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Abstract

A model for learning systems is presented, and representative AI,

pattern recognition, and control systems are discussed in terms o f  i t s

framework. The model  detai ls  the functional  components  fe lt  to  be

essential for any learning system, independent of the techniques used

for its construction, and the specific environment in which it operates.

These components are performance element, instance se l e c to r ,  c r i t i c ,

learning element, blackboard, and world model, Consideration of

learning system design leads natural ly  to  the concept  of  a  layered

system, each layer operating at a different level of abstraction.

Descriptive Terms: adaptation, learning, concept-formation,

induction, performance element, instance selector, crit ic ,  learning

element, blackboard, world model, multi-layered systems.

1 Introduction
e Adaptation, learning, concept-formation, induction, self-

organization, and self-repair have been of interest to researchers in a

number of f i e lds  f o r  many  years . Each discipline has brought a

- different perspective to the research, and the result has been a great
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variety of learning system (LS) models and descriptive terminology. We

have therefore synthesized a new model for unified characterization of

system3 constructed from these different perspectives. The model is

also useful as a paradigm for new lear,ning  systems, because it enables

the designer to isolate the functional components, and the information

that must be available to them.

2 Two Approaches to Learning

In this section, we summarize two different approaches to the

construction of systems that can be said to learn. The first approach

centers on the concept of an adaptive system and is primarily associated

with research in pattern recognition and control theory; the second is

that  of  art i f ic ial  intel l igence (AI) .--

2.1 The Adaptive System Approach

I n  t h e  c o n t r o l  l i t e r a t u r e , l earn ing  i s generally assumed to be

synonymous with adaptation, a n d  i s often viewed as estimation or

successive approximation of the unknown parameters of a structure which

is chosen by the LS designer to represent the system under study [8]

[12]. Once this has been done, control techniques known to be suitable

for the particular chosen structure can be applied. Thus the emphasis

has been on parameter learning, and the achievement of stable, reliable

performance [30].  Problems are commonly formulated in stochastic terms,
4 and the use of statistical procedures to achieve optimal performance

with respect to some performance criterion such  aa the probability of

correct pattern classification, or mean square error, is standard [39].

There are many overlapping and sometimes contradictory definitions

of  the terms “adaptive  system”, Yearning aystemll, 113elf-repairing

system” I and Qelf-organizing  aystemll.  The following set, formulated by

G l o r i o s o  [13] Serves t o  i l lus t ra te  the  main  f ea tures , An adaptive

system is defined as a system which responds acceptably with respect to



some performance criterion in the face of changes in the environment or

its own internal structure. A learning system is a system that responds

acceptably within some time in terva l  f o l l owing  a  change i n  its

environment, and a self-repairing system is one that responds acceptably_.
within some time interval following a change in its internal structure .3

Finally, a self-organizing system is an adaptive or learning system in

which the initial state is unknown, random, or unimportant.

Other terms often used to describe, learning systems in the pattern

recognition and contro l  l i t e ra ture are “learning with teacher” or

Qupervised  learning” and “learning without teacher” or  Qnsupervised

learning” [ 121 [ 71. Learning with teacher assumes the existence of an

external  entity  (usually  a human) which presents the system with a

training set of instances, evaluates the performance of the system for

those instances, and provides the correct responses. Learning without

teacher aaaumea that the environment provides all instances, but does

not provide the correct responses. Performance is to be evaluated by the

system itself. Tsypkin [33]  has pointed out that unsupervised learning

is somewhat of an illusion in the sense that a teacher/designer defines

the structure which determines the quality of operation of the LS at the

outset, whether or not he is present during the actual operation of the

system.

