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ABSTRACT

Lax-Wendroff methods for hyperbolic systems have two characteristics

which are sometimes troublesome. They are sametimes too dissipative--

they may smooth the solution excessively--and their dissipative behavior

does not affect all modes of the solution equally. Both of these

difficulties can be remedied by adding properly chosen accretive terms.

We develop modifications of the Lax-Wendroff method which equilibrate

the dissipativity over the fundamental modes of the solution and allow

the magnitude of the dissipation to be controlled. We show that these

methods are stable for the mixed initial boundary value problem and

develop analogous formulations for the two-step Lax-Wendroff and

MacCormack  methods.
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1. Introduction

We shall consider approximations for hyperbolic systems of partial

differential equations. We begin b‘y considering the Cauchy problem for

(1.1) ut = Aux , -=)<x<a, tzo

with initial data

(1.2) u(x,o) = uo(x) I -~<X<~ )
--

where u is a vector of length n and A is an nXn matrix

with real eigenvalues. We assume that A has a complete set of

eigenvectors and can therefore be transformed to diagonal form. We

will denote the eigenvalues of A by p
1' n'l �* ,p If A is a function

of x,t we assume that this transformation can be done smoothly.

We shall discuss the well-known Lax-Wendroff method, several of

its varients, and modifications thereof. Discussions of these methods

and modifications of them which improve their phase errors and stability

regions have been carried out by Turkel [Y], Gottlieb and Turkel [2],

and Eilon, Gottlieb and Zwas [l]. We are going to discuss the

dissipative properties of these approximations and modifications of

them which improve their dissipative properties. We will also comment

on the combination of our modifications with some of those of the

previously mentioned authors. Recently, Turkel [IO] has discussed



a hybrid leap-frog--Lax Wendroff method which is less

dissipative than the Lax-Wendroff method but, like the Lax-Wendroff

method, has dissipation which varies radically for the various modes

of the solution.

To make this more precise we now introduce some notation and

definitions which are discussed in Richtmyer and Morton [ 81 and

K.reiss and Oliger [6].

In order to approximate (1.1) we introduce a grid function

v,(t) = v(xv,tL y, = Vh, h > 0, v = 0, + 1, + 2,... and

t = 0, k, 2k,...,k > 0. We write our approximations in the form

v,(t+k) = j=. jVv(t-jk); Q

where

Qj = ; A$
&=-L⌧

and Evv = v~+~  l

Associated with (1.3) is the characteristic equation

(1.4) Gcp = (x
p+l p Fx -

- c QjnJ)Ip = 0
j=O

where t Aeeieg, t = ah. Equation (1.4) is obtained fram (1.3)
a=-co

by letting v(x,t> = u
t/keiclm

q&d. G, as defined by (1.41, is often

called the symbol of (1.3>*

Definition 1.1. The approximation (1.3) is said to be accurate of order

(91’92) for solutions u of (1.1) if there is a function C(t) which
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is bounded on every finite interval bT] such that, for all

sufficiently small h and k,

P
(1.5) I(u(x,t+k) - c Qju(x,t-jk)/lp  < kC!t)(h +kql 92)

l

j = O 2-

If q1 = % = q we say the approximation (1.3) is accurate of order

cl-

We can now introduce Weiss ' definition of dissipativity [6, 81.

Definition 1.2. If the solutions u.
J

of (1.5) satisfy

(1.6) I I < 1 - 61S12r for 0 < 161 < 77
'j - - -

for some 8 > 0 and natural number r, then the approximation (1,3)

is said to be dissipative of order 2r.

One important consequence of dissipativity is the theorem of Kreiss

and Parlett [6, 81.

Theorem 1.1. Let (1.3) be accurate of order 2m-2 or 2m-1 and

dissipative of order 2m, then (1.3) is strictly stable. -

Recall that strict stability implies that the R2-norm of the approx-

imation, as a function of t, does not grow faster than the $-norm

of the solution.

