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A KNOWLEDGE- BASED SYSTEM FOR THE | NTERPRETATI ON OF
PROTEI N X- RAY CRYSTALLOGRAPHI C DATA

ABSTRACT
The broad goal of this pr oj ect is to develop intelligent
conput ati onal systens to infer the three-dinensional structures of
proteins from x-ray crystallographic data. The conput ati onal

systens under devel opnent use both fornmal and judgrental know edge
from experts to select appropriate procedures and to constrain the
space of plausible protein structures. The hypothesis generating and
testing procedures operate upon a variety of representations of the
data, and work wth several different descriptions of the structure
bei ng inferred. The system consists of a nunber of independent but
cooperating know edge sources which propose, augnent and verify a
solution to the problem as it is increnentally generated.
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1 | nt roducti on

In this report we present our first i nvestigations into
applying Artificial Intelligence nmnethodology to a new task domain,
Protein Crystall ography. Qur goal is to develop an intelligent

conput ati onal system for inferring the three dinensional structures of
protein nolecules from x-ray crystallographic and other physi cal data.

Al though the conputer has for many years been an essential tool in x-
ray crystallography research, nearly all its applications have been in
the areas of data collection, data reduction, Fourier analysis,

graphics and other essentially numerical tasks (Fei genbaum 1976).
Those aspects of nolecular structure inference which require synbolic
reasoni ng, and/or which wuse a significant anount of judgnental
know edge are traditionally performed rmanually. The structure
inference process is basically an iterative cycle of hypothesize, test
and refine, of which the first phase (hypothesis generation) involves a
significant conponent of non-nunerical analysis.

In the course of deriving a protein structure which is a best
expl anation of the given data, the crystallographer generates a three-
di nensi onal description of the electron density distribution of the
nol ecul e. Due to the resolution i nposed by the experimental
conditions, the electron density distribution is an indistinct imge of
the structure, which does not reveal the positions of individual atons.
The crystallographer must interpret this function in light of auxiliary
data and general principles of protein chenmistry in order to derive a
conplete description of the nolecular structure. The ensuing report is
devoted to a description of that process, our initial attenpts to
characterize the process in terns of a know edge-based problem solving
system and a discussion of the conputational system currently being
i mpl enent ed.

2 Description of the problem

The interpretation of an electron density nmap, derived from the
reduction of X-ray crystallographic data, is a necessary and inportant
step in the derivation of the 3-D structure of proteins and other
macr onol ecul es. When crystallographers use the term "electron density
map" they usually have in mind some pictorial representation of the
el ectron density defined over a certain region of 3-space (usually somne

fraction of the unit cell of the crystal). The npbst commonly used
representation is a 3-D contour map, constructed by stacking |ayers of
conventional 2-D contour maps drawn on transparent sheet s. BY

carefully studying the map the experienced protein crystall ographer can
find features which allow him to infer approximate atomic |ocations,
nol ecul ar boundari es, groups of -atoms, the backbone of the polyner,
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etc. After sever3l weeks (or nonths) he has built a nodel of the
nol ecul ar structure which conforms to the electron density map and is
al so consistent with his know edge of protein chemistry, stereochenical

constraints 3nd other available chenmical and physical data (e.g., the
amino acid sequence). A nore detailed description of this problem~
solving process is given bel ow

Traditionally, t he protein crystall ographer embodies his
interpretation of the electron density map in a "ball and stict"
nol ecul ar nodel, fashioned from brass parts. Hs task is facilitated
by an ingenious device, called a 'R chards box', which pernits the
nodel builder to view several | ayers of the nap through 3 partially

transparent mirror, so that the mirror imge of his nodel appears to be
"inside" the map. After the nodel has been conpleted to the builder's
satisfaction, the coordinates of the atons in the nodel are recorded,
and a process of quantitative refinenment begins.

Al though many protein structures have been solved in this way,
the deficiencies of the brass-nodel/Ri chards-box techniques for density
map interpretation are well known to those who have used it. Among
other difficulties, the 3-D <contour map is an awkward representation.
The locations of atomic sites and interatomc bonds are seldon directly
evident from the contours, at the resolution levels normally obtained.
Building a nodel 'into the density map' is a tedious process of fitting
brass parts to regions enclosed by one or nore contour levels, a search
process which is not very well constrained by the map itself. Anot her
problem is that the brass nmpdel sags under its own weight. Consequently
the neasurement of the coordinates is an errorful process. In recent
years an attenpt to correct some of these deficiencies has led to the
creation of el ectronic Richards boxes, wher eby the nodel bui | der can
view a CRT display of the electron density map from various angles, and

superinpose a line representation of the protein nolecule. Al t hough
this line of attack is an adnirable step towards facilitating the nodel
builder's task, it suffers in two major respects. First, the electron
density function is still represented by a contour map. Secondly, the
deci sions which lead to identification of features in the map are still
left entirely to the nodel builder. The task remmins an arduous one of

visual pattern recognition, hypothesis generation and testing.

A significant inprovenent in automated assistance, beyond those
tools nmentioned above, would involve a conputational system that can
generate its own structural hypotheses as well as display and verify

t hem This capability requires 1)a representation of the electron
density function nore suitable to machine i nterpretation, 2)a
substantial chem cal and stereochem cal know edge base, and 3)a wide
assortment of nodel building algorithns and heuristics, in order to

achi eve acceptable perfornance.

In order to obviate the inherent difficulties of contour map
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i nterpretation, i nvestigators are actively pur sui ng alternate
representations. The system under devel opnent here is purposely
eclectic, exploiting a variety of representations appropriate to an
equally varied set of i nferenti al pr ocedur es. For  exanpl e, t he
skel etal representation of Geer and the ridge line representation of
Johnson, di scussed in the next section, are both included in our
system

The conponents of the know edge necessary for nodel building
fall into three general categories: chem cal topology, mcrostructure
and nmacr ost ruct ure. The cheni cal t opol ogy know edge base is
essentially all the known chenmi cal data about the specific protein
under study, exclusive of the electron density map itself, e.g., the
amino acid sequence, properties of cofactors (if present), and
identification of di sulfide bridges and/or ot her special chem cal
bonds. M crostructural know edge consists of atomc-1evel facts about
proteins, e.g., the geonetry of peptide bonds and amno acid side
chains and hydrogen bonding properties. Macrostructure refers to
st er eot ype tenplates for the plausible mjor conponents of the
nol ecules, e.g., alpha helix and pleated sheet, and mght also contain
statistical correlations linking these stereotypes to the amno acid
sequence.

