
REFERENCE MACHINES RCQU IRE NON-LINEAR TIME TO
MAINTAIN DISJOINT SETS

Robert E. Tarjan

STAN-B-77-603
MARCH 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

Reference Machines Require Non-Linear Time

to Maintain Disjoint Sets

Robert Andre Tarjan

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

This paper describes a machine model intended to be useful. in

deriving realistic complexity bounds for tasks requiring list processing.

As an example of the use of the model, the paper shows that any such machine
-=.

requires non-linear time in the worst case to compute unions of disjoint

sets on-line. All set union algorithms known to me are instances

of the model and are thus subject to the derived bound. One of the known

algorithms achieves the bound to within a constant factor.

Keywords and Phrases: Ackermann's function, analysis of algorithms,

concrete computational complexity, data structures,

disjoint set union, equivalence relation, linking

automaton, list processing, machine model, pointer,

record, reference, storage manipulation machine.

'This research was supported in part by National Science Foundation grant
MCS7'5-22870 and by the Office of Naval Research contract NOOO~~-76-c-0668.
Reproduction in whole or in part is permitted for any purpose of the
United States Government.

Some of this work was done while the author was visiting the Faculty of
Mathematics at the University of Bielefeld, Bielefeld, West Germany.

1

Introduction.

Computer scientists have attempted for many years to derive lower

bounds on the complexity of computational problems. This effort has met

with some success, providing, for example, exponential lower bounds on the

complexity of equivalence for regular expressions [13], validity in

Presburger arithmetic [lb], and circularity in attribute grarmnars [7].

In addition to these bounds for hard problems, several results for simpler

problems exist, including bounds on the number of comparisons required for

ordering problems [g], on the nwnber of data accesses required for testing

properties of graphs [15], and on the number of arithmetic operations

required for evaluating various polynomials [2].

In spite of thi;; progress, one domain, that of list processing problems,

is almost entirely devoid of lower bound results. The subject of data

structures is now part of the standard computer science curriculum, and

every computer science library contains many books on the subject. Yet,

with the exception of a few results on the relative power of various data

structures, nothing is known about the inherent power of pointer manipulation.

One reason for this state of affairs is the lack of a thoroughly

understood machine model which is both realistic and theoretically accessible.

One candidate, the random access machine [l], which has been used by

several authors to provide realistic measures of the complexity of various

algorithms, seems too powerful to analyze easily. It also has certain

defects, such as allowing unbounded parallelism if a Q.niform cost" measure

[l] is used.

However, another possible model exists. In 1953 Kolmogorov [l&12]

proposed a machine which operates by manipulating pointers connecting nodes.

Fifteen years later Knuth [8] proposed a similar machine, which he called

a linking automaton. Later and independently Schtfnhage [16] defined such

a machine, which he called a storage manipulation machine, and showed that

such machines can simulate Turing machines with multidimensional tapes in

real time. Although these machines provide a useful tool for describing

pointer manipulation algorithms, no bounds on their computations3 power

except Schbnhage's seem to exist.

This paper describes an extension of Knuth's machine, called a

reference machine. The paper examines the ability of such a machine to

solve a problem requiring manipulation of disjoint sets, and proves that

any reference machine which solves the disjoint set problem requires

non-linear time (in the worst case) to do so, under certain natural

restrictions. The lower bound is tight to within a constant factor.

This result shows that it is possible (in at least one case) to derive

a non-linear lower bound on the complexity of a list-processing problem

using a realistic computer model. The result also provides a partial

solution to Kicluth's exercise 2.6.1 [8] which asks us to "Explore the

properties of linking automata...".

3

2. Reference Machines.

A reference machine consists of

registers.

registers.

Each record

The registers are of two

The memory consists of a

a memory and a finite number of

types: data registers and reference

finite but expandable pool of records.

consists of a finite number of items, each of which is either

or a reference item. Each item has an identifying name. All

identical in structure; that is, they contain the same items.

a data item

records are

A reference machine manipulates data and references. A reference

either specifies a particular record or is null W) l Each reference

register and reference item can store one reference. Data can be of any

kind whatsoever (integers, logical values, strings, real numbers, vectors,

etc.). Each data r%gister and data item can store one datum.

A program for a register machine consists of a sequence of instructions,

numbered consecutively from one. Each instruction is of one of the following

eight types. (Each r below denotes a reference register, each s denotes

a data register, each t denotes a register of any type, and each n

denotes an item name.)

r+ $ Place a null reference in register r .

5 + t2 (t1 and ta 2 must be of the same type).

Place the contents of register t2 in register tl , erasing

what was there previously.

t +-n(r) (n and t must be of the same type).

Let N be the n item of the record specified by the contents

of r. Place the contents of N in register t , erasing what

was there previously. Of r contains $, this instruction

does nothing.)

n(r) +t

s1 +- s2 Q s3

create r

halt

(n and t must be of the same type)

Let N be the n item of the record specified by the contents

of r . Place the contents of t in item N , erasing what

was there previously. (If r contains I;d, this instruction

does nothing.)

Combine the data in registers s2 and s
3

by applying the

operation 8 . Store the result in s1 , erasing what was

there previously.

Create a new record (not specified by any existing reference)

and place a reference to it in r .

Cease execution.

if condition then go to i- --CCN

If the condition is true, then transfer control to instruction i.

If the condition is false, do nothing.

true

Each condition in an if
hh, instruction is of one of the following types.

Always true.

tl = t2 (t1 and t2 must be of the same type)
m

True if the contents of tl and t2 are the same.

P(Sl'Q True if the contents of s1 and s2 satisfy the predicate p ,

where p is any predicate on data.

5

3

A reference machine executes a program instruction-by-instruction

in consecutive order, beginning with instruction one. Execution of an

if instruction mav cause control to be transferred to a non-consecutive
-

instruction, in which case consecutive

instruction. When the machine reaches

ceases. The last instruction of every

A reference machine step consists

execution resumes from this new

a ha& instruction, execution

program is a halt .

of the execution of a single

instruction. The running time of a reference machine program is the

number of steps the machine requires to execute the program, as a

function of the initial state of the registers and memory. The storage

space required by a reference machine program is the number of records

initially in memory plus the number created during execution.
--_

When a new record is created all its items initially contain a

special value called undefined (A) l The initial value of any register

m'ay also be n . If a reference machine attempts to use the contents of

a register or item containing A , it halts. However, the machine is

allowed to store another value into a register or item containing A .

