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ARSTRACT

Shared abstract data types, such as queues and buffers, are useful

tools for building well-structured concurrent programs. This paper presents

a method for specifying shared types in a way that simplifies concurrent

program verification. The specifications describe the operations of the
e

shared type in terms of their effect on variables of the process invoking

the operation. This makes it possible to verify the processes independently,

reducing the complexity of the proof. The key to defining such specifications

:is the concept of a private variable: a variable which is part of a shared

object but belongs to just one process. Shared types can be implemented using

an extended form of monitors; proof rules are given for verifying that a

monitor correctly implements its specifications. Finally, it is shown how

concurrent programs can be verified using the specifications of their shared

types. The specification and proof techniques are illustrated with a number

of examples involving a shared bounded buffer.

INDEX TERMS: Program verification, program proving, concurrency, parallel
programs, abstract data types, shared types, and operating
system design.





1. INTRODUCTION

An important development in structured programming is the use of

data abstractions. An abstract data type defines a class of abstract

objects and the set of operations on those objects. Considerable effort

has been devoted to issues related to data abstraction: specification of

the abstract type ([Guttag 751, [Guttag et al 761, [Liskov and Zilles 751,

[Liskov and Berzins 761, [Parnas 72]), programming languages for ex-

pressing data abstractions (notable are CLU [Liskov 76) and Alphard

[Wulf 76]),  and proof methods for data abstractions ([Hoare 721, ['Neumann 751,

CSchorre, 751, [Shaw 761, [Spitzen 751, [Wulf 761). In this paper these
issues are considered as they arise in concurrent programs, where data

abstractions are shared between parallel processes. The major focus will

be on axiomatic proof techniques, in the style suggested by Hoare [69].

Verificationof both the implementation of an abstract data type and the

processes that use it will be considered.

The only feasible way to verify a complex system is to compose the

system proof from independent proofs of its modules. Abstract data

types facilitate this approach. One can first specify and verify the

type and its implementation, then use the specifications, rather than

the detailed implementation, in verifying higher-level modules. It is

also possible to verify each process in a concurrent system independently,

provided that the processes access shared data in a disciplined manner

(as with monitors or critical regions). This is accomplished by proving

each process using only variables that can not be modified by other

processes. This separation of processes greatly simplifies the proof

(for comparision see [Lamport 751 and [Owicki and Gries 76b],  where

process proofs are not so completely separated).

To make such proofs possible, each operation of a shared type must

be described in terms of its effect on variables of the process invoking

the operation. Section 2 shows how a new concept, private variables,

can be used to obtain such specifications; private variables are com-

ponents of a shared object, but belong to just one process. Section 3

discusses the implementation of shared data types by an extended form

of monitors, in which private and auxiliary variables are included for



the sake of proofs. Section 4 presents the rules for proving that a

monitor satisfies its specifications, and sections 5 and 6 discuss the

verification of concurrent processes that use shared data types.

Throughout the paper the abstract type "bounded buffer" will be

used as an illustrative example. It consists of a buffer capable of

holding N elements, and two operations:

append(a): wait until the buffer is not full, then

add a to the end of the buffer

remove(b): wait until the buffer is not empty, then

remove its first value and return it in b

More precise specifications are given in the next section.

Although the discussion of the bounded buffer here is primarily

intended to illustrate the specification and proof techniques, it is

also of interest in its own right. Buffers have many uses in concurrent

systems, and other concepts, such as queues and message-passing operations,

can be described in very similar terms. Thus the specification of the

bounded buffer should be applicable to the verification of a number of

concurrent systems.

2. SPECIFICATIONS

The specifications of an abstract data type form the interface

between the program module which implements the type and the modules

a which use it. Program verification consists of proving that the im-

plementation satisfies its specifications, and then employing the spec-

ifications to verify the modules that use the type. This separation

simplifies verification; it also enhances modularity, since the method

of implementation may be changed without affecting the correctness of the

program, as long as the new implementation also satisfies the specifications.

The specifications for a shared data type are given in the form of

assertions that can be incorporated into the proofs of concurrent processes.