Gven these “"factual" data and a tractable representation of
the electron density map, two nore ingredients are required for a
conplete machine interpretation system The first is a collection of
rules and associated procedures for using this know edge to nake
inferences from the experinmental data. The second is a problem solving
strategy for applying the know edge sources (Kss) in an effective way,
so that the appropriate procedures are executed at the tinmes they wll
be nost producti ve. Protein crystallographers who build nodels nove
continually across a large field of basic facts, special features of
the data and inplications of the partial nodel already built, |ooking
for any and all opportunities to add another piece to their structure.
There are several requirements to working in this "opportunistic" node
of hypot hesis formation: (1) the inference making rules and the
strategies for their deploynment nust be separated from one another, (2)
the rules nust be separated from the nechanics of the program in which
they are enbedded, and (3) the representation of the hypothesis space
nmust be conpatible wth the various kinds of hypothesis generating
rules avail able. (The hypothesis structure represents an a priori
established plan for problem solving.) The nodularity of such a system
allow users to add or change rules for manipulating the data base, as
well as to investigate different solution strategies, w thout having to
make major nodifications to the system These issues are discussed
further in Sections 6 and 7.



3 Rel ated work

3.1 Protein crystall ography

Research on the interpretation of el ectron density rmaps has
focused on the representation of the electron density function. G eer
(1974, 1976) has developed a system for reducing the map to clusters of

connected line segnments, a process he calls skeletonization. Usi ng the
skel etoni zed map he has developed a set of rules for isolating the main
chai n, det erm ni ng directionality and proposing coor di nat es for
specific atonms along the main chain. Greer's program draws heavily on

the notion of continuity in the electron density function to produce
the skeletonized nap, and it uses sone know edge of bond |engths and
connectivity to infer rmain-chain and side-chain coordinates. Know edge
of the amino acid sequence is not assuned. |If the sequence were known,
the inferences to be drawn from it would presumably be introduced into
the program's data base in an ad hoc fashion.

Greer's skeletonization technique, although attractive in its
simplicity, suffers in several respects. For one, the procedure is
non-determnistic, i.e., one produces a different skeleton by scanning
the map in a different order. For another, features of the map easily
identifiable to the protein crystallographer, such as helical or ringed
structures, are difficult (if not i npossible) to identify after
skel et oni zati on. The main problem is that one nust necessarily |ose
some information in the process of abstracting a body of nunerical data
into a highly synbolic representation. One nust seek a synbolic
representation, or a set of representations, which mnimzes the |Ioss
of rich detail present in the original data. Skel etoni zation falls
sonewvhat short in preserving the detail required for conplete structure

infercnce.

Recently, another approach toward re-representation of the nap
has been to apply nunerical analysis to the electron density function.
Johnson and G osse (Johnson, 1976) have developed a nethod of "ridge-
line analysis", wherein they can locate alternating peaks and passes in
the electron density function by wusing an interpolation polynonial.
This schene, which is currently in the inplenentation and testing
phase, w Il generate a topological representation of the density map,
showi ng all resolved, unique maxima and the nost probabl e interpeak
bonds. Al though the conputational effort required for the application
of the interpolation polynoni al nmethod is expected to be large, the
procedure needs to be done only once for a given structure analysis,
and provides both a high |Ievel of abstraction of the map and the
preservation of nost of the significant details that are resolved in
the raw electron density function.
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3.2 Knowl edge- based systens

An area of Al research which the current work resenbles is the
speech understanding system Hearsay-II (Erman, 1975)) specifically
with respect to the issues of know edge integration and focus of
attention (Hayes-Roth 1976). In Hearsay-|II the central task is to
build a sentence hypothesis which is a best explanation of the given
speech input data. An "iterative guess-building" process takes place,
in which a nunber of different know edge sources (facts, algorithns,
heuristics), operating on various descriptions of the hypothesis, nust
cooperate. In order to use the know edge sources efficiently a global
data base -- the "blackboard" -- is constructed which contains the
currently active hypothesis elenments, at all levels of description.
The decision to activate a particular knowl edge source is not fixed,
but depends at any point on what has thus far been established and what
avai l able know edge source is nost likely to make further progress.
For exanple, one is unlikely to nmake nuch progress by trying to analyze
the first segnment of the speech wave conpletely before exam ning other
portions of the utterance. The control is, to a large extent,
determ ned by what has just been learned: a small change in the state
of the "blackboard" may establish a new island of opportunity,
providing the preconditions to instantiate further know edge sources
(an illustration of this process in the context of electron density nap
interpretation is given bel ow) . Figure 1 shows the different
information levels at which hypotheses are constructed in the Hearsay-
Il system and some of the know edge sources used. Know edge sources
are used to establish support for hypothesis elenents. These supports
are represented by links. A KS may either create, modify or verify a
hypot hesis elenment(s) at the target level, given a subset of the
exi sting hypothesis elements at the source |level(s). For exanple, the
Syntacti c-Semantic Hypothesizer shown in the figure uses syntactic and
semantic know edge of the input |anguage to propose new words adjacent
to a word or phrase already on the blackboard.
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Figures 2 through 4, which are explained in nore detail in the
next two sections, are descriptions of the protein density map
interpretation system As in Hearsay-Il the hypotheses are represented
in a hierarchically organi zed data structure. In our case the
different information levels can be partitioned into three distinctly
different "planes", but the concept of a globally accessible space of
hypot heses is essentially the sanme for both systens. Knowl edge sources

testing

also play a simlar role as in Hearsay-1l, adding, changing, or
hypot hesis elenments on the bl ackboard.
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4 The Nature of a Hypothesis

The goal hypothesis in our systemis a nodel of a protein
nol ecule which best explains the given experimental data andis
consistent with accepted principles of stereochem stry and protein
chem stry. As was nentioned earlier, ther are many diverse sources of
know edge being brought to bear on the problem of electron density map
i nterpretation. In order to capitalize on these sources of know edge,

the hypothesis is represented as hierarchically organized |evels of
descriptions, as shown in Figure 2. A KSis a collection of rules
whi ch makes inferences between any two levels in the hypothesis space.
There are three levels of description on the nodel plane. The nost
detailed Ilevel of description of the nodel is the atonmic level; a
specification of the spatial coordinates of all atonms in the nodel wth
respect to sonme arbitrary origin (the coordinate of hydrogen atons are
generally omtted). Proteins all exhibit well-defined topol ogical
constraints which permt descriptions at higher levels of aggregation.
Thus, proteins consist of a linear polyneric chain and, in many cases,
attached atomic groups <called co-factors. The | evel of description
which describes the nodel in terns of the position of the polyneric
units (links of the polynmeric chain and side chains) is «called the

superatonmic |evel. These units may be aggregated still further into
what is generally called a "secondary structure", i.e., a specification
of the relative |ocations of large identifiable ©portions of the

protein. Exanples are the alpha helix and the beta sheet conformations,
wel | -known to protein chenists. Many other such "stereotypes" exist in
proteins, although they may be associated with a specific famly such
as the heme binding region in the cytochrone c¢ proteins. This level of
description is labelled Stereotypic in Figure 2.

