
Stanford Heuristic Programming Project
Memo HPP-77-6

March 1977

Computer Science Department
Report No. STAN-CS-77-597

MODEL-D IRECTED LEARN ING OF PRODUCT ION RULES

Bruce G. Buchanan and Tom M. Mitchell
Meta-DENDRAL Group

COMPUTER SC IENCE DEPARTMENT
School of Humanities and Sciences

STANFORD IIN IVERS ITY

Model-Directed Learning of Production Rules

STAN-a-77-597

Heuristic Programming Project Memo 77-G

Bruce G. Buchanan and Tom M. Mitchell

ABSTRACT

The Meta-DENDRAL program is described in general terms that are intended to
clarify the similarities and differences to other learning programs. Its
approach of model-directed heuristic search through a complex space of possible
rules appears well suited to many induction tasks. The use of a strong model
of the domain to direct the rule search has been demonstrated for rule
formation in two areas of chemistry. The high performance of programs which
use the generated rules attests to the success of this learning strategy.

KEY WORDS

ARTIFICIAL INTELLIGENCE, LEARNING, INDUCTION, PRODUCTION RULES, META-DENDRAL.

The views and conclusions contained in this document are those of the author and
should not be interpreted as necessarily representing the official policies,
either express or implied, of the Defense Advanced Research Projects Agency or
the United States Government.

This research was supported by the Defense Advanced Research Projects Agency
under ARPA Order No. 2492, Contract No. DAHC-15-73-C-0435, and by The
National Institute of Health under Contract No. NIH 5R24 RR 00612-07

Nodel-Directed Learning of Production Rules (1)
bY

Bruce G. Buchanan and Tom 11. Mitchell
Heuristic Programming Project
Denartment of Comnuter Science

I

Stanford Universit
Stanford, CA 94385

ABSTRACT

The Meta-DENDRAL program is described in general terms that are
intended to clarify the similarities and differences to other learning
programs. of model-directed heuristic search through a

iEgx ~~~~~~~~~~~~~~~~~~~~~~~o~~~e~~~l~~~1~o~~~~edt~odi~~~~ i:%!c:$~
formation in two areas of

chemistry. The high performance of programs which use
rules attests to the success of this learning strategy.

the generated

1 INTRODUCTION

Knowledge-based artificial intelligence programs derive their

power from the richness and depth of their knowledge bases. It follows

that careful construction of the knowledge bases is an obvious

prerequisite for high performance in such systems, yet we have few

alternatives to hand-crafting these for each new program. We are better

off than we were several years ago, however, for it is no longer

necessary to hand-craft a whole program. A rather general program,

e.g., a production rule interpreter, can constitute the problem solving

machinery for common problems in a variety of domains. The task-

specific knowledge is then encoded in tables of inference rules,

definitions, and procedures that test predicates in the domain and

execute task-specific actions.

Waterman's early work [13] showed the advantages of using a

production rule encoding of knowledge. It also provided a model for

(1) This work was

A ency under contract DAHC
f

sU~P~;~$&,t~~d ~~v~~~edNa~~~~~;':n5:~~~~~~1 -
o Health under grant RR 00612-07.

learning productions by a program. Davis has made a significant

contribution to our understanding of interactive knowledge acquisition

[3] in which a human expert's knowledge is elicited and checked by a

sophisticated acquisition program.

The Heuristic DENDRAL programs [4] are structured to read much of

their task-specific knowledge from tables of production rules and to

execute the rules under rather elaborate control structures. These

programs interpret analytic data from organic chemical samples in order

to help chemists determine the molecular structures of the samples. For

a number of reasons, we made little progress with the interactive

approach to building a knowledge base for DENDRAL. Instead we

constructed another set of programs, collectively called Xeta-PETJDRAL,

that aid in building the knowledge base. fieta-DENDRRL is described

below in general terms that are intended to clarify the similarities and

differences to other learning programs (see [12]).

