conjugate gradient

(cd acceleration algorithm has a number of attractive features for

linear problems, among which are: (a) not requiring an estimation of

parameters, (b) taking advantage of the distribution of the eigenvalues

of the iteration matrix, and (c) requiring fewer restrictions for optimal

behavior than other commonly-used iteration methods, such as successive

overrelaxation. Furthermore, cg is optimal among a large class of

iterative algorithms in that for linear problems it reduces a particular

error norm more than does any other of the algorithms for the same

number of iterations.

In this paper we study an extension of the generalized conjugate

_ gradient method to obtain solutions of systems of equations arising

from elliptic partial-differential boundary value problems that are ,

nonlinear. For such systems --which correspond to the minimization of

convex nonquadratic functionals, as opposed to quadratic functionals for

the linear case --optimality and orthogonality properties of cg need no

1

longer hold. Some algorithms for the nonquadratic case have been

proposed [e.g., 10, 11, 14, 16, 20, 221 that preserve one or more of

the quadratic case properties of finite termination, monotonic decrease. .

of the two-norm of the error, conjugacy of directions of search, and

orthogonality of the residuals. The method we discuss only approximates

these properties, but is found to be effective for solving the discrete

nonlinear elliptic partial differential equations of primary concern

in our study. The method is closely related to the one studied in

[3] for solving mildly nonlinear equations using a particular splitting.

We discuss in Sec. 1 several nonlinear conjugate gradient

algorithms and in Sec. 2 same convergence properties. In Sec. 3

possible splitting choices for the approximating operator are described.

‘A test problem for the minimal surface equation is discussed in Sec. 4,

and experimental results for several splittings are summarized in Sec. 5.

In Sec. 6 are given experimental results for a test problem for a mildly4

nonlinear equation, for which, in the corresponding linear case, the

finite termination property of cg is crucial.

Much of the work reported here comprises a portion of the last--

named author's doctoral dissertation at Stanford University [23].

We wish to thank the Mathematics Research Center, University of Wisconsin-

Madison for providing the first two authors the stimulating and hospitable

surroundings in which portions of the manuscript were prepared. We

thank H. Glaz for preparing the computer program and for carrying out

the numerical experiments for the second test problem, and R. Hackney

and D. Warner for suggesting the problems from which this test problem

2

was derived. We thank also R. Bank, B. Buzbee, P. Swarztrauber, and

R. Sweet, who made available to US their excellent computer programs for

solving separable elliptic equations with fast direct methods. The work

reported here was supported in part by the U.S. Energy Research and

Development Administration, by the Fannie and John Hertz Foundation,

and by the National Science Foundation.

1.

[91

(1)

or9 equivalently, minimizes the quadratic form

(2)

Nonlinear Conjugate Gradient Algorithms

In the linear case, the generalized conjugate gradient method

solves the N X N positive-definite system of equations

Ax = b

f(x) = $xTAx - xTb .

Let M be a positive-definite symmetric N X N matrix, chosen

to approximate A. Then for symmetric A the algorithm, as described

in [9] in its alternative form, is:

(0)Let x (1)be a given vector and define arbitrarily p - .

For k = 0, 1, . . .

(i> Calculate the residual r k) = b - A x (k)

and solve

(3) Mz (k) = rck) ,

(ii>

3

Compute the parameter

(1)bk =
Zk)T (k)r
Z(k-l)Tr(k-li '. .

(1)
bO

= 0

and the new direction p (k) = .(k) + b(l) (k-1)
k.?? l

(iii> Compute the parameter

--_ (1)
"k =

Z(k)T (k)r

p(k)TAp(k) ’

. and the new iterate x (k+l) = xCk) k p .+ a(l) (k)

(1)In place of the parameters ak (1)and bk , one may use instead

equivalent ones [18,26], such as

(2)bk =-
p(k-l)TAp(k-l) l

Instead of computing the residual r (k) explicitly for k 2 1,

as in (i), it is often advantageous to compute it recursively as

.(k) (k-l)= r (k-l)
- ak,lAP '

4

q

The effectiveness of the algorithm (i, ii, iii) is discussed in

[p] for cases in which A is a sparse matrix arising from the dis-

cretization of an elliptic partial differential equation and M is

one of several sparse matrices arising naturally from A.. .

For the nonlinear case, we consider solving the system of equations

arising from minimizing f(x), where g(x) is the gradient of f(x).

(For the linear case (1,2), g(x) z Ax - b; in either case, g(x) is

the negative of the residual.) We assume that the Jacobian matrix J

of (4) is positive-definite and symmetric, and, as for the linear case,

we are interested in those situations for which (4) is a discrete form

of an elliptic partial differential equation and, correspondingly, J

is sparse.

The approximating matrix M for the linear case is chosen in

[p] to be one of several positive-definite symmetric matrices approximating

A naturally in some manner. For the nonlinear case, we consider related

choices for M to approximate J, although sometimes M may not be

linear, symmetric, or everywhere positive definite. We pattern after

(i, ii, iii) the following algorithm (see also (31).

Let x(O) be a given vector and define arbitrarily p - .(1) For

k = O,l,...

(Ni) Calculate

04 - -g(xw)r -

and solve

Mzck) = ,ck) .

5

(Nii) Compute bk = bp) or 4" y

where

bIjl)
z(k)'L' (k)

=
z(k-l;Tr(kil)

(2)bk =-
p(k-l)T,p(k-l) '

bO =o,

and --
(k) ()k

p =z + ,p(“-‘) .

(Niii) Campute ak = ai

where

and

> or (2)
?k 1

(1)
"k =

(2 1
"k =

(k+l)
X = xck) + akpck) .

The algorithm (i, ii, iii> for the linear case is generally

iterated without any restarts (setting of bk to zero

for sOme value of k > 0); however the nonlinear algorithm (Ni, Nii, Niii)

is usually restarted periodically to enhance convergence (see Sets. 2 and 5).

6

For some of the splittings we consider and in the presence of roundoff

error, (2)the numerator of ak may not be positive for some values of k.

If it is not, then we find it convenient for these values of k to

replace p(k)
. .

by its negative.

2. Convergence.

In the form (Ni, Nii, Niii) the algorithm of Sec. 1 cannot be

guaranteed to converge. However, by introducing a line search to choose

"k so that f(x) is minimized along the line ,(k)
--

+ akp(k! by

ensuring that M is positive definite, and by restarting the iteration

periodically, convergence can be guaranteed. Convergence in this

case can be shown by application of Zangwill's spacer step theorem [30],

which states that if a closed algorithm with descent function f is

course of another algorithm that maintainsapplied infinitely often in the

the property

f(x(k+l)) < f(x(k)J-

for all k, and if

{x:f(x) < f(x(O)))-

is compact, then the composite algorithm converges.

