REFERENCE MACHINES REQU IRE NON-LINEAR TIME TO
MAINTAIN DISJOINT SETS

by

Robert E. Tarjan

STAN-CS-77-603
MARCH 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

iz

« -
S ALsedl

vibANg

Ref erence Machines Require Non-Linear Tine

to Maintain Disjoint Sets

Robert Endre Tarjan

Conput er Science Depart nent
Stanford University
Stanford, California 94305

Abstract .
This paper describes a machine model intended to be useful. in
deriving realistic complexity bounds for tasks requiring list processing.

As an exanple of the use of the nodel, the paper shows that any such machine

requires non-linear tine in the worst case to conpute unions of disjoint
sets on-line. Al set union algorithms known to ne are instances
of the nodel and are thus subject to the derived bound. One of the known

al gorithnms achieves the bound to within a constant factor.

Keywor ds _and Phr ases: Ackermann's function, analysis of algorithns,
concrete conputational conplexity, data structures,
disjoint set union, equivalence relation, linking

automaton, list processing, machine nodel, pointer,
record, reference, storage manipulation machine.

"This research was supported in part by National Science Foundation grant
MCS75-22870 and by the Ofice of Naval Research contract NOOO1L-76-C-0668.

Reproduction in whole or in part is permtted for any purpose of the
United States Covernment.

Sone of this work was done while the author was visiting the Faculty of
Mat hematics at the University of Bielefeld, Bielefeld, Wst Germany.

[ntroduction.

Computer Scientists have attenpted for nmany years to derive | ower
bounds on the conplexity of conputational problens. This effort has net
with sone success, providing, for exanple, exponential |ower bounds on the
conpl exity of equival ence for regular expressions [13], validity in
Presburger arithmetic [14], and circularity in attribute gramars [7].

In addition to these bounds for hard problens, several results for sinpler
probl ems exist, including bounds on the nunber of conparisons required for
ordering problens [9], on the number of data accesses required for testing
properties of graphs [15], and on the nunber of arithnetic operations
required for evaluating various polynomals [2],

In spite of this progress, one domain, that of |ist processing problens,
is alnost entirely devoid of [ower bound results. The subject of data
structures is now part of the standard conputer science curriculum and
every conputer science library contains many books on the subject. Yet,
with the exception of a few results on the relative power of various data
structures, nothing is known about the inherent power of pointer nanipulation.

One reason for this state of affairs is the lack of a thoroughly
under st ood machine model which is both realistic and theoretically accessible.
(One candidate, the random access machine [I], which has been used by
several authors to provide realistic nmeasures of the conplexity of various
algorithms, seens too powerful to analyze easily. It also has certain
defects, such as allow ng unbounded parallelismif a "uniform cost" neasure
[1] i s used.

However, another possible nodel exists. In 1953 Kol nogorov [11,12]
proposed a machine which operates by manipul ating pointers connecting nodes.

Fifteen years later Xnuth{8] proposed a simlar machine, which he called

a linking automaton. Later and independently sSchénhage[16] defined such

a machine, which he called a storage nanipul ati on machine, and showed t hat

such nachines can sinulate Turing nmachines with nultidinensional tapes in
real time. A though these machines provide a useful tool for describing
poi nter manipulation algorithns, no bounds on their conput ati ons3 power
except Schbnhage's seem to exist.

This paper describes an extension of Knuth's machine, called a

reference machine. The paper examines the ability of such a machine to

solve a problem requiring manipulation of disjoint sets, and proves that
any reference nmachine which solves the disjoint set problem requires
non-linear time (in the worst case) to do so, under certain natural
restrictions. The lower bound is tight to within a constant factor.
This result shows that it is possible (in at |east one case) to derive
a non-linear |ower bound on the conplexity of a l|ist-processing problem
using a realistic computer nodel. The result also provides a partial
sol ution to Knuth's exercise 2.6.1[8] which asks us to "Explore the

properties of linking automata...".

2. Ref erence Machi nes.

A reference machine consists of a memory and a finite nunber of

registers. The registers are of two types: data registers and reference

registers. The nenory consists of a finite but expandable pool of records.
Each record consists of a finite nunber of itens, each of which is either

a data itemor a reference item Each item has an identifying nane. Al

records are identical in structure; that is, they contain the sanme itens.

A reference machine mani pul ates data and references. A reference
either specifies a particular record or is null (@) . Each reference
register and reference item can store one reference. Data can be of any
kind whatsoever (integers, |ogical values, strings, real nunbers, vectors,
etc.). Each data register and data item can store one datum

A program for a register machine consists of a sequence of instructions,

nunbered consecutively from one. Each instruction is of one of the follow ng
eight types. (Each r below denotes a reference register, each s denotes
a data register, each t denotes a register of any type, and each n

denotes an item nane.)

re9¢ Place a null reference in register r .
t, ~ t (t1 and t, nust be of the same type).
Place the contents of register t, in register ty erasi ng
what was there previously.
t «n(r) (n and t nust be of the sanme type).
Let N be the n itemof the record specified by the contents
of r . Place the contents of Nin register t , erasing what

was there previously. (If r contains ¢, this instruction

does nothing.)

n(r) «t (n and t nmust be of the same type)
Let N be the n itemof the record specified by the contents
of r. Place the contents of t initem N, erasing what
was there previously. (If r contains @, this instruction
does not hing.)

©s, Conbine the data in registers s, and s, by applying the

51 782 5 2 3
operation o . Store the result in s; , erasing what was
there previously.

Create r Create a new record (not specified by any existing reference)
and place a reference to it inr.

hal t Cease execution.

iL condition then go to i

NP N o

[f the condition is true, then transfer control to instruction i.

If the condition is false, do nothing.
Each condition in an l.L instruction is of one of the follow ng types.

true Al ways true.

t, = t (tl and t, nust be of the same type)

True if the contents of %, and t2 are the same.

1

p(sl,se) True if the contents of s, and s, satisfy the predicate p ,

1
where p is any predicate on data.

A reference machine executes a program instruction-by-instruction
in consecutive order, beginning with instruction one. Execution of an
’LL instruction may cause control to be transferred to a non-consecutive
instruction, in which case consecutive execution resunes from this new
instruction. Wen the machine reaches a halt instruction, execution
ceases. The last instruction of every programis a halt

[ana oV d

A reference machine step consists of the execution of a single

instruction. The running tinme of a reference machine programis the

nunber of steps the machine requires to execute the program as a
function of the initial state of the registers and nenory. The storage
space required by a reference machine programis the number of records
initially in nenory plus the number created during execution.

