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ABSTRACT

Lax- Wendrof f nethods for hyperbolic systems have two characteristics
which are sonetimes troublesone. They are sometimes too dissipative--
they may smooth the solution excessively--and their dissipative behavior
does not affect all nodes of the solution equally. Both of these
difficulties can be renedied by adding properly chosen accretive terns.
W devel op nodifications of the Lax-Wndroff method which equilibrate
the dissipativity over the fundanental nodes of the solution and allow
t he magni tude of the dissipation to be controlled. W show that these
met hods are stable for the mxed initial boundary val ue probl em and
devel op anal ogous fornulations for the two-step Lax-Wendroff and

MacCormack nmet hods.

* Thi's work has been supported in part by the National Science
Foundation under G ant DCR75-13497 and the Office of Naval Research
under Contract NOOOlL-T75-C-1132.







1. I ntroduction

W shal |l consider approximations for hyperbolic systems of partial

differential equations. W begin by considering the Cauchy problem for
(1.1) U = Au o < x <™, t>0

with initial data
(1.2) u(x,O) = uo(X) ] ~so < x <o oy

where u is a vector of length n and Ais an nxn matrix

with real eigenvalues. W assume that A has a conplete set of

ei genvectors and can therefore be transformed to diagonal form We
wi Il denote the eigenval ues of A by My o ol If Ais a function
of x,t we assunme that this transformation can be done snoothly.

VW shal | discuss the well-known Lax-Wendroff nethod, several of
its varients, and nodifications thereof. Discussions of these methods
and nodifications of themwhich inprove their phase errors and stability
regi ons have been carried out by Turkel [9], Gottlieb and Turkel [2],
and Eilon, Cottlieb and Zwas [1]. W are going to discuss the
di ssi pative properties of these approximations and nodifications of
t hem which inprove their dissipative properties. W wll also conment
on the conbination of our nodifications with some of those of the

previously nentioned authors. Recently, Turkel [10] has discussed



a hybrid |eap-frog--Lax Vendroff method which is less

di ssi pative than the Lax-Wendroff nethod but, |ike the Lax-Wendrof f
method, has dissipation which varies radically for the various nodes
of the solution.

To make this nore precise we now introduce some notation and
definitions which are discussed in Richtnyer and Mrton [ 8] and
Kreiss and Qiger [6].

In order to approxinmate (1.1) we introduce a grid function
Vv<t) = v(xv,t), %, =Vh, h >0, v=0 +1 +2,.. and

t =0, k, 2k,...,k > 0. W wite our approxinations in the form

P
(1.3) vv(t+k) = jgo ijv(t-jk)

wher e
> 1
Qj =£=Z_w AzE and Evv = Ve

Associated with (1.3) is the characteristic equation

P, . .
(1.4) tp = WP -y and)e = 0
j=0"

wher e @J. = 7 Aleilg, ¢ = on. Equation (1.4) is obtained from (1.3)

f=-o :
by letting vix,t) = nt/kel‘m(cp(w). G, as defined by (L.4), is often

call ed the symbol of (1.3).

Definition 1.1. The approximtion (1.3) is said to be accurate of order

(ql,q?) for solutions u of (1.1) if there is a function C(t) which
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i s bounded on every finite interval [0,T] such that, for all

sufficiently small h and k,

P q
1.5)  fubotr) - § Qubot-gol, < k() L, %2
o a 2

If a; = a, = q we say the approximation (1.3) is accurate of order

q.

W can now introduce Kreiss' definition of dissipativity [6, 8].

Definition 1.2. If the solutions " of (1.5) satisfy

(1.6) g < 1 - 6|§|2r for O <_|§| <m

for sone 8 > 0 and natural number r, then the approximtion (1.3)
is said to be dissipative of order 2r.
One inportant consequence of dissipativity is the theorem of Kreiss

and Parlett [6, 8].

Theorem 1.1. Let (1.3) be accurate of order 2m-2 or 2m-1 and

di ssipative of order 2m, then (1.3) is strictly stable.

Recal | that strict stability inplies that the {,-norm of the approx-
imation, as a function of t, does not grow faster than the L, -norm

of the solution.