2 THE TASK DOMAIN

2.1 Rule Formation

The rule formation task that Meta-DENDRAL performs is similar to

the tasks of grammatical inference, sequence extrapolation, and concept

formation [6],[5],[15]. Programs that perform these tasks can all be

characterized as "induction" programs. Broadly speaking, the induction

task is to find a general rule that can generate, classify, or explain a

training set of specific instances, and correctly predict new instances.

The training set can be thought of as a set of I/O pairs from a "black

box" machine; the induction program is supposed to discover the

generating principle used in the machine.

2.2 Mass Spectrometry

As described previously [l], the black box whose behavior we are

attempting to characterize is an instrument for chemical analysis known

as a mass spectrometer. The mass spectrometer bombards a small sample

of an unknown chemical with high energy electrons breaking individual

molecules into many fragments and causing atoms to migrate between

fragments. Results of these processes are observed in a recording of the

masses of the fragments that are collected. The data are usually

presented in a bar graph of the relative abundance of each fragment (Y-

axis) plotted against fragment mass (X-axis). From these data and a

strong model of mass spectrometry, a skilled chemist can reconstruct

much of the molecular structure of the unknown compound.

Throughout this paper we will use the following terms to describe

the actions of molecules in the mass spectrometer:

1) Fragmentation - the breaking of an individual
graph (molecule) into fragments b
the edges (bonds) within the grap K

breaking a subset of
.

from
2) Atom migration -

one fragment
the detachment of nodes (atoms)

and their reattachment to a second
fragment. This process alters the mass of both
fragments.

3) Mass spectral process, - a
fragmentation followed by zero or mor~rato~r~~~~~tions.

One I/O pair for the instrument is considered to be: (INPUT) a

chemical sample with uniform molecular structure (abbreviated to "a

structure"), and (OUTPUT) one X-Y point from the bar graph of fragment

masses and relative abundances of fragments (often referred to as one

peak in the mass spectrum, or spectrum):.

Since each structure spectrum contains 50 to 100 different data

points, each structure appears in many I/O pairs. Thus, the program

must look for several generating principles, or processes, that operate

on a structure to produce many data points. In addition, the data are

not guaranteed correct because these are empirical data from an

electronic instrument that produces some background noise. As a result,

the program does not attempt to explain every I/O pair. It does,

however, choose which data points to explain.

3

2.3 Syntax of Rules

The model of mass spectrometrv used by chemists is often expressed

in sets of production rules. The rules (when executed by a program)

constitute a simulation of the fragmentation and atom migration

processes that occur inside the instrument. The left-hand side is a

description of the graph structure of some relevant piece of the

molecule. The right-hand side is a list of processes which occur:

specifically, bond cleavages and atom migrations. For example, one

simple rule is

(Rl) 11 - C - C ----> N - C * C

where the asterisk indicates breaking the bond at that position and

recording the mass of the fragment to the left of the asterisk. N O

migration of atoms between fragments is predicted by this rule.

Although the vocabulary for describing individual atoms in

subgraphs is small and the grammar of subgraphs is simple, the size of

the subgraph search space is immense. For example, for subgraphs

containing 6 atoms, each with any of roughly 20 attribute-value

specifications, there are roughly 20**6 possible subgraphs. In addition

to the connectivity of the subgraph, each atom in the subgraph has four

attributes specified: (a) Atom type (e.g., carbon), (b) Number of

connected neighbors (other than hydrogen), (c) Number of hydrogen

neighbors, and (d) Number of doubly-bonded neighbors.

The language of processes (right-hand sides of rules) is also

simple: one or more bonds from the left-hand side may break and zero or

more atoms may migrate between fragments.

2.4 Semantic Interpretation of Rules

The interpretation of rule Rl in the above example is that if a

molecule contains a nitrogen atom and two carbon atoms bonded as N-C-C

then it will fragment in the mass spectrometer between the two carbon

atoms, and the piece containing the nitrogen will be recorded. In a

large molecule, this rule may apply more than once. For example, CII3-

CH2-CH2-NH-CH2-CH3 will show two fragments from the application of this

rule:

CH3-CH2-CH2-NH-CH2
and CH2-NH-CH2-CEI3 .