So that the proof of a process is independent of the actions of other

processes, it must contain only safe assertions, i.e. assertions whose
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free variables can not be modified by other processes. Thus the assertions

that describe the effect of an abstract operation must also be safe. This

is made possible by including private variables in the abstract type. A

private variable t of type T is declared by var t: private T; this means

that there is one instance of t for each process that uses the shared

object. The instance of t belonging to process S can be changed only by

execution of an operation invoked by S. Thus that instance of t may be

used safely in the proof of S. We will use array notation for private

variables; var t: private T is interpreted as var t: array process id of T,

and t[S] denotes the instance of t for process S. In describing the

effects of an operation, t[#] denotes the instance of t belonging to

the process that invokes the operation.

The table below gives the format for specifications of a shared data

type. Each clause gives the name of an assertion, with the free variables

it may contain indicated in parentheses.

Specifications

typename( declaration of component variables

requires: Requires(p)

initially: Init

invariant: I(U)

operations:

operation-name (var si; j)

entry: entry(ji,  y, Z[#])

exit: exit(ii, y, 2[#])

where Q = parameters and component variables of the type

fj = parameters of the type ('j c_a)

z = private variables (z ~,a)

'r[#] = private variables of calling process
i= var parameters
j= value parameters

Let us consider each clause in turn. First, the name and parameters

of the abstract type are given, followed by its components. Requires is

a condition which must be satisfied when an instance of the type is

created; for example, for the bounded buffer Requires assures that the

buffer size is positive. Init gives the initial value of a newly
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created instance of the type. I(U), the invariant, is a consistency

assertion about the possible values that can be assumed by U . It i s

true for the initial value, and is preserved by each operation, although

it may fail to hold temporarily during execution of an operation.

Each operation is defined by giving its name and the names and types

of its formal parameters. Following Pascal, the formal parameter list

contains var parameters, which may be modified by the operation, and

value parameters, whose values are not changed. Two assertions describe

the effect of the operation. The entry assertion gives the conditions

required for correct performance; it is the programmer's responsibility

to insure that the entry condition is satisfied each time the operation

is invoked. The exit clause describes variable values upon completion.

Note that entry and exit describe the operation in terms of private

variables and parameters; they are safe assertions and may be used in

the proof of a process which invokes the operation.

Specifications for the abstract type bounded buffer are given

below; they are adapted from specifications proposed by Good and Ambler

. [1975]  for concurrent programs synchronized with message buffers. The

buffer stores values of type message, not defined here. The notation

<Xl,  x2, l **9 xn> denotes the sequence whose elements are x1, x2, . . . ,

x . The empty sequence is written <>. X @ Y is the concatenation of

thne sequences X and Y. If X is nonempty, its first element is first(X)

and X=<first(X)> @ tail(X); similarly, last(X) is the last element in

X, and X=head(X) @ <last(X)>. The number of elements in X is length(X)*

- If t is a private variable, 4!t@ denotes the bag containing the

values of all instances of t.

Specifications for the Bounded Buffer

bb(N:integer)

b u f :record sequence of message

comment length (buf) 5 N

instream: sequence of message

comment sequence of values appended to bb

outstream: sequence of message

comment sequence of values removed from bb



in: private sequence of message

comment values appended by each process

out: private sequence of message

comment values removed by each process

requires: N>O . .

initially: buf = instream = outstream = in = out = o

invariant: length(buf) < N A-
instream = outstream @ buf A

ismerge(instream, @in@) A

ismerge(outstream, @out+)

operations:

append(a:message)

entry: in[#] = i' A out[#] = o'

--. exit: in[#] = i' @ <a> A out[#] = o'

remove(var b:message)

entry: in[#] =i' A out[#] = 0'

exit: in[#]  =i’ A ]c(b=c A out[#] = o' @ <c>)

The bounded buffer has a single parameter N, the buffer size;

because of the requires clause, N must be positive. The data for
.