The Lax-\Wendroff approximtion for (1.1) is

2
K
(1.7) v, (1) = v, (t) + ®aD v, (t) + S 4®D D v (t)



Dv,(t) = (2n) 7 (v, (t)-v, , (£))
D+vv(t) = h_l(vv+l(t)—vv(t))
D_vv(t) = h_l(vv(t)-vv_l(t) .

This nmethod is well known to be accurate of order 2 and dissipative
of order 4if A = k/h satisfies 0 < a max |uj| < 1. The
J

characteristic equation (1.5 can be witten as

: . 2 .
(1.8) ny =1 * iy sin £ - 27\2@ sin“(¢/2) , § =1,2,...,n

SO

(1.9) Iuj|2 =1 - ’+7\2u§(1-7\2u§) Si nug/e =1 - mJ,oaLL

: 22

where we let o = sin &/2 and m, = WA

yields an inequality of the form(1.6) if 0 < A max lujl <lbutitis
3

more convenient to leave it in this form for our purposes. MNote that the

(1-7\2u§)- This equality

my are functions of the iy and that the "anount of dissipation", the
amount |ujl differs from1, is dependent on the eigenvalues of A The
dissipation is greatest for internediate val ues of |ujl and | east

for the smallest and greatest val ues of luj |. See Fig. 1 where we
plot Iu.jl as a function of g, = N, for several values of &. The
fact that the dissipation vanishes for all o if Mj =0 is often

troubl esone in nonlinear calculations. The onset of nonlinear



instability is often attributed to these facts, this has been
di scussed by Richtnyer and Mrton [8 ] beginning on page 334, and by
Turkel [ 91. It is also often true that the fastest noving waves
associated with the | argest val ues oflpjl are often of mnimal interest,
contain the greatest observational error, and are contaminated by the
nost conputational error. In such situations it would be appropriate
to dissipate these modes nost rapidly rather than |east rapidly.
Further, there is generally no reason why internediate nmodes shoul d be
singled out for nost rapid destruction. It is this aspect of Lax-
wendroff nethods that we shall discuss. Qur subsequent nodifications
will be directed to the equilibration of dissipativity over the nodes
(val ues of “j) or, alternatively, to produce decay of |uj| as a
function of |“j"

Bef ore proceeding we shall introduce the two-step Lax-Wendrof f
met hod and the MacCormack method which are also dissipative and behave

simlarly. The two-step Lax-\Wendroff nethod can be witten as

— vv+1/2(t) * Vv-I/2(t) k h
( ) Ve 2 ) ADO(§)Vv(t)
1.10

vv(t+k) = vv(t) + kADO(g)VV
where D G)v, (t) = 07 vy, (8)-vy ) (1)),

Qur introduction of indices of the formv+ 1/2 deviates from our
earlier definition of the grid function but the nmeaning should be clear.
The characteristic equation for (1.10) is just (1.8) in the linear

case we are considering and the equality (1.9) holds in this case too

In this situation (1.10) is sinply a rearrangement of (1.7). However
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our nodifications of (1.10) will not be the sane as those of (1.7) since

we may want to take advantage of the separate steps and inplenent them

The MacCormack nethod can be witten

in a two-step manner.

v, = v, (t) + kAD v, (t)

(1.11) _
v. () + v
Vv(t+k) = 2—

where the VV are internediate values. The characteristic equation

can he witten

(1.12) e o= /2 + T+ Ei%ujw/l-ae T + emjocET

where T = 1/2 + i?\“j—\/l-ocg a - Mjoc2

nj can again be seen to satisfy (1.8) and (1.9). Again, in this

sinple situation, this is a rearrangenent of (1.7) but our nodifications

will again be different since we will inplenent themin a two-step

manner.




2. The Modified Mthods and Their Properties

A nondi ssi pative nethod |ike the |eap-frog method,

vv(t+k) = vv('t—k) + EKADovv(t) ,

can be nodified to yield a dissipative nethod by adding dissipative
terns, e.g.
hh )2

vv(t+k) = vv(t-k) + 2KAD v (t) - « T (p,D

y vv(t-k)

is accurate of order 2 and di ssipative of order 4 for
0<e<l, Al <1-e[6]. The eigenvalues of the synbol of this

met hod satisfy

|nj|2 =1 - ¢ sinu(g)

so the anount of dissipation, the magnitude of 6 in (1.6), can be
controlled by varying e.