For a number of reasons the data points are not uniquely

associated with a single fragmentation and atom migration process

(rule). For example, a single process may occur more than once in a

molecule (as in the above example), and more than one process may

produce identical fragments (and thus produce peaks at the same mass

points in the bar graph).

2.5 Space of Instances

In order to learn rules of this form, the Meta-DENDRAL program is

presented with many examples of actual I/O pairs from the mass

spectrometer. Each I/O pair is described as a molecular graph

structure, together with a data point from the mass spectrum for that

structure. The rules to be learned constitute a description of the

relevant transformations in the black box. Typically we start with a

training set of six to ten related molecules and their associated bar

graphs 9 each containing 50-150 data points, or 300-1500 I/O pairs.

These are drawn from an infinitely large space of possible instances, of

which only a few for each structural class of molecules are available

from libraries of spectra.

3 THE WORLD MODEL

3.1 Reasons for Introducing Strong Biases

Purely statistical learning programs find associations that are

indicated by the data without introducing judgments about the

meaningfulness of those associations. This is an advantage at times

5

when an investigator's bias inhibits seeing associations or when an

investigator is merely looking for all associations. It is a

disadvantage, however, when the number of associations is so large that

the meaningful ones are lost in the chaff. Statistical pattern

recognition programs have been applied to mass spectrometry with some

success. Clusters of data points are found to be associated with

families of molecules 80-90% of the time [7]. These programs, however,

produce no meaningful explanations of why the associations are found.

In contrast to statistical approaches, lieta-DENDRAL utilizes a

semantic model of the domain. This model has been included for two

important reasons. First, it provides guidance for the rule formation

program in a space of rules that is much too large to search

exhaustively, especially when the input data have ambiguous

interpretations. Second, it provides a check on the meaningfulness of

the associations produced by the program!, in a domain where the trivial

or meaningless associations far outnumber the important ones.

3.2 The Half-Order Theory

The base-level, or zero-order theory of mass spectrometry states

that every subset of bonds within a molecule may break, and that the

resulting fragments plus or minus migrating atoms will all be recorded.

This zero order model of mass spectrometry is not specific enough to

effectively constrain the rule search. Therefore, some general

guidelines have been imposed on it in the so-called "half-order" theory.

The half-order theory asserts that bonds will break and atoms will

migrate to produce data points, according to the following constraints.

Constraints on fra mentations:
Double bonds an 8 triple bonds do not break.
No aromatic bonds break.
Only fragments larger than 2 carbon atoms show up in the data.
Two bonds to the same carbon atom cannot break together.
No more than 3 bonds break in any one fragmentation.
No more than 2 complete fragmentations occur in one process.
At most 2 rings fragment in a multiple step process.

Constraints on atom migration:
At most 2 hydrogen atoms can migrate after a fragmentation.
At most 1 H20 unit is lost after any fragmentation.

6

At most 1 CO unit is lost after any fragmentation.

One of the most helpful features of this model is its flexibility.

Any of the parameters can be easily changed by a chemist with other

preconceptions. Any of these assumptions can be removed and, as

discussed in the following section, additional statements can be added.

This power to guide rule formation will result in the program

discovering only rules within a well-known framework. On the other

hand, it also results in rules that are meaningful for the domain.

3.3 Augmenting the Half-Order Theory

A chemist will often know more about the mass spectrometry of a

class of molecules than is embodied in the half-order theory. In these

cases it is important to augment the program's model by specifying

class-specific knowledge to the program. This also provides a way of

forming rules in the context of additional intuitions and biases about

mass spectrometry. A chemist can thus see the "most interesting" rules

(as defined by the augmentations) before the other rules. For example,

one might he interested first in rules that mention at least one oxygen

atom before the numerous (and generally less interesting) rules that

mention only carbon and hydrogen substructures.

4 THE LEARNING STRATEGY

We began with the assumption that numerical parameter estimation

methods were not sufficient for the kinds of rules we wanted the program

to discover in this domain due to the large number of variables required

to describe subgraphs. We also wanted a chance to explore the power of

heuristic search in a learning program, in the belief that efficient

selection of alternative explanations is a large part of scientific

discovery. As mentioned above, we also wanted to make rule discovery a

model-directed procedure.