2.2 The Artificial Intelligence Approach

Although ear ly  AI research was c l o s e l y  t i e d to  pattern

recognition, and the techniques commonly associated with the adaptive

system3 approach, (see, f o r  e x a m p l e  1281 and  [34]),  t h e  t w o  f i e l d s

diverged in the 1960’3, and are now quite distinct. Whereas the pattern

- recognition and control research emphasizes adjustment of parameters, AI

research emphasizes construction of  symbolic structures, baaed on

conceptual relations. For example, Feigenbaum’a EPAM program [9] used a

--e-w --------------
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discrimination net ( i . e . , a tree of tests and branches) to store the

relations required to  recal l  nonsense syl lables  in a  rote  learning

experiment (see [31], [ill,  and [37]  for further examples).

The kind of learning that involves only estimation of unknown. .
parameters (i .e.,  the parameter learning of Section 2.1 ) has been

referred to as terminal learning in the AI literature [22], In AI, it

i s commonly believed that a learning system should have sufficient,
internal structure to develop a Qtrong theoryfl of its environment [IO]

[I% Much emphasis has therefore been placed on building “knowledge-

based” o r l’expertV1  systems that not only have the capacity for high

performance, but can also explain their performance in symbolic terms

161. Concept-formation systems in particular stress the construction of

symbolic descriptions [IQ].

W i n s t o n  [38-j  desc r ibes  var i ous  l eve l s  o f sophist ication in

learning systems: learning by being programmed, learning by being told,

learning from a series of examples, and finally learning by discovery.

We see in this categorization a gradual shift in responsibility from the

designer/teacher to the learning system/student. At the highest level,

the system is able to find its own examples, and carry on autonomously.

3 The LS Model

We are concerned with the functional description of LS’s and their

interaction with the environments in which they operate. Many of the

4 functional components of an LS are essential to intelligent systems in

general, as noted also by Simon and Lea [29].

Environment

The environment in which an LS operates may have a profound effect

upon its design, and therefore it is of interest to consider a few major

environment classes. LS environments can be divided into two major

categories: those that provide the correct response for each training



instance (supervised learning) and those that do not (unsupervised

learning). Supervised learning systems operate within a stimulus-

response environment in which the desired output of the LS is available

along with each training instance ml 171. Samuel's "book move"

checkers program [26][27], and grammatical inference programs [I51

( i . e . , programs that attempt to infer the rules of a grammar from sample

sentences generated by that grammar) are further examples of LS's

operating within such an environment. This is also the nature of the

environment for automatic programming systems [14] which construct

programs to reproduce (or explain) a set of sample input/output pairs.

Unsupervised LS's operate within an environment of instances for

which the correct response is never available, The version of Samuel's

program which learns by playing checkers against an opponent falls into

th i s  ca tegory  [26]. Learning systems operating within th i s  t ype  o f

environment must themselves infer the correct response to each training

instance by observation of system performance for a series of instances.

As a result, assignment of credit or blame for overall performance to

individual responses is a problem for these systems [21].

Environments can  be  fur ther  ca tegor i zed  as "no i se - f r ee "  o r

"noisy? Noise-free environments, such as that of Winston's structural

description learning program 1373 provide instance/correct-response

pairs in which the data are assumed to be perfectly reliable. Noisy

environments, on the other hand, do  no t  p rov ide such perfect

information, as is usually the case when real data are involved (patterne
recognition and control systems frequently operate within noisy

environments C71 WI CU). Environments which  reac t  t o the LS

responses in some way that is not under the control of the system can

a l so  be  cons idered to fal l  into  this category. The opponent in a game

for example, operates on the response of the LS to provide the next

instance I: 351.



3.2 The Model - Overview

The LS model is shown in Figure 1. The PERFORMANCE ELEMENT is

responsible for generating an output in response to a training instance.

The INSTANCE SELECTOR selects suitable training instances from the

environment. The CRITIC analyzes the output of the performance element

in terms of some standard of performance. The LEARNING ELEMENT makes

speci f ic changes to the system in response to  the analysis  of  the

critic. Communication among the functional components is shown via a

BLACKBOARD to ensure that each functional component has access to all

required system information. Finally, the LS operates within a WORLD

MODEL containing general assumptions and methods defining the domain of

activity of the system.