W can simlarly nodify the Lax-Wendroff nethods by adding terns--
we can reduce the anount of dissipation by adding accretive terns.
Such terms nust be of the order of the truncation error of the nethod
so that they do not constitute a nodification of the differentia
equation and do not affect the order of accuracy and the rate of
convergence of the nethod

W first consider a nodification of the Lax-Wendroff nethod (1.7).
Let M, M, and M3 be arbitrary matrices which are diagonalizable

by the sane transformation which diagonalizes A W consider
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k2 2
v, (t+k) = (I + KAD + =5 A°D,D )v, (&) +

(2.1)
L 3 3
(e, & (0,0 )2+, = 1D + 8 o 0o v, (¢)

The synbol of (2.1) is

I
G=1 + 2iMgVi-of - 2328%F + Mo

+ M,l;_;(-i“\/l-oze @ + oc”) +M§(—iw/1-oz2 @ - o)

(2.2)

where o = sin &/2 and A = k/h. W also have

Re(G) = 1 - 27°A°F + (, + M - M3)oclL ,

Im(G) ='\/l-oz2 a@eM - (M2 + Mj)ocg) ,

and
2 _ by 22
}tj‘ =1 + [’-D\Ju_, UA [ (-’-Fmgj-’-l-mjj)')\uj
fom . -om . - 2om . o+
15 7 P25 T M35
22
(2.3) [(-hmlj—hmej+hm5j)?\ uy (hm2j+l+m3J. )N_LJ.

2 2 .6
+mS. +om.m.. + m,.la +
J 33 2] 33]

2 8
[y 5 + (2mpy-2my s Jmy 5 - by ym T



where the mzj's are the diagonal entries which result when M/z is

transformed to diagonal formwth A
W now define the phase error'per tine step, E  of an approxi-

mation as (see [ 91):
E = (approximations phase speed - solutions 'phase speed) X k

Then it follows that [9 ]

(2.4) E = arctan ((Im G)(Re @)1) - aat.

The conponents of E = diag (el,---,en) for our diagonalized system are

33

- - - 3 4 0(g”) .

= L
(2.5) eJ. = 3L (LN

W now consider two specific nodifications. Let M, = M3 = 0.

[f we take
(2.6) oM, = [-eI + 1A% (1-3%82) ]

- then (2.3) becones

- 2 2 -
ms o= e+ ll-ﬁj (l—ﬁj) and By = Aup -
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VW have thus cancelled out the ., dependence of the coefficient
of a)f Ve denonstrate the effect of this in Figures 2a-2d where
we pl ot !njl as a function of p, for several values of ¢ and e.
For snaller values of ¢ the dissipation is reduced and nearly constant
for a considerably |arger neighborhood of g = 0. For larger values of
¢ the dissipation does not vanish for all €& in the nei ghborhood of
p=0.

W next consider a nodification which introduces a quadratic decay

in |nj| as a function of .. W t ake
(2.8) oMy = [- 53°A% + UA% (T-22A%) ]

Equation (2.3) is now

2 _ . 2 2.2 2 by
(2.9) .kj\ =1 [653+l{»mlja Bj I 5 la
wher e
PO TY- DI
m Be + haj(l 53)

W denonstrate the effect of this nodification in Figures 3a-3d
where we pl ot Iujl as a function of By for several values of &
and & as before.