As described in more detail below, the learning program is based

on a generator of production rules of a predetermined syntax operating

under the constraints of a semantic world model. In common with other

induction programs, it also contains an instance selection component and

a critic for evaluating potential rules.

4.1 Instance Selection

Unlike the sophisticated instance selection procedure described by

Simon and Lea [ll], Pleta-DEHDRAL merely looks at the next I/O pair,

which is the next data point for the current molecule or, when there are

no more for this molecule, the first data point for the next molecule.

For each iteration through the learning cycle, training data are

presented several spectra at a time, and are then interpreted and

summarized before any rule formation takes place. In Uunt's terms [6]

the data are presented in parallel, and not sequentially, for each

iterative step.

Some interesting variations can be introduced to improve the

instance selection procedure. For example, we have suggested elsewhere

[l] allowing the program to request new data that will answer specific

questions raised upon examination of the current best rule set.

However, the cost of obtaining new data can be prohibitive in cases

where chemical samples are difficult to obtain. Thus, the program

cannot assume that it will receive each training instance which it

requests.

4.2 The Critic

Any learning system must employ a critic to compare current

performance with some desired standard. In Meta-DENDRAL there are two

critics - one associated with rule generation and the other with rule

modification. Both critics rely heavily upon examining evidential

support for rules in the training data. Each rule is evaluated in terms

of its positive evidence (correct explanations of data points) and its

negative evidence (incorrect predictions associated with the rule).

Both critics treat evidence which is uniquely explained by a rule

(unique positive evidence) differently from evidence which is shared by

several rules. In particular, a data point which can be explained by

only one rule is stronger evidence for the rule than a data point which

has several alternate explanations.

The rule generation critic analyses candidate rules in terms of

their positive evidence only; for reasons of efficiency it does not

consider negative evidence. If the positive evidence of a candidate

rule exhibits characteristics typical of good rules, then the critic

adds this candidate rule to the list of output rules. Otherwise it

'decides whether the candidate rule should be further refined and

reconsidered or should be abandoned.

The rule modification critic analyses both positive and negative

evidence of individual rules in order to fine-tune each rule. Since

rule modification involves several distinct tasks (explained below) the

critic makes several types of decisions. The criteria used for making

all of these decisions can be summarized as follows.

1. The set of rules as a whole should be made as compact and

correct as possible without decreasing the positive evidence of

the rule set.

7L. Rules should be modified to increase their positive evidence

without increasing negative evidence.

3. Rules should be modified to decrease their negative evidence

without decreasing their unique positive evidence.

4.2.1 Credit Assignment

After evaluating performance, the critic must assign credit (or

blame) to specific rules or components of rules. This credit assignment

problem is an instance of a large class of such problems which have been

recognized for some time [8] as important to learning programs. When
blame for poor performance can be assigned to a component of a rule,

modifications to that component are attempted.

For the rule generation critic, credit assignment is quite simple.

During the rule search it must credit individual features in the left

hand side of a rule for the evidence collected by the rule. Therefore,

as each new feature is added to a rule its effect on the rule's

supporting positive evidence is examined. If the effect is unfavorable

(see section 4.3.2) the new feature receives the blame and is removed

immediately from the rule.

There are three credit assignment problems during rule

modification corresponding to the three decision criteria listed above.

(A) In order to make the rule set more concise, the critic must

assign credit among redundant rules for explaining a specific data

point. Credit is assigned to the rule with the strongest evidence over

the entire training data set. Strength of evidence is a measure of a

rule's positive and negative evidence weighted by the average intensity

(Y-component) of the data points which the rule explains. In the event

that two redundant rules have equally strong evidence, credit is given

to the rule with the simpler left hand side.

0) In order to increase the positive evidence of a rule, some
\

attribute value in the left hand side of the rule must be made less

specific. The critic must search for an overly specific feature to

blame for excluding additional positive evidence for the rule.

Currently the critic must search by trial and error for such a feature.