We have the following:

7

Theorem 1. If the nonlinear conjugate gradient algorithm is modified

to calculate ak by

"k = min(a^:f(x(k) + Gp(k)) < f(x*(k) + ap(k))va E: (O,M)]-

s aoPt

k

and if the iteration is restarted every a steps, then the algorithm

is globally convergent (i.e., will converge from any initial point x0)

to x* such that f(x*) is a minimum of f(x) over EN.

--

Proof. The sequence {f(x 04)] is monotone non-increasing, and every a,

steps we take a scaled steepest descent step. Since scaled steepest

. descent is a convergent algorithm, we can conclude by Zangwill's space

step theorem that our algorithm converges.

This algorithm can be quite slow due to time consumed in line

searches. In order to avoid a line search at every iteration, we impose

additional constraints on the stepsize so that we can guarantee that

f is monotone nonincreasing at each stage of the iteration. We have
a

the following theorem:

Theorem 2. If the conjugate gradient iteration is restarted every

CX steps with the first step length in each cycle calculated by a line

search, and if no conjugate gradient step causes an increase in the

function f(x), then the iteration will be globally convergent to xx-

that minimizes f(x).

b

Proof. By direct application of the spacer step theorem.

If the function f(x (k) > is explicitly available, then we can

accept our original definition of a
k if

f(xCkfl)) < fixCk))-

and do a line search if this test fails.

Lemma 1. Let ak be chosen by the rule

--

(1) (
ak or (*))

ak

"k =

\
opt

ak otherwise.

Then f(x) is monotone nonincreasing at the kth step.

If we have available only values of g(x) and J(x) at OUT

iterates and not f(x), we must make use of conditions that imply that

f is decreasing.

Because f is convex,

wT
P g(Jk) + aPCk))

will be a monotone increasing function of a that is negative at

a = 0 and is 0 at a = a0.Pk ' the Point at which f attains its

minimum on the line from x (k) in the direction p (k) .

If illnax is chosen such that

amax = min{a > a0P-t
k :f(x04 + apck)

. .
) = f(xCk))]

then we can deduce that f(x (k+l)) will be less than f(x (k)) if

0 < a < am=. Without further information (e.g., that obtained through

a line search), we cannot calculate a
max. We can, however, easily

verify whether a<aopt
k

and this will give us a sufficient condition

for convergence:

-..

Lemma 2. Let ak be chosen by the following rule:

"k =

’ (1) (or
"k

(2))
"k if p(lr)T g (xCk) + a(l) id

k'p -> <o

(
or

P
(k)T g(x(k) + a(2), (k)) < o)

kP -

' aoptk otherwise.

Then f(x(k+l)) < f(x(k)).-

If we have information on the curvature of the function f, we

can derive an alternate condition. Consider the Taylor series expansion

of I f at x(~+'):

6) f(x(k+lJ) - f(x(k)) = ak dx
(k))T p(k) 1 2

+sakP
(k)T

J(w) p(k)

where w is a point between x (k) and x(~+')9 and suppose we know that

10

0 < d < A(J(x))-

for all x in a convex set including all iterates. Then the right
. .

hand side of (6) can be guaranteed to be negative if

ak <
-2 g(x(“))T p(k)

d ,cklT p(k) ’

This gives an alternate condition for convergence:

Lemma 3. Let ak be chosen by the rule

f a;0

aoPt
i k

(or (2))
"k

if akl) < -2 g(x(kJJT p(k)

d p(k)1 p(k)

(or ()
"k

(k)lT (k)
*<-*dx P)

d ,cklT p(k)

otherwise .

Then f(x) is nonincreasing at that step.

In general, each of the conditions in Lemma 1 through Lemma 3

. is quite restrictive, but verifying any one is sufficient for descent

at a given step. Thus an algorithm might incorporate facilities for

testing each of the conditions successively if the preceding ones did

not verify descent. This would keep the additional operational overhead

for the algorithm low.

11

Notice that we do not need constraints on the bk (other than

bk # O), the parameters that determine the step direction, in order

to guarantee convergence. In our numerical experiments (Sec. 5),

we have observed that for the test problem considered here the algorithm

is less sensitive to' choices of the parameter bk than to choices of

ak*
It was found, on the other hand, for the problem studied in [25]

with small N (- loo), dense Jacobian, and exact line searches for a,

that the cg algorithm could be quite sensitive to the choice for b.

3. Choice of Splitting Operator

We consider several choices for the splitting operator M. All

the choices attempt to approximate the Jacobian J with an operator that

is computationally easier to invert.

First, we consider choices related to the nonlinear block

successive overrelaxation method, which has been found to be efficient

for solving nonlinear elliptic equations [6,7,24,27]. This method obtains

- from the residual r(k) an increment z(~) = M-1r(k) that is added to

,(k) to obtain a new approximation

x(k+l) = ,(k) + ,(k) .

Equation (7) is the underlying first-order iteration that is accelerated

by means of the conjugate gradient algorithm in (Ni, Nii, Niii).

12

Let x, g(x), and J be subdivided into blocks, for example

those corresponding to rows of points on a rectangular mesh for the

finite difference approximation to.,a partial differential equation

x1

x2

X 0.
..

xm

J g(x) =

gl

g20.. >..

gm

J12
J
22

..

.

Jm2

. . .

. . .

. . .

For standard discretization of elliptic equations, J has small block

bandwidth, and its blocks are sparse. In two dimensions on a rectanglar

mesh, for the nine-point discretization we shall consider here for the

minimal surface equation, J is block tridiagonal with tridiagonal

blocks [6].

We consider first the one-step block successive overrelaxation-

Newton (BSOR-Newton) iteration [24]. For it, the (k+l)th approximation

d to x.
3

is obtained from the (k)th by

- (8) (k+l)
xj

= xck) - UJ-’

3

jjgj’
j = l,*,...,m ,

where g(x) and 'J are evaluated at the latest values for x, and

w is an acceleration parameter. If we partition the residual

r = -g(x) in the same manner as g(x), then we can write (8) as

13

(k+l)
xj

= xck) + CuJ-lr
3 33 j'

j = l,**...,m

to correspond with our earlier notation. The banded, positive-definite

system of equations

can be solved efficiently in a numerically stable manner using Gaussian

elimination, without pivoting, or Cholesky factorization.