The stability of the nodified methods given in (2.6) and (2.9)
follows fromour general results in Section 3. W will state the
particular form those results take for these methods here. The
nodi fication (2.6) is strictly stable if

(2.10) 0<e< u(l-lsmaxl”)
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where B is the value of g, = A with |argest nagnitude. The
max T H

J
modi fication (2.9) is strictly stable if

lMl—lﬁmxll‘)

l2

(2.11) 0<d< '
Bma

We coul d have introduced a term-87A in (2.9) instead of the term
-53°4° and this would result in a linear decay of Iujlz with respect
to Bj in the oﬁ term However, the stability analysis corresponding
to (2.11) vould yield 0 < sg, < u(l-"sg) for j = 1,2,. . .,n S0
that 6 would have to be chosen to agree in sign with %J,i.e.,
8I would need to be replaced by a matrix which, after transformation
to diagonal form would yield a matrix with entries + & in appro-
priate places to match up with the e If all the » are of the
same sign this 'poses no problem however, if they are of both signs
this does not yield a practical procedure in general

W now note that the first termof our expression (2.5) for the
phase error is not affected by our choice of M, so M, and M5
can be chosen as in Gottlieb and Turkel [2 ] to reduce the phase error
to 0(55). However, these nodifications do affect our expression for
Injl2 given in (2.3) and the results (2.10) and (2.11) no |onger hol d.
(2.3) nust be reexam ned when nonzero M, and N% are used to
establish the stability bounds for €, 8, IBmaxl’ ete.

W now consi der nodifications of the two-step Lax-Wendroff method.
W begin by noting that the nodifications of the Lax-Wndroff method
whi ch we have already discussed can all be used in the second step of

the two-step nmethod as given in (1.10). Since the symbol is unchanged
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all our previous results hold for such nodifications

modi fications to the first step of (1.10) as given by

vv+l/2(t)2+ vv_l/g(t) . % D

(2.12)

v(tm)-v(t)+-um(§w +-€B%hD (t)
The synbol for this nethod is
G=1+ 2?\Aioz[‘\/l-o¢2 + i(Ma + Mf%—)] + M2c>c1L
_ 222
(2.13) Re(G) = 1 - 2A"A%07 - MMa b Mzau ,
Im(G) = 27\AOC'\/1-7062 )
and
IM.J.I2 =1 + [4A ll- h.-ll?\ p -2111 7\I~l +2m2 ]Qg
3 5 2%, 6
(2.14) - [-umljx o hm x ]

(2. 15) e. =% ()\3@-7\“.)53 0(e”) .

W agai n note that e, I's not changed through terms of order

13

\\& next consi der
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and that the *phase error nodification schemes of CGottlieb and Turkel
can again be applied with our nodifications in a straightforward
manner

[f we choose
(2.16) oMy = WA (T-328%) + BMA

and Mé = 0 we have

2 = 2 2 bl
|uj| =1 - {5Bj - 4m.LjB,]3'ae - mljajoc Ja

(2.17)

om

wi th 1) = op, - be, (1-3?)

Notice that in this case we have a quadratic decay of ]nj| Wt h Bj
in the o% term  thus this nethod is simlar to our earlier nodifi-
cation (2.8). In fact, (2.17) is identical to (2.9). Cur remarks
followng (2.9) about linear decay nodifications also apply here.

The stability of the nodification (2.16) again follows from our
general results in Section 3. This nethod is stable if the inequality
(2.11) is satisfied.

Ve now turn to nodifications of the MacCormack scheme. For the
same reason as before for the two-step Lax-\Vendroff nethod, we only
consi der nodifications to the first step of (1.11). Mdifications to

the second step will be the same as those for Lax-Wendroff. W consider
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3.2
h D+D ]Vv(t> )

v = + +
vv [ | kA,D+ Ml

(2.18)

vv(t) + vv

The symbol for this nethod is

S}

(2.19) G=g+T+ 0iM V1-of T + 2MGET
wher e
A\
T= %Jr M V1-02 - Mdf - hiMloP Vi-of + uMlah* ,
Re(g) = 1 + az(-2?\2A2)+oc4(hMl + 87\AM1) s
m(G) = aW/,l-a?,[EAA + o?(-hMl)],
and
. L L 22 ~ )
’nj‘z -1+ [UA My " LA b3 + bmlj]a
33 22 2,6
(2.20) + [-32mlj7\ hy -16mlj7\ o +16m1j?\uj +l6m1j]o¢
s} 2 8

. ) o ‘
+ [Emlin uy * 6umlj7\pj]oc
The phase error is now given by

(2.20) e = 7 O] - My - 3w )E o) .

