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ABSTRACT

. The Meta-DENDRAL programis described in general terns that are
intended to clarify the sinmilarities and differences to other l|earning
prograns.. Its approach of model-directed heuristic search through a
complex space of possible rules appears well suited to many induction
tasks. Tge use of a strong model of the domain to direct the rule
search has been demonstrated for rule formatioan im ttwo areas of
chem stry. The high performance of progranms which use the generated
rules attests to the success of this learning strategy.

| | NTRODUCTI ON
Know edge-based artificial intelligence prograns derive their
power from the richness and depth of their know edge bases. It follows

that careful construction of the know edge bases is an obvious
prerequisite for high performance in such systens, yet we have few
alternatives to hand-crafting these for each new program W are better
off than we were several years ago, however, for it is no |onger
necessary to hand-craft a whole program A rather general program
e.g., a production rule interpreter, can constitute the problem solving
machinery for conmon problens in a variety of domains. The task-
specific knowl edge is then encoded in tables of inference rules,
definitions, and procedures that test predicates in the domain and
execute task-specific actions.

Waterman's early work {13] showed the advantages of using a
production rule encoding of know edge. It also provided a nodel for

(1) This work was sugported by the Advanced Research Projects
A§ency under contract DAHC 15-73-C-0435, and by the National Institutes
0f Health under grant RR 00612-07.



| earni ng productions by a program Davi s has nmade a significant
contribution to our understanding of interactive know edge acquisition
[31in which a human expert's know edge is elicited and checked by a
sophi sticated acquisition program

The Heuristic DENDRAL progranms [4] are structured to read nuch of
their task-specific know edge fromtables of production rules and to
execute the rules under rather elaborate control structures. These
prograns interpret analytic data from organic chemcal sanples in order
to help chemists deternmine the nolecular structures of the sanples. For
a nunber of reasons, we nmade little progress with the interactive

approach to building a know edge base for DENDRAL. I nstead we
constructed another set of programs, collectively called Meta-DENDRAL,
that aid in building the know edge base. leta-DENDRAL i s descri bed

below in general terms that are intended to clarify the simlarities and
differences to other learning progranms (see [12]).

2 THE TASK DOMAIN

2.1 Rule Formation

The rule formation task that Meta-DENDRAL performs is sinmilar to
the tasks of grammatical inference, sequence extrapolation, and concept
formation [6],[5),[15]. Prograns that perform these tasks can all be
characterized as "induction" programs. Broadly speaking, the induction
task is to find a general rule that can generate, classify, or explain a
training set of specific instances, and correctly predict new instances.
The training set can be thought of as a set of 1/O pairs froma "black

box machine; the induction program is supposed to discover the

generating principle used in the machine.

2.2 Mass Spectronetry



As described previously [1], the black box whose behavior we are
attenpting to characterize is an instrument for chemical analysis known
as a mss spectroneter. The mass spectrometer bonbards a snall sanple
of an unknown chemcal with high energy el ectrons breaking individual
nol ecules into many fragments and causing atoms to migrate between
fragnents. Results of these processes are observed in a recording of the
masses of the fragnments that are collected. The data are usually
presented in a bar graph of the relative abundance of each fragnent (Y-
axis) plotted against fragnent mass (X-axis). From these data and a
strong nodel of mass spectronetry, a skilled chenist can reconstruct
much of the molecular structure of the unknown conpound.

Throughout this paper we will use the following ternms to describe
the actions of nolecules in the mass spectroneter:

1) Fragmentation - the breaking of an individual
?raph (mol ecul eg into fragments by breaking a subset of
he edges (bonds) within the grapl};.

2) Atommgration - the detachnment of nodes (atons)
from "one fragnent and their reattachnent to a second
fragment.  This process alters t he nass of both
fragnents.

3) Mass spectral process, or process - Qg
fragnentation followed by zero or more atom migrations.

One I/O pair for the instrument is considered to be: (INPUT) a

chemical sanple with uniform nolecular structure (abbreviated to "a
structure"), and (QUTPUT) one X-Y point fromthe bar graph of f ragnent
nmasses and relative abundances of fragments (often referred to as one
peak in the mass spectrum or spectrun:.