Wien a new record is created all its itenms initially contain a
special value called undefined (A) . The initial value of any register
may also be p . If a reference machine attenpts to use the contents of
a register or itemcontaining p, it halts. However, the machine is
allowed to store another value into a register or itemcontaining a .

| shall be uninterested in constant factors in running time and
storage space. Wth this assunption, the register-to-register assignment
i§ a redundant instruction type since it can be simulated by a fﬁffﬂjl'
a register-to-nenory assignnent, and a memory-to-register assignnent.
Simlarly uses of the null reference value can be deleted wthout affecting
running time by nmore than a constant factor, Extending the machine nodel

by allow ng several types of records has the effect only of saving a constant

factor in storage space.

To conpletely specify a register machine, one nust describe the data
and the types of operations allowed on the data. knuth's |inking automaton
is a register machine whose data consists of synbols selected from sone set.
No operations on data are allowed except testing for equality. Henceforth
we shall use the termsynbol in a technical sense to refer to data on
which no operations are permtted except testing for equality.

A pure reference machine is a register machine with no data. It is

not hard to show that any linking automaton with a finite set of synbols
can be simulated by a pure reference machine with a loss of only a constant
factor in running tine. I shall consider exanples of reference machines which
have integers as data and addition and conparison as allowed operations
The lower bound-result holds for all reference machines, whatever their data
In a reference nmachine, access to nmenory is by explicit reference only;
no conputation on references is possible. The reference machine nodel is
thus apparently less powerful than the random access nodel with uniform cost
measure [1]; reference machines lack the ability to use address arithnetic
for such purposes as manipul ating a hash table [9], perforning a radix
sort [9], or accessing a dense matrix [8]. These machines are, however,
power ful enough to sinulate such list-processing |anguages as LISP and to
nodel the list-processing features of Algol-w, PL/1, and other genera
pur pose | anguages.
It would of course be possible to study the general properties of
reference machines, conparing their power with that of other classes of
automata, as Schbnhage[16] has done. Here, however, | analyze the ability

of reference machines to solve a specific problemin |ist processing.

3., The Disjoint Set Union Problem

Let Sl, 82, e e Sn

elenent. The disjoint set union problemis to carry out a sequence of

be n disjoint sets, each containing a single

operations of the following two types on the sets.

find(x) : determne the nane of the set containing element x .
union(A;B) : add all elenents of set B to set A (destroying
set B).

The operations are to be carried out on-line; that is, each instruction
must be completed before the next one is known. W shall assume that the
- sequence of operations contains exactly n-l1 union operations (so that
after the last union all elenments are in one set) and m> n interm xed
find operations (if m< n | sone elenents are never found).

The disjoint set union problemis an abstraction of the operations
necessary to inplenent FORTRAN EQU VALENCE and COWMON statenents [5].
Algorithms for this problem and for a generalization of it have
applications in graph theory [18], gl obal code optimzation [18,19], and
l'inear algebra [19]. A nunber of algorithns exist [1,4,5,6],

A reference machine solution to the set union problem consists of a

reference machine, a representation of the input sets as collections of
records, a programfor carrying out a find, and a program for carrying
out a union . The reference machine solves the set union problemin the
following way. Initially the nmachine nemory represents the input sets.
Each find is carried out by executing the find program which halts
having identified the set containing the desired elenent. Each union

is carried out by executing the wunion program which halts having
nmodified the contents of menory to reflect the union. | shall make the

fol oW ng assunptions concerning the details of this process.

(3.1) Each set and each element has a distinct associated synbol
(3.2) No record in the collection for an input set contains the synbol
of any other set orof any elenent outside the set.
(3.3) No record in the collection for an input set contains a reference
to any record outside the collection.
(3.4) Before the find programis executed to | ocate the set containing
an element x , a reference to some record containing the synbol
for x is placed in the designated input register ry and Ais
placed in all other registers. The find programhalts with the
synbol for the set containing x in the designated output register 5o -
(3.5) Before the union programis executed to add elenents in set B to
set A, references to records containing the synmbols for A and B
are placed in the designated input registers r and r, respectively,
and p is placed in all other registers. The union program halts with
no output.

The sequence of steps associated with a set union

problem and a reference machine solution is the sequence of steps
executed by the machine when it carries out the finds and unions . The
l ength of this sequence neasures the total running tine of the machine.
The main result of this paper is a non-linear |ower bound (as a function
of n and m) on the length of any sequence of steps which solves a
wor st-case instance of the set union problem

The formulation described above is intended to be realistic and to
facilitate derivation of a lower bound. Assunption (3.1) above, requiring
that sets and elenents be represented by synbols, makes it inpossible to

encode all elenents of a set into a single datumand to nove this datum at

a cost of one step per nmove; without this restriction there is a reference machine
whi ch can solve any set union problemin linear tine. Assunptions (3.2), (%.3),
and (3.4) inply that the machine, when performing a find on sone el ement x ,
has access only to records representing the set containing x . Assunptions
(3.2), (3.3), and (3.5) inply that the machine, when perfornming a union on
sets A and B, has access only to records representing the sets A and B .
It follows by induction on the nunber of finds and unions that (3.2) and
(3.3) hold for the sets existing at any tinme during the conputation, not just
for the input sets. In other words, the contents of nmenory after any
particular find or union can be partitioned into collections of records
such that each collection corresponds to a currently existing set, all
synbols for the set and its elenents occur only in the corresponding
col lection of records, and no record in one collection contains a reference
to a record in another collection. Wthout assunptions (3.2)-(3.5) any
particular instance of the set union problemcan be solved in linear time
by initially nmoving synbols for all sets and elenents into a single record
and solving all finds by accessing only this record, though | conjecture
that even wi thout assunptions (3.2)-(3.5) no single reference nachine can
solve all instances of the set union problemin linear tine,

“If an algorithmfor the set union problemis to be useful in practice,
the symbol of each set and of each elenent should be stored in exactly one
record,- so that the initialization for finds (3.4) and unions (3.5) is
uni quely defined. Al the algorithnms to be considered have this property,

but the lower bound proof does not require it.

10

4. Agorithns for the Set Union Problem

Al algorithms for the set union problem known to nme can be inplenented
on reference machines. This section describes six such algorithns. These
algorithnms are of two general types, quick find , requiring constant tine
for each find , and quick union , requiring constant tinme for each
union . Al the algorithns represent each input set by a single record
containing the symbol for the corresponding set and the symbol for the
corresponding element in data itenms set and elenent , respectively.