A partial or conplete hypothesis consists of i nked hypothesis
el enent s. A hypothesis elenment is a labelled node in the space of
hypot heses. Attached to each node is a set of attributes which define
the hypothesis elenent in terns appropriate to the level of description
on which it resides. For exanple, each node at the atonmc |I|evel of
description in the nodel plane corresponds to a discrete atom in the
hypot hesi zed structural nodel. A list of attributes associated wth a
node of this type includes:

name

type

spatial location (coordinates of the atom

menber of superatom (link to superatoa hypothesis el enent)
associated peak (link to a density plane description)
associ ated skeleton node (link to a density plane
description)
hydrogen bonds (list of other atons to which this one
i s hydrogen bonded)

11
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Nodes at the superatonic |evel of description would have a
different Ilist of attributes. The relationships between the hypothesis
elements are represented by [|inks. For exanple, a hypothesis el enent
representing a sul fur atom belonging to a particular Cysteine side
chain wll have a description (ISAVMEMBER CYSi) attached to it. Another
exanple of a link spanning two levels is (HASASMEMBER GLUi ALAj . ..).
This could be a description attached to a helix on the stereotypic
level indicating a part of the amino acid sequence associated wth the
hel i x. There are also relational links confined to a |evel, such as
| SNEXTTO, used to describe the adjacency of the superatons in ternms of
the sequence. These links are determined by the KSs and represent sone

of the inferences which they make. The links also have arrowheads to
indicate the direction-in which the inferences are being nade. For
exanple, if a Cysteine side chain is inferred from a sulfur atom the
link will be from the direction of the atomic level to the superatonic
l evel . On the other hand, if the atom c coordinates of sone atons are
inferred from sone particular side chain, the 1links will be from the
superatonmic to the atomc |evel. Knowl edge sources may nmake inferences

from any level to any other level in Figure 2.

So far we have nentioned the hypothesis structure only wth

respect to the descriptions of the nodel. On the other two planes
shown in Figure 2 are other descriptions, not of the nodel but of the
data from which the nodel is derived. The chenical plane contains a
static description of known conpositional and topological features of
the nmolecule under st udy; the enpirical formul a, the amno acid
sequence, known hydrogen bonds, di-sulfide bridges, salt links, netal
coordinating bonds, etc. These data are errorful and may be nodified

at a later stage in the structure building process (e.g., an amno acid
residue postulated in the sequence may be wong in I|ight of structural

constraints.) However, this occurs rarely and we have, for the tinme
being, nmade the assunption that the sequence is always correct. Once
the amno acid sequence information is assuned to be correct, it can be
used as a powerful guide to finding the side <chains in the density
pl ane. The use of such know edge is very sinmlar to the way in which
the Syntactic-Semantic Hypothesizer in Hearsay-Il uses syntactic and

semantic know edge to predict the next word from the word or phrase
already on the bl ackboard.

The density plane contains the data to be interpreted. Inits
most elenentary form the density nmap is typically a very large table
of values of the electron density, defined on a 3-di ensiona% grid.

I't

The nunber of entries in the table is on the order of - to 10

i s not only prohibitive conputationally to search through this data
base <continually to infer or validate elements of the nodel. It is
al so unnecessary, because 1) a large fraction of the nmap represents
regi ons outsidg t he 4m)I ecul es, and 2) we are searching for the
positions of 10~ to 10  atons, so only a fraction of the total table of
val ues contains the nost rel evant data. Consequently it is clearly

12
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desirable to transform the map to other levels of description which
drastically reduce the volune of stored data, yet preserve nost of the
information required for structure elucidation. Consequently, several
other descriptions, or abstractions, of the density map are used. The
sinplest is a list of peak heights and their [|ocations. Anot her
description exploits the property that nost of the protein can be
nodel ed by a single, branched chain, and uses the skeletonization

algorithm (Geer, 1974, 1976) to reduce the nmap to sets of connected
line segnent s. Yet anot her description is the "ridge-line"
representation of the density map, a node-link graph in which the nodes
are best estimates of the positions of the maxima, and the Ilinks are

best estimates of the paths between the naxi ma (Johnson, 1976).

5 How the Hypotheses are Built by the Know edge Sources
5.1 Steps in the _structure determ nation process

The inferences nmade to create, nodi fy or support hypothesis
elements are generated by exploiting a large body of facts, formal

procedures (al gorithms), and i nformal rul es of good guessing
(heuristics). These inference nekers are called know edge sources. To
appreciate their scope it is instructive to review the steps nornally
taken by a protein crystallographer in proceeding from an electron
density map to a nmolecular structure. The program organi zation and the

or gani zati on of the know edge sources we have adopted reflect the
problem solving processes of the human protein nodel builder.

There are five major steps in density map interpretation:

A Qualitative identification

B. Quantitative nolecular nodeling

c. Calculation of structure factors and conparison
Wi th observed structure anplitudes

D. Calculation of a new density nap using observed
structure anplitudes and nodel-generated phases.

E. Refi nenent of the nodel

Steps C through E, which start with an atomc-level description of the
structure, are wel | - est abl i shed procedures in crystallographic
conputing and form the "back end" of a total structure deternination
system Qur goal is to build the front end, which consists of the

first two steps. Qualitative identification is the process of natching
parts of the chenical description of the protein (side chain,
cof actors, etc.) to corresponding regions of the density map.

13
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Quantitative nmolecular nodeling carries this process further by
assigning specific coordinates to the hypothesized structural elenents,
based on stereochemical or other constraints.

Qualitative identification requires t he protein
crystall ographer to use his know edge of chenmistry and crystallography
and his skills in visual identification, all at the same time. In
order to develop a program which perforns this task automatically, we
have analyzed the nodel builder's reasoning steps in some detail. The
process may be subdivided into five sub-processes, although these are

not necessarily performed sequentially:

1. Identification of the nolecular surface boundary
2. Identification of heavy atoms and major cofactors
3. Identification of the polyner backbone
4, Identification of polyner side chains
5. Identification of ninor cofactors and ordered
sol vent
1. Identification of nolecular surface boundary. The si ze, shape and

symmetry elenents of the unit cell of the crystal are always known to
the crystallographer by the tinme he has a density map to interpret. He
doesn't know, however, where the fundamental repeating unit (i.e., the
protein nmolecule or a cluster of nolecules such as a diner, tetraner,

etc.) is positioned with respect to the "walls" of his density map. He

may thus have, say, the left half of one nolecule and the right half of

anot her. For visual identification it is desirable that the nmap be
posi tioned such that at | east one conplete and contiguous nolecule is
contained therein. To acconplish this, the ~crystall ographer uses
several sources of information; a) low density regions of the nmap or
"channel s" can often be sighted, which indicate the gap between one
structural unit and anot her; b) the nolecular weight and volune are
1sed to verify that the hypothesized unit is reasonable in size; c¢)
size and shape data fron |light scattering or other auxiliary data may
also be used to identify the bounding surface; d) know edge of the

relative densities of the protein and solvent indicate the contrast one
may expect between the protein-containing and interstitial regions.