a bounded buffer is a record consisting of sequences buf (the actual

buffer), instrearn,outstream, in, and out. Variables instream and

outstream record the global history of buffer operations by storing

the sequence of values appended to and removed from the buffer. The

private variable in[S] contains the sequence of values appended by

process S, while out[S] contains the values removed by S. We will see

in section 3 that some of these variables are needed only for proofs,

and do not have to be included in an implementation. Initially, all

sequences are empty. The invariant states that only N items can be

in the buffer (length(buf) < N), that values appended to the buffer-
either have been removed or are still in the buffer (instream =

outstream @ buf), that the global input history is some merge of the

private input histories (ismerge(instream, Qinb)), and that the

global output history is a merge of the private output histories

(ismerge(outstream, QoutiB)). The predicate ismerge(X,Y),  where X is

a sequence and Y = c$yl, y2, . . . , y,p is a bag of sequences, is defined by
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ismerge(<>,Y) = true if yi = <>, 1 5 i 2 n

isrnerge(X'  @ <x>, Y) = true if

'k = Yk ' @ <x> for some 1 2 kL n

and ismerge(X',&, . . . . Yk' 9 . . . , Yn +I
isrnerge(X,Y) = false otherwise _.

The behavior of append and remove is defined by their entry and

exit assertions. For append, the value a is added to the private input

history of the invoking process, while the private output history remains

unchanged.

Although append(a) must also change the value of buf and instream, this

fact is not explicitly included in the exit clause (it is implied by the exit

clause and the invariant, however). This is because the exit assertion

will be used in verifying the processes that invoke append, and in that

context only the effect on private and local variables is relevant. For

remove, the exit condition states that some (unknown) value is returned

in b and appended to the process's private output history. One can deduce

from the invariant that the value returned must be the first one in

buf, but buf, as a shared variable, can not appear in the exit condition.

This is an accurate reflection of the fact that, from the viewpoint of

a process invoking remove, it is not generally possible to predict what

value will be returned.

It is interesting to compare the bounded buffer specification given

here to specifications suggested by Hoare [74]. Expressed in our

notation, Hoare's specification is

bb;Z(N):  record buf sequence of message

requires: N>O

-initially: buf = <>

'invariant: length(buf) 5 N

operations:

append(a:message)

b u f  =  buf'entry:

exit: buf = buf' @ <a>

remove(var b:message)

b u f  =  b u f 'entry:

exit: b = first(buf')  A buf = tail(buf')
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Hoare's specification is shorter than ours, and it completely describes

the effects of the bounded buffer operations. However, it is harder to

use in proofs of concurrent programs because it does not provide any

private variables. For example, although the effect of bb2.append  is

buf = buf' @ <x>, one cannot use ..

(true) bb2.append(x) {x = last(buf))

in the proof of a process that invokes append. This is because other

processes can also append and remove elements from the buffer; in fact,

x may not even be in the buffer by the time append(x) returns control

to the invoking process.

A valid use of append is

(true} bb2.append(x) lx c buf or x has been removed by another process).

Our specifications give a convenient way of expressing this:

(true) bb.append(x) (x = last (in[#])>

and

(x E in[#] A bb.1) I (x E buf v $(XC out[S])).

Howard [76] gives an informal specification of the bounded buffer.

He uses variables like instream and outstream, and his specifications

include the invariant instream = outstream @ buf. But he has nothing

corresponding to the private variables in and out.

3. IMPLEMENTATION

An attractive means of implementing abstract data types in a

parallel programming environment is the monitor, as proposed by

Hoare [74] and Brinch Hansen [75]. A monitor is a collection of

data and procedures shared by several processes in a concurrent program.

The monitor data can be accessed only by invoking monitor procedures;

thus the monitor presents in a single place a shared data object and

all the code that has access to that object. Monitors also facilitate

concurrent programming by ensuring that only one process at a time can

operate on the shared data and by providing operations for process

synchronization.

The general form of a monitor type definition is given below.
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class classname: monitor(parameters)

declaration of monitor data;begin

declaration of monitor procedures;

initialization of monitor data

end

An instance 0f.a monitor is createdby the declaration monitor mname:

classname(parameters). The notation for a call to a monitor procedure

is mname,procedurename (var result parameters; value  parameters),

To simplify program verification the result parameters must be distinct --

see Hoare [71] for a discussion of parameters and program proofs. The
value parametersare not modified by the procedure.