The Lax-Wendroff approximation for (1.1) is

(1.7) vV
(t+k) = vv

k2
(t) + kADovv(t)  + 2 A2D+D-vv(t)



where

Dovv(t) = (2h)-1(vv+l(t)-vv-l(t))

D+vv(t) = h-l(vv+l(t)-vv(t))

D-v+) = h%,(t)-v,_,(t)  .

This method is well known to be accurate of order 2 and dissipative

of order 4 if A = k/h satisfies 0 < h max 1~~1 < 1. The
3

characteristic equation (1.5) can be written as

(1.8) nj = 1 + ihpj sin k - 2A2p: sin2(s/2) Y

so

(1.9) Itc.12 = 1 - 4h2+-h2p7 sin4 z 1
J

E/2

j = 1,2,...,n

4ma
J

where we let a = sin E/2 and m.
J
= 4A2+-h2$. This equality

yields an inequality of the form (1.6) if 0 < h max )vjI < 1 but it is
- 3

more convenient to leave it in this form for our purposes. Note that the

mJ
are functions of the v.

J
and that the "amount of dissipation", the

amount IHjI differs from 1, is dependent on the eigenmlues  of A. The

dissipation is greatest for intermediate values of IPjI and least

for the smallest and greatest values of IWj 1. See Fig. 1 where we

plot lHjI as a function of p. = hp. for several values of e. The
J J

fact that the dissipation vanishes for all a if Apj = 0 is often

troublesome in nonlinear calculations. The onset of nonlinear

5



instability is often attributed to these facts, this has been

discussed by Richtmyer and Morton [8 ] beginning on page 334, and by

Turkel [ 9 1. It is also often true that the fastest moving waves

associated with the largest values of lpj I are often of minimal interest,

contain the greatest observational error, and are contaminated by the

most computational error. In such situations it would be appropriate

to dissipate these modes most rapidly rather than least rapidly.

Further, there is generally no reason why intermediate modes should be

singled out for most rapid destruction. It is this aspect of Lax-

tiendroff methods that we shall discuss. Our subsequent modifications

will be directed to the equilibration of dissipativity over the modes

(values of pj) or, alternatively, to produce decay of /njI as a

function of IV
j I*

Before proceeding we shall introduce the two-step Lax-Wendroff

method and the MacCormack method which are also dissipative and behave

similarly. The two-step Lax-Wendroff method can be written as

vv+1/2 (t> + vv-l/2 w-
vv = 2 + 5 ADO(g)+)

(1.10)

vv(t+k) = v,(t) + kAD,@?$

where Dot&,(t) = h-1(vv+l,2(t)-vv-l,2(t)).

Our introduction of indices of the form V + l/2 deviates from our

earlier definition of the grid function but the meaning should be clear.

The characteristic equation for (1.10) is just (1.8) in the linear

case we are considering and the equality (1.9) holds in this case too.

In this situation (1.10) is simply a rearrangement of (1.7). However,
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our modifications of (1.10) will not be the same as those of (1.7) since

we may want to take advantage of the separate ste*ps and implement them

in a two-step manner. The MacCormack method can be written

(1.11)

-
where the v

V
are intermediate values. The characteristic equation

-

vV
= v,(t) + kAD+v,,(t)

vv(t+k) =
v,(t) + vv

2
+ 5 AD-vv

.
can be written

(1.12) K. = l/2 + T + 2ihp -41-a2'T + 2A a2T
J 3 5

where T = l/2 + ihp
j

Jl-Q!2‘a - APjc⌧2  l

The ⌧ j can again be seen to satisfy (1.8) and (1.9). Again, in this

simple situation, this is a rearrangement of (1.7) but our modifications

will again be different since we will implement them in a two-step
a

manner.



2. The Modified Methods and Their Properties

A nondissipative method like the leap-frog method,

vV
(t+k) = vv (t-k) + 2kADovv(t) ,

can be modified to yield a dissipative method by adding dissipative

terms, e.g.,

v,(t+k) h4= v,,(t-k) + 2kADovv(t) - E g (D+D )2vv(t-k)

--
is accurate of order 2 and dissipative of order 4 for

o<E<~, lhl~l-c[61. The eigenvalues of the symbol of this

method satisfy

I I 2'3
=I- c sin4(%)

2

so the amount of dissipation, the magnitude of 6 in (1.6),  can be

controlled by varying E.