For linear problems, BSOR is not suitable for use with

conjugate gradient acceleration because its iteration matrix is not
--_

similar to a symmetric one. A symmetrized variant is suitable, however.

This variant corresponds to ordering the equations alternately from

. blocks j=lto j = m for one sweep and then from blocks j = m

to j = 1 for the next sweep; it is termed block symmetric SOR (BSSOR).

For BSSOR the solution of Mz (k) = .(k) reduces to the solution of

+ UL) D-l(D + W) z (k) =r ik) ,o<cu<2,

where D is the block diagonal of A,L (U) is a strictly block lower

(upper) triangular matrix, and A - L + D + U. Conjugate gradient

acckleration has been found to be particularly effective for BSSOR

because of the distribution of the eigenvalues of the iteration matrix

[1,12,171.

14

For the nonlinear case we consider the correspondingly symmetrized

variant of the one-step BSOR-Newton iteration, and we denote it by BSSOR-

Newton.

We consider also another extension of the BSSOR method. For the

case in which the calculation of the elements of J
jj

in (8) is

costly, the symmetric form of the one-step Newton-BSOR method [24]

can be more efficient. This algorithm applies a back and forth sweep

of BSSOR to the Newton iteration step

to obtain the increment z 04 in (7b As we did above for A,

we write J(x(k)) - z + ?j + 0- f where 5 is the block diagonal of

J(x(k)) and 5; cm is strictly block lower (upper) triangular. Then

of zero as initial approximation for z, and for z

the same manner as r, the back and forth BSSOR sweep is

for the choice

partitioned in

forward sweep:

-04 -z. -
J

(&(Jk >
jj 3

- [cdk)lj) , j = 1,2,...,m

followed by

backward sweep:

(k) = Cck) + d-l(r(k) _ [s(k) + z(k) + uz(k)] >Z.
J 3 33 j - 3J

j = qm-l,...,l .

Here J and r are evaluated at xO-4 . Note that the most

recently obtained values of z are used in the computation of [JZIj

on the right hand sides.

15

Either BSSOR-Newton or Newton-BSSOR are reasonable choices

for the operator M for the conjugate gradient iteration. When x'"

*
approaches the solution x the Jacobian approaches J (x") so that M,

which changes from iteration from iteration, approaches a limit also.

As a possible alternative, one could fix M for a number of iterations

by keeping J fixed at a value from an earlier iteration, updating

only occasionally.

Another choice for M that we consider approximates the

Jacobian matrix directly. We choose M to be the approximate sparse

LDLT (Cholesky) factorization of the Jacobian, as developed by Meijerink

and van der Vorst for the solution of linear elliptic problems [21].

The matrix L is chosen with a sparsity pattern resembling that of the

. lower triangular part of J, and the elements are obtained systematically

from J by enforcing the sparsity structure as the approximate factor-

ization proceeds. For linear problems this splitting has been found to

yield an iteration matrix with eigenvalues favorably distributed for

conjugate gradient acceleration [21].

For "M" matrices, Meijerink and van der Vorst proved in [21]

that the approximate factorization can be carried out in a stable manner.

For the problems we consider, the Jacobian may not be such a matrix;

however, we did not encounter difficulty in carrying out the approximate

factorization for our test cases.

Finally, we consider approximating the Jacobian by a discretized

separable operator, for which fast direct methods can be used [2,5,13,14].

For our test problems we consider as a choice for M the discrete

Tielmholtz operator, possibly scaled by the diagonal of the Jacobian.

16

4. First Test Problem

The first test problem, for which the above splittings are

compared, is that of solving numerically the minimal surface equation-.

on a rectangle. This problem was used previously for studying the

behavior of nonlinear relaxation methods [6,7] and is of interest

because of its strong nonlinearity. The minimal surface equation arises

in finding a single-valued twice continuously differentiable function

v(x,y) that attains given values on the boundary of a region R and

minimizes the area integral over R [151= This equation is

(9)

where -r = cl+ Iw (*p/2 , with the boundary condition

(10)

div(m) = 0 on R ,

We consider the domain

v = s(x,y on oR .

o<x<*,- - OLy<l.-

If s(x,y) is symmetric about x = 1 , then the problem need only be

solved on the unit square with the symmetry condition

(11) bV
ax

= 0 on x = 1.

17

We discretize (9,10,11) in the same manner as is done in [6].

A square mesh of size h = l/n is placed on the domain, and u
ij

denotes

the approximation to v(x,y) at the mesh point x = ih, y = jh. Then

at the interior points we obtain, after multiplication by -2h*,

(12) g .
1.4

s r- (2u
i,j -Y

- ui 1 j - ui j 1) + r (*u.
1.4

-. u
i,j Y - Z+l,$ i+l,j

- u
i,j-1)

+Y- (2u. ’ - ui 1 j - ui j+l)

~,j+~ 1,J - , ?

+y- --.
:+1,3+1

(a . - ui+l j - ui,j+l) = 0 ,
l, J Y

i = l,*,...,n-1; j = 1,2 Yn- 1,

where r = rhd*)
i,:

approximates r(Iw12)
i,j

at ((i-1/2)h, (j-1/2)h),

with

I I 27 =~[(ui j -uil j)2+ (u.? - Y bje i,j 2h

+ (ui,j-1 - ui-l,j-l)” + (u i-1,j - ui-l,j-l)*I

i = l,*,...,n; j = l,*,...,n .

Along the symmetry boundary we obtain

(13) gn,j
= r (2u

i-l,: n,j
- u

n-1,j - u
n,j-1 >

fr (2u c“ un 1 j - Un j+l) = 0 ,
~,j+~ n,J - Y

j = l,*,...,n-1.
Y

In (l&13) we do not group together explicitly the coefficients

of u.
bj

and of ui+l,j+l' as is customary for the linear case, in order
-

to emphasize that the problem is nonlinear and that the r are
i,j

themselves functions of the u...
1J

The Jacobian matrix J is given by

J =
h.

i
l,j
9C,l?

a positive-definite symmetric matrix that is block tridiagonal, with

each block being tridiagonal. For this test problem, the calculation

of y' E dy
z, 3 T,j

/dImI
I,j

and of J can be carried out with only a modest

amount of computational effort in addition to that required for calculation

of the g.
l,j'

5. Experimental Results for the First Test Problem

The test problem of Sec. 4 was solved numerically for the same

: boundary data as was considered in [6,7],

v = o on x=0 and y=l,

v = sin -
2 on y=O,

and the symmetry condition (11). The following algorithms discussed

in Sees. 2 and 3 were used:

14

I. One-step block SOR-Newton

II. One-step block SSOR-Newton

III. One-step block Newton-SSOR -

IV. Conjugate gradient algorithm (with M the identity matrix)

v. Conjugate gradient algorithm with M the BSSOR-Newton

operator.