A monitor which implements the bounded buffer type is defined

below. Some features of monitors which,are  important for this example

(mutual exclusion, conditions, auxiliary variables, and private variables)--
will be discussed further. A more complete description of monitors is

given in Hoare [74]. Auxiliary and private variables were not in the

original definition of monitors; they have been added here because of

. their usefulness in verification.

class bb: monitor (N)

begin

BBvar: record m-buffer: array O..N-1 of message;

last: O..N-1;

count: O..N;

m-instream, m-outstream:

auxiliary sequence of message;

m in, m-out:-
private auxiliary sequence of message end

nonempty, nonfull:  condition;

procedure append(a:message);

begin if count = N then nonfull.wait;

last := last@l; rn-buffer[last]  := a; count := count + 1;

m instream := m instream @ <a>; m in := m in @ <a>;- - - -
nonempty.signal

end append;
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procedure rernove(var b:message);

begin if count = 0 then nonempty.wait;

count := count-l; b := m buffer[last@count];-
m>utstream _:= m outstream I3 cb>; m out := m-out @ <b>;-
nonfull.signal ..

end remove;

begin count := 0; last := 0; m instream := o; m outstream := O;- -
m in :=- 0; M out := <> end;-

end bounded buffer

@ and 0 are computed modulo N

An instance of the monitor is BB:bb

In order to allow a number of processes to share the monitor data

in a reliable fashion, execution of monitor procedures is mutually

exclusive; i1.e. only one procedure call at a time is executed. If

a number of calls occur, all but the first are delayed until the monitor

is finished with the first call. This prevents some of the obscure

time-dependent coding errors that can occur with shared data.

Synchlronization  among concurrent processes is accomplished through

condition variables in monitors. A condition is a queue for processes.

There are two operations on conditions: condition_name.wait  and condition-
name.signal. A process which executes condition-name.wait is suspended

and placed at the end of the condition queue. When a process executes

condition_name.signal the first process waiting on the condition queue

is reactivated. In order to insure that only one process at a time may

execute a monitor procedure, the procedure executing the signal must be .
suspended while the reactivated procedure uses the monitor.

The bounded buffer monitor uses two conditions, nonempty and nonfull.

If the append operation finds that there is no room in the buffer, it

waits on condition nonfull. After a remove operation there must be room

in the buffer, so remove ends with nonfull.signal. Condition nonempty

is used in a similar way by processes trying to remove an element from/
the buffer.

The bounded buffer monitor il lustrates two added features of monitors:

private and auxiliary variables. Auxiliary variables are included as aids
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for verification; they are not necessary for the correct implementation

of the monitor and may be ignored by a compiler. The importance of

such auxiliary variables for proofs of parallel programs is discussed

in Owicki [76].

In order to insure that the auxiliary variables are truly unnecessary

for a correct implementation, they may appear only in assignment state-

ments x := e, where x is an auxiliary variable and e does not contain

any programmer-defined functions (which might have side effects). This

guarantees that the presence of auxiliary variables does not affect

the flow of program control or the values of non-auxiliary variables.

Thus their presence or absence is invisible to a program which uses the

monitor.

The auxiliary variables m-instream and m outstream are history-
variables in the sense of Howard [76]. In fact, m instream and m outstream- -
play the same role as the history variables A and R in Howard's verifica-

tion of a bounded buffer monitor.

Private variables in a monitor are used to implement abstract private

variables, and they have essentially the same meaning. The declaration

t: private T creates one instance of the variable t for each process

that uses the monitor; t[S] is the instance belonging to process S. A

reference to t in a monitor procedure is treated as a reference to t[S],

where S is the process which invoked the procedure. Thus it is syntacti-

cally impossible for a procedure to modify any private variables except

-those belonging to the process that invoked it. In this paper all private

variables are auxiliary variables. Non-auxiliary private variables

might be a useful extension of monitors, but their implementation is

not discussed here.