We can similarly modify the Lax-Wendroff methods by adding terms--

we can reduce the amount of dissipation by adding accretive terms.

Such terms must be of the order of the truncation error of the method

so that they do not constitute a modification of the differential

equation and do not affect the order of accuracy and the rate of

convergence of the method.

We first consider a modification of the Lax-Wendroff method (1.7).

Let Ml, M2 and 5 be arbitrary matrices which are diagonalizable

by the same transformation which diagonalizes A. We consider
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(2.1)

v,(t+k)
k2

= (I + kAD + 2 A2D+D )v,(t) +
0

(M h4 h3 h3
1 z (D+D J2 + M2 8 DfD + 3 -g- DFD+)v,(t) .

The symbol of (2.1) is

G = 1 + 2iN&J
4

l-a2'- 2h2A2a2 + Mla

(2.2)

+ M--(-i -dzd - a4)

where a = sin 9/2 and A = k/h.

Re(G) = 1 - 2h2A2a2 +

Im(G) =&7&hA

and

I I

2e - 1 + [4h4p4-4A2p2  +

3 - 3 ii

(2.3)

We also have

(Ml + M2 - M3)cx4 Y

- ‘% + M,,,2, ,

+ 2mlj - 2m2j - 2"sj
4la +

[(-4mlj-4%j+4m3j)A2p!j  + (4%j+4m3j)hpj

+ 2
%j

+2
"5jm2j

+ mFjla6 +

lb2lj
+ (2m2j-2m3j )mlj - 4msj~jl~8
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where the m
Rj

's are the diagonal entries which result when M
R

is

transformed to diagonal form with A.

We now define the phase error'per time step, E, of an approxi-

mation as (see [ 91):

E = (approximations phase speed - solutions 'phase speed) X k

Then it follows that [9 ]

(2.4) E = arctan ((Im G)(Re G)-l) - hA! l

The components of E = diag (el,..., en) for our diagonalized system are

(2.5) e. =-
J

24 (4h3u3-4h~.-3m2j-3$j)17  + O(ti5) '
J

We now consider two specific modifications. Let
K=M3=O*

If we take

a (2.6)
2Ml

= [+I + 4h2A2(I-h2A2)]

- then (2.3) becomes

(2.7) I IH 2=1 2 2 2  44
j - [ E+4m

15
.Ol pj-m .O!

15
ICX

where

mlj = -E + 4&3j)2 and @.=Ak. .
J J
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We have thus cancelled out the -I; dependence of the coefficient

4
of a . We demonstrate the effect of this in Figures 2a-2d where

we plot luj) as a function of p.
J

for several values of t and E.

For smaller values of E the dissipation is reduced and nearly constant

for a considerably larger neighborhood of !3 = 0. For larger values of

E the dissipation does not vanish for all 5 in the neighborhood of

p = 0.

We next consider a modification which introduces a quadratic decay

in I I
2

as a function of 1.. We take
J

(2.8) 2M = [ Sh2A2 + 4A2A51-h2A2)1
1 -

.

Equation (2.3) is now

(2.9) I IN 2
j

=l - [~p~+4mlj&3~-m:j,41a4

where

We demonstrate the effect of this modification in Figures 3a-3d

where we plot 1~~1 as a function of p.
J

for several values of 5
e

and 6 as before.

The stability of the modified methods given in (2.6) and (2.9)

follows from our general results in Section 3. We will state the

particular form those results take for these methods here. The

modification (2.6) is strictly stable if

(2.10) 0 < E < 4b/pmJ4)
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where Bmax is the value of @. = hp.
J 3

with largest magnitude. The

modification (2.9) is strictly stable if

(2.11)

. .

0<6<
4(1-lf&J4)

lPrnax'
2 l

We could have introduced a term -6hA in (2.9) instead of the term

-Sh2A2 and this would result in a linear decay of 1~~1 2 with respect

to p.
4in the a term.