Each element is permanently associated with the record containing its
synbol, and no new records are ever created. During the conputation,

a currently existing set is represented by the collection of records
corresponding to its elenents and the synbol for the set is contained in
exactly one of these records.

In the quick find nethod, each record contains two reference itens,
parent and next . One record in the collection representing a set
contains the symbol of the set. The -parents of all records in the
collection refer to this header record. The next items link all records
in the collection into a list whose first element is the header. Figure 4.1

illustrates this data structure.
[Figure k4.1]

Wth this representation, a find requires two reference machine
steps; one to access the parent of the input record (which refers to the
header) and one to access the set of the header. A union of A and B
requires seven steps per element in B; each record in the collection for

B nmust have its parent nmodified to refer to the header of A and nust

11

be linked into the list for A. Table 4.1 contains programs in Algol-like
notation for union and find . It is easy to translate these into
reference machine prograns.

[Tabl e 4.1]

Adding a heuristic to the union program inproves its perfornance
considerably. Each record needs an additional data item size . The
size itemis only neaningful for headers; it counts the nunber of elenents
in the corresponding set. To performa union of A and B, the size of
Ais conpared to the size of B. If B is smaller, the union proceeds
as before. If Ais snaller, the synbols for A and B in the headers of
the sets are interchanged, the references in ry and r, to t he headers

are interchanged, and the union proceeds as before. The time required for

such a weighted union is proportional to the size of the snmaller of A

and B. Table 4.2 contains a program for this heuristic.
[Tabl e k4.2]
In the quick union method, each record contains only one reference
item parent . The collection of records representing a set forns a rooted

tre with the parent of each record referring to its parent in the tree;

*/ A rooted tree T is a connected, acyclic, undirected graph with a
uni que distinguished vertex r , called the root of T. |f v and
w are vertices of T such that v is on the (unique) sinple path
fromr to w, then v is an ancestor of wand w is a descendant

of v . This relationship is denoted by v L w. The rel ationship

- ¥ . + *
v-owandv#wis denoted by v -w . |f v -w and (v,w) is
an edge of T, then v is the parent of wand wis a child of v .
This relationship is denoted by V.- w. Aleaf is a vertexwth no
children. The height of a vertexv is the™Tength (nunber of edges)
of the longest sinple path fromv to a descendant of v . The
sub-tree of T rooted at vertex v is the subgraph of T induced by
the descendantS of v , with v as root.

12

the parent of the root is ¢, The root contains the synbol of the set,
Figure 42 illustrates this data structure.
[Figure L.2]

Wth this representation, a union of A and B requires only one
machine step, to place a reference to the root of A in the parent of
the root of B. Afind is performed by starting fromthe input record
and follow ng parent references until reaching a record with a null
parent this record is the root of the tree representing the set and
contains the set synbol. The find requires time proportional to the
nunber of records on the path fromthe input record to the root. Table k4.3
contains programs for these versions of wunion and find .

[Tabl e L.3]

The weighted union heuristic can be added to quick union ; it uses

extra time on unions but may save tinme on later finds . A heuristic

for finds called path conpression is also useful. After a find , every

record on the path from the input record to the root has its parent
nodified to refer directly to the root, Path conpression increases the
running «.of a find by a constant factor but may save tinme on |ater
finds . Table 4.4 contains prograns for union and find with these
heuri stics.
[Tabl e 4.k4]

The quick find algorithms are apparently part of the folklore of
conpi ler construction; a description of these algorithns appears in [1]. The
quick union algorithm with the weighted union heuristic was first presented
in [5]. The path conpression heuristic is apparently due to MeIlroy and
Mrris [1]. Wrst-case analysis of these algorithns appears in [1,4,5,6,17];

Tabl e 4,5 summarizes the results. The theoretically best algorithmin the

13

worst case is quick union wth both heuristics; its running tine is

o(m a(m,n)) , where a(mn) is a functional inverse of Ackermann's
function defined as foll ows.

For i,j > 0 let the function A(i,j) be defined by

(k1) Ai,O =0;

NQj) =2 forj >1;

A(i, 1) = A(i-1,2) for i >1;

A(i, §) = ALi-1, A(i,j-1)) for i>1,j >2.
Let

(.2) a(t,n) = min{y | A(i,]) > log, o]

and

(L.3) a(mn) = min{i > 1| A(i, | 2m/n]) > log, n} ¥/

[Tabl e L.5]

Yao [21], Doyl e and Rives-t [3], and Knuth and Sch8nhage [10] have
carried out average-tine analyses of the algorithms for several reasonable
probability measures under the assunption that mand n are proportional,
Tabl e L.6 contains the results of Yao and Knuth and SchBnhage for one
measure (see [21]).

[Tabl e 4.6]
The quick union algorithmis sinpler and requires |ess storage than
the quick find algorithmand is thus nore useful in practice. Wether
either of the two heuristics should be used with this algorithm depends upon
the size of the problemand the cost of time versus the cost of space, The
average running tine of the quick union algorithm with path conpression
but without weighted union is unknown for the probability measure used by

Yao and Knuth and SchBnhage.

*
Y For any real nunber x, Lx] denotes the greatest integer not |arger
than x .

1L

When path conpression is used, the running time of the quick union

algorithmtends rapidly to Qm) as mn increases. For instance, if

l+e

wei ghted union is not used and mn > cn for some positive constants

c and €, the running time is Q(m, If weighted union is used and
mn > ca(k,n) for sone positive constants c and k, the running time is
o(m) ., Note that a(On) is 0(log log n) and a(l,n) is o(log*n), wher e

i tines
.

4 N
log* n = min{i|loglog. . . logn<1}.

The weighted union rule requires that records contain integer data
itens and that reference machines add and conpare. It is natural to ask
whet her the weighted union rule can be inplenented on a pure reference
machine in such a way that the total tine for all unions is 0(n) .

The answer is--yes.

Each non-negative integer is represented by a list which encodes the
binary digits of the integer, A zero is encoded by a null pointer; a one
is encoded by a non-null pointer. The digit list is singly linked from
the low order digit to the high order digit. Figure 43 illustrates this

representation.
[Figure 4.3]

Two integers are added by scanning the digit lists and adding digit-
by-di git, propagating carries in the usual fashion. The scan stops after
the end of the shorter list is reached and the last carry stops propagating.
Two integers are conpared by scanning both simultaneously and noting the
hi ghest order digit on which they differ. The scan need only extend to the
end of the shorter digit list; the integer with the longer digit |ist nust
be larger. | leave as an exercise the inplenmentation of these algorithns
as register machine prograns,

The n-1 union operations carried out by the quick union nethod

perform the following arithnmetic. Initially there are n integers, each

15

equal to one. During a union , two of the integers are conpared and
then added. After n-1 unions , a single integer equal to n renains.
Since conparing two integers requires no nore time than adding them

it will suffice to bound the tine required by all the additions.