(C) In order to remove negative evidence from a rule, the critic

must assign blame to some overly general feature. The set of attribute

values common to positive evidence instances provides a menu of possible

rule attribute values. Attribute values from this list are added to the

rule to remove the negative evidence.

4.3 The Learning Cycle

The learning cycle is a series of Uplan-generate-test" steps as

found in many AI systems 141. After pre-scanning a set of several

10

hundred I/O pairs, the program searches the space of rules for plausible

explanations and then modifies the rules on the basis of detailed

testing. When rules generated from one training set are added to the

model, and a second (or next) block of data examined, the rule set is

further extended and modified to explain the new data. That is, the

program can now iteratively modify rules formed from the initial

training set (and add to them), but it is currently unable to "undo"

rules. Details of each of these processes are provided below.

4.3.1 Data Interpretation

The planning step in the procedure is reinterpretation of all the

'given I/O pairs in terms of the vocabulary of the specified model (the

augmented half-order theory). That is, the output half of each I/O pair

is reinterpreted to be a list of fragmentation and atom migration

processes (potential right hand sides of rules) which are feasible

explanations of the data point within the specified model. This must be

done since we want the final rules to propose processes that produce

data points, not just the X and '1 components of the data points. This

step is called IIJTSUM, for interpretation and summary of the initial

data. For each molecule in a given set, INTSUM produces the plausible

mass spectral processes which might occur, i.e., breaks and combinations

of Sreaks, with and without migration of atoms. I??TSU:I then examines the

spectra of the molecules looking for evidence (spectral peaks) for each

process. Finally it produces a summary showing the total evidence

associated with each possible process.

4.3.2 Rule Generation

After the data have been interpreted in INTSUM, control passes to

a heuristic search program known as RULEGEN, for rule generation.

RULEGEN creates general rules by selecting "important" features of the

molecular structure around the site of the fragmentations proposed by

I~JTSLJM. These important features are combined to form a subgraph

11

description of the local environment surrounding the broken bonds. Eac!l

subgraph considered becomes the left hand side of a candidate rule whose

right hand side is IfJTSTJPI's proposed process. Essentially RULEGEY

searches within the constraints of the half-order theory through a space

of these subgraph descriptions looking for successively more specific

subgraphs that are supported by successively "better" sets of evidence.

Conceptually, the program begins with the most general candidate

rule, X*X (where X is any unspecified atom and where the asterisk is

used to indicate the broken bond, with the detected fragment written to

the left of the asterisk). Since the most useful rules lie somewhere

between the overly-general candidate, X*X, and the overly-specific

complete molecular structure (with specified bonds breaking), the

program generates refined descriptions by successively specifying

additional features. This is a coarse search; for efficiency reasons

RULEGEN sometimes adds features to several nodes at a time, without

considering the intermediate subgraphs.

The program systematically adds features to subgraphs, always

making a "parent" subgraph more specific, starting with the parent X*X.

(Recall that each node can be described with any or all of the following

attributes: atom type9 number of non-hydrogen neighbors, number of

hydrogen neighbors, and number of doubly bonded neighbors). Working

outward, the program assigns one attribute at a time to all atoms that

are the same number of atoms away from the breaking bond. Although

different values may be assigned to each of these atoms, the coarseness

of the search prevents examination of subgraphs in which this attribute

is totally unimportant on some of these atoms. In addition, each of the

descendants of the parent X*X is checked to see if the supporting

evidence is "better" (see below) than the evidence for the parent.

Those which satisfy the test become new parents for a next level of

descendants with one more feature specified. For example, from the rule

X*X the program will arrive, after several steps, at rule (P.1)

(Rl) N - C - C ----> N-C,kC

12

In (Rl) the only important features are the atom types and the

connections of three atoms; the other features and atoms have been

generalized away. The point of generalizing is to abstract away

unimportant attributes of atoms and unimportant atoms.