Since each structure spectrum contains 50 to 100 different data
points, each structure appears in many |/O pairs. Thus, the program
must | ook for several generating principles, or processes, that oper at e
on a structure to produce pmany data points. In addition, the data are
not guaranteed correct because these are enpirical data from an
el ectronic instrunent that produces sone background noise. As a result,
the program does not attenpt to explain every I/O pair. It does,

however, choose which data points to explain.



2.3 Syntax of Rules

The nodel of mass spectronetrv used by chemists is often expressed
in sets of production rules. The rules (when executed by a program
constitute a simulation of +the fragnmentation and atom mgration
processes that occur inside the instrunent. The left-hand side is a
description of the graph structure of sone relevant piece of the
mol ecul e. The right-hand side is a list of processes which occur:
specifically, bond cleavages and atom migrations. For exanple, one
sinple rule is

(RI) N - C - C -——> N - C * C
where the asterisk indicates breaking the bond at that position and
recording the mass of the fragnent to the left of the asterisk. o
mgration of atons between fragnents is predicted by this rule.

Al though the vocabulary for describing individual atons in
subgraphs is small and the grammar of subgraphs is sinple, the size of
the subgraph search space is immense. For exanple, for subgraphs
containing 6 atons, each with any of roughly 20 attribute-val ue
specifications, there are roughly 20**6 possible subgraphs. In addition
to the connectivity of the subgraph, each atomin the subgraph has four
attributes specified: (a) Atomtype (e.g., carbon), (b) Nunber of
connected neighbors (other than hydrogen), (c) Number of hydrogen
nei ghbors, and (d) Number of doubly-bonded neighbors.

The | anguage of processes (right-hand sides of rules) is also
sinmple: one or nore bonds fromthe left-hand side may break and zero or
more atons may migrate between fragnents.

2.4 Semantic Interpretation of Rules

The interpretation of rule R1 in the above exanple is that if a
mol ecul e contains a nitrogen atom and two carbon atons bonded as N-CC
then it will fragment in the nass spectrometer between the two carbon
atons, and the piece containing the nitrogen will be recorded. In a



l'arge molecule, this rule may apply nore than once. For exanple, Ci3-
CH2-CH2-NH-CH2-CH3 wi || show two fragments fromthe application of this

rul e:
CH3-CH2-CH2-NH~CH?2
and CH2-NH-CH2-CH3 .

For a nunber of reasons the data points are not uniquely
associated with a single fragmentation and atom migration process
(rule). For exanple, a single process may occur nore than once jp a
nolecule (as in the above exanple), and nore than one process may
produce identical fragments (and thus produce peaks at the same nass
points in the bar graph).

2.5 Space of Instances

In order to learn rules of this form the Meta-DENDRAL programis
presented with many exanples of actual |/O pairs from the nass
spectroneter. Each 1/Opair is described as a nolecular graph
structure, together with a data point from the mass spectrum for that
structure. The rules to be learned constitute a description of the
rel evant transformations in the black box. Typically we start with a
training set of six to ten related nolecules and their associated bar
graphs , each containing 50-150 data points, or 300-1500 I/O pairs.
These are drawn froman infinitely large space of possible instances, of
which only a few for each structural class of nolecules are available

fromlibraries of spectra.

3 THE WORLD MODEL

3.1 Reasons for Introducing Strong Biases

Purely statistical learning programs find associations that are
indicated by the data wi thout introducing judgnents  about the
meani ngful ness of those associations. This is an advantage at tines



when an investigator's bias inhibits seeing associations or when an
investigator is nmerely | ooking for all associations. It is a
di sadvantage, however, when the nunmber of associations is so large that
the meaningful ones are lost in the chaff. Statistical pattern
recognition programs have been applied to mass spectronetry wth some
success. Clusters of data points are found to be associated wth
fam |ies of nolecules 80-90% of the time [7]. These prograns, however,
produce no rmeani ngful explanations of why the associations are found.

In contrast to statistical approaches, Meta-DENDRAL utilizes a
semantic model of the domain. This nodel has been included for two
inportant reasons. First, it provides guidance for the rule formation
program in a space of rules that is nuch too large to search
exhaustively, especially when the i nput data have anbi guous
interpretations. S=cond, it provides a check on the neaningful ness of
t he associations produced by the program, in a domain where the trivial

or meani ngl ess associations far outnunber the inportant ones.