Lemma L.1. Let a, b, c be integers such that ath = c and let (a;) ,

(b;) » (cy) , respectively, be their binary digit lists (a = % aiEi ,
1=

© . ©
b = Zj b7, €= e | a;b,c e{0,1}). Let 4 be the

carry fromthe i-th position when a and b are added. Then

k k

.Z (ai+bi) = dk+:"2 (ci+di) for all k. In particular,
i=0 i=0

z (ai+bi) = 2 (Ci+di) .

1l= 1l=

Pr oof . For i >0, a;+b,+d, ; =c;+ 2d., (assuning d_; =0).
Thus a, +b, = °i+di+(di'di 1) . Summingfrom i=01t0 i-=%k

gives the lemma. d

16

The tinme needed to add two binary integers by reference machine
is proportional to the Iength of the shorter integer plus the
nunber of carries. By Lemm 4.1, the total nunber of ones in the
binary representations of both integers is equal to the nunber of ones in
the binary representation of the suﬁiplus the nunber of carries.
Consider the arithnetic perfornmed during the union operations,
Initially, the total number of ones in the binary representations of al
the set sizes is n . Each carry performed during an addition causes the
total number of ones to decrease by one. Thus the total nunber of carries
cannot exceed n-1, and the time required for all carries is o0(n) .

It remains to bound the total Iength of the shorter of each pair of
i ntegers addea'during union operations. Let f(n) be a worst-case bound

on this total Iength as a function of n. Then f(1) =0, and

fn) = mqulo%sz+1+f(k)+f(n-M |1 <k <n/2] for n>1,
since the length of the binary representation of k is Llog, kj+1
Lemma L,2. f(n) <3n-2 loge(n+1)-1 .

Proof . By induction on n .
f(1) = 0 < 3-210g,2-1.

f2) = 1 < 6-2 log, 3-1 .

Let n > 3 and suppose the lemma is true for all values |ess than n
Let k be such that 1 <k <n/2 and

f(n) = log, k| +1+ f(k)+f(n-k)

By the induction hypothesis

17

f(n) < log, kK + 1+3k-2 loge(kﬂ_) -1+3(n-k) -2 logg(n—k+l) -1
< 3n -l-loge(k+l) -2 loge(n-k+l)
The function -1og2(k+1) -2 1og2(n-k+l) for 1 <k <n/2 is maxinmm

when k¥ =1 . Thus

f(n) < 3n-1-log, 2-2 log, n

< 3n-2 -2 log2 n

Also, n >3 implies \/En > n+l , which nmeans

-2 loge(n+l) > -2 logex/gn = -2 log, n-1 ,
and

f(n) < 3n=2 log,y(ntl)-1 . U

It follows that the total time to performall arithmetic associated

with the union operations is 0(n) , and the follow ng theorem hol ds.

Theorem 4,1. There exists a pure reference machine which solves any disjoint

set union problemin Q(m a(mn)) tinmne.

18

5. A Non-Linear Lower Bound.

This section shows that for all mand n there is a set union
probl em which requires at |east cma(mn) steps to solve by reference
machine, where ¢ is a positive constant independent of m and n.
Rather than consider reference machlnes, I consider sequences of reference
machine steps. Gven a set union problem a sequence of reference machine
steps is said to solve it if there is some reference machine, some set of
union programs, one for each union, and some set of find prograns, one
for each find, such that when the sequence of prograns corresponding to
the sequence of union and find operations is executed according to the
conventions of Section 3, the given sequence of reference machine steps
results and the find prograns produce correct answers. Note that any
sequence of reference machine steps can be carried out by a non-branching
reference machine program The first step in the |lower bound proof is to
convert into a sinple normal form any sequence of reference machine steps

whi ch solves a set union problem

Theorem 5. 1. Let s, be any sequence of reference machine steps which

1
solves a set union problem Then there is a sequence of reference nachine

steps s, whi ch al so solves the set union problem and has the follow ng

properties:
G0 |32| < 2(m+n+ ISl|).
" (5.2) 8 mani pul ates no data except set and el ement symbols
(5.3) S, represents each input set by a single record and contains no
create instruction.
(5.4) 8, fetches a symbol from memory only as the last instruction of
a find.

19

Proof . Let 8 be a sequence of reference machine steps which solves sone

set union problem Delete from Sy all steps which manipulate data ot her

than set and el ement synbols. The sequence S, now satisfies (5.2) and
still solves the set union problem

The sequence s, to be constructed mani pul ates records corresponding
to the sets, the elements, and the records manipul ated by S, - Initially

the menory of s, consists of one record for each input set A = {a)

2
This record is the representative of the set A of the elenent a , and

of each record in the initial collection of records by which 8
represents A . Each record created by S, also has a representative in

the nenory of defined as follows. The representative of a record

X
created during execution of find(a) is the representative of a . The

representative of a record created during execution of union(4,B) is the
representative of A . For any object x (set, element, or record), |et

x* denote the representative of x .

S, simulates S, step-by-step. If s, and S, are executed in

2 1 1
parallel, the menory and registers of S, correspond to the menory and
registers of S in the followang way.
(5.5) | f Ry and R, are records in the menory of 81 such that R,
contains a reference to R, t hen RI contains a reference to
* 1 * _ *
R, (unless Ry = R,).
(5.6) If Ris a record containing a set or elenent synmbol x , then

* . * * .
R contains a record to x and x contains a reference to

R* (unless & x*).
(5.7) If sone register of 51 contains a reference to a record R,

then sonme register of s, cont ains a reference to R*

20

(5.8) If sone regiser of 8 contains a set or element symbol X ,

. *
t hen sone regi ster of S2 contains a reference to x .

(5.9) During execution of find(a) , S, maintains a reference to a*

inaregister. During execution of _union(A B) , S, maintains

2
a reference to A* in a register.

Initially the nmenory of 8, consists of all the representatives, each

cantaining the synbol of the corresponding set, the symbol of the
corresponding el enent, and no pointers. Properties (5.5) - (5.9) hold
initially.

Let find(a) be a typical find. Sy begins find(a) with a reference

in r, toarecord R containing the symbol for a . I'f (5.6) holds before
the find, either R = a* or a* contains a reference to R* . 5, begins
the find with a reference to a* in r, . 8,'sfirst stepis to fetch a

reference to R* into a register. This preserves (5.5)- (5.9).