I shall be uninterested in constant factors in running time and

storage space. With this assumption, the register-to-register assignment

is a redundant instruction type since it can be simulated by a create ,-

a register-to-memory assignment, and a memory-to-register assignment.

Similarly uses of the null reference value can be deleted without affecting

running time by more than a constant factor, Extending the machine model

by allowing several types of records has the effect only of saving a constant

factor in storage space.

To completely specify a register machine, one must describe the data

and the types of operations allowed on the data. Knuth's linking automaton

is a register machine whose data consists of symbols selected from some set.

No operations on data are allowed

we shall use the term symbol in

which no operations are permitted

except testing for equality. Henceforth

a technical sense to refer to data on

except testing for equality.

A pure reference machine is a register machine with no data. It is

not hard to show that any linking automaton with a finite set of symbols

can be simulated by a pure reference machine with a loss of only a constant

factor in running time. 1 shall consider examples of reference machines which

have integers as data and addition and comparison as allowed operations.

The lower bound-result holds for all reference machines, whatever their data.

In a reference machine, access to memory is by explicit reference only;

no computation on references is possible. The reference machine model is

thus apparently less powerful than the random access model with uniform cost

measure [l]; reference machines lack the ability to use address arithmetic

for such purposes as manipulating a hash table [g], performing a radix

sort [g], or accessing a dense matrix [8]. These machines are, however,

powerful enough to simulate such list-processing languages as LISP and to

model the list-processing features of Algal-W, PL/l, and other general

purpose languages.

It would of course be possible to study the general properties of

reference machines, comparing their power with that of other classes of

automata, as SchtJnhage [16] has done. Here, however, I analyze the ability

of reference machines to solve a specific problem in list processing.

3. The Disjoint Set Union Problem.

Let sp 5 l . l 9 sn be n disjoint sets, each containing a single

element. The disjoint set union problem is to carry out a sequence of

operations of the following two types on the sets.

find(x) : determine the name of the set containing element x .

union(A,B) : add all elements of set B to set A (destroying

set B).

The operations are to be carried out on-line; that is, each instruction

must be completed before the next one is known. We shall assume that the

s sequence of operations contains exactly n-l union operations (so that

after the last union all elements are in one set) and m > n intermixed

find operations (if m < n , some elements are never found).

The disjoint set union problem is an abstraction of the operations

necessary to implement FORTRAN EQUIVALENCE and COMMON statements [5 1.

Algorithms for this problem and for a generalization of it have

applications in graph theory [18], global code optimization [18,19], and

linear algebra [lg]. A number of algorithms exist [l&5,6].

A reference machine solution to the set union problem consists of a

reference machine, a representation of the input sets as collections of

records, a program for carrying out a find , and a program for carrying

out a union . The reference machine solves the set union problem in the

following way. Initially the machine memory represents the input sets.

Each find is carried out by executing the find program, which halts

having identified the set containing the desired element. Each union

is carried out by executing the union program, which halts having

modified the contents of memory to reflect the union. I shall make the

following assumptions concerning the details of this process.

8

(3.1) Each set and each element has a distinct associated symbol.

(3.2) No record in the collection for an input set contains the symbol

of any other set or of any element outside the set.

(3.3) No record in the collection for an input set contains a reference

to any record outside the collection.

(3.4) Before the find program is executed to locate the set containing

an element x , a reference to same record containing the symbol

for x is placed in the designated input register rl and A is

placed in all other registers. The find program halts with the

symbol for the set containing x in the designated output register so .

(3.5) Before the union program is executed to add elements in set B to

set A, references to records containing the symbols for A and B

are placed in the designated input registers
rl and r2 , respectively,

and A is placed in all other registers. The union program halts with

no output.

The sequence of steps associated with a set union

problem and a reference machine solution is the sequence of steps

executed by the machine when it carries out the finds and unions . The

a length of this sequence measures the total running time of the machine.

The main result of this paper is a non-linear lower bound (as a function

of n and m) on the length of any sequence of steps which solves a

worst-case instance of the set union problem.

The formulation described above is intended to be realistic and to

facilitate derivation of a lower bound. Assumption (3 .l) above, requiring

that sets and elements be represented by symbols, makes it impossible to

encode all elements of a set into a single datum and to move this datum at

9

a cost of one step per move; without this restriction there is a reference machine

which can solve any set union problem in linear time. Assumptions (3.2), (p.3),

and (3.4) imply that the machine, when performing a find on some element x ,

has access only to records representing the set containing x . Assumptions

(3*2), (3.3)r and (3.5) imply that the machine, when performing a union on

sets A and B 9 has access only to records representing the sets A and B .

It follows by induction on the number of finds and unions that (3.2) and

(3.3) hold for the sets existing at any time during the computation, not just

for the input sets. In other words, the contents of memory after any

particular find or union can be partitioned into collections of records

such that each collection corresponds to a currently existing set, all

symbols for the set anid its elements occur only in the corresponding

collection of records, and no record in one collection contains a reference

to a record in another collection. Without assumptions (3.2)-(3.5) any

particular instance of the set union problem Cain be solved in linear time

by initially moving symbols for all sets and elements into a single record

and solving all finds by accessing only this record, though I conjecture

that even without assumptions (3.2)-(3.5) no single reference machine can

solve all instances of the set union problem in linear time,

- If an algorithm for the set union problem is to be useful in practice,

the symbol of each set and of each element should be stored in exactly one

record,- so that the initialization for finds (3.4) and unions (3.5) is

uniquely defined. All the algorithms to be considered have this property,

but the lower bound proof does not require it.

10

4. Algorithms for the Set Union Problem.

All algorithms for the set union problem known to me can be implemented

on reference machines. This section describes six such algorithms. These

algorithms are of two general types, quick find , requiring constant time

for each find , and quick union , requiring constant time for each

union . All the algorithms represent each input set by a single record,

containing the symbol for the corresponding set and the symbol for the

corresponding element in data items set and element , respectively.

Each element is permanently associated with the record containing its

symbol, and no new records are ever created. During the computation,

a currently existing set is represented by the collection of records

corresponding to its elements and the symbol for the set is contained in

exactly one of these records.

In the quick find method, each record contains two reference items,

parent and next .

contains the symbol

collection refer to

One record in the collection representing a set

of the set. The -parents of all records in the

this header record. The next items link all records

in the collection into a list whose first element is the header. Figure 4.1

illustrates this data structure.