Existing systems can seldom be partitioned unambiguously into the

functional components shown in Figure 1. These components are conceptual

entities which simplify the characterization of existing systems, and

wi l l  ass i s t  des igners i n  t h e  c o n s t r u c t i o n  o f  n e w systems. They

correspond to functions that must be performed to effect learning. In

many existing systems, one or more of the functions are fulfilled by a

human who is considered to be part of the LS.

In the following sections, we present detailed discussions of the

LS model  components shown in Figure 1. In addit ion, Appendix I

conta ins  de ta i l ed  charac ter i za t i ons  o f  r epresenta t ive  AI , pattern

recognition, and control systems in terms of the model. The reader may

find it helpful to refer occasionally to this appendix while reading the.

following sections.
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Figure ‘I. The Components of a Learning System

3 . 3 Performance Element

The performance element is the mechanism that uses the learned

information to perform the stated task. It has been included in the LS

model because of the intimate relationship between what is to be learned

by an LS and the way in which the learned information is to‘ be used.

Performance elements are usually tailored more to the requirements

of the task domain than to the architecture of the LS. In general, the

performance element can be run in a stand-alone mode without learning,

independent from the rest of the LS (e.g.,  Samuel’s checker playing

program [26] [27]). I n  a n y  L S ,  h o w e v e r ,  t h e  a b i l i t y  t o  i m p r o v e

performance presupposes a method of communicating learned information to

the performance element. Therefore, the architecture of the performance

element must allow learned information to affect its decisions, and so
additional constraints are placed on any performance element that is  to
be used as a component of an LS. The performance element must be

7



constructed so that information about its  internal  machinations is

readily available to the other system components. This information can

be used to make poss ib l e  de ta i l ed  c r i t i c i sm o f  per f o rmance ,  and

intelligent selection of further instances to be examined by the system.

The performance elements of existing systems vary in the number of

ways in which they may be altered by learning. Systems which adjust

parameters as their sole learning method are relatively limited in the

performance variations they can exhibit [Ii’] [20],  whereas systems whose

operation is determined by a set of production rules can exhibit greater

variations [ 353 [ 363.

364 Instance Selector

The  ins tance  se l e c tor  i s  a  mechanism that  se l e c t s  t ra in ing

instances from the environment that are to be used by the system in

learning. It is a functional component not clearly isolated in earlier

adaptive system models [12] [30] [13].

In reviewing existing LS’s we have found that methods for instance

selection vary mainly along the dimensions of  responsibi l i ty  and

sophistication. The  respons ib i l i ty  f o r  ins tance selection varies

between the extremes of completely external (llpassive” > selection, and

completely internal (“active”) selection. Instance se l e c t i on  in

Samuel’s book move checkers program [26] 1271 is externally controlled,

whereas Popplestone ’s  program [24], which learns the features that

characterize  a winning posit ion in t i c - t a t - t o e , generates its own
a

training instances. It forms alternate hypotheses, and then generates

instances to choose among them (relying upon an external critic to

evaluate these instances). In the adaptive systems literature, Tse and

B a r - S h a l o m  [32] discuss the use of fldual-controlW in an attempt to

identify the parameters of a system at the same time as it is being

controlled.

The degree of sophistication used for LS instance selection is

also an important consideration. In order to qualify as sophisticated,

8



an instance selector  must  be sensit ive  to  the current  abi l i t ies  and

deficiencies of the performance element and must construct or select

instances which are designed to improve performance. Winston [37]  has

shown the advantages to be accrued through presenting carefully. .
constructed examples and “near-misses fl of the concepts to be acquired by

an LS. In general, careful instance select ion can improve the

reliability and efficiency of an LS. We must note, however, that this

may not always be permitted by the environment in which the LS operates,

as is generally the case for adaptive control systems [8].

3.5 Critic

The critic may play three roles; EVALUATOR, DIAGNOSTICIAN, and

THERAPIST. It always operates as an evaluator, in that it embodies a

standard by wh-ich to assess the behaviour of the performance element.