3.2 The Half-Order Theory
The base-level, or zero-order theory of mass spectronetry states
that every subset of bonds wthin a nmolecule nay break, and that the
resulting fragnents plus or minus migrating atonms will all be recorded.
This zero order npdel of mass spectronmetry is not specific enough to
effectively constrain the rule  search. Therefore, some general
gui del i nes have been inmposed on it in the so-called "half-order" theory.
The hal f-order theory asserts that bonds will break and atoms will
mgrate to produce data points, according to the followi ng constraints.
Constraints on fragnentations:
Doubl e bonds and triple bonds do not break.
No aromatic bonds break. )
Only fragnents larger than 2 carbon atoms show up in the data.
Two™ bonds to the same carbon atom cannot break together.
No nore than 3 bonds break in any one fragnmentation.
No nore than 2 conplete fragnentations occur in one process.
At nost 2 rings fragment in a nultiple step process.
Constraints on atom mgration:

At nost 2 n%drog.en atonms can migrate after a fragnentation.
At nost 1 H20 unit is lost after any fragnmentation.



At most 1 COwunit is lost after any fragmentation

One of the most hel pful features of this nodel is its flexibility.
Any of the parameters can be easily changed by a chenist with other
preconcepti ons. Any of these assunptions can be renpved and, as
discussed in the follow ng section, additional statements can be added.
This power to guide rule formation will result in the program
di scovering only rules within a well-known framework. On the other
hand, it also results in rules that are neaningful for the domain.

3.3 Augrenting the Hal f-Order Theory

A chem st will often know nore about the nass spectrometry of a
class of nolecules than is enbodied in the half-order theory. In these
cases it is inportant to augnent the programis nodel by specifying
class-specific know edge to the program This al so provides a way of
formng rules in the context of additional intuitions and biases about
mass spectronetry. A chemist can thus see the "nost interesting” rules
(as defined by the augnentations) before the other rules. For exanple
one mght be interested first in rules that nention at |east one oxygen
atom before the numerous (and generally less interesting) rules that
mention only carbon and hydrogen substructures.

4 THE LEARNI NG STRATEGY

W began with the assunption that numerical parameter estimation
met hods were not sufficient for the kinds of rules we wanted the program
to discover in this donmain due to the large nunber of variables required
to describe subgraphs. W also wanted a chance to explore the power of
heuristic search in a learning program in the belief that efficient
selection of alternative explanations is a large part of scientific
discovery. As nmentioned above, we also wanted to make rule discovery a
model - di rected procedure.

As described in nore detail below, the learning programis based



on a generator of production rules of a predetermned syntax operating
under the constraints of a semantic world nmodel. In common with other
induction prograns, it also contains an instance selection conponent and
a critic for evaluating potential rules.

4.1 Instance Selection

Unli ke the sophisticated instance selection procedure described by
Sinon and Lea [l1], Meta-DENDRAL nerely | ooks at the next 1/0O pair,
which is the next data point for the current nolecule or, when there are
no nore for this nolecule, the first data point for the next nolecule.
For each iteration through the learning cycle, training data are
presented several spectra at a time, and are then interpreted and
summarized before any rule formation takes place. In Hunt’s terms [6]
the data are presented in parallel, and not sequentially, for each
iterative step.

Some interesting variations can be introduced to inprove the
instance selection procedure. For exanple, we have suggested el sewhere
[L] allowing the programto request new data that will answer specific
questions raised wupon examnation of the -current best rule set.
However, the cost of obtaining new data can be prohibitive in cases
where chemical sanples are difficult to obtain. Thus, the program
cannot assume that it will receive each training instance which it
requests.

4.2 The Critic

Any learning system nust enploy a critic to conpare current
performance with sonme desired standard. In Meta-DENDRAL there are two
critics - one associated with rule generation and the other with rule
modi fi cati on. Both critics rely heavily upon exanmining evidential
support for rules in the training data. Each rule is evaluated in terns
of its positive evidence (correct explanations of data points) and its



negative evidence (incorrect predictions associated with the rule).
Both critics treat evidence which is uniquely explained by a rule
(unique positive evidence) differently from evidence which is gnared by
several rules. In particular, a data point which can be expl ai ned by
only one rule is stronger evidence for the rule than a data pojnt which
has several alternate explanations.