J
However, the stability analysis corresponding

4to (2.11) would yield 0 < Bpj < 4(l-pj) for j = 1,2, . . ..n so

that 6 would have to be chosen to agree in sign with p., i.e.,
3

61 would need to be replaced by a matrix which, after transformation

to diagonal form, would yield a matrix with entries f 6 in appro-

priate places to match up with the CL.. If all the
J 5

are of the

same sign this 'poses no problem; however, if they are of both signs

this does not yield a practical procedure in general.

We now note that the first term of our expression (2.5) for the

phase error is not affected by our choice of Ml, so M2 and
5

can be chosen as in Gottlieb and Turkel [2 ] to reduce the ,phase error

to o(t5). However, these modifications do affect our expression for

- I IH 23 given in (2.3) and the results (2.10) and (2.11) no longer hold.

(2.3) must be reexamined when nonzero % and M
3

are used to

establish the stability bounds for EY 6, Ipmml, etc.
We now consider modifications of the two-step Lax-Wendroff method.

We begin by noting that the modifications of the Lax-Wendroff method

which we have already discussed can all be used in the second steep of

the two-step method as given in (1.10). Since the symbol is unchanged



all our previous results hold for such modifications. We next consider

modifications to the first step of (1.10) as given by

vV+l/26) +v
y = V-l/2(t)

V 2 + g Do@$t) - $ M$J~D;($+)

(2.12)

vY(t+k) = v,(t) + kADo(& i- $ lY$h4D;($)vv(t)

The symbol for this method is

--
G = 1 + 2-)\Aia[7 c? 41-a + i(hAa + Ml ,)I + %a Y

(2.13) Re(G) 1 2h2A2a2 MIAAa 4 4= - -
+ M$x Y

u(G) = 2hAa7/k12‘ Y

and

- (2.14)

I Iu 2j = 1 + [4h4p4 4A2p2 2mJ’ f lj j+2m2jAu 4ICI

+ 22 64m2jh  pjla

2
[-m

2
.A p.

2 8
-

15 J
+ 211$jmljhpj-%dj  la l

The phase error is now given by

(2.15) ej = g (A3p;-Apj)53  + ok5) l

We again note that e.
3

is not changed through terms of order e3
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and that the *phase error modification schemes of Gottlieb and Turkel

can again be applied with our modifications in a straightforward

manner.

If we choose

(2.16) 2
%

= 4U(I-h2A2) + ml

and
%

= 0 we have

I
'j

I21 = - 4m -
13

p3a2
3

m2
ki

f3
j
a4ja4

(2.17) --

with 2mlj =6p. -
3

.
Notice that in this case we have a quadratic decay of IHj I with @.

3
4in the a term. Thus, this method is similar to our earlier modifi-

cation (2.8). In fact, (2.17) is identical to (2.9). Cur remarks

following (2.9) about linear decay modifications also apply here.

The stability of the modification (2.16) again follows fram our

general results in Section 3. This method is stable if the inequality

(2.11) is satisfied.

We now turn to modifications of the MacCormack scheme. For the

same reason as before for the two-step Lax-Wendroff method, we only

consider modifications to the first step of (1.11). Modifications to

the second step will be the ssme as those for Lax-Wendroff. We consider

14



(2.18)

-
vv = [I + k.AD+ + Mlh3DTD Iv,(t) Y

vv(t+k) =
v,(t) + Yv

2
+;A,_, .

The symbpl for this method is

(2.19)

where

and

(2.20)

a

\
G=2' -I- T + 2immdl-a2 T + 2AQ2T

T = -d
-F1-a - hpo12 - 4iMp?&&- 4Mla4 ,

Re(G) = 1 + a2(-2h2A2)+a4(4Ml f 8m1) Y
\

Im(G) = a-d 1-a2' [2M + cx2(-4Ml)1  ,

I
"3

I 2 - - 1 + [4A4p4
3

+ [-32mlj~3p? -Xmlj~2p; +16yjhpj +16~;jla6
J

8+ ' 2[64m-.A15 1F + 64mfjApjla

The phase error is now given by

(2.21) ej = i h3pz - hp. - 3mlj)f3  + O(e5) .J

Notice that the O(s3 ) term of the phase error is affected by our

choice of Ml this time. Simultaneous modifications to improve the

phase error are not so easy to carry out for this method.
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If we choose

(2.22) 8M - 4h2A2(I-h2A2)
1- - EI

we have . .