This is the role that has been emphasized in earlier adaptive system

models [12] [30]  [13].

The critic may also operate as a diagnostician, and localize the

reasons for poor performance. This type of behavior is essential for

resolution of the credit assignment problem described by Minsky [21].  In

its role as diagnostician, t h e  c r i t i c  i s  e x e m p l i f i e d  b y  t h e  b u g

classifier and summarizer in Sussman’s HACKER [31],.

Finally the critic may be able to operate as a therapist, and make

speci f ic recommendations for improvement or suggestions about future

instances. In Waterman’s poker player [35],  t h e  c r i t i c  a s  t h e r a p i s t

suggests the bet that should have been made by the performance element

for a particular training instance.

Not all systems exhibit sufficiently complex behavior to warrant

: c r i t i c s  that  fu l f i l l  a l l  three  func t i ons . The cr it ic  as  therapist  in

particular is not often seen in simple systems.

The dividing line between critic and learning element is difficult

to distinguish, and i t  i s  c e r ta in ly  poss ib l e  t o  v i ew  therapy  as  a

9



function o f  t h e  l e a r n i n g element, rather t h a n  o n e  o f  t h e  c r i t i c .

However, in mapping existing LS’s into our model, we have adopted the

convention that the critic’s recommendations to the learning element are

at an abstract level removed from the implementation details such as

data representation.

In  some  LS’s the functions of the critic have been left to the

human who uses the system. For example, MYCIN/TEIRESIAS [6]  uses a

human c r i t i c , acting as evaluator, diagnostician, and therapist to

suggest alterations to its rule base.

3.6 Learning Element

The learning element is an interface between the critic and the

performance element, responsible for translating the abstract

recommendations of t h e  c r i t i c  i n t o specific changes in the rules or

parameters used by the performance element.

Representations for learned information exhibit great variety.

They include, for example production rules r351, parameterized

polynomials [26],  executab le  procedures  [31],  s ignature tables  [27],

s t o r e d  f a c t s  [9], a n d  g r a p h s  [37]. The method of incorporating new

learned information is dependent upon this representation, and even

among systems which use similar representations, competing methods are

found (contrast, for example, [3]  and [35]).

The extent to which the learned information is altered in response

to each training instance is an important LS design consideration.  In

a some s y s t e m s  [37],  the  l earn ing  e l ement  incorporates  exac t ly  the

information supplied by the critic. Were the same training instance to

occur later, the response of the performance element would be exactly as

the critic advised for the first occurrence. This type of learning is

well suited to environments which provide perfect data and to systems

wi th  re l iab le  c r i t i c s . Under these conditions the LS will converge

rapidly toward the desired behavior. If such a system were provided

with an incorrect c lass i f i ca t i on  by the environment or less than

10



r e l i a b l e  a d v i c e  b y  t h e  c r i t i c , however,  i t  might  commit  i tsel f  to

incorrect assumptions from which i t  is  di f f icult  to  recover .  Systems

which make less drastic changes to the learned knowledge on the basis of

a single training instance are less vulnerable to imperfect information,

but consequently require more training instances to converge to the

desired behavior. Many statistical LS’s fa l l  in to  th i s  ca tegory  1231.

Other systems consider several training instances at a time in order to

minimize the effect of occasional noisy instances [3].