2. Identification of heavy atonms and mmjor cofactor positions
(if any are present). The Il ocations of heavy atonms, such as iron, wll
be obvious in the density map, and are usually the first pi eces of
structural information to be inferred. Major cofactors often have
characteristic shapes, and/or contain the heavy atonms just identified,
so they are nornally found next. The crystall ographer uses the

follow ng knowl edge sources to carry out this step: a) heavy atons are
located at the maxima in the density map; b) the enpirical fornmul a of
the protein tells him how many and of what type of heavy atons and
cofactors to |ook for; c) the nunber of disulfide bridges, determ ned
from chemi cal analysis, is used to direct the search for these peaks in

14



llow the Hypotheses are Built by the Know edge Sources 5.1

the density map; d) the atomc nunbers of the atons deternine relative
peak heights, so that di fferent types of heavy atons may be
di stingui shed; e) the known shape of mmjor co-factors is used to direct
the search for their positions in the map (e.g., a flat, quasi-circular
group) .

3. Identification of the polynmer backbone. Di stinguishing the
main chain of the protein from side chains and cofactors is a crucial
task in the nodel bui I di ng process. The rel evant know edge sources

here include: a) if a relatively long connected region in the density
map can be identified, it usually indicates the inmage of the nmain

chain; b) the nunber of amino acids in the protein inplies a total
length for the main <chain; «¢) the amno acid sequence, including
di sul fide bridges, can be wused to infer the length of loops in the

chain, d) predictions of the fraction of the polymer which is in a
hel i cal configuration can be obtained fron optical rotatory dispersion

data or from statistical analyses of amino acid sequences in known
proteins (Chou, 1974); e) knowl edge of the geonetry of characteristic
configurations, such as the alpha helix or the pleated sheet, can be
used to match their shapes against clusters of density in the map.

4, Identification of polymer side groups. Identifying even
one or two specific side chains along the polymer allows the nodel
builder to start matching his nodel to the amino acid sequence. Once

this foothold is established, he can make rapid progress in adding the
side chains to the backbone, because he has strong expectations which

limt the possibilities. Amon g the many know edge sources enployed for
this task are: a) protrusions found on the backbone at regular
i nterval s indicate the presence of side chains and their poi nts of
attachnment; b) the "4 Angstromt rule for alpha carbon separation can be
used to verify the points of attachment of the side chains; c) the
sizes and shapes of these bunps can be used to infer which anino acid
side chains it nmay represent - e.g., big, flat bunps are nost likely to
be phenyl al ani ne, tyrosine or arginine; d) the amino acid sequence,

particularly useful when two or nore adjacent side chains can be
identified, e) the shapes of the amno acid side groups can be wused to
verify an identification of a side <chain in the map; £) famly
resenbl ances anong cl asses of proteins can be exploited to locate
relatively long sequences in the density map; g) special properties of
the different amino acid residues are also used, such as their
t endenci es to occur within or outside of helical regions, or their
tendencies to point away from (hydrophobic) or toward (hydrophilic) the
surface of the nol ecule.

5. Identification of minor cofactors and ordered solvents.
Small clusters of atons often co-exist wth the protein, and it is
necessary to distinguish them as separate entities. Exanples are the
inhibitor in an enzyme-inhibitor conmpl ex, or interstitial wat er
nol ecul es. Information sources for this phase of the analysis include:
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a) the residual density in the map; b) the enpirical fornmulae for the
cofactors and the solvent nolecules; t he general rules that c¢) the
solvent is alnost always |ocated outside the nolecular boundary; d)
substrate/inhibitor cofactors have access to both the inside and the
out si de; e) the ordered solvent is usually hydrogen-bonded to polar
si de chai ns.

5.2 How the automated interpretation system uses know edge -
Exanpl es

We have begun building a system which enploys those know edge
sources used by the crystallographers which are relatively -easy to

i mpl enent . The systems control structure (see Section 7) permts the
know edge sources to be discrete, independent entities, so that the
addi tion of new know edge sources, or new rules wthin the KSs,
i nvol ves little or no reprogramming of the existing system Which
know edge sources are used, and in what order, is determined by the
| atest changes in the hypothesis. In addition, the conplete hypothesis
space is always available for pursuing other strategies.

Two exanples are given here which illustrate the use of several
know edge sources and their integrated effects. The first is a
subprobl em which the current system can solve, and, though relatively
trivial, denonstrates the flavor of the systemis problemsolving
behavi or . The second is a nore difficult subproblem but also a nore

typi cal nodel -building task.

5.2.1 Exanple 1 (see Figure 3)

The know edge sources used in the first exanple are shown
schematically in Figure 3. The problem is that of cofactor
i dentification, step 2 in the above discussion of qualitative
identification. In this exanple the structure under investigation was a
menber of the cytochrome ¢ famly of proteins. The density map was
derived from a t heoreti cal nodel of the protein, not from

crystal |l ographic data, so the density map is of high quality. The
el ectron density function was conputed to a resolution of 2 Angstrons

and sanpl ed on a grid of approximately 1 Angstrom spaci ng.
Consequently mpst atonms in the structure are not i ndividually resolved
in the map. The nost readily identifiable features in the map are the
heavy atoms -- iron and sulfur -- and the heme group, characteristic of

all nmenbers of this protein famly.
The program starts with the density map, the conposition of the

pr ot ei n, the amino acid sequence, and the general know edge base
di scussed previously. As shown in the figure, six know edge sources
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are invoked. KS-1 is a preprocessor which abstracts fron the
paranetric description of the density nmap (i.e., the lattice-sanpled
el ectron density function) a list of the 1locations of t he nost
prom nent peaks, sorted from highest to |lowest peak heights. Thus
several points in the paranmetric representation, in the vicinity of a
peak, are mapped into a single hypothesis element at the nodal |evel,
as shown. Each elenent at the nodal level is assigned a nane, and its
hei ght and position are entered as properties of that nane. KS- 2
infers from the chemical data that certain heavy atons are present in
the structure. For exanple, the cysteine side chains at positions 14,
17, 55 and 91 in the sequence are noted and, using the global know edge
base, infers that there are four heavy atons of type sul fur in the
protein. A simlar inference can be made for the one iron in the
protein. KS-2, therefore, creates and establishes support for several
heavy atom hypothesis elenents at the atomc |evel of the nodel
descri pti on. These elenents are assigned identifiers (A, A2, etc.)
and properties which associate them wth specific atoms in the
t opol ogi cal description are attached. KS-3 establishes the spati al
locations of tlie atons by |ooking at the list of nodes and selecting
candi dates which are nost likely to correspond to the heavy atoms. The
iron atom position is taken as the position of the highest peal: in the
map . The sulfur atoms in the vicinity of the iron are also located in
the node list, using general know edge of the cytochrome ¢ famly
structure.