The rule generation critic analyses candidate rules in terps of
their positive evidence only; for reasons of efficiency it does not
consi der negative evidence. If the positive evidence of a candidate
rule exhibits characteristics typical of good rules, then the critic
adds this candidate rule to the [ist of output rules. Qherwise it
‘decides whether the candidate rule should be further refined and
reconsi dered or should be abandoned.

The rule nodification critic analyses both positive and negative
evidence of individual rules in order to fine-tune each rule. Sjince
rule nodification involves several distinct tasks (explained pe|ow) the
critic mekes several types of decisions. The criteria used for naking
all of these decisions can be summarized as foll ows.

L The set of rules as a whole should be made as conpact and
correct as possible wthout decreasing the positive eyidence of
the rule set.

2. Rules should be nodified to increase their positive evidence
Wit hout increasing negative evidence

3. Rules should be nodified to decrease their negative evidence
wit hout decreasing their unique positive evidence

4.2.1 Credit Assignment

After evaluating performance, the critic nust assign credit (or
blame) to specific rules or conponents of rules. This credit assignnent
problemis an instance of a large class of such problems which have been
recogni zed for some tinme [8] as inportant to |earning prograns.  Vhen
blame for poor performance can be assigned to a component of a rule,
modi fications to that conponent are attenpted



For the rule generation critic, credit assignment is quite sinple.
During the rule search it nust credit individual features in the left
hand side of a rule for the evidence collected by the rule. Therefore
as each new feature is added to a ruleits effect on the rule's
supporting positive evidence is examned. If the effect is unfavorable
(see section 4.3.2) the new feature receives the blane and is removed
i mediately fromthe rule.

There are three credit assi gnment probl ens during rule
modi fication corresponding to the three decision criteria |isted above

(A) In order to make the rule set nore concise, the critic nust
assign credit anong redundant rules for explaining a specific data
point. Credit is assigned to the rule with the strongest evidence over
the entire training data set. Strength of evidence is a measure of a
rule's positive and negative evidence weighted by the average intensity
(Y-conponent) of the data points which the rule explains. In the event
that two redundant rules have equally strong evidence, credit 1S given
to the rule with the sinpler left hand side

(B) In order to increase the positive evidence of a rule, sone
attribute value in the left hand side of the rule must be made |ess
speci fi c. The critic nust search for an overly specific feature to
blame for excluding additional positive evidence for the rule.
Currently the critic nust search by trial and error for such a feature.

(O In order to renove negative evidence froma rule, the critic
must assign blame to some overly general feature. The set of attribute
val ues common to positive evidence instances provides a nmenu of possible
rule attribute values. Attribute values fromthis list are added to the

rule to remove the negative evidence.

4.3 The Learning Cycle
The learning cycle is a series of "plan-generate-test" Steps as

found in many Al systens [4]. After pre-scanning a set of severa
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hundred 1/0O pairs, the program searches the space of rules for plausible
explanations and then nodifies the rules on the basis of detailed
testing. Wen rules generated fromone training set are added to the
nodel, and a second (or next) block of data exanined, the rule set is
further extended and nodified to explain the new data. That is, the
program can now iteratively nmodify rules fornmed fromthe initial
training set (and add to them), but it is currently unable to "undo"
rules. Details of each of these processes are provided bel ow.

4.3.1 Data Interpretation
The planning step in the procedure is reinterpretation of all the

‘given I/O pairs in terms of the vocabulary of the specified nodel (the
augmented hal f-order theory). That is, the output half of each I/0O pair

is reinterpreted to be a list of fragmentation and atom mnigration
processes (potential right hand sides of rules) which are feasible
expl anations of the data point within the specified nmodel. This nust be

done since we want the final rules to propose processes that produce
data points, not just the X and Y conmponents of the data points. This
step is called INTSUM, for interpretation and sumary of the initial
data.  For each nolecule in a given set, INTSUM produces the plausible
mass spectral processes which might occur, i.e., breaks and conbinations
of breaks, with and without migration of atons. INTSU! then exam nes the
spectra of the molecules looking for evidence (spectral peaks) for each
process. Finally it produces a summary showing the total evidence
associated with each possible process.