3.7 Blackboard

The blackboard of  our model  is  an extension of  the concept

introduced in the HEARSAY system [IS], functioning as both global data

base and communications mechanism, The blackboard holds two types of

information: --the information usually associated with the “knowledge

base” in AI programs, and the temporary information used by the LS

components. The  knowledge  base  o f t en  conta ins  the  se t  o f  ru les ,

parameter values, symbolic structures, and so on, currently being used

by the performance element. Such information can be used as an aid to

sophisticated instance selection i f  i t  i s  r e a d i l y  a v a i l a b l e . The

temporary, system-oriented information includes, for example, the

internal decisions made by the performance element in select ing a

particular response. Detailed criticism by the critic is dependent upon

t h e  a v a i l a b i l i t y  o f  t h i s information, written by the performance

element *

In many existing systems this in format ion  i s  no t  so  c l ear ly

separated or defined. The communication links between functional

components, especially, are often programmed direct ly . Such a non-

: modular approach is known to  lead to  di f f icult ies  when redesign is

attempted [2] m

3*8 World Model

Whereas the blackboard contains information that can be altered by

11



the LS components, the world model  contains the f ixed conceptual

framework within which the system operates. The contents of the world

model include definitions of objects and relations in the task domain,

the syntax and semantics of the information to be learned, and the

methods to be used by the LS, Again , there  are  no  c l ear  l ines  o f

separation between the world model and the other parts of the LS. Our

working definition is that the world model contains al l  def init ions,

parameters, vocabulary, and assumptions that  are ava i lab le  f o r

modification. (Insofar as the designer can change any piece of the LS we

suggest separating those that are easily modified from the rest. See

1251 f o r  a  p h i l o s o p h i c a l  t r e a t m e n t  o f  t h i s  i s s u e ,  a n d  [5] f o r  t h e

discussion that led to our including a world model.) Among task domain

def init ions are, for example j t h e  r u l e s  o f a game, and the

representation of --inputs and outputs for the performance element. This

part of the world model simply defines the task of the performance

element, and the standard of performance (the evaluation function) to be

app l i ed  by  the  c r i t i c . Definitions of the syntax and semantics of

information to be learned define the mode of communication between the

learning and performance elements.

The world model  may include several  addit ional  i tems. Some

systems require a model for translating input data into the specific

training instances to be used.  For  example,  the control ler  in  1171

preprocesses inputs in a control system, and the first part of Meta-

DENDRAL [3] translates each input molecule/data-point p a i r  i n t o
a

plausible  molecule /process  pairs  under a  s imple theory of  the task

domain. Domain specific heuristics are also commonly added to the world

model of AI systems to guide inferences made by the LS (e.g., the blocks

world heuristics of Winston’s program [37]).

Although the world model cannot be altered by the LS that uses it,

the designer can alter its contents in order to improve LS performance.

He often changes parameters  and procedures of  the basic  LS after

observing and  c r i t i c i z ing its  behavior for some careful ly  chosen

12



training set. These alterations result in a new version of the LS, which

is then tested on some training set, and so on. The designer views the

whole LS as a system whose performance needs improvement, and he selects

instances, criticizes performance, and makes changes accordingly. In

other words, the designer’s activities can be modeled by a system whose

components are just those in Figure 1. This leads us to the concept of

l a y e r e d  LS’s, e a c h  h i g h e r  l a y e r  a b l e  t o  c h a n g e  t h e  w o r l d  m o d e l

(vocabulary, assumptions, etc.) of the next lower layer on the basis of

c r i t i c i z ing i t s  per f o rmance  on  a  chosen  se t  o f  ins tances . Thus,

adjustments can be made to the world model of some learning system LSl

by another learning system, LS2, which has its own functional components

(cr i t ic ,  world  model ,  etc . ) . In turn,  i t  is  conceivable  that  a  third

system, LS3, could adjust the world model of LS2, and so on. The final

critic, however, is  the designer, operating outside of the “top-level”

LS.

One existing LS which may be viewed as a layered system is the

version of Samuel’s program [27] which learns a polynomial evaluation

function for  select ing checkers  moves (see Appendix I  for  detai ls ) .

The lower layer (LSI)  in this system adjusts the coefficients of a given

set of game board features in order to improve performance of the move

selection program. The second layer  system (LS2)  adjusts the set of

board features used in the evaluation function in order to improve the

learning performance of LS 1 . S i n c e  LSl is  contained in LS2 as the

performance element, all the assumptions necessary for its operation
-

also belong to the LS2 world model. In addition, the LS2 world model

contains assumptions about the set of allowable game board features and

the standard for evaluating LSl performance.

