COMPLEXITY OF COMBINATOR IAL ALGOR ITHMS

by

Robert E. Tarjan

STAN-CS-77-609
APRIL 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERSITY

RN - o
N Oy Q7
NGaNzeD O
Rt O

Conpl exi ty of Conbinatori al Algorithmsjy

*%
Robert Endre Tarjan-——/

Conput er Science Depart nent
Stanford University
Stanford, California 94305

Abstract .
This paper examnes recent work on the conplexity of
conbinatorial algorithms, highlighting the ains of the work, the
mat hematical tools used, and the inportant results. Included are
sections discussing ways to measure the conplexity of an algorithm
met hods for proving that certain problens are very hard to sol ve,
tools useful in the design of good algorithms, and recent inprovenents

in algorithms for solving ten representative problenms. The final section

suggests some directions for future research.

*/ Based on a talk presented at the Synposium in Honor of the 30th
Anniversary of the Ofice of Naval Research, SIAM 1976 Fall Meeting,
Atlanta, Georgia, OCctober 18-20, 1976.

*%

—/Research partially supported by National Science Foundation grant
MCS?5-2287Qland by the Ofice of Naval Research contract
NOOO1L4-~756-C-0668. Reproduction in whole or in part is pernmitted
for any purpose of the United States Governnent.

1. [ntroduction.

In recent years there has been an explosive growh in research
dealing with the devel opnent and complexity analysis of conbinatoria
algorithms. \Wile nuch of this research is theoretical in nature, many
of the newy discovered algorithms are very practical, These algorithns
and the data mani pul ation techniques they use are valuable in both
conbinatorial and numeric conputing. Sone problens which at first
glance are entirely nuneric in character require for their efficient
solution not only the proper nuneric techniques but also the proper choice of
data structures and of data manipul ation methods, An exanple of such a
problemis the solution of a system of linear equations when the coefficient
matrix contains nostly zeros (Tewarson [1973]).

In this paper | shall survey some of the recent results on
conpl exity of combinatorial al gorithms, exam ne some of the ideas behind
them and suggest possible directions for future research. Section 2 of
t he paper discusses ways to measure the conplexity
of algorithnms. Though several different measures are useful in different
circunstances, | shall concentrate upon one neasure, the worst-case
running time of the algorithmas a function of the input size. Section 3
di scusses techniques for proving that certain conbinatorial problenms are
very hard to solve. The results in this area are a natural extension,
perhaps nore relevant for real-world computing, of the inconpleteness
and undecidability results of G8del, Turing and others. Section 4 presents
a small collection of general techniques which are useful
in the construction of efficient conbinatorial algorithms. Section 5

di scusses efficient algorithms for solving ten representative problens.

These problems illustrate the inportance of the methods in Section L, and
they include some, but certainly not all, of the conbinatorial problens
for which good algorithms are known. Section 6 suggests some unsol ved
problems and directions for future research. The appendix contains a

list of termnology for those unfamliar with graph theory.

2. Machi ne Mdels and Conplexity Measures

In the early years of conputing (before conputer science was
recogni zabl e as an acadenmc discipline), an individual confronted with a
conputational problem was likely to proceed in the following way. He or
shef/ woul d ponder the problem for é while, formulate an algorithm for
its solution, and wite a conputer program whi ch would hopefully i npl enment
his algorithm To test the algorithmis correctness, he would run the
program on several sets of data, "debugging" the program until it
produced correct output for each set of sanple input. To test the
algorithms efficiency, he would measure the time and storage space
needed by his program to process the sanple data, fit these neasurenents
to curves (by eye, by least-squares fit, or by some other method), and
claimthat these curves nmeasured the efficiency of the algorithm

The drawbacks of this enpirical approach are obvious. The devel opnent
of very large programs, such as conpilers and operating systens, requires
a nuch nmore systematic method of checking correctness. This need has |ed
computer scientists to devise methods for proving the correctness (and
other properties) of prograns (Floyd [1967], Manna [1969], Hoare [1969]).
These nethods use mathenmatical induction to establish that certain invariant
relations hold whenever certain points in the program are reached. Conputer
scientists have also devel oped nethods (such as *'structured programing")

“ for constructing easy-to-understand and easy-to-verify prograns (Dahl,
Dijkstra, and Hoare [1972]), and have formul ated new programm ng |anguages
to make these methods easy to apply (Wrth [1971]). The thrust of this
research is to denonstrate that devising an algorithm and devising a proof

of its correctness are inseparable parts of the sane process. Perhaps

% Henceforth | shall use "he" to denote any individual, nmale or fenale.

the forenost advocate of this pointof viewis Dijkstra (Dahl, Dijkstra
and Hoare [1972]; Dijkstra [1976]).