[Figure 4.11

With this representation, a find requires two reference machine

steps; one to access the parent of the input record (which refers to the

header) and one to access the set of the header. A union of A and B

requires seven steps per element in B ; each record in the collection for

B must have its parent modified to refer to the header of A and must

11

be linked into the list for A . Table 4.1 contains programs in Algal-like

notation for union and find . It is easy to translate these into

reference machine programs.

[Table 4.11

Adding a heuristic to the union program improves its performance

considerably. Each record needs an additional data item, size . The

size item is only meaningful for headers; it counts the number of elements

in the corresponding set. To perform a union of A and B , the size of

A is compared to the size of B . If B is smaller, the union proceeds

as before. If A is smaller, the symbols for A and B in the headers of

the sets are interchanged, the references in rl and r2 to the headers

are interchanged, tid the union proceeds as before. The time required for

such a weighted union is proportional to the size of the smaller of A

and B. Table 4.2 contains a program for this heuristic.

[Table 4.21

In the quick union method, each record contains only one reference

item, parent . The collection of records representing a set forms a rooted
*

treeJ with the parent of each record referring to its parent in the tree;

Jic A rooted tree T is a connected, acyclic, undirected graph with a
unique distinguished vertex r , called the root of T . If v and
w are vertices of T such that v is on the(unique) simple path
from r to w , then v is an ancestor of w and w is a descendant

of v .
*

This relationship is denoted by v -) w . The relationship
-* +

v + w and v # w is denoted by v +w .
+b

If v -+w and (v,w) is
an edge of T , then v is the parent of w and w is a child of v .
This relationship is denoted by v --) w . A leaf is a vertex with no
children. The height of a vertex v is the length (number of edges)
of the longest simple path from v to a descendant of v . The
sub-tree of T rooted at vertex v is the subgraph of T induced by
the descendants of v , with v as root.

12

the parent of the root is $, The root contains the symbol of the set,

Figure 4.2 illus ra est t this data structure.

[Figure 4.21

With this representation, a union of A and B requires only one

machine step, to place a reference to the root of A in the parent of

the root of B . A find is performed by starting from the input record

and following parent references until reaching a record with a null

parent; this record is the root of the tree representing the set and

contains the set symbol. The find requires time proportional to the

number of records on the path from the input record to the root. Table 4.3

contains programs for these versions of union and find .
--

[Table 4.33

The weighted union heuristic can be added to quick union ; it uses

extra time on unions but may save time on later finds . A heuristic

for finds called path compression is also useful. After a find , every

record on the path from the input record to the root has its parent

modified to refer directly to the root, Path compression increases the

running time of a find by a constant factor but may save time on later

finds . Table 4.4 contains programs for union and find with these

heuristics.

[Table 4.43

The quick find algorithms are apparently part of the folklore of

compiler construction; a description of these algorithms appears in Cl]. The

quick union algorithm with the weighted union heuristic was first presented

in [51. The path compression heuristic is apparently due to McIlroy and

Morris [l]. Worst-case analysis of these algorithms appears in [1,4,5,6,17];

Table 4.5 summarizes the results. The theoretically best algorithm in the

13

worst case is quick union with both heuristics; its running time is

oh ebn>> 9 where a(m,n) is a functional inverse of Ackermann's

function defined as follows.

For i,j 2 0 let the function A(i,j) be defined by

(4.1)

Let

A(i,O) = 0 ; . .

A(O,j) = 2j for j 2 1 ;

A(i, 1) = A(i-1,2) for i > 1 ;-

A@-, j) = A(i-1, A(i,j-1)) for i>l, j >2,- -

(4.2) a(i,n) = min{j 1 A(i,j) > log2 nj

and

(4.3) ~bw> = &n{i 2 11 A(i,L2m/nJ) >log2 n3 a*-/

[Table 4.51

Yao [211, Doyle and Rives-t [3], and Knuth and Schtjnhage [lo] have

carried out average-time analyses of the algorithms for several reasonable

probability measures under the assumption that m and n are proportional,

Table 4.6 contains the results of Yao and Knuth and Sch&ibage for one

measure (see [21]).

- [Table 4.61

The quick union algorithm is simpler and requires less storage than

the quick find algorithm and is thus more useful in practice. Whether

either of the two heuristics should be used with this algorithm depends upon

the size of the problem and the cost of time versus the cost of space, The

average running time of the quick union algorithm with path compression

but without weighted union is unknown for the probability measure used by

Yao and Knuth and Schbnhage,

*
J For any real number x, Lx] denotes the greatest integer not larger

than x,

14

When path compression is used, the running time of the quick union

algorithm tends rapidly to O(m) as m/n increases. For instance, if

weighted union is not used and m/n > cn
l+e for some positive constants-

c and E, the running time is O(m), If weighted union is used and

m/n 2 ca(k,n) for some positive constants

o(m) l
Note that a(O,n) is O(log‘log n)

i times

log* n E
\

min{i \ log log . . . log

c and k, the running time is

and a(l,n) is O(log*n), where

nil).

The weighted union rule requires that records contain integer data

items and that reference machines add and compare. It is natural to ask

whether the weighted union rule can be implemented on a pure reference

machine in such a way that the total time for all unions is o(n) l

The answer is--yes.

Each non-negative integer is represented by a list which encodes the

binary digits of the integer, A zero is encoded by a null pointer; a one

is encoded by a non-null pointer. The digit list is singly linked from

the low order digit to the high order digit. Figure 4.3 illustrates this

representation.

Two integers are added by scanning the digit lists and adding digit-

a by-digit, propagating carries in the usual fashion. The scan stops after

the end of the shorter list is reached and the last carry stops propagating.

Two integers are compared by scanning both simultaneously and noting the

highest order digit on which they differ. The scan need only extend to the

end of the shorter digit list; the integer with the longer digit list must

be larger. I leave as an exercise the implementation of these algorithms

as register machine programs,

The n-l union operations carried out by the quick union method

perform the following arithmetic. Initially there are n integers, each

15

equal to one. During a union , two of the integers are compared &d

then added. After n-l unions , a single integer equal to n remains.

Since comparing two integers requires no more time than adding them,

it will suffice to bound the time required.,by all the additions.