In the bounded buffer monitor, m in and m out are private variables- -
which implement the abstract private variables in and out. Private

abstract variables must be implemented by private monitor variables,

so that it is impossible for one process to modify the private abstract

variables of another.
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4. VERIFYING THE IMPLEMENTATION

The methodology for proving that a monitor correctly implements

its specifications is derived from Hoare's  method for abstract data

objects in sequential programs [Hoare  721; it is also closely related to

generator induction [Spitzen 751. The main difference is that the proof

must take into account the sharing of the monitor among concurrent

processes. One first defines the relation between the abstract object

Q and the monitor variables m by giving a representation function rep

such that Q = rep@). A monitor invariant must also be defined; it is

called monitorname.IM or simply IM, and it gives a consistency condition

on the monitor variables Jn just as I does for the abstract variables U.

The verification of the monitor consists of proving the following

conditions:-

1. I,(m) 1 I(rep(JW

2. {Requires) monitor initialization {IM( Init(rep(M)))

3. For each monitor procedure p(var i; j)

{p*entry(x&rep(~)) A IM(m))

body of procedure p

The proofs can be accomplished with the usual proof rules for

sequential statements and the following axioms for wait and signal.

With each condition variable bi associate an assertion Bi describing

the circumstances under which a process waiting on bi should be resumed.

Then the axioms for wait and signal are

{IM A P) bi.wait {IM n P A Bi}

{IM A P A Bi} bi.signal (IM n P)

where the free variables of P are private, local to the procedure,

parameters, or constants. This is an extension of Hoare's original rules

[Hoare74]. The assertion P was added to allow a proof to use the fact

that the values of private and local variables can not change during

wait or signal.
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In the bounded buffer example, the relationship between the abstract

buffer bb and the monitor data BBvar is given by

bb = (buf,instream,outstream,in,out)

= rep(BBvar) . .

= (seq(m buffer,last,count),m_instream,-
m~outstream,m_in,m~out)

where seq(b,X,c) = <> if c=O

= seq(b,&l,c-1) (3 <b[& if c>O

In this case, the function rep is almost an identity function,

because the abstract variables instream, outstream, in, and out are

directly implemented by the corresponding monitor variables. The

abstract sequence buf is implemented by the array m buffer and variables-
last and count; function seq gives the value of the abstract buffer

determined by the monitor variables.

The monitor invariant for the bounded buffer monitor BB is

BB. I@ 0 5 count 5 N A 0 5 last 5 N-l A

m-instream = m-outstream @ seq(m-buffer,  last, count)

A ismerge(m_instream,  djm_inb)

A ismerge(m_outstream, @m-out@)

The conditions to be verified are

1. BB.IM  1 bb.I(rep(BBvar)) - obvious from the definition of rep

2. (bb.Requires)  initialization (BB.I# A Init(rep(Wl)))

This expands to

U’J > 01
count := 0; last := 0;

m_instream := m-outstream  := m_in := m-out := 0;

{TM A seq(m buffer, last, count) = 0 A-
m instream = m outstream = m-in = m-out = 0)- -

The proof is trivial.
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3. (m_in[#] = i' A m out[#] = 0' A IM}-
code for append(a) ..

{m in[#] = i'- @ <a> I\ m out[#] = 0' I\ IF1)-
and

{m i n [ # ]- =’ i’ I\ m out[#] = 0’ A IM)-
code for remove(b)

{m in[#] = i' A jc(b = c A m out[#] = o' @ CC>) A I',,$- - I
A proof outline for remove(b) is given below; append(a) is similar.

Proof outline for BB.remove

Wait assertion for nonfull: count < N

for nonempty: count > 0

$, A m in[#] = i' A m out[#] = 0') _- -
begin

if count = Othen

{I,,+,  A m in[#]- = i' A m out[#] = 0')-
nonempty.wait;

{IM A count 3 0 A m in[#] = i' A m out[#] = 0'1

{I# A count > 0 A m in[#] = i' A m iut[#] = 0')- -
count := count - 1; b := m_buffer[last@  count];

m_outstream := m outstream @ <b>;  m out := m out @ <b>;-
{I!,, A 0 i count < N A m in[#] = i' i --

3 bC = c A m-out[#] = o' Q xc>))

nonfull.signal

{IM A m in[#] = i' A gc(b = c A m out[#] = o' @ xc>)- -
end

(remove.exit  A I#)
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In addition to proving that a monitor satisfies its specifications,

one may wish to show that it has other properties (probably related to

performance). Howard [76] is an excellent source of techniques for

verifying such properties.