Having inferred as nuch as possible about heavy atons at this
stage of the analysis, the system shifts its attention to |locating the

heme structure. KS-4 makes the sinple inference, based on the
protein's famly nenbershinp, that one of the superatonic hypothesis
elements is a heme, and creates that element on the "blackboard". KS- 5
provides support for the heme by linking it with the iron atom already
f ound. The conbination of having Jlocated the iron atom and having
hypot hesi zed the heme superatom triggers the heme |ocater, KS-6. KS- 6
searches through the node list to find those peaks in the density which
are most likely to lie wthin the planar structure of the henme, and

predicts the direction of the normal to the plane. We present here a
trace of the first few steps of the progranmis reasoning activity for
this exanple in order to illustrate the flow of control as it evol ved.
The term nal out put is given immediately below. Annot ati ons occur
within the output in lower case type, and also occur follow ng the
out put .
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INITIAL VALUES FOR CYTOCHROME C2
COFACTOR: HEME

KNOWN.LOCATIONS: ((FE .216 .063 .427))
SEQUENCE: GIVEN

| MFERENCE: EVENT- 1 BY RULE-I IN RULESET | NI TI ALI ZATI ONRULES

EVENT NAME: COFACTOR- POSI TED
CURRENT HYPOTHESI S ELEMENT: SAl
NEW PROPERTI ES: ((TYPE COFACTOR) (NAME HEME))

A set of rul es, call ed "initializationrules", is call ed
unconditionally in order to "get sonething on the board". Here the
first hypothesis element is created in the nodel plane, and the token
"cofactor _posited" beconmes the initial item on the event Iist.

| NFERENCE: EVENT- 2 BY RULE-| IN RULESET | NI TI ALI ZATI ONRULES

EVENT NAME: HEAVYATOM POCSI TED

CURRENT HYPOTHESI S ELEMENT: Al

NEW PROPERTIES: ((TYPE FE) (NAME FE) (BELONGSTO HEME)
( MEMBEROF SAl))

The sane rule nmay generate nore than one event. Here the rule which
just posited a heme structure in the protein also creates a
subsidiary hypothesis (the iron atom and establishes nenbership
links between the two hypothesis el enents. (This inference was nmade
using general know edge about the conposition of the heme group.)
Associated with each event is a particular hypothesis elenent, which
is the current focus of attention. The event may signal the creation
of the hypothesis elenent, as it does  here, or may signal t he

establi shment of new properties for a pre-existing hypothesis
element, as in the next event bel ow

| NFERENCE:  EVENT- 3 BY RULE-2 IN RULESET | NI TI ALI ZATI ONRULES
EVENT NAVE: HEAVYATOM LOCATED
CURRENT HYPOTHESI S ELEMENT: Al
NEW PROPERTI ES: ((SPACE-LOC (.216 .063 .427)) (D NODES (ND1)))
| NFERENCE:  EVENT- 4 BY RULE-4 [N RULESET | NI Tl ALI ZATI ONRULES
EVENT NAME: HEAVYATOM POSI TED
CURRENT HYPOTHES| S ELEMENT: A2
NEW PROPERTIES: ((TYPE S) (NAVE SGL4) (BELONGSTO (CYS 14)))
| NFERENCE:  EVENT-5 BY RULE-4 IN RULESET | NI TI ALI ZATI OVRULES

EVENT NAME: HEAVYATOY_POSI TED
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CURRENT HYPOTHESI S ELEMENT: A3
NEW PROPERTIES: ((TYPE S) (NAME SGL7) (BELONGSTO (CYS 17)) )

INFERENCE: EVENT- 6 BY RULE-4 1IN RULESET INITIALIZATIONRULES

EVENT NAME HEAVYAT()M_PCBl TED
CURRENT HYPOTHESI S ELEMENT: Ad
NEW PROPERTIES: ((TYPE S) (NAME sp55) (BELONGSTO (MET 55)))

| nT ERENC E EVENT- 7 BY RULE-4 IN RULESET INITIALIZATIOWRULES

EVENT wAME : HEAVYATOM POSI TED
CURRENT HYPOTHESIS ELEMENT: A5
NEW PROPERTIES: ((TYPE S) (NAME sp9l) (BELONGSTO (MET 91)))

Events 4 thru 7 were generated by a rule which scans the amno acid
sequence for those side chains that should be "visible" as heavy
atons in the density plane. These heavy atoms would then serve as
foci of attention for further hypothesis formation activities.

EVENT- | COFACTOR- PCSI TED SAl

The normal processing cycle begins here. An event is picked off the
event list, here identified by its nunber, nane and associ ated
hypot hesis el enent. In the current inplementation the event list is
a queue, so that the first event generated is the first to be
exam ned. The event is passed first to the strategy rule processor
to see if any special strategies apply. In this case, a strategy
rule for nerging two events (1 and 3) does apply, and a new event is
placed in the front of the event Iist, overriding the breadth first

strategy represented by the queueing of events.

MERGED INFERENCE: EVENT-8 FROM EVENT-I AMD  EVENT-3
BY STRATEGY RULE-|

EVENT-8  HELME _AND _FELOC  sAl
INFERENCE: EVENT- 9 BY RULE-| IV RULESET HEMEANALYSIS
EVENT NAMVE: HEME LOCATED
CURRENT HYPOTHESI S ELEMENT: SA1l
NEU PROPERTIES: ((D _NODES (NDL17 ND30 ND33 ND38)))

The new "nerged" event is passed down to the event processor, which

matches the event name to a rule set called "heneanal ysis". A nmenber
of this rule set is found to be applicable, thereby establishing new
properties for the ~current hypothesis elenent, and a new event is

gueued on the event |ist.

EVCIJT-2 HEAVYATO!H POSI TED Al
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I NFEKENCE: EVENT- 10 BY RULE-| IN RULESET  FI NDHEAVYATOMS

EVCLNT NAME: HEAVYATOM LOCATED
CURRENT HYPOTHESI S ELEMENT: A3
NEW PROPERTIES: ((D.NODES (ND3))
(SPACE-LOC (.3425 .0917 .4778)))

| NFERENCE: EVENT- 11 BY RULE-| IN RULESET FI NDHEAVYATOMS

EVENT NAME: HEAVYATOM LOCATED
CURRENT HYPOTHESI S ELEMENT: A2
NEW PROPERTIES: ((D.NODES (ND2))
(SPACE_LOCC (.1649 -,0868 .4673))

Event-2 now cones to the top of the list, and triggers a new ruleset,
called "findheavyatons". The application of this know edge source
results in establishing links between the two hypotheses elenents,

A2 and A3, and specific peaks in the density map.