Lemma 4.1. Let a, b, c be integers such that a+b = c and let (ai) ,

03 .
Cbi) 9 ('i> > respectively, be their binary digit lists (a = c ai21 ,.IL= 0

b = 5 b2i, c
i=O i

= ; Ci2i ;
.l=O

ai>bi> �i E co, l]) l Let di be the

carry from the i-th position when a and b are added. Then

k
for all k . In particular,

. C (ai+bi)
l=O

= 4;+--.$ (ci+di)
.l=O

.

E (ai+bi) =
co

1= 0

.
C (Ci+di) l

1= 0

Proof. For i > 0, ai+bi+d.1-l = ci+ 2d.1 (assuming dml = 0).

Thus ai+bi = ci+di+(di-di 1) . Summingfrom i=O to i=k

gives the lemma. Cl

16

The time needed to add two binary integers by reference machine

is proportional to the length of the shorter integer plus the

number of carries. By Lemma 4.1, the total number of ones in the

binary representations of both integers is equal to the number of ones in

the binary representation of the sum plus the number of carries.

Consider the arithmetic performed during the union operations,

Initially, the total number of ones in the binary representations of all

the set sizes is n . Each carry performed during an addition causes the

total number of ones to decrease by one. Thus the total number of carries

cannot exceed n-l, and the time required for all carries is
o(n) l

It remains to bound the total length of the shorter of each pair of

integers added during union operations. Let f(n) be a worst-case bound

on this total length as a function of n . Then f(1) = 0 , and

f(n> = maxiJog kj +l+ f(k)+ f(n-k) 11 5 k 5 n/2] for n > 1 ,

since the length of the binary representation of k is Llog2 k]+l .

Lemma 4,2. f(n) _< 3n-2 log2(n+l)-1 .

Proof. By induction on n .

f(l) = 0 < 3-2 log2 2-1._

f(2) = 1 < 6-2 3-1._ 10%

Let n > 3 and suppose the lemma is true for all values less than n .

Let k be such that 15 k 5 n/2 and

f(n) E Llog2 k] +l+ f(k)+f(n-k) .

By the induction hypothesis

17

f(n) 5 log2 k + 1+3k-2 log2(k+l) -1+3(n-k) -2 log2(n-k+l) -1

5 3n -l-log2(k+l) - 2 log2(n-k+l) .

The function - logg(k+l) -2 log2(n-k+l) for 1 5 k 5 n/2 is maximum

when k=l. Thus

f(n) 5 3n-l-log2 2-2 log2 n

< 3n-2 -2 log2 n .

Also, nz3 Jmplies II-2n zn+l, which means

-2 log2(n+l) 2 - 2 log2&n = -2 log2 n-l ,

and

f(n) 5 3n:2 10g2(n+l)-1 0 0

It follows that the total time to perform all arithmetic associated

tith the union operations is oh-4 9 and the following theorem holds.

Theorem 4.1. There exists a pure reference machine which solves any disjoint

set union problem in O(m a(m,n)) time.

18

3

5. A Non-Linear Lower Bound.

This section shows that for all m and n there is a set union

problem which requires at least cma(m,n) steps to solve by reference

machine, where c is a positive constant independent of m and n.

Rather than consider reference machlnes, I consider sequences of reference

machine steps. Given a set union problem, a sequence of reference machine

steps is said to solve it if there is some reference machine, some set of

union programs, one for each union, and some set of find programs, one

for each find, such that when the sequence of programs corresponding to

the sequence of union and find operations is executed according to the

conventions of Section 3, the given sequence of reference machine steps

results and the find programs produce correct answers. Note that any

sequence of reference machine steps can be carried out by a non-branching

reference machine program. The first step in the lower bound proof is to

convert into a simple normal form any sequence of reference machine steps

which solves a set union problem,

Theorem 5.1. Let Sl be any sequence of reference machine steps which

solves a set union problem, Then there is a sequence of reference machine

steps S2 which also solves the set union problem and has the following
a

properties:

(5 l 1> Is21 5 2b+n+ Is,l,*

- (5.2) S2 manipulates no data except set

(5.3) s2 represents each input set by a

create instruction.

and element symbols.

single record and contains no

(5.4) S2 fetches a symbol from memory only as the last instruction of

a find.

19

Proof. Let Sl be a sequence of reference machine steps which solves some

set union problem. Delete from Sl all steps which manipulate data other

than set and element symbols. The sequence Sl now satisfies (5.2) and

still solves the set union problem.

The sequence S2 to be constructed manipulates records corresponding

to the sets, the elements,. and the records manipulated by Sl . Initially

the memory of S2 consists of one record for each input set A = {a) .

This record is the representative of the set A, of the element a , and

of each record in the initial collection of records by which Sl

represents A . Each record created by S, also has a representative in

the memory of

created during

representative

representative

X* denote the

I
-

s2 ' defined as follows. The representative of a record

execution of find(a) is the representative of a . The

of a record created during execution of union(A,B) is the

of A . For any object x (set, element, or record), let

representative of x .

s2 simulates Sl step-by-step. If s1 and S2 are executed in

parallel, the memory and registers of S2 correspond to the memory and

registers of S, in the follomng way.

(5.5)
a

(5.6)’

(5.7)

If Rl and R2 are records in the memory of
sl such that Rl

contains a reference to R2 , then R*
1 contains a reference to

*
(1

*
R2 un ess Rl = R;).

If R is a record containing a set or element symbol x , then

R* contains a record to x* and x
*

contains a reference to

R* (unless R* *).=x

If some register of Sl contains a reference to a record R ,

then some register of S2 contains a reference to R* .

20

If some regiser of Sl contains a set or element symbol x ,

then some register of S2
*

contains a reference to x .

(5.9) During execution of find(a) , S2 maintains a reference to a*

in a register. During execution of union(A,B) , S2 maintains

a reference to A* in a register.

Initially the memory of S2 consists of all the representatives, each

containing the symbol of the corresponding set, the symbol of the

corresponding element, and no pointers. Properties (5.5) - (5.9) hold

initially.

Let find(a) be a

in rl to a record R
--_ *

typical find. Sl begins find(a) with a reference

containing the symbol for a . If (5.6) holds before

the find, either R = a* or a* contains a reference to R* . S2 begins

the find with a reference to a* in rl . S2's first step is to fetch a

reference to R* into a register. This preserves (5.5). (5.9).