VI. Conjugate gradient algorithm with M the Newton-BSSOR

operator.

VII. Conjugate gradient algorithm with M the Meijerink-

van der Vorst approximate sparse factorization of J,

renewed every restart. The sparsity pattern of the approximate

factor is chosen to be identical with that of the lower tri-

angular part of J (the ICCG(0) variant [21]!.

VIII. Conjugate gradient algorithm with M = -A? -2h* times

the discrete Laplace 5 point operator [y- = 1 in (l2,l3)].

IX. Conjugate gradient algorithm with M = D1/* t& t KI)d'",

where 5 is the operator of VIII and D is the diagonal

of J, renewed every iteration. K is a constant chosen

so that the average of three sample values of the diagonal of

J equals the diagonal of M.

For the conjugate gradient algorithms each test used either

a(ll (2 ' (1) (2)or a and either b or b , with no line searches and

none of the convergence safeguards developed in Lemmas l-3 of Section 2.

20

3

The algorithms are compared in terms of operatitin counts required

to decrease the residual to specified values. In Table 1 are given approxi-

mate operation counts for various phases of the iteration. In Tables 2

and 3 are given the results of experiments carried out in double precision

with FORTRAN programs on the IBM 360/168 computer for grids with spacing

h = l/16 and h = l/32, for initial approximation u(0) 5 0. The

supplemental tables give the results as obtained originally in terms of

number of iterations, which were converted subsequently to multiplication

counts by means of the cost factors. The cost factors relate to our test

programs, which are not generally optimal but nevertheless should give

a reasonable basis for comparison. Note that an iteration of one of the

SOR algorithms requires half the number of operations of an iteration of

the corresponding symmetric form, which requires both one forward and one

backward sweep.

The columns, from left to right, in the tables correspond to

successively larger values of llrCk)I1 2' the two-norm of the residual.

The initial residual II r (0) II 2 is approximately 0.47 for the coarser mesh

and 0.34 for the finer one. (Recall that the residuals are for (12,13),

which are obtained from (9) after multiplication by a factor proportional

to h2.)

From the tables, one observes that for this test problem the

conjugate gradient algorithm with discrete Laplace operator splitting,

with or without shift or Jacobian diagonal scaling,, produces an algorithm

favorably competitive with nonlinear block SOR in terms of op)eration

counts. On the larger problem, the conjugate gradient algorithm with

one of the nonlinear BSSOR splittings is also faster than nonlinear BSOR.

21

TABLE 1

(1)

(2)

(3)

(4 >

is >

(6)

(7)

(8)

_ i4)

(10)

ill)

COST FACTORS PER STEP FOR MINIMAL SURFACE ALGORITHMS
. .

n x (n-l) unknowns, n(n-1) = N

Costs consider only multiplications, divisions, and square roots
and include only the highest order terms in N.

Conjugate gradient overhead is 5N.

SOR Overhead is N.

The cost of calculating y,, is 3N.
ij

The cost of forming g is 4N (given r,,).
ij

--.
The cost of calculating ~1, is 2N (given r,,).

,' -: -: 4
IJ IJ

20N operations are needed to calculate J (given r,,, rl,).
ij ij

12N operations are needed to calculate only the tridiagonal

portion of J. (6N for the diagonal only.)

To factor and solve a tridiagonal system takes 5N operations.

To form Jp takes % operations given J.

22

TA
BL
E

1
Co
nt
in
ue
d

Ac
ti

on
(3
)

(4
)

(5
)

(6
)

(7
)

(6
)

(9
)

(l
o)

(1

1)
Sc
al
in
g

To
ta
l

Op
er
at
io
ns

co
st

5r
J

IJ
J

3N
4
N

2
N

2
0
N

1
2
N

/,
5
N

Slr
J

N
Pe
r

Po
in
t

I

B
S
O
R
-
N
e
w
t
o
n

--

I
I

B
S
S
O
R
-
N
e
w
t
o
n

--

I
I
I

N
e
w
t
o
n
-
B
S
S
O
R

--

I
V

C
G

1

V

C
G

w
i
t
h

BS
SO
R-

Ne
wt
on

1

V
I

C
G

w
i
t
h

Ne
wt
on
-

\c?1
BS
S

OR
1

V
I
I

C
G

w
i
t
h

s
p
a
r
s
e

LD
LT

1

V
I
I
I

C
G

w
i
t
h

La
'p
la
ci
an

1

IX

CG

wi
th

La
pl
ac
ia
n

a
n
d

J

d
i
a
g
o
n
a
l

an
d

sh
if
t

1

1 2 2 -- -- -- me me --

2 3 1 1 1*
* we 1 1 1

1
2

-
-
1

1

2
3

--
2

2

1
1

l
-
-

2/
1*

1
1

1
--

--

1*
*

1*
*

1*
*

--
--

--
mm

--
--

--

1
1

1
--

--

1
1

1
--

--

1

1

1

-
-

-
-

-- -- 2 1 1 1 1 1 1

-- 59 57 7

3

lo
g2

n

3
+
3

lo
g
2

n
46

+
3

lo
g2

n

32 59 57 43

73
-1
02

71 50

43
 +
 3
 l

og
2

n

-
- * 2

s
o
l
v
e
s

a
n
d

1
f
a
c
t
o
r
i
z
a
t
i
o
n

*
*
ca
n

be

el
im
in
at
ed

on
ce

we

ar
e

ne
ar

th
e

so
lu
ti
on

TABLE 2

COMPARISON OF ALGORITHMS BY NUMBER OF MULTIPLICATIONS

PER MESH POINT TO OBTAIN A RESIDUAL

llr(k)ll
I.