4.3.2 Rule Ceneration

After the data have been interpreted in INTSUM control passes to
a heuristic search program known as RULEGEN, for rule generation.
RULEGEN creates general rules by selecting "inportant" features of the
mol ecul ar structure around the site of the fragnentations proposed by
INTSUM. These inportant features are combined to form a subgraph

11



description of the local environment surrounding the broken bonds. Each
subgraph consi dered becones the left hand side of a candidate rule whose
right hand side is INTSUM’s proposed process. Essentially RULEGEN
searches within the constraints of the half-order theory through a space
of these subgraph descriptions |looking for successively nore specific
subgraphs that are supported by successively "better" sets of evidence.

Conceptual Iy, the program begins with the nost general candidate
rule, X*X (where X is any unspecified atom and where the asterisk is
used to indicate the broken bond, with the detected fragment witten to
the left of the asterisk). Since the nost useful rules lie sonewhere
between the overly-general candidate, X*X, and the overly-specific
conplete nolecular structure (with specified bonds breaking), the
program generates refined descriptions by successively specifying
additional features. This is a coarse search; for efficiency reasons
RULEGEN sonetines adds features to several nodes at a tinme, wthout
considering the internediate subgraphs.

The program systematically adds features to subgraphs, always
maki ng a "parent" subgraph nore specific, starting with the parent X*X
(Recall that each node can be described with any or all of the foll owi ng
attributes: atom type, nunber of non-hydrogen neighbors, nunber of
hydrogen neighbors, and nunber of doubly bonded neighbors). Wrking
outward, the program assigns one attribute at a time to all atons that
are the same nunber of atons away from the breaking bond. Al though
different values may be assigned to each of these atons, the coarseness
of the search prevents exam nation of subgraphs in which this attribute
is totally uninportant on some of these atons. In addition, each of the
descendants of the parent X*X is checked to see if the supporting
evidence is "better" (see below) than the evidence for the parent.
Those which satisfy the test become new parents for a next |evel of
descendants with one nore feature specified. For exanple, fromthe rule
X*X the programw |l arrive, after several steps, at rule (R1)
(RI) N - C - C =~=---> N-C*¢C

12



In (R1) the only inportant features are the atom types and the
connections of three atoms; the other features and atons have been
generalized away. The point of generalizing is to abstract away
uni nportant attributes of atonms and uninportant atons.

The program adds specifications to candidate rules until it finds
arule that is (a) specific enough to make correct predictions and (b)
general enough to account for nmore than a few special cases. (2)

4.3.3 Rule Mdification

The last phase of the program (called RULEMOD) eval uates the
pl ausi bl e rules generated by RULEGEPJ and nodifies them by making them
more general or nore specific. In order to extend the range of
applicability of the rules, RULEMOD uses a |ess constrained nodel than
RULEGEN. Rul es generated by RULEGEN under an augnented half-order

theory, e.g., in which only fragnents containing an oxygen atom were
considered, cannot inmediately be applied by a performance program
useing a nore general nodel. Therefore RULEMOD refines the rule so that
it can stand on its own under a nore general nodel. In contrast to

RULEGEN, RULEMOD consi ders negative evidence (incorrect predictions) of
rules in order to increase the accuracy of the rule's applications
within the training set. RULEGEN perforns a coarse search of the rule
space for reasons of efficiency, l|eaving the fine tuning to RULEMOD.

RULEMOD wi |l typically output a set of 8 to 12 rules covering
substantially the same training data points as the input RULEGEN set of
approxi mtely 25 to 100 rules, but with fewer incorrect predictions.
This program is witten as a set of five tasks (corresponding to the
five subsections below) which we feel are closely analogous to this
aspect of human problem sol ving.

Selecting a Subset of Inportant Rules. As a first step, the
sel ection procedure is applied to the whole set of rule candidates
produced by RULEGEN. The local evaluation in RULEGEN has ignored
negative evidence and has not discovered that different RULEGEN pathways

13



may yield rules which are different but explain many of the same data
points. Thus there is often a high degree of overlap in those rules and
they may make many incorrect predictions.