Let union(A,B) be a typical union. Sl begins union(A,B) with

references in rl , r2 to records Rl , R2 containing the symbols for

A, B> respectively. If (5.6) holds before the find, either R* = A*

or A* contains a reference to R; ; similarly either Ri = B* or B*

contains a reference to Ri . S2 begins the union with references

to A* 9 B* in rl , r2 , respectively. S, 's first two steps are to

fetch references to Rr and R; into registers. This preserves

- (5.5) - (5.9)*

s2
simulates each step of Sl in the following way.

Each time Sl fetches a reference to a record 52 from a record Rl ,

S2 fetches a reference to Rl from RI (possible by (5.5)). Each time

s2
stores a reference to a record R2

in a record Rl , S2 stores a

reference to RX2 in RT (possible by (5.7)). Each

21

time Sl fetches a set or element symbol x from a record R ,

S2 fetches a reference to x* from R* (possible by (5.6)). Each

time Sl stores a set or element symbol x into a record R ,
s2

stores a reference to x* in R
*

and a reference to R* in xx (possible

by (5J) and (5.8)). Each time Sl creates a record, S2 does nothing.

At the end of each find, S2 fetch:?s the appropriate set symbol. Each

of these steps preserves (5.5). (5.9). The sequence S2 constructed

in this way carries out the finds and satisfies (5.1). (5.4). 0

One can represent the memory manipulated by a reference machine as

an undirected graph, with

for each reference. If a

then (RI,%) is an -Nge

one vertex *R for each record R and one edge

record Rl contains a reference to a record R
2'

in the graph. This representation motivates the

following definition, which reformulates the set union problem as a graph

construction problem.

A link solution to a set union problem consists of a set of vertices

v, one for each initial set and element, and a sequence of instructions

of the form link(v,w) where V,WEV . The sequence of link instructions

constructs a graph edge-by-edge, starting from the graph with vertex set

V and no edges; link(x,y) constructs edge (x,y) . For any initial set

or element x , let x* denote the corresponding vertex. The sequence of

link instructions must satisfy the following properties.

(5.103 The sequence of links can be partitioned into contiguous subsequences,

each subsequence corresponding to a union or find operation.

(5.11) Let find(a) with answer A be a typical find. Each link(x,y)

in the subsequence for find(a) is such that x = A* and the

distance between x and y in the graph existing before the

22

link is two. The instruction link(A*,a%) occurs either in the

subsequence for find(a) or earlier in the sequence.

(5.12) Let union(A,B) be a typical union. Each link(x,y) in the

subsequence for union(A,B) is such that x = A* and either

y = B* or the distance between x and y in the graph

existing before the link is two.

Theorem 5.2. Any set union problem solvable in k reference machine steps

has a link solution of length not exceeding 5m+4n+&k .

Proof. Let Sl be a sequence of

a set union problem. Let S2 be a

satisfying Theorem 5.1. Then ls,l
a link solution

3
satisfying the

*

k reference machine steps which solves

sequence of reference machine steps

5 2(m+n+k) . From S2 we construct

theorem. The vertex set for S
3

consists of one vertex R.‘ for each record R manipulated by S, , If

s2 and

(5.13)

(5.14)

(5.15)

“s

L

3
are executed in parallel, the following properties hold.

If a record Rl contains a reference to a record R2 , then

the distance between RI and R; is at most two.

Let find(a) with answer A be a typical find. If during this

find some register of S2 contains a reference to R , then

either A* = R* or (A*,R*) is a previously constructed edge.

Let union(A,B) be a typical union. If during this union

some register of S2 contains a reference to R , then either

A* E R* or (A*,R*) is a previously constructed edge.

simulates S2 instruction-by-instruction, Certainly (5.13)-(5.15)

hold initially, Let union(A,B) be a typical union. To begin the union,

23

s3
links A* and B*

l This Preserves (5.13)- (5.15). Let find(a)

with answer A be a typical find. Suppose S fetches I items from

memory while carrying out the find, If (5.13) holds before the find, there

must be a path of length 21 or less between A* and a* in the graph
-.

existing before the find, To begin the find
s3

links each vertex

on this path to A* . This preserves (5.13).(5.15).

Consider a subsequence of S2 corresponding either to a find(a)

with answer A or a union(A,B) . Suppose S2 fetches a reference

(say to R2) from a record (say Rl). If (5.13) - (5.15) hold before

the fetch, then there is a path between A* and R; of length at most

three.
%

links each vertex on this path to A* , This preserves
--.

(5.13) - (5.15). All other instructions in S2 do not affect (5 13 - (5 15).. . Y

in order to store a reference (say R2) in a record (say Rl), S2 must

first have references to
Rl and R

2 in registers, By (5.14) and (5.15)

this means that the distance between RT and Ri in the graph existing

before the store is at most two.

The total length of the sequence S
3

constructed in this way is

at most 5m+4n+bk, and the sequence clearly solves the set union

problem. 0

In the following discussion I shall not distinguish between an

initial set, its single element, and the vertex representing the set and

the element, Corresponding to the sequence of unions in any set union

problem is a rooted tree, called the union tree, hose vertices are the

initial sets and whose edges are the pairs (A,B) such that union(A,B)

occurs in the sequence. The root of the tree is the set remaining after

a31 unions are carried out. With this definition, every link(v,w) in

+
a link solution to a set union problem has the property that v + w in

the union tree. In the worst-case set union problems to be constructed

below, the union tree is a complete binary tree.

The lower bound proof makes use of a rapidly growing function B(i,j)

defined for i,j > 1 as follows.

(5.16) B(l,j) = 1 for j > 1 ;

B(i,l) = B(i-1,2)+1 for i > 2 ;

B(i,j) = B(i,j-l)+ B(i-1,2 B(i, j-1)) for i,jz2.

Lemma 5.1. B(Ay 2 >+l f A&23) for i,j >l,

Proof. It is easy to show by inductian that A(i,j) < min(A(i+l,j),A(i,j+l)]

for i > 0, j > 1 . Also,

(5.17) A(& 3 > = A(i-l,A(i,j-1)) = A(i-2,A(i-l,A(i,j-1)))

12
2A(iJ J-1) ;, 2A(i,j-l)+2 for i,j > 2 .