5. PROGRAM PROOFS

In this section we show how to verify concurrent programs given the

specifications of shared data types. Concurrent execution is initiated

by a statement of the form

monitor M1 :Al,...,Mm:Am cobegin L,:S,  //...//Ln:Sn  coend.

The Si are statements to be executed concurrently, i.e. parallel

processes, and Li is the name of process Si. The only variables that

may appear in Si are those declared in Si (its local variables) or con-

. stants declared in a block containing the cobegin statement. Sf also

has indirect access, through procedure calls, to monitor variables.

Thus all variables are protected from the danger of overlapping opera-

tions in different processes: they are constants (no modifications),

local variables (accessible to only one process), or monitor variables

(protected by the monitor mutual exclusion).

The specifications of type Ai are linked to monitor Mi by the
d convention that Mi.assertionname refers to the named assertion in the

specifications of Ai, with the monitor name Mi prefixing each shared

variable. Thus, given monitor BB:bb, BB.Iriit is the assertion

BBjbuf = BB.instream = BB.outstream = BB.in = BB.out = <>. Then the

rule of inference for verifying cobegin statements is

IPi) Si {QiI, (Pi ,Qi safe for Si, 1 < i < n)- -

means that Q may be inferred if all Pi haver
been proved.) Recall that safe assertions can have no free variables
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which can be changed by other processes, SO Pi and Qi may only refer to

constants and local and private variables of Si. The effect of the

cobegin statement on private and local variables is obtained from

independent proofs of the individual processes. For shared objects,

the initial assertion can be assumed to hoti at the beginning of concurrent

execution, and the invariant holds at the end.

Monitor procedure calls in Si are verified using the entry and exit

assertions and the usual rules for procedure calls, as described in

Hoare [1972]. The basic rule for a procedure call in process Si is
xy# XY#

{M.p.entry a ; L
i
)M.p(a;e)  (M.p.exit ; 6 L )

i

where the actual var parameters a must be distinct from each other

iy#
and from the actual value parameters 6. M.p.entry ; 6 L represents

i

the result of substituting actual parameters a, e for formal parameters

x, y and the name of the calling process Li for the symbol # in

M.p.entry.

Hoare's rule of adaptation is also useful: it allows the entry

and exit assertions to be adapted to the environment of the procedure call.

(PI M.p(&e) IQ)

w {]i;(P A Va,'[Li](Q ~ R))} M.p(a,~) (R}

where k is a list of variables free in P and Q but not R, s or 6,

and '[Li]  is a list of private variables of M belonging to Li.

. For example, given

{BB.in[Li]  = i' A BB.out[L.]
1

= 0’1 BB.append(x) (BB.in[Li] = i' @ <x> A

BB.out[Li] = 0')

the rule of adaptation allows the inference of

(true) BB.append(x)  (x = last(BB.in CL.])))
1

or

iin[L.] @ <x> = iO A out[L.] = <>I BB.append(x) (in[L.] = i, A
1 1

o u t  cll, ] = <>},
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As an example of verifying a concurrent program, consider the system

of processes illustrated below.

input1 -+ S1 T1

9 Y

+ output1

a BB 0 -.

. 0

-+ outputn

Process Si reads an input stream, inputi, of m elements and feeds them into

a bounded buffer BB. Ti removes m elements from the buffer (not necessarily

the m elements appended by Si) attd prints them on outputi. One can prove

{in[Si] = out[Si] = <>) Si {in[Si] = inputi A out[Si] = <>)
-=.

as outlined below. Let leading(j,X), where X = <x1, x,, . . . . xk> with

k Ij, be the initial segment <x1, x2, . . . . xj> of X.