Measuring efficiency by means of enpirical tests has the sane
deficiency as checking correctness enpirically; there is no guarantee
that the result is reproducible on new sets of data. If an informed
choice is to be made between two algorithnms for solving the same problem sone
nmore systematic information about the algorithms' conplexity is needed
To be nost useful, this information should be nachine-independent; good
algorithnms tend to remain good even if they are expressed in different
programm ng | anguages or run on different machines. Furthernore the
measure should be both realistic and susceptible to theoretical study,

Conpl exity measures are of two kinds: those which are
static (independent of the size and characteristics of the input data)
and those which are_dynanm c (dependent upon the input data), Atypica

static neasure is program length. Program length in sone sense neasures

the sinplicity and elegance of an algorithm (an algorithmwth a short
program and short correctness proof is sinple; an algorithmwth a short
program and |ong correctness proof is elegant), This measure is nost
-appropriate if programming time is inportant or if the programis to be
run infrequently.

Dynam c conpl exity measures provide information about the resource
requirements of the algorithmas a function of the characteristics of

the input data. Typical dynamc neasures are running tine and storage

space. These nmeasures are appropriate if the programis to be run often.
Running tine is usually the most inportant factor restricting the size of
probl ens which can be solved by computer; nost of the problens to be

examned in Section 5 require only linear space for their solution.

However, for problems with linear-tine algorithms, storage space may
be the limting factor. Storage space has been used as a neasure in
proofs of the conputational intractability of certain problems (see
Section 2), but nost efficiency studies enphasize running tine.

Dynam c measures require that we specify the input data. One
possibility is to assune that the data for a given problemsize is the
worst possible. A worst-case neasure of running time or storage space
as a function of problem size provides a performance guarantee; the
program will always require no nore tine or space than that specified
by the bound. A worst-case neasure is in this sense not unlike a proof
of program correctness..

For some algorithnms a worst case bound may be overly pessimstic;
for instance, the sinplex nethod of linear programmng (Dantzig [1963]),
whi ch has an exponential worst-case tine bound (Kl ee and Mnty [1972]),
seems to run nuch faster than exponential on real-world problens (Dantzig
[1963]). In such cases an "average" case or "representative" case may
give a nore realistic bound. For certain problem donains, such as sorting
and searching (Knuth [1973]), average case analysis is alnost always nore
realistic than worst-case analysis, and in these areas nuch average-case
anal ysi s has been done. However, average-case analysis has its drawbacks.
It may be very hard to choose a good probability neasure. For instance,
assumng that different parts of the input data are independently
distributed may make the analysis easier but may be an unrealistic
assunption; furthermore even a relatively sinple algorithm may rapidly
destroy the independence. Wth average-case analysis one additionally
runs the risk of being surprised by a very rare but very bad set of input

dat a.

Any concrete conplexity measure nust be based on a conputer model, One

possi bl e choice is the random access nachine (Cook and Reckhow [1973]), which

is an abstraction of a general-purpose digital conputer. The memory of such
a machine consists of an array of storage cells, each able to hold an

integer. The storage cells are nunbered consecutively from one; the number

of a storage cell is its address. The machine also has a fixed finite set
of registers, each able to hold an integer. (For problems involving rea
nunbers, we allow storage cells and registers to hold real nunbers.) In
one step, the machine can transfer the contents of a register to a storage
cel | whose address is in a register, or transfer to a register the contents
of a storage cell whose address is in a register, or performan arithnetic
operation on the contents of two registers, Or conpare the contents of two
registers. A program of fixed finite length specifies the sequence of
operations to be carried out. The inital configuration of menory
represents the input data, and the final configuration of nemory represents
the output. The details of this machine nodel are uninportant in that
reasonabl e variations do not affect running time or storage space by nore
than a constant factor

A random access machine is sequential; it carries out one step at
a time. Mich work has been done on the conputational conplexity of
parall el algorithns, but | shall not discuss this work here.