The lemma follows by double induction on i and j :

e

(5.18) B(l,j)+l 5: 2 5 2j = A(W) 5 A(W3) for j 2 1 ;

(5.19) B(i,l)+l = B(i-1,2)+2 2 A(i-l&)+2 < A(i-1,6)

< A(i=l,A(2,1)) < A(i-l,A(i,l)) = A(i,2) for i > 2 ,

if B(i-1,2)+1 5 A(i-2,4) ;

25

(5.20) B(i,j)+l = B(i,j-l)+ B(i-1,2 B(i, j-1))+1

< A(i,2j-2)+ A(i-1,2.2 A(i,2j-2))

< A(i-l,2.2A(i'2j-2)+ A(i,2j-2))

< A(i-1,2 A(i,2j-2)+2 > . .

5 A(i-l,A(i,2j-1)) bY (5.17)

= A(i,2j) for i,j >2, if B(i,j-l)+lL A(i,2j-2)

ad B(i-1,2B(iJj-1))+1 < A(i-l,2.2B(iJ j-')) ,

cl

Theorem 5.3. For any k,s > 1 , let T be a complete binary tree of

height h > B(k,s) .--.Let {vi 11 < i < s2BOG 4) be a set of pairwise

unrelated vertices in T , each of height strictly less than h-B(k,s) ,

such that exactly s vertices in (vi) occur in each subtree of T

rooted at a vertex of height h-B(k,s) . Then for n = 2h+1-l and

m = s2B(k’ ‘) there is a set union problem for which

(5.21)

(5 22)

(5.23)
e

(5.24)

Proof.

the union tree is T ;

the set of finds is (find(vi)\l<izm] ;

the answer to each find is a vertex of height strictly greater

than h-B(k,s) ; and

any link solution has length at least km , even if every edge

(VT w>
+

such that v + w and h(v) 5 h-B(k,s) in T is allowed

for free, and after each link(v,w) every edge (x,y) such

that v
* + *
-‘x+y+w is added for free.

The proof is by double induction on k and s and is similar to

the lower bound proof in [17]. Suppose k = 1 . Consider any set union

26

problem consisting of n-l unions which form T followed by a find on

each vertex in [vi] . The answer to each find is the root of T ;

(5.23) holds since h > B(k,s) . None of the originally free edges solves

a find. Since the vertices in {vi] are pairwise unrelated, any link(x,y)-.

can solve only one find, even including the appropriate free edges.

Thus (5.24) holds.

Suppose the theorem holds for k-l , s = 2 . The following argument

proves the theorem for k with s = 1 . Suppose the hypotheses of the

theorem hold. Let (uJl<i<m] be the set of vertices of height

+
h-B(k,l) in T , numbered so that ui 4 vi . The vertices in {ui]

are pairwise unrelated and exactly two occur in each subtree of T rooted

at a vertex of height h-B(k,l)+l= h-B(k-1,2) . By the induction

hypothesis there is a set union problem satisfying the theorem for

k' = k-l , s' = 2 , T , [ui] . Let the sequence of finds and unions in

this set union problem be Pl . Form P2 from Pl by replacing each

find(%) by fina . I claim the resulting sequence satisfies the

theorem for k , s = 1 , T , (vi] .

Certainly (5.21) - (5.23) hold. Consider any sequence S2 of links

which carries out P, , allowing for free the edges described in (5.24).
L

d

Form a sequence Sl from
*

v. 31 y for some (uniquely

- sl aJl links which do not

S2 by replacing each link(x,y) such that

determined) i by link(x,ui) . Delete from

create new edges. I claim s1 carries out

pl (allowing appropriate edges for free) and that IS11 < IS21-m .

The following property is true initi.aUy and is preserved if Sl and

S2 are executed in parallel (on separate graphs).

27

3

(5.25) For 1 < i < m , ui is adjacent in the- -

Sl to all vertices adjacent to at least

graph manipulated by

one descendant of v
i

in the graph manipulated by S2 .

It follows that Sl carries out Pl .

For any Vi 9 consider the first link(x,y) in S2 such that

+ + *
x4u. 4v

1 i �Y l There must be such a link since none of the initially

free edges solves find(vi) by (5.27). There must be a path of length two,

sqy (x,z)(z,y), between x and y in the S2 graph existing before the link,

* *
Furthermore z must satisfy ui 4 z 4vi . It follows that (x,ui) is

an edge of the existing Sl graph. Thus s1 need not contain an

instruction Ui)link(x, corresponding to -MX,Y) l This is true for

anyvalue of i . Hence IQ L ISJ-m l

Since (k-1)m < IS11 by the induction hypothesis, IS21 < km ,

and (5.24) holds.

Suppose the theorem holds for k , s-l and also for k-l , B(k,s-1) .

The following argument proves the theorem for k , s . Suppose the

hypotheses of the theorem hold. Let {wi 11 < i < 2 B(k, s>] be a subseta -

Of Cvi3 such that exactly one vertex w. occurs in
1

rooted at a vertex of height h-B(k,s) . Let {ui \ 1
-

the set of vertices of height h-B(k,s) , nurribered so

each subtree of T

< i < 2B(kys)} b e

that Ui f Wi .

Consider the sub-trees T. , l<j<2B(k,s)-B(k,s-1)
J

, rooted at

vertices of height h-B(k,s)+B(k,s-1) = h-B(k-1,2
B(k,s-1)

1 in T . Each

sub-tree T. contains
J

(s-1)2B(% s-1) vertices in {vi]-(wi) ., exactly

s-l in each subtree rooted at a vertex of height h-B(k,s) . By the

induction hypothesis there is a set union problem satisfying the theorem

for k' = k, s' = s-l, T. ,
J

(v \ v is a vertex in Tj and VE: {vi]-(wi]) .

Let P.
J

be the sequence of unions and finds in this set union problem,

28

The vertices in the set {ui] are pairwise unrelated and exactly

2B(kJ s-1) occur in each subtree T
3

of T . By the induction hypothesis

there is a set union problem satisfying the theorem for k' = k-l,

s' = 2B(bs-1) , I-J 9 u. .c 31 Let Q be the sequence of unions and finds

in this set union problem. The sequence Q can be permuted, without

increasing the number of links required to carry out Q, so that all

unions forming the subtrees T.
J

occur before sU other operations.

Let Q' be formed from the permuted version of Q by deleting all

unions forming the subtrees T. 9 let Q"
3

be formed fram Q' by replacing

each find(ui) by find(wi) , and let P" = Pl,P2, ..*>P
oB(k,s)-B(k,s-l)'Q" '

I claim P" defines a set union problem which satisfied the theorem for

Certainly (5.21)- (5.23) hold.

which carries out P" , allowing for

Form a new sequence S from S" by
*

Consider any sequence S" of links

free the edges described in (5.24).

replacing each s u c h t h a tlink(x,y)

wi -) y for some (uniquely determined) i by link(x,ui) . Delete from

S all links which do not create new edges. The following property is

true initially and is preserved if S and S" are executed in parallel

(on separate graphs).