Notice that the O(§3) term of the phase error is affected by our

choi ce of M, this time. Sinultaneous nodifications to inprove the

phase error are not so easy to carry out for this nethod.
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[f we choose
(2.22) &M, = W\"A% (1-3°A%) - El

we have

|%j|2 =1 - eocl+ + O(oc6)

W illustrate the effect of this nodification in Figures ka-kd where
we again plot |nj| as a function of By for selected values of ¢ and e.

W& can al so choose
(2.23) e = 1222 (1-2242) - &3%a2

to introduce a quadratic decay so that

1P = 1 - %0 + 0)
J J

W have also plotted this in Figures 5a-54.

The situation here is unlike that arising from our previous nodifi-
cations. Previously the stability limt for Igmaxl has increased as «
decreased to zero and, in fact, approached 1 as ¢ tended to zero.

Here the stability limt tends to zero as ¢ tends to zero. From the
plots in Figures ka-kd it seens that we shoul d use ¢ somewhere between

0.1 and 2 in order to have a reasonable stability limt for The

|Bma.x|'
same coment applies to the MacCormack scheme with quadratic decay.
The case shown in Fig. 4b seens to achieve our goal of equilibration

quite well but increases the dissipation.

In sunmary We remark that nodifications of the second step anal ogous
to those used with Lax-\Wendroff are nuch nore successful for both the two-
step Lax-\Wendroff and the MacCornack nethods
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3. Stability of the Mdified Mthods

First of all, note that all the unnmodified methods we have consi dered,
namely, the one-step Lax-\Wendroff, the two-step Lax-Wendroff and the
MacCormack schenmes, have the sane "5 and are all dissipative of order
L (and therefore strictly stable by Theorem 1.1) if IBmaXI < 1. For
each of our nodified schemes, we can wite the nodified ni in the

followng form

2 L
(5'1) Kj =1-0 F(BJ)InlJ)mQJJm5J)a2)

By Theorem 1.1, our nodified schemes will be strictly stable if, for each j,
(3.2) F(B 052) 0 for onge[o 1]
' 3 ey sy ’

Since ma ——-LE—[— T, (3.2) will inply (1.6).

x =
o< fel <7 |sin 3]

Usual l'y, the mzj's are functions of By Hence (3.2) defines a
stability limt for By It is difficult to deternmine this stability
"limt for general functions mﬂj(.Bj). However, for specific functions
mﬂj(Bj ), this stability linmt can always be determned nunerically as in
our -plots of sl

Consider the nodified one-step Lax-\Wendroff scheme (2.1) with
M, = M5 = 0. The followi ng theoremgives the conditions which the mﬂj's

will have to satisfy in order to guarantee stability.

Theorem 3.1.  Consider the scheme (2.1) with M, = My = 0.
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2 2 2 .
(3.3) I |g__ | <1 and -2(1-63) < m, < eg_.(}-s_.)J for all | ,

then the resulting scheme is dissipative of order 4 and hence strictly

stable by Theorem 1.1.

Proof: Condition (3.2) inplies that the following has to be satisfied:

2 2
(3.4) T = -mijo}‘ +omy (hB?aQ-Q) # 4g3(1-83) >0 for all .

Since Fis a quadratic in ) 5 with negative |eading coefficients,

(3.4) will be satisfied if (see Fig. 6), for every j,
(1) F has real roots, say mL(ch) and ms(oee) for the |arger
and the smaller root, respectively (considered as functions of oae), and
2

(3.5 ) (ii) mgld®) < ms < mpla®) for all ofel0,1].