2 <, EPS: h = 1/16 MINIMAL SURFACE EQUATION

Algorithm
(Cost Factor) cu EPS = 10 -5 10-4 10-3 If2 10-l

I BSOR-Newton 1.1 5&b
w 1.2 4704

1*3 3776
1.4 2976
1.5 2240
1.6 1568

-- 1.7 1056
1.6 1536
1.9 3264

II BSSOR-Newton
(59)

III New-ton-BSSOR
(57)

IV CG
(43)

2 1
a b

a2b2

a '+I

a 2Lb

1.1 5ti41 4484 3127 1770 413
1.2 48% 3717 2596 1475 354
193 4130 3127 2183 1298 295
1.4 3451 2655 1888 1062 295
1.5 3009 2301 1652 944 236
1.6 2655 2065 1475 826 236
1.7 25% 2006 1416 826 236
1.8 3066 2419 1711 1003 295

1.1 5643 4384 3078 1767 456
1.2 4731 3648 2565 1482 349
1*3 3990 30% 2166 1254 349
1.4 3420 2622 1881 1083 342
1*5 2964 2280 15% 969 342
1.6 2622 2052 1425 855 342
1.7 2565 1445 1368 7% 342
1.b 2964 2280 15% 969 344
1.4 5358 4104 2850 1653 570

4448 3072 1696 320
3616 2496 1376 2Sk
2880 1536 1120 224
2272 1600 &x5 r32
1728 1216 704 192
1248 8% 544 160
832 640 448 192
1216 960 544 2bb
2560 EQO 1184 512

11447 4331 6794 4257 1677

11732 4331 6751 4214 1763

10492 7864 5762 3612 1075

10444 7864 5762 3612 1548

24

TABLE 2 Continued

Algorithm
(Cost Factor) cu EPS=lO -5 10 -4 lo-3 1o-2 lo-1

V CG+
BSSOR-Newton

a2b1

Restart 9

(102)

Restart 13 1.65 1632 1326 1122 918 5 I-0

V CG+ --

BSSOR-Newton

UJ = 1.7

(102)

a2b1
2 2a b

a'b'

ah2

2040 1b36 1530 1224 1020

1-530 1326 1122 816 510
l-i34 1530 1326 1020 612

1734 1428 1224 1020 612

VI CG +

Newton-BSXOR

a%'

(71)

VI- CG t-

Newton-BSSOR a2b1

UJ = 1.4 a2b2

(71) a l4,

a%*

1.1

1.2

1.3
1.4

195
1.6

1.7

1.8

1.4

1.1

1.2

1*3
1.4

1.5
1.6

1.7

1.8

1.9

2346 2244

2346 2142-.
2244 2142

2244 2040

2142 1438
2&o 1836
2040 1836

2244 2040

no convergence

1704 1562 1491 1136 710

1633 1441 1349 1065 634
1562 1441 1349 1065 639
1562 1420 1207 994 639
1441 1278 1136 494 634

1633 14-20 1278 1065 7 10
1bS6 1633 1420 12x3 781

2059 lb46 1633 1420 1207
2201 1968 1846 1441 1207

1562 1420 1207 994 7 10

1349 1207 1065 781 5%
lb46 1633 1420 1278 781
1562 1278 1065 93 568

2040 1632 418

1938 1530 918
1836 1428 9lLli

1632 1428 918

1632 1326 1020

1632 I-224 4lb

1530 1224 1020

1836 1326 1020

TABLE 2 Continued

Algorithm
(Cost Factor) EPS=lO -5 10 -4 lo-3 1o-2 lq-lL

VII CG -+ a2b1

sparse LDLT a2b2

(50 + 6 .per a 'lb

restart) a 233

1524 -' 1374

1374 1216

1424 1268

VIII CG +-

Laplacian

(55)

IX CG+

Laplacian+

J diagonal

+ shift

a2b1 1045 1045 880 605 220

a2b2 880 880 715 385 220

a'b' 825 825 715 385 22@

a1b2 825 825 715 440 220

2 1
-3 b

a2b2

a '33

a 2Lb

754 754 696 522 290

638 638 522 406 290

696 696 580 406 232

754 754 638 522 290

1318 1068 562

1068 1112 462

1018 662 462

958 762 4@

(58)

26

SUPPLEMENT TO TABLE 2

COMPARISON OF ALGORITHMS BY NUMBER OF ITERATIONS TO

OBTAIN A RESIDUAL /Ir(')l/e < EPS,-

h = 1/16. .

Algorithm
UJ EPS=10-5 10 -4 lo-3 lo-2 lo-1

I BSOR-Newton 1.1

1.2

1.3
1.4

l-5
1.6

1.7

1.8

1.4

II BSSOR-Newton

III Newton-BSSOR

1.1

1.2

1.3
1.4

1.5
1.6

1.7

1.8

1.1

1.2

1.3
1.4

1.5
1.6

1.7

1.8

1.9

182 139 96 53 1 0

147 ll3 78 43 9

118 90 48 35 7

93 71 50 28 6

70 54 38 22 6

49 39 28 17 5

33 26 20 14 6

48 38 30 17 9

102 80 60 37 16

94 76 53 30 7

83 63 44 25 6

70 53 37 22 5

59 45 32 18 5

5l 39 28 16 4

45 35 25 14 4

44 34 24 14 4

52 41 29 17 5

94 77 54 31 8

83 64 45 26 7

70 54 38 22 7

60 46 33 19 6

52 40 28 17 6

46 36 25 l5 6

45 35 24 14 6
52 40 28 17 7

94 72 50 29 10

27

3

SUPPLEMENT TO TABLE 2 Continued

Algorithm
cu EPS=lO -5 lo-4 10-3 10-2 10-l

IV CG a2b1

a2b2

a 'Lb

a 2Lb

V CG+

BSSOR-Newton

a2b1

Restart 9

1.1

1.2

1.3
1.4

1.5
--_ 1.6

1.7

1.8

1.9

Restart 13 1.65
v cc;+

BSSOR-Newton a2b1

UJ = 1.7 a2b2

a 'Lb

a 2Lb

/ -VI CG +

Newton - BSSOR

alb'

1.1

1.2

1.3
1.4

1.5
1.6

1.7

1.8

1.9

279 217

274 217

244 183

243 183

23 22

23 21

22 21

22 20

21 14

20 18

20 18

22 20

no convergence

16 13

20 18

15 13

17 15
17 14

24 22

23 21

22 21

22 20

21 18

23 20

26 23
29 26

31 28

158 49 39

157 98 41

134 84 25

134 84 36

20 16 9

14 15 4
18 14 9
16 14 9
16 13 10

16 12 9

15 12 10

18 13 10

11 9 5

15 12 10

11 8 5

13 10 6

12 10 6

21 16 10

19 15 9

14 15 9

17 14 9
16 14 9

18 15 10

20 18 11

23 20 17

26 21 17

28

SUPPLEMENT TO TABLE 2 Continued

Algorithm
EPS=10-5 10-4 lo-3 10-2 10-l

VI CG +

Newton-BSSOR

co = 1.4

VII CG +

sparse LDLT

VIII CG +

Laplacian

IX CG +

Laplacian

+ J diagonal

+ shift

a2b1 22 20 17 14 10

a2b2 -. 19 17 15 11 8

a 'Lb 26 23 20 18 11

alb2 22 18 15 13 8

a2b1

a2b2

alb'

a 2Lb

a2b1 19 19 16 11
a2b2 16 16 13 7
a '43 15 15 13 7
a 2lb 15 15 13 8

a2b1

a2b2

lb 1a

ah2

30 27

27 24

28 25

13
11

12

13

13
11

12

13

26 21

21 16

20 13

19 15

12

9

10

11

11

9

9

9

4

4

4

4

5

5
4

5

29

TABLE 3

COMPARISON OF ALGORITHMS BY NUMBER OF MULTIPLICATIONS

PER MESH POINT TO OBTAIN A RESIDUAL

llr(k)ll 2 5 EPS: h =* i/32 MINIMAL SURFACE EQUATION

I.