Let wnion(A,B) be a typical union. Sy begi ns aumion(A,B) with
references in r , 5 *
A, B, respectively. |If (5.6) holds before the find, either Rt = &

r. to records Ry . R, containing the synbols for

. * .. . * *
or A* contains a reference to R, ; simlarly either R, =B O B*
contains a reference to RZ . S, begins the union with references
to A* , B* in x| r, respectively. Sy 's first two steps are to
*

fetch references to Ry and R; into registers. This preserves

) (5-5) = (5-9)'

S, Simulates each step of 8, in the follow ng way.

1
fetches a reference to a record R, froma record g ,

2

Each tine sl

s, fetches a reference to R; fromR, (possible by (5.5)). Each tine

s, stores a reference to a record R, in arecord R, , S, stores a
2

reference to R; in RI (possible by (5.7)). Each

21

time Sy fetches a set or elenent synbol x froma record R,

s, fetches a reference to x from R (possible by (5.6)). Each

tine S stores a set or element synbol x into a record R, 5,

. * . * .
stores a reference to x* in R° and a reference to R* in x (possible

by (5.7) and (5.8)). Each tinme s, creates a record, 5, does not hi ng.

1

At the end of each find, S, fetches the appropriate set symbol. Each
of these steps preserves (5.5)- (5.9). The sequence S, construct ed

inthis way carries out the finds and satisfies (5.1)- (5.4). O

One can represent the menory nanipulated by a reference machine as
an undirected graph, with one vertex R® for each record R and one edge
1 contains a reference to a record R2,
t hen (R’l‘,Rg) I's an edge in the graph. This representation notivates the

for each reference. If a record R

fol lowing definition, which reformulates the set union problem as a graph

construction problem

A link solution to a set union problem consists of a set of vertices

vV, one for each initial set and element, and a sequence of instructions
of the form link(v,w) where v,weV . The sequence of link instructions
constructs a graph edge-by-edge, starting fromthe graph with vertex set
V and no edges; link(x,y) constructs edge (x,y) . For any initial set
or element x , let x denote the corresponding vertex. The sequence of

link instructions nust satisfy the follow ng properties.

(5.10) The sequence of links can be partitioned into contiguous subsequences,

each subsequence corresponding to a union or find operation.

(5.11) Let find(a) with answer A be a typical find. Each link(x,y)

in the subsequence for find(a) is such that x = A* and the

di stance between x and y in the graph existing before the

22

link is two. The instruction link(A*,a*) occurs either in the

subsequence for find(a) or earlier in the sequence.

(5.12) Let union(A,B) be a typical union. Each link(x,y) in the
subsequence for union(A,B) is such that x = A+ and either
y = B+ or the distance between x and y in the graph

existing before the link is two.

Theorem 5.2. Any set union problem solvable in k reference machine steps

has a link solution of length not exceeding 5m+ln+Lk .

Pr oof . Let Sl

a set union problem Let S

be a sequence of k reference nachine steps which sol ves

», be a sequence of reference machine steps

satisfying Theorem5.1, Then |[S,| < 2(mmntk) . Froms, we construct

a link solution 83 satisfying the theorem The vertex set for S3

consi sts of one vertex R* for each record R manipulated by s, , If

S, and 53 are executed in parallel, the followi ng properties hold.

2

(5.13) If arecord R, contains a reference to a record R, , then

. * .
the di stance between RI and 32 is at nost two.

(5.14) Let find(a) with answer A be a typical find. If during this

find some register of s, contains a reference to R, then

2
either A* =R or (A*,R*) is a previously constructed edge.

(5.15) Let union(4,B) be a typical union. If during this union

some register of s, contains a reference to R, then either

2
* * * * . .
A =R or (A,R) is a previously constructed edge.

sinmul ates S, instruction-by-instruction, Certainly (5.13) - (5.15)
5 2

hol d initially, Let wnion(A,B) be a typical union. To begin the union,

25

85 links A* and B .This Preserves (5.13)- (5.15). Let find(a)

with answer A be a typical find. Suppose S fetches ¢ items from
menory while carrying out the find, [f (5.13) holds before the find, there
nust be a path of length 27 or less between A* and a* in the graph

existing before the find, To begin the find s3 links each vertex

on this path to A* . This preserves (5.13) - (5.15).

corresponding either to a find(a)

2 _

Consi der a subsequence of §
with answer A or a union(A,B) . Suppose S, fetches a reference

(say to Re) froma record (say R). If (5.13) -(5.15) hold before

the fetch, then there is a path between A* and R; of length at nost

three. S5 l'inks each vertex on this path to A* , This preserves

(5.13) - (5.15). Al ‘other instructions in S, do not affect (5 13) -(315);

in order to store a reference (say R, yin arecord (say Ry)s 5, nmust

first have references to Rl

this means that the distance between R, and R; in the graph existing

and R2 in registers, By (5.14) and (5.15)

before the store is at nost two.

The total length of the sequence S3 constructed in this way is
at nost 5m+ln+ U4k , and the sequence clearly solves the set union

problem 0O

In the follow ng discussion | shall not distinguish between an
initial set, its single element, and the vertex representing the set and

the element, Corresponding to the sequence of unions in any set union

problemis a rooted tree, called the union tree, whose vertices are the

initial sets and whose edges are the pairs (A B) such that union(a,B)

24

occurs in the sequence. The root of the tree is the set remmining after
all unions are carried out. Wth this definition, every Link(v,w) in
a link solution to a set union problem has the property that viewin
the union tree. In the worst-case set union problens to be constructed
bel ow, the union tree is a conplete binary tree.

The | ower bound proof makes use of a rapidly growi ng function B(i,j)

defined for i,5 > 1 as follows.

(5. 16) B(L,j) = 1 for j > 1;
B(i,1) = B(i-1,2)+1 for i >2;
B(i,]) = B(i,3-1)+ B(i-1,25(0 31, for i,j >2.

Lemma 5.1. B(i, j)+1 < A(4,2)) for 1,5 >1.