To select rules, scores are calculated, the rule with the best
score selected, and the evidence peaks supporting that rule renmoved from
the supporting evidence for other rules. Then the whole process is
repeated until either (i) all scores are below a selected threshold or
(ii) all evidence has been explained. The scoring function (3) applies
the standard of performance of the RULEMOD critic discussed above.

Merging Rules. Although nost of the redundant rules have been
deleted in the first step of RULEMOD, there nmmy still remain sets of
rules that explain many of the same data points. For any such set of
rules, the program attenpts to find a slightly nore general rule that
(a) includes all the evidence covered by the overlapping rules and (b)
does not bring in extra negative evidence. |If it can find such a rule,
the overlapping rules are replaced by the single conpact rule.

Del eting Negative Evidence by Mking Rules Mre Specific. RULEMOD
tries to add attribute-value specifications to atons in each rule in
order to delete some negative evidence while keeping all of the positive
evidence. This involves local search of the possible additions to the
subgraph descriptions that were not considered by RULEGEN. Because of
t he coarseness of RULEGEN’s search, some ways of refining rules are not
tried, except by RULEMOD. For exanple, rule (R2) below would be a
specification of (R1) that PRULEGEN would m ss because it specifies
different attributes (not just different values) for atons that are the
same distance from the broken bond (asterisk):

(R2) N -CH2-CcC -2 N-CH *C.
In this case, the nunber of hydrogen neighbors is specified for the

first left-hand atom but not for the first right-hand one

Maki ng Rul es More General. RULEGEN often forms rules that are nore

specific than they need to be. At this point we have a choi ce whether

14



to leave the rules as they are or to seek a nore general formthat
covers the same (and perhaps new) data points without introducing new
negative evidence. Rule (Rl) for exanple, could be nade nore general by
renmoving the atom type specification on one of the first atons next to
the asterisk:

(R1%) N-¢C-X ——> N -C#*X

Again, because of the coarseness of its search, RULEGEN coul d not have
considered this formof the rule. Ue assume here that RULEGEN produces
good approximations and that RULEMOD can refine them

Selecting the Final Rule Set. The selection procedure described
above is applied again at the very end of RULEMOD in order to renove
"redundanci es that mght have been introduced during generalization and
speci al i zati on.

Eval uating the Rules. Rules may be eval uated by measuring how well
they explain, or "cover", the given spectra. We call this the
"expl anatory power" of the rules. We also want to be able to estimte
how wel | they can be used to discrimnate the nost plausible structures
fromthe rest in a list of candidate explanations of an unknown spectrum
(froma known class). W call this the "discrimnatory power"” of the

rul es.

4.3.4 Integrating Subsequent Data

A requirement for any practical learning programis the ability to
integrate newy acquired data into an evolving know edge base. Y¥ew data
nay dictate that additional rules be added to the know edge base or that
existing rules be nmodified or elimnated. New rules may be added to the
rule base by running RULEGEN on the new data, then running RULEMOD on
the conbined set of new and previously generated rules.

Wien an existing rule is nodified, the issue is raised of howto
maintain the integrity of the nodified rule on its past training
instances. To see this consider an exanple. A new training instance is
acquired and, after credit assignment questions are resolved, it is

15



decided that rule R incorrectly "triggered" on some situation S. The
left hand side of rule R nmust be nodified so that it will no |onger
match S. In general there will be many possible changes to R which will
disallow the match to S, but some wll be better choices than others.
The correct changes to R are those which do not alter past correct
applications of R O course there is no way of know ng which of the
possi bl e changes to R will turn out to be correct upon exanining still
more data, and once a single change is selected the possiblity exists
that backtracking will be necessary at some future point. This whol e
i ssue nay be viewed as a problem of credit assignnment among the features
whi ch nake up the left hand side of E.