Algorithm
(cost Factor) a EpS=l()-' lo-' l(+ 1f5 If4 lo-3 lf2 l0-l

I BSOR-Newton 1.3

(32) 1.4

l-5
1.6

1.7

1.8

1.4

II BSSOR-Newton 1.5 15812 13570 11328 9086

(59) 1.6 1.2626 10856 9086 72.57

1.7 lo148 8673 7257 5841

1.75 9204 7670 6608 5310
1.8 8673 7434 6254 5015
1.85 8791. 7552 6313 5074

III Newton-BSSOR 1.4

(57) 1*5
1.6

m
1.7
1.8

1.9

19038 16302 1-3566
15276 13110 10944
~198 10431 8721

9747 8379 7011

8322 7125 5926
lo146 8721 7239

10887

8778

7011

5643
4788

5814 4389 2964 1653

>ll200

7732

4000

5408

>11200 10912

9696 8096

6624 5536

3328 2976

4832 4096

>ll200

>ll200

8704

6464

4448

2464

3296

105 60 6944 3328
8384 5536 2656

6496 4288 2080

4832 3232 1600

3360 2272 1184

1952 1440 864

2752 2048 1152

678.5 4543 2301 236
5487 3658 1888 236

4425 2950 1534 236
4012 2714 1416 236
3776 25% 1416 236
3894 2655 1534 295

8151 5472 2736

6555 4389 2223

5244 3534 1824

4275 2850 1482

3591. 2394 1254

192

160

160

160

160

192

640

285

285

285

285

399
570

TABLE 3 Continued

Algorithm
(Cost Factor) w EPS=lO -8 - 710 10-6 lo-5 lo-4 lo-3 lo-2 lo-1

v ci;+

BSSOR-Newton

l*5
1.6

Restart 13 1.7

a2b2 1.75

(102) 1.8

VI CG +

Newton-BSSOR

a2b2

Restart 13

(71)

IX CG +Laplacian
+ J diagonal
+ shift
Restart 16

(61)
Restart 9

a2b1

albl

a2b1

1.85

1.9

1.4 3053 284-O 2556 2272 2130 1704 1278 852

1.5 2627 2414 2272 2130 1917 1491 1278 1065
1.6 2769 2556 2485 2130 1775 1633 1278 710

1.7 2911 2769 2343 2272 2130 1917 1633 1065
1.8 3053 2840 2627 2343 2130 1917 1704 1278
1.9 no convergence

3570 3366 3060 2958 2550 2040 1734 816
46% -. 4488 4182 3978 3468 3060 2754 2346
3570 3366 3162 2856 2346 1938 1632 1224
4182 3876 3468 3162 2958 2754 2346 1938
3774 3468 3162 2856 2652 2142 1438 1428
3978 3468 3162 2856 2550 2142 1836 1122
no convergence

2623 2440 2318 2135 1952 1769 1403 915
2623 2501 2379 2196 2013 1830 1342 915

2074 1891 1647 1525 1281 1159 915 549

31

3

SUPPLEMENT TO TABId 3
COMPARISON OF ALGORITHMS BY NUMBER OF

OBTAIN A RESIDUAL /rck)il, <

h = l/32

ITERATIONS TO

EPS,

Algorithm
EPS=lO -8 1o-7 lo-6 lo-5 lo-4 lo-3 1y2 10-l

I BSOR-Newton 1.3

1.4

1.5
1.6

1.7

1.8

1. 9.

II BSSOR-Newton 1.5

1.6

1.7

1.75

1.8

1.85

III Newton-BSSOR 1.4

1.5
m

1.6

1.7

1.8

1.9

>350
241

125

169

>350 341

303 253
207 173
104 93

151 128

>350 330 217 104 6

>350 262 173 83 5

272 203 134 65 5

202 151 101 50 5

139 105 71 37 5

77 61 45 27 6

103 86 64 36 20

268 230 192 154 115 77 39

214 184 154 123 93 62 32

172 147 123 99 75 50 26

156 130 112 90 68 46 24

147 126 106 85 64 44 24

149 128 107 86 66 45 26

334 286 238 191 143 96 48

268 230 192 154 115 77 39
214 183 153 123 92 62 32
171 147 123 99 75 50 26

146 l-25 104 84 63 42 22

178 153 I-27 102 77 52 29

4

4

4

4

4

5

5

5

5

5

7

10

32

SUPPLEMENT TO TABLE 3 Continued

Algorithm u) ESP=lO -8 10 -7 10 -6 lO-5 10 -4 1o-3 lo-2 lo-1 *

V CG+ 1.5
BSSOR-Newton 1.6

Restart 13 1.7

a2b2 1.75

1.8

1.85

1.9

35 .. 33 30
46 44 41

35 33 31
41 38 34

37 34 31

39 34 31
no convergence

VI CG + 1.4

Newton-BSSOR 1*5
a2b2 -.. 1.6

Restart 13 1.7

1.8

1.9

IX CG + Laplacian a2b1

+ J diagonal a'b'

+ shift

Restart 16

Restart 9 a2b1

43 40 36

37 34 32

39 36 35
41 39 33
43 40 37
no convergence

43 40 38 35 32
43 41 39 36 33

34 31 27 25 21

29 25 20 17 8

39 34 30 27 23

28 23 19 16 12

31 29 27 23 1.4

28 26 21 19 14

28 25 21 18 11

32 30 24 18 12

30 27 21 18 15

30 25 23 18 10

32 30 27 23 15

33 30 27 24 18

29
30

19

23
22

15

15

15

9

33

p

As has been observed also for linear cases [1,12,17], the symmetric

SOR algorithms accelerated by cg are less sensitive to the choice of

relaxation parameter UJ than are the corresponding unaccelerated SOR

algorithms.
. .

Of course, as with any higher order method, the storage require-

ments of cg are greater than those of the basic unaccelerated iteration.