Pr oof . It is easy to show by induction that A(i,j) < min{A(i+1,3]),A(3, j+1)}

fori >0, >1 . Aso,

(5.17) A, §) = AC-1LA(j-1)) = A(i-2,A(i-1, A(4, §-1)))
eA(i: j'l)

for i,j > 2 .
The | emma foll ows by doubl e induction on i and j

(5.18) B(L,j)+1 = 2 < 2j = A(0,J) < A(L,23) for | >1 ;

(5.19) B(i,1)+1

B(i-1,2)+2 < A(i-1,4)+2 < A(i-1,6)

N

A(i-1,A(2,1)) < A(i-1,A(i,1)) = A(L,2) for i >2,

if B(i-L,2)+1 < A(i-2,4) ;

25

(5.20)

B(i,j)H = B(i,3-1)+ B(i-1,28(1)y

n

< A(3,2§-2) + A(i-1,2.0A(1520-2),

A(i,25-2)

< A(i-1,2.2 + A(1,2j-2))

< A(i-1, 2A(l, 23—2)+2)

AN

A(i-1,A(1,25-1)) by (5.17)
= A(i,23) for i, >2, if B(i,j-1)+1 < A(i,2j-2)

and B(1-1,28(113"1))41 < p(3-1,2.0B(8 3-1)y

d

Theorem 5,3, For any k,s > 1, let T be a conplete binary tree of

height h > B(k,s) .~ Let {v; |1 <i <=2

B(k,)1 be a set of pairwise

unrelated vertices in T, each of height strictly |ess than h-B(k,s) ,

such that exactly s vertices in {v;} occur in each subtree of T

rooted at a vertex of height h-B(k,s) . Then for n =

m

(5.21)
(5.22)
(5.23)

(5.24)

Pr oof .

2h+l-1 and

=seB(k’S) there is a set union problem for which

the union tree is T ;

the set of finds is {find(v;) |1 <i <m} ;

the answer to each find is a vertex of height strictly greater

t han h-B(k,s) ; and

any link solution has length at least km, even if every edge
(v, w) such that v > w and h(v) < h-B(k,s) in T is allowed
for free, and after each link(v,w) every edge (x,y) such

* o+ ,
t hat v—»x—.yiw is added for free.

The proof is by double induction on k and s and is simlar to

the |l ower bound proof in [17]. Suppose k = 1 . Consider any set union

26

-8

probl em consisting of n-l1 unions which formT followed by a find on
each vertex in {v;}. The answer to each find is the root of T ;

(5.23) hol ds since h > B(k,s) . None of the originally free edges solves
a find. Since the vertices in {vi} are pairwise unrel ated, any link(x,y)
can solve only one find, even including the appropriate free edges.

Thus (5.24) holds.

Suppose the theorem holds for k-1 , s =2 . The follow ng argunent
proves the theorem for k with s = 1 . Suppose the hypotheses of the
theorem hold. Let f{u, |1 <i<m} be the set of vertices of height
h-B(k,1) in T , nunmbered so that ui+—» v, . The vertices in {u}
are pairwise unrelated and exactly two occur in each subtree of T rooted
at a vertex of height h-B(k,1)+1 = h-B(k-1,2) . By the induction
hypothesis there is a set union problem satisfying the theorem for
kt = k-1 , s =2, T, {ui} . Let the sequence of finds and unions in
this set union problem be ?; . Form P, from 12 by repl aci ng each
find(w,) by find(v;) . | claimthe resulting sequence satisfies the
theoremfor k , s =1, T, {v,}.

Certainly (5.21) - (5.23) hold. Consider any sequence s, of links
which carries out p,, allowng for free the edges described in (5.24).
Forma sequence s, from S, by replacing each link(x,y) such that

vy ﬁy for some (uniquely determned) i by link(x,ui) . Delete from

, 21l links which do not create new edges. | claims, carries out
P, (allowing appropriate edges for free) and that Is;| < |s,|-m .

The following property is true initially and is preserved if Sy and

S, are execut ed in parallel (on separate graphs).

27

(5.25) For 1 <i <m, w is adjacent in the graph nmanipulated by
S; to all vertices adjacent to at |east one descendant of v.

in the graph manipul ated by Sy -

It follows that S, carries out P

1 1-
For any v, , consider the first link(x,y) in S, such t hat
xiui ivifiy . There nust be such a link since none of the initially

free edges solves gi_g_g(vi) by (5.27). There nust be a path of length two,
say (x,z)(z,y), between x and y in the S, graph existing before the link,
Furthernmore z nust satisfy ui—»*z jvi . It follows that (x,ui) is
an edge of the existing Sy graph. Thus Sy need not contain an
instruction ;}ng(x, corresponding to link(x,y) . This is true for
any value of i . Hence |[s;| < |sy|-m |

Since (k-1)m <{s;| by the induction hypothesis, |52| < km,
and (5.24) hol ds.

Suppose the theorem holds for k , s-I and also for k-1 , B(k,s-1) .
The followi ng argument proves the theoremfor k , s . Suppose the

B(k,)1 be a subset

hypotheses of the theorem hold. Let {w, |1<i <2
of {v;} such that exactly one vertex w., occurs in each subtree of T
rooted at a vertex of height h-B(k,s) . Let {ui | 1 <i<23(k’s)} be

the set of vertices of height h-B(k,s), numbered so that ug A LA

Consi der the sub-trees T,, 1<3< 2B (ks 8)-B(l, 5-1) , rooted at
vertices of height h-B(k,s)+B(k,s-1) = h-B(k-l,eB(k’ s'l)) in T. Each
sub-tree T.J cont ai ns (s-l)eB(k’ s-1) vertices in {vi}-{wi} , exactly
s-1 in each subtree rooted at a vertex of height h-B(k,s) . By the

i nduction hypothesis there is a set union problem satisfying the theorem

for x' = k, s'=s-1, T.J, (v |vis avertex in T and ve {v,}-{w;}} .
Let P.J be the sequence of unions and finds in this set union problem

28

The vertices in the set {u.} are pairwise unrelated and exactly
B(k, s-1 .
2P0 51 occur in each subtree T, of T. By the induction hypothesis
there is a set union problem satisfying the theorem for k'= k-1,

s - 2B(l«:, s-1) |

T, {1.13. Let Q be the sequence of unions and finds
in this set union problem The sequence Q can be pernuted, without

i ncreasing the nunmber of links required to carry out @, so that all
unions formng the subtrees TJ. occur before all other operations.

Let Q' be formed fromthe permuted version of Q by deleting all
uni ons formng the subtrees g ylet Q" be formed fram Q' by replacing
each find(u,) by f_i_rg(wi) , and let P" = P,P, ""PéB(k,s)—B(k, S_l),Q" .
| claimP" defines a set union probl em which satisfies the theorem for

k, s, T, {v}.

Certainly (5.21) - (5.23) hold. Consider any sequence S" of I|inks
which carries out P', allowing for free the edges described in (5.24).
Form a new sequence S from s" by replacing each link(x,y) t h a't
W 5 y for sonme (uniquely determned) i by __J_.ir_l_k(x,ui) . Delete from
S all links which do not create new edges. The follow ng property is

true initially and is preserved if S and g" are executed in parallel

(on separate graphs).