(5.26) For 1 < i < 2B(k's) I ua - i is adjacent in the graph manipulated

by S to all vertices adjacent to at least one descendant of wi

in the graph manipulated by S" .

It follows by an argument like that in the previous case that S

carries out P' = P
I? 2
P ,...,P

2B(k,s)-B(k,s-l)'Qf and that

ISI 2 (sq-2B(k9s) . S can be written as S = Sl,S2,...,S
2B(k,s)-B(k,s-1)'U '

29

where S.
1

carries Out Pi for 1 < i < *BCkJs)-B(kY '-l) , allowing
- -

for free the edges described in (5.24), and U carries out Q1 ,

allowing for free the edges (v,w) such that v: w and

h(v) 5 h-B(k-l,2B(k,s-1)) and after each link(v,w) allowing for free

the edges (x,y) such that v zx 2 y s w . This means that U carries^ .

out Q Y allowmg -the appropriate edges for free, By (5.2&),

lSil L k(s-1)2
B(k,s-1)

for l<i<2- -
B(k, s)-B(k, S-1) , aa

1~1 2 (k-l)2B(kys) . It follows that

1 s" 1 ,> IsI + pBck, '1 ,> k(+l)2B(k' ') + (k-1)2B(ky '1 + zBck9 ') = ks2B(k' ') = b .

Thus (5.24) holds, By double induction, the theorem is true in general. 0

Corollary 5.1. Let k,s > 1 . Let T be a complete binary tree of

height B(k,s) . Then there is a set union problem whose union tree

is T, which contains m = s2B(k, s> finds, and which requires at least

(k-l)m links for its Solution.

Proof. Choose L 21 such that 2l > s

tree formed by replacing each leaf of T

height 1 . Let [viIl~i~m} be any

hypotheses of Theorem 5.3 for k , s , T'

. Let T' be a complete binary

by a complete binary tree of

set of vertices satisfying the

. For 1< i <m, let ui- -

be the vertex of height 1 in T, such that u
i
iv

i' Let P' be-

a sequence of unions and finds defining a set union problem satisfying

the conclusions of Theorem 5.3 for k , s , T, , {vi] . Without loss of

generality we can assume that the unions which form the sub-trees of T'

rooted at height R occur at the front of P' .

Form P from Pt by deleting the unions which form the sub-trees

of T' rooted at height J! and replacing each find(Vi) by fixd(ui) .

We claim P defines a set union problem satisfying the conclusions of the

30

corollary. Certainly P contains m finds and the union tree of P

is T. Suppose S is a sequence of links which carries out P .

Form S' from S by following each link(x,ui) which solves a

fina by link(x,vi) . Then S' carries out P' if all edges

(VY 4 &th h(v) < 1 are allowed for free, Thus S' >km, andI I-

IS"\ 2 (k-1)m . Cl

Theorem 5.2, Lemma 5.1, and Corollary 5.1 combine to establish

the main result of this paper.

Theorem 5.4. There is a positive constant c such that, for all

m>n>l, there is a set union problem consisting of m finds and- -

n-l intermixed unions whose solution by reference machine requires at

least cma(m,n) steps.

Proof. Let s = Lm/nj . Choose k as large as possible such that

gBCkY s)+l-l < n . Partition the n elements into as many sets as

possible of size 2B(k, s)+1-l , plus leftover elements. At most n/2

elements are left over. On each set of 2B(k,s)+l -1 elements, define

a set union problem satisfying Corollary 5.1. Concatenate these problems,

add enough additional unions to combine KU elements, including the

leftovers, into a single set, and add enough additional finds to bring

_ the total to m .

The resulting set union problem contains m finds, n-l intermixed

unions, and requires at least (k-l)s2B(kyS) n/2B(kys)c2 = (k-l)sn/4 2

(k-l)m/8 links for its solution. By

requires at least (k-l)m/32 - 5m/4 -

steps for its solution.

Theorem 5.2, this set union problem

n > (k-T3)m/32 reference machine

31

q

If a(m,n) > 2 , k 2 a!(m,n)-1 in this

B(a(m,n)-l,s)+l 5 A(a(m,n)-1,2s) b y

< log2 n bY

Thus the selected set union problem reqtires. .

construction since

Lemma 5.1

the definition of a .

at least

(a(m,n)-74)m/32 > a(m,n)m/64 reference machine steps, if

a(m,n) 2 148 . But if a(m,n) 5 148 , any set union problem requires

at least m 1 mx(m,n)/148 reference machine steps. Choosing

C = l/148 gives the theorem. 0

32

Conclusions. t

This paper has described a machine model, called a reference machine,

suitable for analyzing list processing problems. The model is similar to

several previously -proposed [8,11,~,16]. Reference machines are quite
-.

powerful; Schkihage [16] has shown that they can simulate Turing machines

with multidimensional tapes in real time, and one can show that they can

simulate random access machines with logarithmic cost in real time.

The paper has analyzed the ability of reference machines to compute

disjoint set unions. Under certain natural restrictions, all reference

machines require non-linear time to solve this problem. This lower bound

characterizes the efficiency with which one can represent dynamic information

of a certain kind in a list structure. The bound does not require that

the machine be deterministic, or that the program of the machine be fixed

while the problem size grows, or that the complexity of memory (number of

fields per record) be fixed while the problem size grows.

This generality is achieved by making the assumption that the

description of each set is stored separately and that moving the

description of a set requires constant time per element. Without these

assumptions the lower bound is not valid. I conjecture, however, that

the lower bound holds if the separate storage assumption is replaced by

an assumption about the complexity of memory; namely, that every record

contains only a fixed number of fields independent of the problem size.

The paper has presented a number of known set union algorithms and has

shown that they all fit into the reference machine model. One of the algorithm:

achieves the lower bound to within a constant factor. This algorithm

requires that arithmetic be performed, but the arithmetic can be simulated

33

using list processing with only a constant factor loss in running time.

I believe that any algorithm, even one which uses address arithmetic,

requires non-linear time to solve the set union problem. Proving such

a statement seems to require a better understanding of random access

machines.
. .