A single layer LS, then, can never move outside its world model to

make radical revisions to  i ts  way of  v iewing the task to  achieve a

llparadigm  shift” ,  as discussed by Kuhn [l6]. However, a  sh i f t  in  the

conceptual framework of LSl could be made by a properly programmed LS2

c31. We believe that a layered approach such as that described above

13



provides a useful system organization for learning at various levels of

abstraction in complex domains. Although there are examples of this

kind of layering in the literature [26]  [34],  no one has carried it as

far as our model suggests, and it appears that we are just now reaching

the point of understanding single layer learning systems well enough to

consider developing more sophisticated systems.

4 Summary

The proposed LS model provides a common vocabulary for describing

different types of learning systems which operate in a variety of task

domains. It encourages classification and comparison of LS’s and helps

identify unique or strong features of individual systems. We believe

the model is a useful  conceptual  guide for LS design, because 1 t--
isolates the essential functional components, and the information that

must be available to these components. The model also suggests a

layered architecture for learning at different levels of abstraction.

14



Appendix I

Characterization of Existing Systems in Terms of the Model

In this appendix several existing LS’s are characterized using the

framework provided by the model described in Section 3. The systems

selected are representative of several approaches to machine learning.

Because the blackboard contains information in a state of flux, its

contents are not spec i f i ed  exp l i c i t l y  f o r the systems characterized

below.

Meta-DENDRAL, Buchanan, et al, 133 [4]
Domain: Mass spectrometry.

Purpose : Learn  t o  pred i c t  da ta  po in ts  in  the  mass  spec t ra  o f

molecules.

Environment: Set of all known molecule/data-point pairs.

Performance Element : Predicts peaks (data points) in mass-spectra of

molecules using learned production rules. Employs a model of

mass spectrometry for translating between mass-spectral

processes (predicted by  the  ru les )  and  data  po ints  in  the

spectrum.

Instance Selector: Accepts a set of known molecule/spectrum pairs

from the user.

Crit ic : Evaluation - determines the s u i t a b i l i t y  o f  t h e set of

predictions generated by a rule. Diagnosis - states whether the

ru le  i s  a c cep tab le ,  t oo  spec i f i c ,  o r too general. Therapy -

recommends adding or deleting features to the left-hand sides of

rules.

Learning Element : Conducts a heuristic search through the space of

plausible rules using a predefined rule generator. At each step

in the search the potential rule’s performance is reviewed by

the cr it ic .

15



World Model: Representation of molecules as graphs, production rule

model of mass spectrometry, vocabulary o f  r u l e s used to

represent learned information; heuristics used by the cr i t i c  in
directing the rule search, . .

Program to Learn Structural Descriptions from Examples, Winston [37]

Domain : Blocks world.

Purpose: Learn to identify blocks world structures (such as arches

and towers).

Environment: Set  of  possible line drawing/structure-classification

pairs.

Performance Element : Decides class of structures to which the input

structure belongs. Uses a model of the structure class supplied

by the learning element.

Instance Selector: Accepts training instances supplied individually

by the user.

Crit ic : Evaluation - compares the c lassi f icat ion made by the

Performance Element against  the correct c lass i f i ca t i on  as

supplied with each training instance. Diagnosis - generates a

comparison descript ion pointing out  di f ferences between the

model and the structure description.

Learning Element: Constructs a model of the class of structures

under consideration.d Examines the comparison description

supplied by the critic, and modifies the model to strengthen or

weaken the correspondence between the model and the training

.  instance.

Wor Id Model : Representation of scenes as line drawings, method of

translating line drawings to graphical descriptions, grammar for

representing the learned information, domain-specific heuristics

for resolving among possible changes to each structure class

model.
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Checker Player, Samuel [26] 1271

Domain: Game of checkers. . .