. Then

{BB.in[Si] = oABB.out[Si] = <>}

Si: begin

j,x:integer;

for j := 1 until m doP -
{BB.in[Si] = leading(j-l,inputi) A BB.out[Si] = <>)

read x from inputi;

{BB.in[Si] @ <x> = leading (j,inputi) A BB.out[Si] = <>}

BB.append(x);

{BB.in[Si] = leading(j,inputi) A BB.out[Si] = <>}

od

{BB.in[Si] = leading(m,inputi) A BB.out[Si] = <>)

end

{BB.in[Si] = inputi A BB.out[Si] = <>I

Note that the assertions for BB.append are similar to the examples given

earlier.

A similar proof shows

(BB.in[Ti] = BB.out [T,] = <>ITi (BB.in[Ti] = <> A BB.out[Ti] =
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outputi A length(outputi) = ml.

Now suppose these processes are initiated by the statement

L:monitor BB:bb cobegin Sl//...//Sn//T1//...//Tn  coend.

The proof rule for cobegin gives

(BB.Init 3 A (BB.in[Si]  = BB.out[Si] = BB.in[Ti] = BB.out[Ti] = <>
1

A outputi = <>Alength(inputi)=m))

monitor BB:bb cobegin S,//...//T, coend

(BB.1  A (A BB.in[Si] = inputi  A BB.out[Ti] = outputi A BB.in[Ti] = <>
i

A BB.out[Si] = <> A length(inputi) = length(outputi) = m),

The pre-condition can be simplified to

A (outputi
i

= <>Alength(inputi)  = m)

The post-condition can be rewritten, expanding BB. I, to

ismerge(instream,6nputi@)  A ismerge(outstream, boutputi~)

A length(instream) = njln = length(outstream)

A instream = outstream @ buffer.

This implies that instream = outstream, yielding

ismerge(instream,BinpUti$)  A ismerge(instream, @outputi+)

The final theorem is

((Outputi = <> A length(inputi) = m, 1 5 i 2 n)}

monitor BB:bb cobegin Sl//...//T, coend

{values printed on cQoutputib  = values read from 4inputi$)

A slight variation on this system has processes S and T, which use the

bounded buffer in the same way as Si and Ti above, plus processes R,...Rn

whose actions are irrelevant except that they do not use the buffer.
For these processes

{BB.in[S] = BB.out[S] = <>A length(input) = m1

S

{BB.in[S] = input A BB.out[S] = oAlength(input)  = m)

and

{BB.in[T] = BB.out[T] = onoutput = <>)

T

(BB.in[T] = <> A BB.out[T] = output A length(output) = m}

and

{BB.in[R.] = BB.out[R.] = <>)R. {BB.in[R.]  = BB.out[R.] = <>)
1 1 1 1 1
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Using the rule for cobegin statements

(length(input) = m A output = <>I

monitor BB:bb cobegin S//T//RI//.,.//R, coend

(BB.1  A BB.in[S] = input A BB.out[T] = output A

length(input) = length(output) = m A BB.out[S] = BB.in[T] = -c>

A(A(BB.in[Ri]  = BB.out[Ri] = <>))I
i

After expanding BB.1, this simplifies to

{length(input) = m A output = <>I

monitor BB:bb cobegin S//T//RJ/...//Rn  coend

(input = OutpUtI

6. SPECIFICATIONS FOR SPECIAL SYSTEMS

Often a set of processes use a shared data object in a special way,

and a stricter set of specifications is appropriate. For example, if

PBB.append(a) is only called with positive values of a, then PBB.remove(b)

must return a positive value in b; a stronger entry condition for append

implies a stronger invariant and a stronger exit condition for remove. It

is always possible to deal with such systems by defining a new set of

specifications for the shared object and re-verifying the implementation as

described in section 4. In many cases, however, it is possible to derive

the stronger specifications from the general ones, without examining the

monitor implementation,

a Suppose, then, we have already verified that monitor M satisfies a

set of specifications, M.Init, M.1, and, for each procedure p, M.p.entry

and M.p.exit. Then M must also satisfy the stricter specifications, M.I’,

M-p.entry', and M.p.exit', provided the following conditions hold:

1. M.In i t  3 M.1’

2. for each procedure p

a. {M.p.entry A I} p(x;i) {M.p.exit  A I}

1 IM.p.pre' A 1') p(x;y) {M.p.post' A I')

where P 1 Q means Q can be proved using P as an assumption

b. p has no wait or signal operations between the first and

last modification of variables in M.1’
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Condition 1 ensures that the stronger invariant M.1' holds initially.