The event processor is governed by its own set of rules. If an
event triggers a set of know edge rules, and no inferences can be nuade,
the failure is due either to insufficient data, a lack of necessary

information in the nodel thus far constructed, or ignorance of that
particul ar know edge source. Since the nodel hypothesis may change as
the result of processing other events, the event is placed on the job-
list, to be examned at a later time by other know edge sources.
Another type of failure may be due to general ignorance, i.e., the
program sinply has no know edge sources which nmay be invoked for the
current event. An event rule for this situation is to place the event
at the back of the event-list, awai ting either the creation of new

events which nmay be nmerged with the current one to form a "processable"
event; or the addition of new know edge sources to the system

5.2.2 Exanple 2 (see Figure 4)

The second exanple is the subproblem of helix identification.
The nodel builder attenpts to find helical regions in his density nap
at an early stage in the nodel building process, because such regions

have a well-defined density in the 3-D contour map. A helix of
sufficient length (at |east seven residues) wll appear in the map as a
"rod" of high density, often with a hole running through it. Once the

helix tenplate has been fitted into the density, the nodel bui | der can
exploit its highly constrained structure to determine the direction of
the chain, the regions of surrounding density which correspond to side
chains attached to the helix, and the identity of those side chains
havi ng recogni zabl e sizes or shapes.
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T h e corresponding analysis nmade by the automated systemis
sketched in Figure 4. In the density plane, the density map is
abstracted into either a skeletal description or a ridge Iline
representation (KS-7 and KS-8, respectively), as discussed previously.
KS-9 examines the shape 0f the main chain hypothesized by the

skel etoni zer and |ooks for helical features (e.g., patterns formed by
vectors between adjacent car bonyl groups). KS-10 is a simlar
know edge source Wwhich uses the nore detailed representation of the
density function provided by the ridge |ine analysis. If either KSis
successful an hypothesis element is entered at the stereotypic |evel on
t he nodel plane. Properties for this elenent include the |ocation of
its centroid, the direction of the helical axis, nunber, size and shape
of side chains, and polarity. KS- 11, t he sequence-structure
correlacor, examines the amno acid sequence and predicts subsequences
which are' likely to be wthin helical regions. KS-12 uses the side
chain information associated wth the helix to establish hypothesis
elements at the superatonic |evel, one for each side chain. KS- 13
mat ches the side chain sizes and shapes with those expected in the
hel i cal subsequences in order to establish the identity of these
super at ons. KS-14 creates hypotheses at the atonmic |evel fromthe

known superatons by determining the appropriate translation and bond
rotations which bring the side chain tenplate for the current superatom
hypothesis into best agreenent with peak locations in the density map.

6 Representation of Know edge iin the System

As illustrated in the ©previous section there are nmany diverse
sources of information wused in protein structure inference. The
probl em of representing all this know edge, in a form which wll allow
it to be used cooperatively and efficiently in the search for plausible
hypot heses, is of central concern to this research. The system
currently under devel opnent draws upon many concepts which have energed
in the design of other |arge know edge-based systens, e.g., the use of
production rules and bl ackboards. In this section we describe how

these concepts have been adapted to our particular task.

Know edge consists of facts, algorithnms and heuristics (rules

of good guessing). Facts required for protein structure inference are
gener al physi cal , cheni cal , st ereochem cal and crystall ographic
constraints. Typi cal factual knowl edge stored in the system includes
physi cal properties of the elements commonly found in proteins,
nol ecul ar structure and chemical properties of the twenty amino acids,
bond lengths and symmetry properties of various «crystal structures.
These facts are encoded as tables or in property lists attached to
specific structural entities. An example of the latter is the property
list associated wth glutamc acid, shown in Figure 5. Fact ual
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know edge conprises a global data base, which is used as needed by the
know edge sources as they attenpt to infer elements of the structural
hypot hesi s.

G.U
FULL N AME GLUTAMIC_ACI D
POLARI TY ACI DI C
I'1' YDRO HYDROPHI LI C
H BOND ACCEPTOR (6 (0E1 . 3) (CE2 . 3))
H- BOND- DONOR NI L
SHAPE ACYCLI C_ BRANCHED
RESI DUE- WI 72.0
HELI X 1.53
BETA 0. 26
ATOoM_LIST ((CA 0.0 0.0 0.0)

(CB =-.05 -.933 1.244)
(CC 1.221 -1.754 1.546)
(CD 1.431 -3.015 .625)
(OE1 .957 -3.081 -.47)
(OE2 2.13 -3.821 1.239))

BOND_LI ST ((CB . CG (CC. CD) (CD . 0OEl)
(cp . CE2))
SEGMENTATION_LIST (BO (B1 (B2 B3 B4)))

Fi gure 5. A Conponent of the d obal Data Base:
Property List for dutanmic Acid

Algorithms and heuristics conprise the fornal and i nfornal
know edge which generate and/or verify hypothesis elenents. W have
been guided by two general principles in the representation of the
know edge sources:

1) deconpose identifiable areas of know edge into elenentary
units, each of which increnents the hypothesis when specified
preconditions are net.

2) represent the elenmentary units as situation-action rules.

To illustrate, consider the relatively sinple exanple of heavy
atom | ocation. This subproblem is deconposed into two independent
parts: 1) inferring the presence of heavy atons and 2) deternning
their spatial |ocations. These two independent parts are represented
as two separate KSs, invoked under different condi ti ons. In the

specific exanple of cytochrome c2, the presence of the heavy atoms is
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inferred from a KS containing two rules, one which infers the iron from

the presence of the heme cofactor in the conposition list, and the
other which infers the presence of sulfur atoms from the amno acid
sequence. The two rules nay be stated as situation-action rules as
foll ows:
Rule 1

IF the conposition list contains a cofactor of type heme,

THEN :

1) create a superatom node of type hene in the nodel plane,
2) create an atom node of type iron in the nodel plane,

3) create nenbership links between the iron and the hene,
4) put "cofactor _posited” on the event-list,

5) put "heavyatom_posited" on the event-list.

Rule 2
IF the amino acid sequence is given,
THEN:
for each residue in the sequence,
1) IF the residue is cysteine,
THEN:
1.1) create an atom node of type S in the nopdel plane and
nane sGn, where n is the sequence no. of the residue,
1.2) put "heavyatom_posited” on the event-list;
2) IF the residue is methionine,
THE 17
2.1) create an atom node of type S in the nodel plane
and nanme SDn,
2.2) put "heavyatom_posited" on the event-list.

Note that in both rules above several actions may be perfornmed
for a given situation. Also, as shown in rule 2, an action my itself
be a situation-action rule, and nmay be iterative. Not shown here, but
present in the LISP inplenentation of these rules is a position in the
rule for setting paraneter values, to avoid repetitious «calculation of

paraneters appearing in several situation-action clauses. Al so note
that at least one of the actions of each rule is to place a token on an
event-1|ist. In the actual inplenentation the syntax of the "action"

clause is represented as one function. An exanple foll ows:
syntax: (<inference type> (elenent being changed> <att-value pairs>)

exanpl e: (HEAVYATOM.POSITED (GENATOYM) ((TYPE FE) (CELONGSTO HEMEL))

In this exanple, the hypothesis elenment Al will be created. It will be
described as an iron atom belonging to a heme. Further, an event
HEAVYATOM.POSITED wWill be generated and queued on the event list. The

event-list is used by the interpreter, discussed in the next section,
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to deternmine what to do next, i.e., which set of know edge sources will
be invoked after the current event has been processed.