B(k, s) ,

(5.26) For 1 <i <2 u; is adjacent in the graph manipul ated

by Sto all vertices adjacent to at |east one descendant of W,

in the graph nanipul ated by " .

It follows by an argunent like that in the previous case that S

carries out p' =P
1’P2""’P2]3(k,s)_3(k,S_l),Q' and t hat

B(k, s) .
S| < [8g"]-2”V =/ S can be witten as S = 8,58, ¢00.,5
Is| < |s"] Y%7 "7 B(k, s)-B(k,s-1)? U

29

<_2]3(1;,s)—B(k, s=1) | allowing

where S. carries out Pi for 1 < i
for free the edges described in (5.24), and U carries out q',

allowing for free the edges (v,w) such that v & w and

B(k, s—l))

h(v) < h-B(k-1,2 and after each link(v,w) allowi ng for free

* . .
the edges (x,y) such that v - x : y :v_v. This means that U carries

out @ , allowing the appropriate edges for free, By (5.24),

)2B(k, s-1) B(k, 5)-B(k, s-1) and

|s; | > k(s-1 for 1<i<oe
U] > (-1)22%) 1t follows that
Lo | > 8] + 2200 9 > k(s-1)aBM B) 4 (ke1)BU 8) 4 Bl 8) | yepB 8) | gy

Thus (5.24) holds, By double induction, the theoremis true in general. OO

Corol lary 5.1. Let k,s > 1 . Let T be a conplete binary tree of

hei ght B(k,s) . Then there is a set union problem whose union tree

B(k, s)

is T, which contains m= s2 finds, and which requires at |east

(k-1)m links for its solution,

Proof . Choose ¢ > 1 such that ofss . Let T bea conpl ete binary

tree formed by replacing each leaf of T by a conplete binary tree of
height ¢ . Let {vi|l_<_i <m} be any set of vertices satisfying the
hypotheses of Theorem5.3 for k , s, 7 . For 1<i <m, let uy
be the vertex of height £in T suchthat u, ivi . Let P' be
a sequence of unions and finds defining a set union problem satisfying
the conclusions of Theorem5.5 for k , s, T, {v.} . Wthout |oss of
generality we can assune that the unions which formthe sub-trees of 1
rooted at height ¢ occur at the front of p'.

Form P from P' by deleting the unions which formthe sub-trees
of " rooted at height ¢ and replacing each ;‘_ig_@(vi) by Qn_d(ui)

Ve claimP defines a set union problem satisfying the conclusions of the

30

corollary. Certainly P contains m finds and the union tree of P
is T . Suppose Sis a sequence of |inks which carries out P .
Form s* from S by follow ng each _l_i_ng(x,ui) whi ch solves a
ﬁ_r_l_g(ui) by l_i_ng(x,vi) . Then s* carries out P' if all edges
(vyw) with h(v) < ¢ are allowed for free, Thus § | >km, and

|s"| > (k-1)m . O

Theorem 5.2, Lemma 5.1, and Corollary 5.1 conbine to establish

the main result of this paper.

Theorem 5. 4. There is a positive constant ¢ such that, for all
m>n>1, there is a set union problem consisting of m finds and
n-1 intermixed unions whose sol ution by reference machine requires at

| east cma(m,n) steps.

Proof . Let s = |m/nj . Choose k as large as possible such that

EB(k’ S)ﬂ'-l <n . Partition the n elenents into as many sets as

B(k, s)+1

-1, plus leftover elements. At nost n/2

2B(k, s)+1 1

possible of size 2
elements are left over. On each set of el enents, define

a set union problemsatisfying Corollary 5.1. Concatenate these probl ens,
add enough additional unions to conbine all el enents, including the
leftovers, into a single set, and add enough additional finds to bring
_the total to m.

The resulting set union problem contains mfinds, n-1 interm xed

B(k, s) n/eB(k’ s)te _ (k-1)sn/4 >

unions, and requires at least (k-1)s2
(k-1)m/8 links for its solution. By Theorem 5.2, this set union problem
requires at least (k-1)m/32 - 5m/4 - n > (k-73)m/32 ref erence nmachine

steps for its solution.

31

If a(mmn)>2, Kk >amn)-1in this construction since
B(a(myn)-1,s)+1 < A(x(myn)-1,2s) by Lemm 5.1
< log, N by the definition of a .

Thus the selected set union probl em requires at |east
(a(myn)-74)m/32 > a(m,n)m/6k reference machine steps, if

a(mn) > 148 . But if a(mn) < 148, any set union problemrequires

at least m > mx(myn)/148 reference machine steps. Choosi ng

Cc = 1/148 gives the theorem 0O

32

Concl usi ons.

This paper has described a machine nodel, called a reference machine,

suitable for analyzing |ist processing problems. The nodel is sinilar to
several previously -proposed [8,11,12,16]. Reference machines are quite
power ful ; Schbnhage [16] has shown t hat they can simulate Turing machines
with nultidinensional tapes in real ting, and one can show that they can
simul ate random access machines with logarithmc cost in real tinme.

The paper has analyzed the ability of reference machines to conpute
disjoint set unions. Under certain natural restrictions, all reference
machines require non-linear time to solve this problem This |ower bound
characterizes the efficiency with which one can represent dynamc infornation
of a certain kind in a list structure. The bound does not require that
the machine be determnistic, or that the program of the machine be fixed
while the problem size grows, or that the conplexity of menory (number of
fields per record) be fixed while the problem size grows.

This generality is achieved by making the assunption that the
description of each set is stored separately and that noving the
description of a set requires constant time per element. Wthout these
assunptions the |ower bound is not valid. | conjecture, however, that
the lower bound holds if the separate storage assunption is replaced by
an assunption about the conplexity of menory; nanely, that every record
contains only a fixed nunber of fields independent of the problemsize.

The paper has presented a nunber of known set union algorithnms and has
shown that they all fit into the reference machine model. (ne of the algorithm
achieves the lower bound to within a constant factor. This algorithm

requires that arithnetic be performed, put the arithmetic can be simulated

35

using list processing with only a constant factor |0SS in ruming time
| believe that any algorithm even one which uses address arithnetic,
requires non-linear time to solve the set union problem Proving such
a statenent seens to require a better understanding of random access
machi nes.

The set union problemcan be generalized to a problemrequiring
eval uation of functions defined on paths in trees. The techniques used
here and in [17] lead to a non-linear lowerbound for sone speci al
cases of this generalized problem[20]. Certain cases of the problem can
be solved in almost-linear time by using conplicated extensions of the best
set union algorithmpresented here [18]. Wether the nost general version
of the function evaluation problem can be solved in alnost-linear tine

i S unknown.