The program adds specifications to candidate rules until it finds

a rule that is (a) specific enough to make correct predictions and (b)

general enough to account for more than a few special cases. (2)

4.3.3 Rule Modification

The last phase of the program (called RULEMOD) evaluates the

plausible rules generated by RULEGEPJ and modifies them by making them

'more general or more specific. In order to extend the range of

applicability of the rules, RULEMOD uses a less constrained model than

RULEGEN. Rules generated by RULEGEN under an augmented half-order

theory, e.g., in which only fragments containing an oxygen atom were

considered, cannot immediately be applied by a performance program

useing a more general model. Therefore RULEMOD refines the rule so that

it can stand on its own under a more general model. In contrast to

RULEGEN, RULEMOD considers negative evidence (incorrect predictions) of

rules in order to increase the accuracy of the rule's applications

within the training set. RULEGEN performs a coarse search of the rule

space for reasons of efficiency, leaving the fine tuning to RULELIOD.

RULEMOD will typically output a set of 8 to 12 rules covering

substantially the same training data points as the input RULEGEN set of

approximately 25 to 100 rules, but with fewer incorrect predictions.

This program is written as a set of five tasks (corresponding to the

five subsections below) which we feel are closely analogous to this

aspect of human problem solving.

Selecting a Subset of Important Rules. As a first step, the

selection procedure is applied to the whole set of rule candidates

produced by RULEGEN. The local evaluation in RIJLEGEN has ignored

negative evidence and has not discovered that different RULEGEN pathways

13

may yield rules which are different but explain many of the same data

points. Thus there is often a high degree of overlap in those rules and

they may make many incorrect predictions.

To select rules, scores are calculated, the rule with the best

score selected, and the evidence peaks supporting that rule removed from

the supporting evidence for other rules. Then the whole process is

repeated until either (i) all scores are below a selected threshold or

(ii) all evidence has been explained. The scoring function (3) applies

the standard of performance of the RULENOD critic discussed above.

Merging Rules. Although most of the redundant rules have been

deleted in the first step of RULEMOD, there may still remain sets of

rules that explain many of the same data points. For any such set of

rules, the program attempts to find a slightly more general rule that

(a) includes all the evidence covered by the overlapping rules and (b)

does not bring in extra negative evidence. If it can find such a rule,

the overlapping rules are replaced by the single compact rule.

Deleting Negative Evidence by Making Rules More Specific. RULEMOL)

tries to add attribute-value specifications to atoms in each rule in

order to delete some negative evidence while keeping all of the positive

evidence. This involves local search of the possible additions to the

subgraph descriptions that were not considered by RULEGEH. Because of

the coarseness of RULEGEN's search, some ways of refining rules are not

tried, except by RULEMOD. For example, rule (R2) below would be a

specification of (Rl) that RLJLEGEN would miss because it specifies

different attributes (not just different values) for atoms that are the

same distance from the broken bond (asterisk):

GW 14 - CH2 - c ----> N - CH2 * C .

In this case, the number of hydrogen neighbors is specified for the

first left-hand atom but not for the first right-hand one.

Making Rules More General. RULEGEN often forms rules that are more

specific than they need to be. At this point we have a choice whether

14

to leave the rules as they are or to seek a more general form that

covers the same (and perhaps new) data points without introducing new

negative evidence. Rule (Rl) for example, could be made more general by

removing the atom type specification on one of the first atoms next to

the asterisk:

(Rl') N - C - X ---as> N - C * X .

Again, because of the coarseness of its search, RULEGEN could not have

considered this form of the rule. We assume here that RULEGEN produces

good approximations and that RULEMOD can refine them.

Selecting the Final Rule Set. The selection procedure described

above is applied again at the very end of RULEMOD in order to remove

'redundancies that might have been introduced during generalization and

specialization.

Evaluating the Rules. Rules may be evaluated by measuring how well

they explain, or "cover", the given spectra. We call this the

"explanatory power" of the rules. We also want to be able to estimate

how well they can be used to discriminate the most plausible structures

from the rest in a list of candidate explanations of an unknown spectrum

(from a known class). We call this the "discriminatory power" of the

rules.

4.3.4 Integrating Subsequent Data

A requirement for any practical learning program is the ability to

integrate newly acquired data into an evolving knowledge base. Hew data

nay dictate that additional rules be added to the knowledge base or that

existing rules be modified or eliminated. New rules may be added to the

rule base by running RULEGEN on the new data, then running RULEIIOD on

the combined set of new and previously generated rules.