TN




mL(ozg) =[-1 + 26?&2 +'\/l + haufsgj "..hOﬁBEﬁ ]/oclL , if oz2 £0
- . 2 _
253(1 5J.> if o =0

(3.6)
mg (o) =[-1 260" Vs l*o‘hbfé A VAN T I S X

J

= undefined it o =0
Hence the roots will be real if
1+ hauai - ha25§> 0 for all j and for all aee[O,l]
or if
2 1 . o
BT < ————— for all j and for all. o e[0,1]
I (17 )
or if
(3.7) 65 < min —> -1  for all j,
P <1 bdf (107
e, if | __|<1

max

~Note that (3.7) is just the unnodified stability linit. Now, by

straightforward differentiation, we can show that

2

) dms(a ) dm. () 5 _
(3.8) " > 0 and : > 0 for o“e[0,1] if |Bmax‘ cl

Hence, (3.5) will be satisfied if

n

-2(1—&?) = ms(l) < my ;< M (O 26?(1—6?) fbr all j

which is (3.3). O
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Corollary 3.1: The nodification (2.6) is strictly stable if (2.10) is

satisfied.

Proof: By the previous theorem the following has to be satisfied:

-2(1-5?) < - 25 + 25? (1-5?) < 25?(1-5?) for all j

whi ch reduces to
(3.9) h(l-agf) > ¢>0 for all j

Note that (3.9) automatically inplies lamaxl <1l Aso, (2.10) easily

follows from-(3.9). [

Corol lary 3.2: The nodification (2.9) is strictly stable if (2.11) is

satisfied.

Proof: Follows imediately from Theorem 3.1. []

Next, consider the two-step Lax-Wendroff nodification (2.12) with
M, = 0. The F we obtain in this case is very sinmlar to that which
we obtained for the Lax-Wendroff nethod, (3.%). W only need to replace
m) 5 in (3.4) by my;B; 1O obtain the correct F. Thus, we easily

obtain the follow ng theorem
Theorem 3.2: Consider the schene (2.12) with M, = 0. If

B! <1

(3.10)

and —25?(1-5?) < my By < 2(1-5?) for all j ,

then the resulting scheme is dissipative of order 4 and hence strictly

20



stable by Theorem 1.1.

Corollary 3.3: Te nodification (2.16) is strictly stable if (2.11) is

satisfied.

A stability analysis is nore difficult for nodifications of the
first step of the MacCormack method. No condition anal ogous to the
condition (3.8 ) holds in this case. W& have not been able to obtain
clean conditions like those in Theorens 3.1 and 3.2 for the MacCormack
scheme.  However, given a specific M, one can easily determne the
stability intervalll by exam ning |n34 as a function of Bf'

W finally remark that the previous sufficient conditions for
stability are all necessary if we allow equality. This easily follows

from the von Neumann necessary condition [6,8].
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4, The Initial Boundarv Val ue Probl em

W& now consi der the problem of approxinmating equation (1.1) on a
bounded x- interval a < x <b. Since the nodified nethods we have
di scussed have larger stencils (involve nmore neighboring points) than
their unnmodified counterparts there are nore points at the ends of the
interval [a,b] where these approxinations cannot be used than there
are with the original methods. However, this problemis easily avoided.
Stabl e approximations for the initial boundary-val ue problem for
the Lax-Wendroff, two-step Lax-Wendroff, and MacCormack methods are
di scussed by Custaffson, et. al. [4 ] and by Gottlieb and Turkel [3].

W will base our methods on these

Assunpt i ons

W assune that boundary conditions are given at the points a
and b which yield a well posed problem for (1.1), see Kreiss [5 ].
W further assune that stable approximations for this problemare known
for the underlying nethod that we are nodifying, see [3, 4] for
candi dates, and finally that the mesh ratio A and nodification
paraneters ¢, 6, etc., are chosen so that both the nodified and un-
modi fi ed nethods are stable for the Cauchy problem

W now form our approximations for the initial boundary-val ue
probl em by coupling the unnodified method with its stable boundary
conditions to the nodified nethod in the nei ghborhood of the boundary

points a and b in the manner discussed by Qiger [7].

The Met hods

W will use the desired nodified nethod at all interior net points
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where it can be used, we then drop the modification (Set M= M, = M3 = 0)
and use the underlying method at all those points in the nei ghborhood

of a and b where it can be used (at nbst one or two points at each
end), the remaining points (only a ahd b) are then treated using

the stable boundary approximation.

Theorem 4.1, The nethods proposed above are stable in the sense of

Gustaffson, et. al. [4] (definition 3.3) if our assunptions hold.

Proof: This result follows immediately from Theorem 2.k of [7].00
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