The set union problem can be generalized to a problem requiring

evaluation of functions defined on paths in trees. The techniques used

here and in [17] lead to a non-linear lower bound for some special

cases of this generalized problem [20]. Certain cases of the problem can

be solved in almost-linear time by using complicated extensions of the best

set union algorithm presented here [I% Whether the most general version

of the function evaNation problem can be solved in almost-linear time

is unknown.

Acknowledgment.

I would like to thank Professor Wolfgang Paul for his thoughtful

criticism and valuable insights which contributed substantially to the

lower bound proof.

34

References

m A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass. (1974).

El A. Borodin and I. Munro, The Computational Complexity of Algebraic

and Numeric Problems, Elsevier, New York (1975).

[31 J. Doyle and R. L. Rive&, "Linear expected time of a simple union-find

algorithm," Info. Proc. Letters 5 (1~76)~ 146-148,

[4] M. J. Fischer, "Efficiency of equivalence algorithms," Complexity of

Computer Computations, R. E. Miller and J. W. Thatcher, eds., Plenum

Press, New York (l972), 153-168.

[5] B. A. Galler and M. J. Fischer, "An improved equivalence algorithm,"

comm. ACM 7 (1~64)~ 301-303.

VI J. E. Hopcroft and J. D. Ullman, "Set merging algorithms," SIAM J.

Computing=2 (1973), 294-303.

[71 M. Jazayeri, W. F. Ogden, and W. C. Rounds, "The intrinsically

exponential complexity of the circularity problem for attribute

grammars," Comm. ACM 18 (1975), 697-706.

PI D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental

Algorithms, Addison-Wesley, Reading, Mass. (1968).

CYI D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and

Searching, Addison-Wesley, Reading, MELSS, (1975).

[lo] D. E. Knuth and A. SchFJnhage, "The expected Ilnewit;r of a simple

equivalence algorithm," Technical Report STAN-CS-77-599, Computer

- Science Department, Stanford University (1977).

[ll] A. N. Kolmogorov, "On the noti:Jn of algorithm," Uspehi Mat. Nauk. 8-0 ---
(1953)Y 175-176.

1121 A. N. Kolmogorov and V. A, Uspenskii, "On the definitiszn of- an

algorithm," Uspehi Mat. Nauk. 13 (1958), 3-28; English translation

in Amer. Math. Sot. Transl. II vol. 29 (1963), 217-245.

[13] A. R. Meyer and L. J. Stockmeyer, "The equivalence problem for

regular expressions with squaring requires cxponentia!. si?ace,"

Proc. 13th Annual Symp.-----_I__--- on Switching and .Autonata Theory, 19'7?,I_---
125-129.

35

[141

D51

Ml

Cl71

D-83

Cl91

I201

La

M. J. Rabin and M. J, Fischer, "Super-exponential complexity of

Presburger arithmetic," Project MAC Technical Memorandum 43,

MIT (1974).

R. Rives-t and J. Vuillemin, "A generalization and proof of the

Anderaa-Rosenberg conjecture," Proc. Seventh Annual ACM Symp. on

Theory of Computing (1~75)~ 6-11. ..

A. SchBnhage, "Real-time simulation of multidimensionaL Turing

machines by storage modification machines," Project MC TechnicaJ-

Memorandum 37, MIT (1973).

R. E. Tarjan, "Efficiency of a good but not linear disjoint set

union algorithm," Jour. ACM 22 (1975), 215-225.

R. E. Tarjan, "Applications of path compression on balanced treesyff

Technical Report STAN-CS-7505I.2, Computer Science Dept., Stanford

University (1975).

R. E. Tarjan, "Solving path problems on directed graphs," Technical--
Report STAN-CS-75-528, Computer Science Dept., Stanford University

(w75).

R. E. Tarjan, "Complexity of monotone networks for computing conjunctions,"

Technical Report STW-CS-76-553, Computer Science Dept., Stanford

University (1976).

A. C. Yao, "On the average behavior of set merging algorithms," Proc.

Ei@th Annual ACM Symp. on Theory of Computing (1976), 192-195.

36

procedure quick find

so + set(parent(rl));

p_ro_cedure slow union;

E r2 # j6 do-

begin

save + next(r2);

parent(r2) + rl;

next(r2) + next(r$

next(rl) + r2;

'2 -+ save

end* ---'

Table 4,l. Programs for find and ,wlim using the quick find

data structure.

37

procedure slow weighted union;

begin

begin

r1 - 5;

end;
-

sWr1) +- size(rl)+ size(r2);

slow union

end:

Table 4.2. Program for weighted union heuristic with quick find data

structure.

38

procedure quick union;

parent + rl;

procedure slow find;

begin
. .

root + r l1'

while parent(root) # j6 do root + parent(root);
- -

so + set(root)- -

_9nd;

Table 4.3. Programs for union and find using the quick union

data structure.

39

procedure quick weighted union;

if size(rl) < size(r2) then
-

begin

setb2) * set(y);

parent + r2;

size(r2) + size(rl)+ size(r2);

end

else begin-7

parent + rl;

size(rl) + size(rl)+ size(r2)

end;NY.

procedure find with path compression;

begin

slow find;

current + rl;

E parent(current) # $3 E

begin

save + parent(current);

parent(current) + root;

current + save

end end;-NcM

Table 4.4. Programs for weighted union and path compress:ion heuristics

with auick union data structure.

40

Time

Qyick find ob-4

with weighted union -. O(m log n)

Dl

[II

Quick union e-4 [41

with weighted union O(m log n) [41

with path compression 0 (mom= (1, 1065 b2/m) /log (an/n > > > D71

with both heuristics Oh +bn>) P71

Table 4.5. Worst-case running times of set union algorithms.

41

Time

Quick find

with weighted union

Quick union

with weighted union

with path compression

with both heuristics

o(n2)
o(n)

o(n2)

o(n)

?

o(n)

bw

[lOI

[=I

cm

Do1

a Table 4.6. Average running times of set union algorithms

if m and n are proportional.

b-2

Figure 4.1. Data structure for quick find algorithm.

Sets are A = (a,b,c,d,e) , B = (f,g,h,i) .

43

Figure 4.2. Data structure for quick union algorithm.

Sets are A = (a,b,c,d,e] , B = [f,g,h,i) .

44

Figure 4.3. Representation of 26 = 101102 as a list.

45