When an existing rule is modified, the issue is raised of how to

maintain the integrity of the modified rule on its past training

instances. To see this consider an example. A new training instance is

acquired and, after credit assignment questions are resolved, it is

15

decided that rule R incorrectly "triggered" on some situation S. The

left hand side of rule R must be modified so that it will no longer

match S. In general there will be many possible changes to F. which will

disallow the match to S, but some will be better choices than others.

The correct changes to R are those which do not alter past correct

applications of R. Of course there is no way of knowing which of the

possible changes to R will turn out to be correct upon examining still

more data, and once a single change is selected the possiblity exists

that backtracking will be necessary at some future point. This whole

issue nay be viewed as a problem of credit assignment among the features

which nake up the left hand side of !A.

Different learning programs have taken different approaches to

this problem of insuring that rule modifications are consistent with

past training ins+.ances. Some [lo] have assumed that the correct

performance of each rule on past data need not be preserved. Other

programs [14] keep past training instances in memory so that they may be

reexamined to evaluate later changes to rules, and to allow backtracking

in cases where incorrect changes to rules were made. Still other

programs [15] use domain specific heuristics to select the most likely

change to R.

We are currently developing a method for representing all versions

of the left hand side of a rule which are consistent with the observed

data for all iterations thus far. This representation is referred to as

the "version space" of the rule. By examining the version space of R,

we can answer the question "Which of the recommended changes to R will

preserve its performance on past instances?". The answer is simply "Any

changes which yield a version of the rule contained in the version

space". By using version spaces we avoid the problem of selecting a

single unretractable modification to II. Instead all the elements of the

version space which do not match some negative instance, S, are

retained, and those which do match S are eliminated. Similarly, when

new data are encountered in which a situation S' is found to correctly

16

trigger R, only those elenents of the version space which match S' are

retained.

5 RESULTS

One measure of the proficiency of Pieta-DENDRAL is the ability of

the corresponding performance program to predict correct spectra of new

molecules using the learned rules. Cne performance program ranks a list

of plausible hypotheses (candidate molecules) according to the

similarity of their predictions (predicted spectra) to observed data.

The rank of the correct hypothesis (i.e. the molecule actually

associated with the observed spectrum) provides a quantitative measure

of the "discriminatory power" of the rule set.

The !leta-DENDRAL program has successfully rediscovered known,

published rules of mass spectrometry for two classes of molecules. More

importantly, it has discovered new rules for three closely related

families of structures for which rules had not previously been reported.

Keta-DENDRAL's rules for these classes have been published in the

chemistry literature [21. Evaluations of all five sets of rules are

discussed in that publication. This work demonstrates the utility of

Meta-DENDRAL for rule formation in mass spectrometry for individual

classes of structures.

Recently we have adapted the Pieta-DENDRAL program to a second

spectroscopic technique, 13C-nuclear magnetic resonance (13C-NFIR)

spectroscopy [9]. This new version provides the opportunity to direct

the induction machinery of Ileta-DEIJDRAL under a model of 13C4QIR

spectroscopy. It generates rules which associate the resonance

frequency of a carbon atom in a magnetic field with the local structural

environment of the atom. 13C-HPlR rules have been generated and used in

a candidate molecule ranking program similar to the one described above.

13C-HI4R rules formulated by the program for two classes of structures

have been successfully used to identify the spectra of additional

17

molecules (of the same classes, but outside the set of training data

used in generating the rules).

The rule based molecule ranking program performs at the level of a

well educated chemist in both the mass spectral and l3C-IXlR domains. CJe

view this performance as indicative of the quality of the rule base

discovered by Meta-DENDKAL.

6 SUMMARY

TJe believe that automated knowledge base construction is feasible

for constructing high performance computer programs. The functional

components 0,F Ileta-DENDRAL are common to other induction programs. The

Ileta-DEIJDRAL approach of model-directed heuristic search through a

complex space of possible rules appears well suited to many induction

tasks. The use of a strong model of the domain to direct the rule

search has been demonstrated for rule formation in two areas of

chemistry. The high performance of programs which use the generated

rules attests to the success of this learning strategy.