-The random access machine model provides a useful tool for
realistically measuring the efficiency of particular algorithns,
but it has serious drawbacks for lower bound studies, Since a
single storage cell can hold an arbitrarily large integer, it is
possible on a random access machine to carry out conputations in

paral l el by encoding several snmall nunbers into one |arge one. One

can avoid this problem by assuming that the time required for an integer

operation is proportional to the length of its binary representation

(Aho, Hopcroft, and Ullman [1974]), or by requiring that all integers be

bounded in absolute value by some constant times the size of the input data
Random access nmachines are extrenely powerful; in particular, they

can performarithnetic on addresses. This ability is useful for representing

nul tidi mensional arrays (kKnuth [1968]), performi ng radix sorts (kKauth [1973]),

storing hash tables (knuth [1973]), and the |ike. However, deternining the

theoretical limts of this capability seenms to be a hard problem

Kol nogorov [1953], Kol nogorov and Uspenskii [1963 1, Knuth [19681,

Sch¥nhage [1973], and Tarjan {1977] have proposed machi ne nodels in which

access to nenory is by explicit reference only, and no address arithnetic

is possible. | shall call such a machine a |inked nenory machine. These

machi nes accurately nodel the capabilities of |ist-processing |anguages
such as LISP and the list-processing features of general-purpose |anguages
such as Algol-w and PL/1, and they appear to be nmore anenable to analysis
than random access machines.

Another very sinple machine nodel, the Turing machine (Turing [1936-7]),

has been used in many theoretical studies. A Turing machine has a nenory
consisting of a tape. The tape is divided into cells, each capable of

hol ding one of a finite nunber of synbols. The machi ne possesses

a finite internal menory and & read/wite head which can scan one tape

cell at atinme. 1In one step, the machine can read a tape cell, wite a
new symbol in the cell (erasing what was there previously), nove the
read/wite head one cell forward or backward on the tape, and change

the internal nenory state, The decision as to what to do at each step
depends only on the current internal nenory state and the contents of

the tape cell being read; this decision is encoded for each interna

state and each tape synbol in a decision table which forns the program

of the machine

Turing proposed his machine nodel in 1936, before electronic digita
conputers existed;, he was attenpting to nodel computational processes in
the abstract, without reference to any real computer. Though Turing's
model is inadequate for a large part of concrete conplexity research, its
sinplicity and the fact that any random access nachine can be sinulated
on a Turing nmachine with only a polynomal blowup in running tinme nakes
the Turing machine extremely useful for studying very difficult computationa
tasks. It is also valuable for studying problems where tapes are the
storage device, as for instance in tape sorting (knuth [1973]).

In lower bound studies the focus is often on sone critical operation
one counts in the running time occurrences only of that critical operation.
For instance, in sorting and selection problems it is useful to count only
conparisons (or general binary decisions), neasuring the conplexity of a

probl em by the depth of a decision tree for it (sho, Hopcroft, and Ullman

[1974]). In arithnetic and al gebraic problens, it is useful to count only
arithmetic operations and to assume that no decisions are made; i.e., that

the conputations performed are independent of the input data (for a particular
problem size). In this case one neasures the conplexity of a problemby the

length of a_straight-line program (aAho, Hopcroft, and Ullman [197L4]). In

other situations nemory accesses nmay be the critical operations
In this paper | shall use worst-case running tine on a random access
machine as a neasure of algorithmic conplexity. This measure is useful
and realistic for a wide range of combinatorial problems. I shal
ignore constant factors in running time, since such constant factors depend

upon the exact model of conputation, they are often hard to conpute, and

they tend, at least for large-sized problens, to be washed out by
asynptotic growth rates. To indicate functional relationships, |

shall use the following notation. If f and g are functions of n |,
"f(n) is o(g(n)) " means f(n) i_cg(n) for all n, where c is a
suitabl e positive constant, and " f(n) is Q(g(n)) " neans f(n) > cg(n)

for all n, where c is a suitable positive constant.

3. Conpl exity of Intractable Problens.

Inspired by Hlbert [1926] and other fornalists, mathematicians of the
early twentieth century hoped to find a formal system which would be adequate
for expressing and veryifying all mathematical truths. These hopes were
dashed by GBdel [1931], who in his fam)us‘ I nconpl et eness theorem denonstrated
that no nethod of proof could be both subject to nechanical verification
and powerful enough to prove all theorens of elenentary arithmetic. Their
interest in the foundations of mathenatics pronpted |ogicians to comfront
the question, "What is nmechanical verification?" or equivalently, "Wat is
an algorithn?". Church [1936], Kleene [1936], Post [1936], Turing [1936-7]),
and others provided formal definitions of an algorithm These definitions
are superficially different but provably equivalent, in the sense that if
a problem is solvable according to one definition of an algorithm then
it is solvable according to all the other definitions. This robustness

of the notion of an algorithmis usually stated as Church's thesis: any

algorithm (in the informal sense) can be expressed as a Turing machine,
and any Turing machine expresses an algorithm