Condition 2a states that each procedure satisfies the stronger entry-exit

conditions and preserves M.1'; the fact that it satisfies the original entry

and exit and preserves M.1 may be used as a hypothesis. The invariant

M.1' must also hold at each wait and signal in M; condition 2b ensures that

variables in M.1' have either their entry or exit values at a wait or signal,

and in either case M.1' ,holds by rules 1 and 2a. Most monitor procedures

seem to follow the pattern described in 2b.

Consider, as an example, the specifications for a positive-value

bounded buffer PBB discussed earlier.

PBB.1' = PBB.1 A’dx(x~ instream 1 x > 0)

PBB.append.entry' = PBB.append.entry A a > 0

PBB.append.exit' = PBB.append.exit

PBB.remove.entry' = PBB. remove.entry

PBB.remove.exit' = PBB.remove.exit A b > 0

Since the monitor PBB satisfies the restrictions in Zb, the new specifications

can be verified by checking conditions 1 and Za, which clearly hold.

As another example, consider a system in which a producer process adds

an increasing sequence of values to a buffer ABB, and no other process

executes append. In this system the sequence of'values removed by any process

must also be increasing. The specifications for ABB are

ABB.1' = ABB.1  A VR(R # producer 1 in[R] = <>)

A increasing(in[producer])

ABB.append.entry' =ABB.append.entry A # = producer A(length(in[#]) = 0 V

a > last(in[#]))

- ABB.append.exit' =ABB.append.exit

ABB.remove.entry' =ABB.remove.entry

ABB.remove.exit' =ABB.remove.exit A increasing(out[#])

The entry assertion of ABB.append requires that the calling process is

the producer (# = producer), and that the value to be appended is greater

than the last value appended. This is enough to imply the strengthened

invariant. Note that ABB.1’ 1 increasing(in[producer]) A

instream = in[producer] = outstream @ buffer fl

ismerge(outstream, Bout+),
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which yields VR(increasing(out[R])). Thus the stronger exit condition

for ABB.remove can be derived from ABB.1'.

7. CONCLUSIONS

There are two principles underlying*.the  specification and proof methods

presented in this paper. The first is that shared data abstractions provide

a useful tool for building concurrent programs, and that their usefulness is

much increased if they can be precisely specified. The second is that the

proof of any program module should depend on assertions that cannot be af-

fected by the concurrent actions of other modules. An easy way to insure

that assertions have this property is to limit their use of variables.

This not only reduces the complexity of formal verification, but also proves

a helpful discipline for informal proofs. The techniques discussed here are

suitable for automated verification and for human use. People cannot be

expected to produce detailed formal proofs, so it is important that the methods

can be used informally and still be (relatively) reliable. The use of

safe assertions eliminates most of the complex interactions and the time-

dependent error caused by concurrency. Note the importance of private

variables in this methodology, both in specification anld  monitors. Without

private variables in the specifications it would be impossible for safe

assertions to describe an abstract operation adequately. Private variables

in monitors make it easy to verify that a monitor satisfies its specifications.

Any verification technique is worthwhile only if it is general and

e powerful enough to handle a wide range of problems. The examples in this

paper have shown that the proposed methods are adequate for verifying programs

which use a bounded buffer in several different ways. The techniques have

also been used to prove programs which communicate via message-passing monitors.

With slight extensions to handle dynamic resource allocation, it was possible

to verify several complex (though small) systems, including Hoare's  struc-

tured paging system [Hoare  73). More experience is necessary, especially

with larger systems, but it appears that these methods will be sufficient

for many concurrent programs.
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