FOOTNOTES

(2). The program judges a rule to be an improvement over its

parent if three conditions hold: (a)the new rule predicts fewer

fragments per molecule than the parent (i.e. the new rule is more

specific); (b) it predicts fragmentations for at least half of all the

molecules (i.e. it is not too specific); and (c) either the new rule

predicts fragmentations for as many molecules as its parent or the

parent rule was "too general" in the following sense: the parent

predicts more than two fragments in some single molecule or, on the

average, it predicts more than 1.5 fragments per molecule.

(3). The scoring function is Score = I * (P + U - 2N), where: I =

the average Y-component (fragment abundance) of positive evidence data

12

points; P = the number of positive evidence instances for the rule; U =

the number of unique positive evidence instances for the rule; N = the

number of negative evidence instances for a rule.

19

References

1.

2.

3.

4.

5.

6.

7.

3.

9.

10.

11.

Buchanan, B.G. Scientific
Proceedin s

theory formation by computer. *

Oriented &
of NATO Advanced Study Institute on ComputkP

earning Processes, Noordhoff, Leydon, 1976.

Buchanan, B.G.,
R.J., Feigenbaum,

Smith, D.H. ,
E.A.,

White,
Lederberg, J.,

11. c. ,
and

Gritter,

Automatic rule formation in mass
Djerassi, C.

Meta-DENDRAL
s ectrometry by means of the

Journal o
Society, 98, 20~r~~~%lber 1976.

f the American Chemical

Davis, P Applications of
the cons;ruction

meta-level
maintenance,

knowledge to
and use of large knowledge bases.

Ph.3 thesis (STJX-CS-76-552), Stanford University, July 1976.

Feigenbaum, E.A., Buchanan, B.C., and Lederber
and problem solving: a c;lse study using t LR

J. On generality

Machine Intelligence 6, Meltzer, B.
DENDRAL program.

and
eds., American Elsevier, New York, 1971, 165-i90.

Eiichie, 3.

{ledrick, C.
a semantic

A computer program to learn production
net. Ph.D. thesis,

systems usinp
Graduate School of Industrial

Administration, CIIU, July 1974.

Hunt, Earl
1975.

B. Artificial Intelligence, Academic Press, New York,

Jurs, P.C. in Computer Re resentation and
Chemical Information, PWi ce

Manipulation of

Interscience, New York, 1974:
W.T., et. al.

p.265.
eds., Wiley-

ffinsky , M. toward artificial intelli rice.
Thought,

Steps

York,
Fiepenbaum,

1963, $06-450.
E.A. and Feldman, J. 3

Computers and
e s., McGraw-Hill, New

Mitchell, T. 14. and
autonated

Schwenzer, G. 14.
empirical

A computer program for
13C N!lR rule formation. Submitted to

Journal of the American Chemical Society, 1977.

Samuel, A. L. Some studies of machine learnino
checkers.

' 7 the ame of

Feldman, J.
in Computers and Thought,

eds.,
Feicenbuz$? E.' .

McGraw-Hill, New York, 1963, 71-iO5.
f and

Simon, H.A., and Lea, G.
unified view.

Problem solving and rule induction: a
CMU Con lex

227 (revised), June 1 73.r;
Information Processing Working Paper

20

12. Smith, R.G.
1
Mitchell, T.M., Chestek, R.A., Buchanan, B.G. A

model for earning systems. Submitted to the 6th I.JCAI, 1977.

13. Waterman, D.A. Generalization learning techniques
the learning of heuristics.

for automating
Artificial Intelligence , 1, 1970,

121-170.

14. Waterman, D.A. Adaptive product;;? systems. Information
Processing Working
December, 1974.

Paper 9 Compl:FCMU Dept. Psychology,

15. IJinston, P.H. Learnin
!?

structural descri tions
Ph.D. thesis (MIT AI- R-231), September 1.70.5

from examples.

21