Once a formal definition of an algorithm existed, it was possible
for mathematicians to study the power of conputation. Turing proved that
no algorithm existed for determning whether a given Turing machine with a
given input will ever halt. Qher researchers discovered a number of such .

undeci dabl e probl ens (Jones [1974]), which correspond in conputer science

to the inconmpleteness results of GBdel and others in logic. Perhaps the
capstone to this research on conputability is Matijasevic's 1970 proof,
building on earlier work by Martin Davis and Julia Robinson, that Hlbert's
tenth problemis undecidable (Davis, Matijasevic, and Robinson [1976]).
Hlbert's tenth problemis to determ ne whether a given polynom al equation
has a solution in integers.

10

Two proof techniques, diagonalization and sinulation, pervade

conputability theory. Diagonalization is based on ancient self-reference
paradoxes; Cantor [1874] used it to prove that there are nore real numbers than
integers and G8del used it to prove his inconpleteness result. (ne can
use it in the following way to devise an undecidable problem Suppose
we are interested in yes-no questions about the integers, such as "Is n
even?" or "I's N prime?" Suppose we have a listing Al,Ag,Aj, ees OF
all al gorithms for answering such questions (for any of the standard
definitions of an algorithmit is easy to produce such a listing).
Consider the set S of integers such that n s an element of Sif
and only if al‘gorithmﬁh answers "no" (or does not answer at all) on
input n . Then the question "Is n an elenent of S 2" is undecidabl e,
since each algorithmin the Iist Al, LW A},. o produces a wrong

answer on at |east one input (A is wong on input n) and by Church's
thesis this |ist contains all possible algorithns, Turing used the

same idea to show the undecidability of the halting problem for Turing
machi nes.

Sinulation is a nethod for turning one problem or problemsolving
nmethod into another. (Once we have one undecidable problem P, , We can
prove another problem P, undecidable by showing that if P, has an
algorithmthen this algorithm can be used to solve Fl . To acconplish
"this we provide an algorithm which converts an instance of probl em Py
into one or nore instances of problem®, , thus reducing P, to P,

(or transform ng P into P,). Sinlarly, to show that two definitions

2
of an algorithmare equivalent, we show how to simulate an algorithm

according to one definition by an algorithm according to the other

definition,

The devel opment of general -purpose digital conputers nade possible
the inplementation and execution of conplicated algorithms, and the
theory of computability became a matter of nore than mathemati cal
-interest. However, this theory ignores questions of resource use, which
limts its power to identify what is possible in practice. Many problems
whi ch obviously have algorithms seem to have no good algorithns. For

instance, consider the naxi num stable set -problem given a graph, find in it

a naxi num number of vertices, no two adjacent. Since a graph with n

vertices has only 2" subsets of vertices, an exponential-time algorithm
for this problem exists. However no one has yet discovered a substantially
faster algorithm for this problem
[Table 3.1]
Tables 3.1 and 3.2 illustrate the inportance of this phenomenon,
‘Table 3.1 estimates running tines of algorithnms with various time
bounds. The table shows that constant factors become | ess and |ess
inportant as problem size increases; on large problems the asynptotic
growth rate of the time bound domi nates the constant factor. The table
also shows that running time grows explosively if the time bound is
_exponential. Table 3.2 estimates the maxinum size of problens solvable
ina given amount of time. Increasing the anmount of tine (or the speed
of the machine) by a large factor does not substantially increase the
size of problenms solvable unless the tinme bound grows nore slowy than
exponential .
[Tabl e 3.2]
Tables 3.1 and 3.2 suggest a natural division between good al gorithns
(those with worst-case tinme bounds polynomial in the size of the input)

and bad algorithms. Ednonds [1965] was apparently the first to stress this

distinction. | shall call a decidable problemtractable if it has a

pol ynom al -tinme algorithm and intractable otherw se. The distinction
between tractable and intractable problens is independent of the machine
model, since any of the commonly used machine nmodels can be simulated by
any other with only a polynomal loss in running tine. As Tables 1 and 2
show, it is not feasible to execute exponential-time algorithnms on |arge
probl ens. Many conbinatorial problens are easily solvable in exponential
time by exhaustively checking cases, but solving such problens in polynoni al
time seems to require nuch greater insight. Mst known good algorithns
have time bounds which are polynomals of small degree (CXn3) or better).
It is a myjor task of conplexity theory to identify which natural problens
are tractabl e‘ and which are intractable.