7 Control Structure for the Map Interpretation System

7.1 Event-driven versus goal-driven control

There are several choices of control structure faced by the
designer of a know edge-based system Basically the choices are anong
points on a spectrum at the extrenmes of which are goal-driven and

event-driven systens. In a goal-driven system (of which MYCIN is a
wel | -known exanple (Shortliffe, 1976)) the rule interpreter selects a
rule which concludes with the goal being sought. In our system we

m ght inmagine having such a goal rule as foll ows:

| F
1) the topological description is conplete, and
2) the coordinates of all atoms in the structure are assigned,
and
3) the structure satisfies stereochem cal constraints, and
4) the structure is consistent with the electron density
function, and
5) the structure is consistent with auxiliary chem cal data,
THEN:
signify that a nodel has been conpleted.

The interpreter would then attenpt to verify each of the
prem ses in the goal rule. To do that, other rules would be selected
whose conclusions (the right-hand sides) verified the prem ses under
consideration and the interpreter would attenpt to verify the prenises
of these rules, and so on, working through the list of rules in this

recursive fashion. The programis focus of attention is determ ned by
the current rule whose premises are being evaluated. Many |levels of
recursion may occur before a rule is reached which is relevant to the
current state of the system A goal -driven nonitor is attractive, in

that it pursues a |ogical chain of reasoning, in which the purpose of
each move is clearly revealed by the tree of subgoals.

An  alternate way to focus attention is to enploy an event-

driven control structure. In this schene the current state of the
hypot hesis space determines what to do next. The nmonitor continually
refers to a list of current events - the event-lists nentioned |In the
rules discussed above - which is used to trigger those know edge
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sources nost likely to nmake further headway. As a know edge source
makes a change in the current hypothesis, it also places a synmbol on
the event-list to signify the type of change nade. Thus as events are

drawn from the event-list for processing, new events are added, so that
under normal conditions the nonitor always has a nmeans for choosing its

next nove.

The system we are currently developing operates in both goal-
driven and event-driven nodes, with an enphasis on the latter. Th e
nor mal iterative cycle of problem solving wuses the event-list to
trigger know edge sources, which create or change hypothesis elenents
and place new events on the event-lists. Thus the system’s behavi or is
"opportunistic" in that it is guided primarily by what was nost
recently discovered, rather than by a necessity to satisfy sub-goals.
The choice,of an event-driven control structure as the primary node of
operation is based partly on efficiency in selecting appropriate
knowl edge sources and partly on conformty with the structure nodeling
process nornmally enployed by protein crystallographers. Sone parts of
the nodel building process, however, are handled nore appropriately
within a goal-driven framework. For example, having identified a side
chain within a particular region of the electron density nap, it my be
desirable to defer the task of determining the locations of the

consti tuent atons in that side chain until ot her, nei ghboring side
chains have also been | ocated. The system then sets up a subgoal (find
the atomic positions of superatom SA17) and places it on a |list of
jobs. _ Whether to process this subgoal or not is determned by the
strategy rules which take into consideration the inpact of pursuing
this subgoal on the overall solution and the likely success of such a
nove.

7.2 Knowl edge- depl oynent rul es, event rules and strategy
rul es

The formal and informal procedures which conprise our know edge

sources are expressed as rules, as discussed above. These rules are
collected into sets of rules, each set being appropriate to use on a
particular class of events. The events generally reflect the Ievel on
which the inference is being nmade, which in turn reflects the |level of
the detail of the nodel. The correspondence between event classes and
rule sets is established by another set of rules, the event rules. The

event rules thus form a second layer of rules which direct the systenis
choice of know edge sources for a given event, reflecting the systenis
know edge of what it knows. (A simlar set of rules, the job rules,
perform the same role when the system operates in goal-driven node.)
Mai ntaining the rule-based structure affords a flexibility in choosing
di fferent conbinations of know edge sources to work together, wthout
having to mmke any changes in the know edge sources thenselves. Thus,
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yet a higher level know edge source, the strategy rules, can nmanipulate
the events in order to choose the appropriate conbination of Kss suited
to a particular stage or state in the solution hypothesis. This was
illustrated in Exanple 1 when two events were nerged into one event by
a strategy rule.

The part of the nmonitor which interprets and obeys the event
rules may be likened to a middle-level project nanager, who knows which

specialists to call in as new partial solutions to a particular
problem are discovered. Continuing the anal ogy, the middle-Ievel
manager occasionally gets stuck and needs help from a higher |evel of
managemnent . As nentioned earler, sone high-level decision, such as

nmerging two or nore events to produce a new event that can lead to
further progress, or shifting from event-driven to goal-driven node, is

required. This level of decision naking is enbodied in a set of
strategy rules, which are used for directing the top |evel fl ow of
control. W thus have a conpletely rule-based control structure,
enploying three di stinct | evel s of rules (or know edge): t he
specialist, comonly called the know edge sources, the event processing
rules (or job processing rules), representing know edge about the
capabilities of the specialist, and the strategy rules which know when
to use all available knowl edge to solve the problem Al though this
pyr ami dal structure of rul es and met a-rul es could continue

indefinitely, the flexibility of know edge deploynment offered by our
three-tiered system would appear to be sufficient for this problem
solving system Simlar ideas in a sinpler context have been explored
by Davis (1976) for the MYCIN system

8 Sunmary

In this report we have attenpted to describe, in all its
conpl exi ty, the problem of determining the structure of proteins.
Conventi onal methods for solving this problem denonstrate that many

ki nds of formal and heuristic know edge cooperate in building the
structural hypothesis, piece by piece. A characteristic feature of the
process is that a contribution by one KS often enables other KSs to
build further. W have also described a know edge-based system now
under developnment, which we feel is suited to the activities involved
in this opportunistic way of solving problens.
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10 Appendi X. A G ossary of Ternms Used in Protein Crystall ography

PROT £ IN

A linear chain of am no acids. O the several classes of proteins,
the nost interesting are the enzynes, which have a generally globular
shape . Proteins are often described as a pol ypeptide chain plus anino
acid residues, or side chains, attached at each link in the chain.

POLYPEPTIDE
A repeating sequence of atons,
~=CA=-= (C=0 )==NH=~CA==- (C=0 )=-NH--CA-= (C=0 )-- N~

where ¢A is the alpha carbon to which the amino acid residue is
attached.