It should be noted also, that for nonrectangular domains more operations

would be required to obtain the solution of (5) for cases VIII and IX.

The results for initial approximations other than u
(0) Z()

are not included in the tables: however, there were indications in our

experiments that poorer initial approximations could result in divergence

for some of the methods, without the safeguards of Section 2, as would

.be the case also for the unaccelerated nonlinear SOR methods [6,7].

In the experiments, the algorithms exhibited some sensitivity to the

length of the conjugate gradient cycle between restarts. Restarting

every 4 iterations, which is the case reported in Table 2, seemed

effective for the coarser grid. For the finer grid 13 to 16 iterations

were better.
a

Limitations of time prevented us from investigating Case VII

for the finer grid and from investigating either a variant of the LDLT

approximate factorization allowing one more subdiagonal nonzero band

in L (analogous to ICCG(3) in [21]) or a variant utilizing block

techniques developed recently in [29]. Either of these variants might

yield results superior to those reported for Case VII, as they have been

found generally to be more efficient for linear problems.

34

We conclude from these experiments that the generalized

conjugate gradient algorithm, with modifications to ensure convergence,

holds promise of being favorably competitive with relaxation techniques

for solving strongly nonlinear elliptic problems.

6. Second Test Problem

For the second test problem we consider a mildly nonlinear

equation arising from the theory of semiconductor devices,

(14) -v -v
YY

+ (1 - e-5X)eV =l.

Equation (14) is to be solved on the unit square subject to the boundary

conditions

on x = 0: v = o

on x = 1: v=l

on y=O: tw/ay = 0

(15)a

i

b&y = 0

on y=l: v = -1

&/by = 0

for O<x<_a<1/2

for a < x < l-a

for l-a < x < 1 .-

Of particular interest is the mixed boundary condition on the edge

y = 1, as it would preclude the immediate use of one of the basic fast

direct algorithms for solving (5) if M were chosen to be a discrete

Helmholtz operator with boundary conditions (15).

35

We place a uniform mesh of width h on the unit square and

denote the approximation to v(x,y> at the mesh point x = ih, y = jh

by u.
bj'

Then at an interior point we obtain, using the standard. .

five-point discretization,

-5x.
(16) L (-ui j

h2 7 -
1 - ui 1 j + 4ui j - u~+~ j - ui j+l)+ (l-e

- > f J Y
') exp(ui j) =l.9

At the Neumann boundary points the difference equations specialize in the

usual manner, as in Section 4.

We choose for M the equivalent discretization of the Helmholtz

operator H

Hv=-v -v
Y-Y

+ Kv ,

but with the boundary condition along y = 1 in (15) replaced by

(17)
3V
F=O

on Y =l for O<x<l.

This permits the use of standard fast direct methods for carrying out

the numerical solution of Mz = r. Also, we augment the system (16)

with-the equations

(18)
-5x.4

-5x.

2 ui,j
+(1-e ') exp(u. .I = - 4 + (l-e

=lJ h2
') exp(-1)

for the Dirichlet points on y = 1, so that the Jacobian of the augmented

system and M have the same rank. The constant K is chosen to be 1,

36

a value that is meant to approximate

that M approximates, in this manner,

system (16,18).

l- e5
- X

)eV on the square, so

the Jacobian of the augmented

This choice for M does not approximate the Jacobian well

in norm, because of the differing boundary conditions on y = 1. However,

because the number of mesh points at which the boundary conditions differ

is small, a corresponding linear problem--say with (1 - e-5yev in (14)

replaced by v

with corresponding replacements in (16) and (16), and with K = 1 in

M--will converge completely in only a moderate number of iterations. At most

2p + 3 iterations are required in this (linear) case to reach the solution

(in the absence of round-off errors), where p is the number of

Dirichlet boundary points on y = 1, because of the finite termination

property of cg [Yl. For our test problem, our interest is in

obtaining an indication of the degree to which the introduction of a
d

mild nonlinearity alters the convergence rate from that for the

corresponding linear problem (see also [&I).

In Table 4 are given the observed number of iterations at which

the residual norm (r (k) (k))1/2,z = II (k)llr -1 was first reduced to
M

less than EPS, for the initial approximation u (0) = 0. The value of

a was taken to be 5/16, and the problems were solved using a FORTRAN

program on a CDC 7600 computer for mesh spacings h = l/16, i/32, l/64.

37

The parameters a (l), ,(l) were used, and there was no restarting.

The solution of Mz = r was carried out at each iteration using either

the program GMA with marching parameter K = 2 [2] or the program package. .

from NCAR [28]. (These two programs give slightly different rounding

errors; we observed no important difference between them in their

effect on the cg iterations.) The initial residual norms /r (o)ll

were of the order of lo2 for h = l/16 and 103 for h = l/64.
M-l

Problem I is the discretized linear problem (15, 19) augmented

with the equations

--. 4 4
z ui,J + ui,j = - z - 1

. for the Dirichlet boundary points on y = 1, with M as described

above with K = 1. Problem II is the discretized nonlinear equation (14)

with the same boundary condition (17) on y = 1 as that for M and

with the same M as for Problem I. Problem III combines the boundary

condition of Problem I with the nonlinearity of Problem II; it is the

discretized nonlinear problem (14, 15, lb), again with the same M.
-

The number p of special boundary points for Problems I and III

is given in Table 4 for each of the mesh spacings. The finite termina-

tion behavior of cg for the linear problem can be observed clearly

for the coarsest mesh; for the finer meshes some contamination resulting

from rounding errors occurs. For the finest mesh, a residual small

enough for practical purposes occurs well before 2p + 3 iterations

have been carried out.

TA
BL
E
4

CO
MP
AR
IS
ON
S

FO
R

SE
CO
ND

TE
ST

PR
OE
iL
EM

N
O
.
o
f

i
t
e
r
a
t
i
o
n
s

f
o
r

?
l\r

ll
<
EP
S

M
1
 a
 -

.

h
Pr

ob
le

m
2p
 +

3
ES
P

=
10

-1
0

10
 -
9

10
-8

10
 -
7

10
 -
6

10
 -
5

,,
-
4

lo
-3 -
1

I
13

13
12

12
12

11
11

9
8

&
II

--
7

6
6

'5
5

4
4

3

II
I

13
24

23
20

20
18

16
13

13
-*
--
..
-_
_.