I I 2 4
2 =l- Ea 6+o(a >

We illustrate the effect of this modification in Figures 4a-4d where

we again plot I I‘3 as a function of (3.
J

for selected values of E and E.

We can also choose

(2.23) 8?l = 4h2A2(I-h2A2) - Sh2A2

to introduce a quadratic decay so that

We have also plotted this in Figures 5a-5d.

The situation here is unlike that arising fram our previous modifi-

cations. Previously the stability limit for
'@maxI has increased as E

decreased to zero and, in fact, approached 1 as E tended to zero.

Here the stability limit tends to zero as E tends to zero. From the

plots in Figures 4a-4d it seems that we should use E somewhere between

0.1 and 2 in order to have a reasonable stability limit for
lPmax' . The

same comment applies to the MacCormack scheme with quadratic decay.

The case shown in Fig. 4b seems to achieve our goal of equilibration

quite well but increases the dissipation.

In summary we remark that modifications of the second step analogous

to those used with Lax-Wendroff are much more successful for both the two-

step Lax-Wendroff and the MacCormack methods.
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I
3. Stability of the Modified Methods

First of all, note that all the unmodified methods we have considered,

namely, the one-step Lax-Wendroff, the two-step Lax-Wendroff and the

MacCormack schemes, have the same
9

and are all dissipative of order

4 (and therefore strictly stable by Theorem 1.1) if IB,,I < 1. For
2

each of our modified schemes, we can write the modified xc. in the
J

following form:

(3.1) K2

J

=l-
a4F(pj~~jYm~jYm~jYa21

By Theorem 1.1, our modified schemes will be strictly stable if, for each j,

‘(3.2) F(Bj,yjYm2jYmsj,a2)  > O for 02q0,1] .

Since (3.2) will imply (1.6).

Usually, the mRj's are functions of p..
J

Hence (3.2) defines a

stability limit for p..
3

It is difficult to determine this stability

'limit for general functions mQj(pj). However, for specific functions

mJj(Bj >Y this stability limit can always be determined numerically as in

our -plots of I I
�j l

Consider the modified one-step Lax-Wendroff scheme (2.1) with

J$ = M3 = 0. The following theorem gives the conditions which the mQjfs

will have to satisfy in order to guarantee stability.

Theorem 3.1. Consider the scheme (2.1) with M2 = M3 = 0.
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(3.3) If \@,,I <I and -2(1+$) < mlj c 2&l-& for all j J
J 3

then the resulting scheme is dissipative of order 4 and hence strictly

stable by Theorem 1.1.

Proof: Condition (3.2) implies that the following has to be satisfied:

(3.4) F E -myja4 + mlj(4@ia2-2) f 4f3~(1-8~) > O for all j .

Since F is a quadratic in mlj with negative leading coefficients,

(3.4) will be satisfied if (see Fig. 61, for every j,

(i) F has real roots, say m,(a2) and ms(a2) for the larger

and the smaller root, respectively (considered as functions of a2), and

(3.5 > (ii) ms(a2) < mlj < m,(a2) for all 012e[0,11  l

mS (a2 )

*

0

Fig. b
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Now

mL(d, = [-1 + *f3~01*

- 2$(1-87
(3.6) -

mS (a2)  = [ - 1  +  2f3:CX2

Hence the roots will be real if

or if

= undefined

if

-II1 + 4a p, - 4a2f3: ~/cx42 4
Y if

or if

p;< J-
4cI* Cl-a2  )

f-l 1

J d

if

for all j and for all

for all j and for all

(3.7) f3;< - 1
012m:nl 4a2 (l-a*)

= 1 for all j ,

-

i.e., if l&J < 1.

straightforward differentiation, we can show that

(5.8)
da*

>, 0 and
da*

Hence, (3.5) will be satisfied if

_ Note that (3.7) is just the unmodified stability limit. Now, by

> 0 for a2~[0,11 if- ’ Bmax  ’
cl l

-2(1-Q 2 m,(l) < mlj < m,(O) s 2&+3:) fbr all j

which is (3.3). 0



Corollary 3.1: The modification (2.6) is strictly stable if (2.10) is

satisfied.