AMIuOo ACID, Amniwo ACID RESIDUE
An anino acid has the following topological structure:

R
\
NH2-- CA --(C=0) -OH
\
H

The alpha carbon (CA) is surrounded by an amino group, a carboxylic
acid group, a hydrogen atom and a side chain (R) which characterizes
the particular amno acid. By renoving a nolecule of water (H on one
side, OH on the other) the remaining amino acid residue can be |inked

to other amno acid residues in a polypeptide chain (qg.v.). There
are twenty comon amno acid residues found in proteins. They are
referred to by either their full names, their 3-letter nanmes, or
their I-letter nanes, as foll qus:
AN

1 ALANINE ALA A

2. ARGININE ARN R

3. ASPARAG NE AS N N

4. ASPARTIC AC D ASP D

5. CYSTEINE CYSs C

6. GLUTAMNIC ACID G.U E

1. GLUTAMINE GLH Q

8. GLYCI NE ay G

9. HI STI DI NE H S H

10. I SOLEUCI ME | LE I

11. LEUCINE LEU L

12, LYSINE LYS K
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13. METHIONINE MET M
14.  PHENYLALANI NE PHC F
15. PROLINE PRO P
16. SERINE SER S
17. THREONI NE THR T
18. TRYPTOPHAN TRP W
19. TYROSI NE TYR Y
20. VALINE VAL v

The PRIMARY STRUCTURE of a protein is a description of the amino acid
sequence.

The SECONDARY STRUCTURE of a protein is a description of the
structure in terns of comon substructures, such as alpha helices and
pleated (or beta) sheets.

The TERTIARY STRUCTURE is a conplete specification of the positions
of all atonms in the nolecule.

ALPHA HELIX

A speci al configuration of the polypeptide chain, simlar to the
hel i cal construction of DNA and RNA There are approximately 3.6

al pha carbons per conplete turn of the helix. The helix is held in
place by hydrogen bonds between the backbone nitrogen and the
carbonyl oxygen four links further down the chain. The protein

myogl obin has a high helix content.
PLEATED SHEET or BETA SHEET
The polypeptide chain can often nmake a U-turn and run back al ongside

itself, locking the two chains together by hydrogen bonding. Pleated
sheets can be either parallel or anti-parallel. Silk is an example of

a protein which is al nost entirely in the pl eat ed sheet
configuration. The globular protein concanavalin A (a toxic protein
from jack beans) has a high beta sheet content.

CO FACTOR \

A co-factor is an integral part of the protein, although it is not
part of the sequence of am no acids. The heme group in the globin
and cytochrone fanmilies is an exanple of a co-factor. Co-factors are
held in place by hydrogen bonds or nmetal coordination bonds to the

amno acids in the polyneric sequence.
HYDROGEI J BOND
A hydrogen link between two other atons,

i.e., X-H..Y where X, Y = 0,N
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COORDINATION BOND

A bond of the sort netal--X where X = 0,N and netal = Te,Cu,etc.
DI-SULFIDL BAJD

l.e., =-S5=-~S5-

VALl DER WAAL’S RADI US

The effective radius of an atom determning the distance of closest
approach of two non-bonded atons.

ANMIDE PLANE

Between every pair of alpha carbons in the polypeptide chain are two
groups, -NH and -(C=0O-. The atons of these two groups, plus the two

al pha carbons, all lie in a plane, called the am de plane.
Il CA
\ /
N-C=0
/
CA
Ani de Pl ane

Dl HEDRAL ANGLES

Angl es between planes containing atons. A pair of dihedral angles
which specify rotations about the CA--u and C--CA bonds determ nes
the orientation of one amde plane with respect to an adjoining anide

pl ane. The configuration of the protein backbone is thus conpletely
specified by a list of dihedral angle pairs, one pair for each set of
adj acent am de pl anes, assuming a fixed geonetry for the anide
pl anes.

uniT CELL \

The basic repeating parallelepiped in a «crystalline structure. The
crystal can be "generated" by translating the unit cell along each of
its three principal axes.

SYMMETRY ELEMENT

A geonetrical entity, such as a point, a |line, or a plane, W th
respect to which a particular symetry operation is perfornmed.
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SYMMETRY OPERATI ON

The actual or hypotheti cal novenent of a body, by translation,
rotation (an n-fold rotation is a rotation of 360/ n degrees, where
n=2,3,4,0r 6), rotatory inversion (rotation plus inversion of all
points through a center lying on the axis of rotation), screw
rotation (rotation plus translation along axis by I/n of wunit cell
di mensi on) or translation plus reflection (glide plane operation).
Successive applications of a symetry operation nust eventual |y

return the object to its initial position (or, in a crystal, to one
related by translation). Since proteins are inherently |eft-handed,
synmetry operati ons involving reflections or i nversion are
pr ohi bi t ed.

PO NT GROUP

A group of symetry operations, all of which |eave unnoved one point
within the object to which they apply. The kinds of symetry
el ement s t hat may be present include sinple rotation and

rotatory -inversion axes; the latter include the center of symetry
and the mirror plane. Since one point remains invariant, all rotation
axes nust go through this point and all mrror planes nust contain
it. A point group is used to describe isolated objects such as
si ngl e nol ecul es.

SPACE GROUP
A group or array of operations consistent wth an infinitely
ext ended, regularly repeating pattern. There are j ust 230

t hree-di mensi onal space groups, which can be obtained by the addition
of translation conponents to the 32 point groups appropriate for
structures arranged on lattices. The additi onal symmetry el enents
present in space groups include sinple translations, screw axes, and
gl i de pl anes.

TRI AL  STRUCTURE

A possible structure for a crystal, which is tested by a conparison
of calculated and observed structure factors and by the results of an
attenmpted refinement of the structure.

FOURI ER DENSI TY MAP
The electron density function for a crystal sanpled at a set of
t hr ee- di nensi onal grid points. This map is calculated as a

t hr ee- di mensi onal Fouri er series using the structure factors as
coefficients.
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STRUCTURE FACTOR (F)

The magnitude of the structure factor, |F|, is the ratio of t he
amplitude of the radiation scattered in a particular direction by the
contents of one unit cell to that scattered by a single electron
under the same conditions. The structure factor has both a nagnitude
(anplitude) and a phase; from the intensity we can derive directly
the anplitude but not the phase. Structure factors represent values,
at the reciprocal lattice points h, k, 1, of the Fourier transform
of the electron distribution in one unit cell. The structure factor
depends on:

1. the nature of the scattering material
3. the arrangement of the scattering material (i ncluding
thermal notion)
3. the direction of scattering.
The experimentally neasured ("observed") structure factor anplitudes
are designated by |Fo|; those calculated for a nodel of the structure
are designated |rc].
INTENSITY (I)

The calculated or experimentally neasured quantity related to the
structure factor F:

I = |F|2* geonetrical correction factor
AMPLITUDE
The nodulus of the structure factor, i.e. |F|.
PHASE
The quantity phi in the identity F = |F|*exp(phi)
THE PHASE PROBLEM

Gven all the experinmentally neasured values of |F|, find the F's so
that the Fourier density nap can be cal cul ated.

1S0i{ORPHOUS REPLACEMENT TECHN QUE

An experinentally based procedure for solving the phase problem by
using several protein crystals containing different heavy atons.
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