Acknowl edgnent .

| would like to thank Professor Wl fgang Paul for his thoughtful
criticism and valuable insights which contributed substantially to the

| ower bound proof.

Ean

Ref er ences

(1] A V. aho, J. E Hopcroft, and J. D. Ullman, The Design and Anal ysis
of Conmputer Al gorithms, Addison-Wesley, Reading, Mass. (1974).

(21 A Borodin and |. Muro, The Conputational Conplexity of Al gebraic
and Numeric Problens, Elsevier, New York (1975).

(31 J. Doyle and R L. Rivest, "Linear expected time of a sinple union-find
algorithm" Info. Proc. Letters 5(1976),1Lk6-148,

[4] M J. Fischer, "Efficiency of equivalence algorithms," Conplexity of
Conputer Conputations, R E. Mller and J. W Thatcher, eds., Plenum
Press, New York (1972),153-168.

(5] B. A Galler and M J. Fischer, "An inproved equivalence algorithm"
Comm. ACM 7(196k4),301-30%,

[6] J. E Hopcroft and J. D. Ullman, "Set nerging algorithms," SIAM J.
Computing=2 (1973), 294-303.

(7] M. Jazayeri, W F. Ogden, and W C. Rounds, "The intrinsically
exponential conplexity of the circularity problem for attribute
gramars,” Comm. ACM 18(1975),697-706.

(8] D E Knuth, The Art of Conputer Programming, Vol. 1: Fundanental
Al gorithns, Addison-Wsley, Reading, Mass. (1968).

(91 D E. knuth, The Art of Conputer Programming, Vol. 3: Sorting and
Sear chi ng, Addi son-Wesl ey, Reading, Mass.(1975).

[10] D. E. Knuth and A gSchBnhage, "The expected linesrity of a sinple
equi val ence algorithm" Technical Report STAN-CS-77-599, Conputer
Sci ence Department, Stanford University (1977).

[11] A N Kol mpgorov, "On the notion of algorithm" Uspehi Mat. Nauk. &

(1953), 175-176.

{12] A N, Kol mogorov and V. A5 Uspenskii, "On the definition of an
al gorithm" Uspehi Mat. Nauk. 13(1958),3-28; English translation
in Arer. Math. Soc, Transl, || Vol,29(1963), 217-2L5.

[13] A R Meyer and L. J. Stockmeyer, "The equival ence problem for
regul ar expressions with squaring requires exponential space,”
Proc. 13th Annual Symp. on Sw tching and Automata Theory, 1972,
125-129.

35

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

M J. Rabin and M g, Fischer, "Super-exponential conplexity of
Presburger arithnetic," Project MAC Technical Menorandum L3,

MT (1974).

R. Rives-t and J. Wuillemn, "A generalization and proof of the
Ander aa- Rosenberg conjecture,” Proc. Seventh Annual ACM Symp. on
Theory of Conputing (1975),6-11.

A. Sch¥nhage, "Real-tine sinulation of multidimensional Turing
machi nes by storage nodification nachines," Project MAC Technical
Mermor andum 37, M T (1973).

R E. Tarjan, "Efficiency of a good but not linear disjoint set
union algorithm" Jour. ACM 22 (1975), 215-225,

R. E. Tarjan, "Applications of path conpression on bal anced trees,"
Techni cal Report STAN-CS-75-512, Conputer Science Dept., Stanford
Uni versity (1975).

R E. Tarjan, "Solving path problems on directed graphs,” Technical
Report STAN CS-75-528, Conputer Science Dept., Stanford University
(1975).

R E. Tarjan, "Conplexity of nonotone networks for conmputing conjunctions,"”
Techni cal Report STan-Cs-76-553, Conmputer Science Dept., Stanford
University (1976).

A. C Yao, "On the average behavior of set merging algorithns," Proc,
Eighth Annual ACM symp. on Theory of Conputing (1976),192-195.

36

procedure quick find

Sg + _s_eE(Earent(rl))3

procedure s| ow uni on;
snile ry # f do
save - mext(r,);
parent(r,) « rj;
next(r,) « next(r,);
next(ry) « ry;
' o = save

end; --
L e o

Table 4.1, Programs for find and wmion using the quick find

data structure.

37

procedure slow wei ghted union;

[a¥ar ararar ooV ot atd

begi n

PN

if size(rl) < size(rg) then
begi n
set(rl) - set(rg);
ry eTL;
end.;
size(rl) - size(rl)+~size(r2);

sl ow uni on

end:.

~—~

Table 4.2. Program for weighted union heuristic with quick find data

structure.

38

procedure qui ck union;

parent (Jc'2) - s

procedure slow find;

begin

rOOt - I‘l..

whi | e parent(root) # p do root « parent(root);
s, « set(root)

end;
[V]

Table 4.3, Programs for union and find using the quick union

data structure.

39

prqcedure qui ck wei ghted union
’Li size(rl) < size(re) t hen
begin
set(r,) « set(r;);
parent(ry) « o
size(r,) - size(rl)+-size(r2);
ond

el se begin
L e o e i o o e Gl

Earent(re) - 13

size(rl) - size(rl)+~size(r2)

end:

procedure find with path conpression

OIS

begi n

sl ow find
current « ry;

while parent(current) # ¢ do

begin

e o o o

save « parent(current);

parent (current) « root;

current « save

end fﬁEﬁ

e ad

Table 4.4. Programs for weighted union and path compression heuristics

W th quick union data structure.

40

Quick find

with weighted union

Qui ck uni on
with weighted union
with path conpression

with both heuristics

Table 4,5, Wrst-case running tines of set

0 (memax (1, log (n°/m) /Log (2m/n)))

L1

0(m)

Qmlog n)

O(m a(m,mn))

(%]
(L]
[17]
(17]

uni on al gorithms.

Quick find

with weighted union

Qui ck union

with weighted union
with path conpression

with both heuristics

0(n)

0(n)

[21]

[10]

[21]

[10]

[10]

Table 4,6, Average running times of set union algorithns

if m and n

¥a)

are proportional.

Figure 4.1, Data structure for quick find algorithm

Sets are A = {a;b,c,d,e}, B = {f,g,h,i} .

3

c / d \
Blf|¢
il
Figure 4.2. Data structure for quick union algorithm

Sets are A = {a,b,c,d,e} , B = {f,g,h,i} .

L

Figure L.3.

Representation of 26 = 10110, as a l'ist.

45

CE