Different learning prograns have taken different approaches to
this problem of insuring that rule nodifications are consistent wth
past training instances. Sone [10] have assumed that the correct
performance of each rule on past data need not be preserved. Oher
prograns [14] keep past training instances in nenmory so that they may be
reexamned to evaluate later changes to rules, and to allow backtracking
in cases where incorrect changes to rules were nade. Still other
prograns [15] use domain specific heuristics to select the nost likely
change to R

We are currently developing a nmethod for representing all versions
of the left hand side of a rule which are consistent with the observed
data for all iterations thus far. This representation is referred to as
the "version space" of the rule. By examning the version space of R
we can answer the question "Wich of the reconmended changes to R will
preserve its performance on past instances?". The answer is sinply "Any
changes which yield a version of the rule contained in the version
space". By using version spaces we avoid the problem of selecting a
single unretractable nodification to R. |Instead all the elenents of the
version space which do not natch sone negative instance, S are
retained, and those which do match S are elim nated. Simlarly, when
new data are encountered in which a situation S is found to correctly
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trigger R only those elenents of the version space which match S are

retai ned.

5 RESULTS

One neasure of the proficiency of Meta-DENDRAL is the ability of
the corresponding performance program to predict correct spectra of new
mol ecul es using the learned rules. One performance program ranks a |ist
of plausible hypot heses  (candi date mol ecul es)  according to the
simlarity of their predictions (predicted spectra) to observed data.
The rank of the correct hypothesis (i.e. the nolecule actually
associated with the observed spectrun) provides a quantitative neasure
of the "discrimnatory power" of the rule set.

The Meta-DENDRAL program has successfully rediscovered known,
publi shed rules of mass spectrometry for two classes of nolecules. Mre
inportantly, it has discovered new rules for three closely related
fam lies of structures for which rules had not previously been reported.
Meta-DENDRAL’s rules for these classes have been published in the
chemstry literature (2]. Evaluations of all five sets of rules are
discussed in that publication. This work denonstrates the utility of
Meta-DENDRAL for rule formation in nmass spectronetry for individual
cl asses of structures.

Recently we have adapted the Meta-DENDRAL programto a second
spectroscopi ¢ technique, 13C-nuclear magnetic resonance (13C-NMR)
spectroscopy {9]. This new version provides the opportunity to direct
the induction machinery of Meta-DENDRAL under a nodel of 13C-NMR
spect roscopy. It generates rules which associate the resonance
frequency of a carbon atomin a magnetic field with the |ocal structural
environment of the atom  13C-MMR rules have been generated and used in
a candi date nolecule ranking program sinmilar to the one described above.
13C-MR rules formulated by the programfor two classes of structures
have been successfully wused to identify the spectra of additional
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mol ecul es (of the sane classes, but outside the set of training data
used in generating the rules).

The rule based nolecule ranking program perfornms at the level of a
wel | educated chemist in both the nass spectral and 13C-1:R dommins. e
view this performance as indicative of the quality of the rule base
di scovered by Heta-DEMNDRAL.

6 SUMVARY

Ve believe that automated know edge base construction is feasible
for constructing high performance conputer prograns. The functional
conponents of !eta-DENDRAL are conmon to other induction programs. The
Meta-DENDRAL approach of nodel-directed heuristic search through a
conpl ex space of possible rules appears well suited to many induction
tasks. The use of a strong nodel of the domain to direct the rule
search has been denmonstrated for rule formation in tw areas of
chemstry.  The high perfornmance of prograns which use the generated

rules attests to the success of this learning strategy.

FOOTNOTES

(2). The program judges a rule to be an inprovenent over its
parent if three conditions hold: (a)the new rule predicts fewer
fragments per nolecule than the parent (i.e. the new rule is nore
specific); (b) it predicts fragnentations for at least half of all the
nmolecules (i.e. it is not too specific); and (c) either the newrule
predicts fragnmentations for as many nolecules as its parent or the
parent rule was '"too general" in the following sense: the parent
predicts more than two fragments in sone single nolecule or, on the
average, it predicts nore than 1.5 fragments per nol ecul e.

(3). The scoring function is Score = | * (P + U - 2N), where: I =

the average Y-conponent (fragment abundance) of positive evidence data
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points; P = the nunber of positive evidence instances for the rule; U =
the nunber of unique positive evidence instances for the rule; N = the

nunber of negative evidence instances for a rule.
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