Purpose: Learn to play good game of checkers (here we discuss only

the version of the program which learns a linear polynomial

evaluation function by examination of moves suggested by experts

(mbook  moves").

Environment: Set of all legal game boards,

LSl (lowest layer):

Purpose: Learn a good set  of  coef f ic ients  for  combining board

features in a linear polynomial evaluation function.

Performance Element: Uses the learned evaluation function to rank

plausible moves for a given board position.

Instance Selector: Reads instances from a list of pre-defined game-

board/recommended-move pair%

Critic: Evaluation - examines the ranking given to the book move by

the performance element. Diagnosis - suggests that the book move

should be ranked above all other moves.

Learning Element: Adjusts weights of linear polynomial to make move

selection correspond to the critic's recommendation.

World Model: Syntax of game board, form and features of linear

polynomial evaluation function, method for adjusting evaluation

function, and rules of checkers.

LS2:

Purpose: Improve the performance of LSl by selection of a good set

of board features.

Performance Element: LSl.

Instance Selector: The entire set of possible training instances is

simply passed to LSl (via the blackboard).

Critic: Evaluation - analyses the learning ability of LSl (i.e., the

LS2 performance element) with the current  set  of  evaluation

17



function features. Diagnosis - singles out features which are

not useful, Therapy - selects new features from a predefined

list to replace useless features;

Learning Element: Redefines t h e  c u r r e n t  s e t  o f features  as

recommended by the critic.

World Model: The LSI world model, plus the set of features which may

be considered, and the performance standard employed by the LS2

c r i t i c .

Poker Player, Waterman [ 353

Domain : Draw poker.

Purpose: Learn a good strategy for making bets in draw poker.

Environment: Set of-all legal poker game states.

Performance Element : Appl ies  the learned production r u l e s  t o

generate actions in a poker game, e.g., bets.

, Instance Selector: Selects each game state derived by play against

an opponent as a training instance.

Critic: Two versions of the program use two different critics. In

bo th  cases  the cr i t i c  per f o rms  the following functions:

Evaluation - decides  whether the poker  bet  made by  the

Performance Element was acceptable. Diagnosis - gives important

state variables for deciding the correct bet. Therapy - provides

the bet which the Performance Element should have made. In

l~explicitl@ learn ing  the  c r i t i c  i s  an  exper t  poker  p layer  ,

either human or programmed. In llimplicitll learning, the

evaluation and therapy are deduced from the next action of the

yopponent  and a set of predefined axioms, while diagnosis is read

from a predefined lldecision  matrix”.

Learning Element: Modifies and adds production rules to the system.

Mistakes are corrected by adding a new rule in front of the. rule

responsible for the incorrect response.

18



World Model: Rules of poker, features used to describe the game

state, the language of production rules, heuristics for updating

the rule base, the model of an opponent. /

---------------

Model Reference Adaptive Control, e.g. Landau [IT]

Domain: Control Systems.

Purpose: Construct a “controller” which preprocesses inputs to an

existing system (cal led the llplantft). The behavior of the

combined controller-plant system is to mimic the behavior of a

third system (called the “reference model”) on the training

data.

Environment: The plant to be controlled, and the set of possible

inputs (including disturbances).

Performance Element: The controller - a system whose output is used

as input to the plant, Its behavior is a function of the input

signal, past I/O behavior of the plant, and a set of adjustable

parameters.

Instance Selector: Accepts data sequence (as input t o  t h e

controller) from the environment.

Critic: Evaluation - applies a measure of performance which is some

function of the arithmetic difference between the plant and

reference model outputs. In some cases the reference model is

mathematically defined, and can therefore be considered part of

the cr it ic . In other cases the reference model is an actual

system, and is considered part of the environment.

Learning Element: Modifies the parameters of the performance element

(controller), depending on the performance measure supplied by

the cr it ic .

World Model: Control theory assumptions (time invariance, linearity,

etc.) and techniques, and the standard of performance embodied

in the critic.
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