I
25

26
23

21
19

18
16

14
13

$k
II

--
7

6
6

5
5

4
4

3

II
I

25
36

34
30

28
26

23
20

17

I
49

43
36

34
30

28
23

22
19

&
II

--
7

6
6

5
5

4
4

3

II
I

49
57

51
49

43
39

35
31

26

The results for Problem II indicate that convergence is rapid

for this choice of M when the mild nonlinearity is present and the

mixed boundary conditions on y = 1 are absent. As one would expect

for this case the number of iterations to reach a given residual is

essentially independent of mesh size. The results for Problem III

indicate that with the mixed boundary condition on y = 1, the con-

vergence rate for the mildly nonlinear case is slowed moderately from

that for the linear case, Problem I. One could likely improve the results for

Problems I and III in terms of number of iterations by choosing K

to be, instead of a--constant, the sum of a function in x and one

in y, which would still permit the use of fast direct methods. We

did not include such choices in our experiments, however. We repeated

some of our experiments for an initial approximation u
(0) equal to

pseudo-random numbers in [O,l] and found no substantial difference from the

results of Table 4.

40

REFERENCES

Cl1

PI

[31

c41

c51

El

[71

[81

191

- WI

Cl11

Cl21

0. Axelsson, "On preconditioning and convergence acceleration
in sparse matrix problems," Report 74-Q Data Handling Division,
CERN, Geneva (1974).

R. E. Rank, "Marching algorithms for elliptic boundary value problems,"
Doctoral Thesis, Harvard University (1975).

R. Bartels and J. W. Daniel, "A conjugate gradient approach to
nonlinear elliptic boundary value problems in irregular regions,"
Proc. Conf. on the Numerical Solution of Differential Equations,
Springer-Verlag Lecture Notes 363, (1974), l-11.

D. Bertsekas, "Partial conjugate gradient methods for a class
of optimal control problems," IEEE Trans. Automat Control AC-19,
(1974), 209-17.

B* Lo Buzbee, G. H. Golub, and C. W. Nielson, "On direct methods for
solving Poisson's equations,' SIAM J. Numer. Anal. 1 (1970), 627-56.

P. Concus, 'Numerical solution of the minimal surface equation,'
Math. Comp. 21 (1967), 340-350.

P. Concus, 'Numerical solution of the minimal surface equation
by block nonlinear successive overrelaxation," Information
Processing 68, Proc.
(1969), 153-158.

IFIP Congress 1968, North-Holland, Amsterdam

P. Concus and G. H. Golub, "A generalized conjugate gradient
method for nonsymmetric systems of linear equations," Proc.
Second International Symposium on Computing Methods in Applied
Sciences and Engineering, IRIA, Paris, Dec. 1975, Springer- .

Verlag Lecture Notes (to appear).

P. Concus, G. H. Golub, and D. P. O'Leary, "A generalized conjugate
gradient method for the numerical solution of elliptic partial
differential equations," Sparse Matrix Computations, J. R. Bunch
and D. J. Rose, Eds., Academic Press, New York (1976), 309-332.

Daniel, J. W., "The conjugate gradient method for linear and
nonlinear operator equations," Ph.D. Thesis, Stanford University
and SIAM J. Numer. Anal. 4 (1967), 10-26.

Dixon, L. C. W., "Conjugate gradient algorithms: quadratic
termination without linear searches," J. Inst. Maths. Applies.
15 (1975), 9-18.

L. W. Ehrlich, "On some experience using matrix splitting and
conjugate gradient" (abstract), SIAM Review 18 (1976), 801.

41

[131

[141

[151

[161

[171

[181

[1%

[201

[=I

[22!e

[23!

WI

k51

D. Fischer, G.H. Golub, 0. Hald, C. Leiva, and 0. Widlund,
'On Fourier-Toeplitz methods for separable elliptic problems,'
Math. Comp. 28 (1974), 349-368.

R. Fletcher and C.M. Reeves, "Function minimization by conjugate
gradients," Computer J. 1 (lY&), 149-54.

G.E. Forsythe and W.R. Wasow,"Finite-difference Methods for
Partial Differential Equations," Wiley, New York (1960).

D. Goldfarb, "A conjugate gradient method for nonlinear programming,"
Princeton University Press, Thesis (1966).

L. Hayes, D.M. Young, and E. Schleicher, "The use of the accelerated
SSOR method to solve large linear systems" (abstract), SIAM
Review 18 (1976), 808.

M. Hestenes and E. Stiefel,"Methods of conjugate gradients for
solving linear systems," J. Res. Nat. Bur. Stand. 49 (l%2),
409-36. --

R.W. Hackney, "The potential calculation and some applications,"
Methods in Computational Physics 9, B. Adler, S. Fernbach and
M. Rotenberg eds., Academic Press, New York, (1969), 136-211.

M. Lenard, "Practical convergence conditions for restarted
conjugate gradient methods," MEX Report 1373, University of
Wisconsin (December 1973).

J.A. Meijerink and H.A. van der Vorst, "An iterative solution
method for linear systems of which the coefficient matrix is
a symmetric M-matrix," Tech. Report TR-1, Acad. Comp. Ctr.,
Utrecht, The Netherlands (19%).

L. Nazareth, "A conjugate direction algorithm without line
searches," J. Opt. Th. Applic. (to appear).

D.P. O'Leary, "Hybrid conjugate gradient algorithms," Doctoral
dissertation, Computer Science Department, Stanford University,
Report No. STAN-CS-76-548 (1976).

J.M. Ortega and W.C. Rheinboldt, '!tterative Solution of Nonlinear
Equations in Several Variables," Academic Press, New York.(1970).

M.J.D. Powell, "Restart procedures for the conjugate gradient
method," Report C.S.S. 24, AERE, Harwell, England (1975).

42

[26 1 J.K. Reid, "On the method of conjugate gradients for the solution
of large sparse systems of linear equations," Large Sparse Sets
of Linear Equations, J. K. Reid, ed., Academic Press, New York,
(19711, 2X-254.

t27 I S. Schecter, "Relaxation methods for convex ,problems," SIAM J.
Numer. Anal. 2 (lY68), 601-612.

- -

[281 P. Swarztrauber and R. Sweet, "Efficient FORTRAN subprograms for
the solution of elliptic partial differential equations," Report NO.
NCAR-TN/IA-109, National Center for Atmospheric Research, Boulder,
co (lY75L

[291 R. R. Underwood, "An approximate factorization procedure based on
the block Cholesky decomposition and its use with the conjugate
gradient method," Report No. NEDO-11386, General Electric Co.,
Nuclear Energy Systems Div., San Jose, CA. (1976).

[301 W.I. Zangwill, "Nonlinear Programming, A Unified Approach,"
Prentice-Hall, Englewood Cliffs, N.J., (1969).

43