Proof: By the previous theorem, the following has to be satisfied:

-2(1-Q < - z + 2@-8;) < 2Ql-(3:) for all j

which reduces to

(3.9)
44(l-pj)> E>O forall j

Note that (3.9) automatically implies
'$max' < 1. Also, (2.10) easily

follows framJ3.9). 0

Corollary 3.2: The modification (2.9) is strictly stable if (2.11) is

satisfied.

Proof: Follows immediately from Theorem 3.1. 0

Next, consider the two-step Lax-Wendroff modification (2.12) with

%
= 0. The F we obtain in this case is very similar to that which

we obtained for the Lax-Wendroff method, (3.4). We only need to re,place

mlj in (3.4) by mljpj to obtain the correct F. Thus,

obtain the following theorem.

we easily

Theorem 3.2: Consider the scheme (2.12) with J!$ = 0. If

'Bmax' <l

(3.10)

and -2+Q < mljpj < 2(1-Q for all j t

then the resulting scheme is dissipative of order 4 and hence strictly

20



stable by Theorem 1.1.

Corollary 3.3: The modification (2.16) is strictly stable if (2.11) is

satisfied.

A stability analysis is more difficult for modifications of the

first step of the MacCormack method. No condition analogous to the

condition (3.8 > holds in this case. We have not been able to obtain

clean conditions like those in Theorems 3.1 and 3.2 for the MacCormack

scheme. However, given a specific Ml one can easily determine the

stability interval by examining I I
-- 7

as a function of p..
J

We finally remark that the previous sufficient conditions for

stability are all necessary if we allow equality. This easily follows

. from the von Neumann necessary condition [6, 81.
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4. The Initial Boundarv Value Problem

We now consider the problem of approximating equation (1.1) on a

bounded x- interval a < x < b. Since the modified methods we have- -

discussed have larger stencils (involve more neighboring points) than

their unmodified counterparts there are more points at the ends of the

interval [a,b] where these approximations cannot be used than there

are with the original methods. However, this problem is easily avoided.

Stable approximations for the initial boundary-value problem for

the Lax-Wendroff, two-step Lax-Wendroff, and MacCormack  methods are

discussed by Gustaffson, et. al. [4 ] and by Gottlieb and Turkel [3 1.
-=_

We will base our methods on these.

Assumptions

We assume that boundary conditions are given at the points a

and b which yield a well posed problem for (l.l), see Kreiss [5 1.

We further assume that stable approximations for this problem are known

for the underlying method that we are modifying, see [3, 41 for

candidates, and finally that the mesh ratio h and modification

a parameters E, 6, etc., are chosen so that both the modified and un-

modified methods are stable for the Cauchy problem.

We now form our approximations for the initial boundary-value

problem by coupling the unmodified method with its stable boundary

conditions to the modified method in the neighborhood of the boundary

points a and b in the manner discussed by Oliger [7 Ia

The Methods

We will use the desired modified method at all interior net points

22



where it can be used, we then drop the modificati.on (set M1=y=y=O'

and use the underlying method at all those points in the neighborhood

of a and b where it can be used (at most one or two points at each
. .

end), the remaining points (only a and b) are then treated using

the stable boundary &pproximation.

Theorem 4.1. The methods proposed above are stable in the sense of

Gustaffson, et. al. [4 I (definition 3.3) if our assumptions hold.

Proof: This result follows immediately from Theorem 2.4 of [7 I.0
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Fig. 3b Modified Lax-Wendroff  with quadratic decay. 5 = 1.0
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