Hartmanis, Lewis, and Stearns took the first steps toward exhibiting
natural intractable problens (Hartnanis, Lewis, and Stearns [1965];
Hartmani s and Stearns [1965]). By di agonalizing over all algorithns with
a given space bound sl(n) > they were able to obtain a problem solvable
in space Se(n) but not in space Sl(n) , for any space bounds sl(n) and

Se(n) satisfying 1lim jnf sl(n)/sg(n) =0 and a few other technical

n—om

constraints. They proved a simlar but somewhat weaker result for
tine conplexity. These results inply in particular that there are problens
solvable in exponential space but not in polynomal space, and problens
solvable in exponential time but not in polynomal time.

Unfortunately, the intractable problens produced by diagonalization
are not natural ones. Meyer and Stockneyer [1972] proved the
intractability of a natural problem They showed that the probl em of

determ ning whether two regul ar expressions with squaring denote the

13

same set requires exponential space (and hence exponential tine)

for its solution. A regular expressionis a fornula constructed from

the symbols A , O , 1 , U, . » * 5, (,) according to the follow ng

rules. Each such fornula denotes a set of strings of zeros and ones.

3.1 0 is a regular expression denoting the set {0} ;

1 is a regular expression denoting the set {1} ;

A is a regular expression denoting the set whose single elenent

Is the enpty string.
3.2 If A and B are regular expressions denoting sets L(A) and
L(B) , respectively, then
(AUB) is a regular expression denoting the set L(A)yUL(B) ;
(A-B) is a regular expression denoting the set
{xy | xeL(a) and. yeL(B)} .

A* is a regular expression denoting the set consisting
of the enpty string and all strings formed by concatenating

one or nore strings in L(A) .
Meyer and Stockmeyer added an additional rule:

. . Lo. .
3.3 1f Ais aregular expression, then A" is a regular expression

denoting the sane set as (A-A) ,

To prove that the equival ence problem for two such expressions is
intractible, Meyer and Stockneyer used sinulation. They devised a
pol ynom al -tinme al gorithm which, given a Turing machine, an input, and

an exponential space bound, would construct a regular expression

14

representing the conputation of the Turing machine on the given input.
The expression is such that it denotes the sane set as (OUJ.)*
if and only if the Turing machine does not accept the input within the
given space bound. It follows that the equival ence problem for regular
expressions with squaring is as hard-(to within a polynonial tine bl ow up)
as any yes-no question answerable in exponential space by a Turing machine.
Since the Hartmanis, Lewis, Stearns result inplies that sone problem
exi sts which can be solved in space 2" but not space 2"/n , the
equi val ence problem for regular expressions nust require exponential
space.

In the last five years, several nore such results have been
di scovered. Hunt [1973] showed that if set intersection is substituted for
squaring the equivalence problem for regular expressions still requires
exponential space. Stockmeyer and Meyer [1973] showed that if set
subtraction is substituted for squaring the equival ence problem for
regul ar expressions has a non-elementary space bound. Fischer and Rabin
[1974] proved that testing the validity of a formula in Presburger

arithnmetic (the theory of natural numbers with + as the only operation)

cn
requires 22 space, for sane positive constant ¢ . Cardoza, Lipton,

and Meyer [1976] showed that the word problem for Abelian groups requires
exponential space. Jazayeri, Oyden, and Rounds [1975]
showed that testing the circularity of attribute grammars (a problem
arising in programmng |anguage semantics) requires exponential tine.
The idea in all these proofs is the sane; one shows how to efficiently
convert any conputation with a particular space or time conplexity into
an instance of the given problem and one appeals to the Hartnmanis, Lews,

Stearns results to assert the existence of an intractible problem with

15

the particular space or time conplexity.

Significantly, a nunber of apparently intractable problens, such as
the maxi num stable set problem are not included in the Iist of known
intractable problens. These problens have the followi ng property. If
such a problemis phrased as a yes-no question, and the answer is "yes",
then there is a polynomal-length proof of the answer. For instance,
suppose we rephrase the maximum stable set problem as follows: "Does
a given graph G contain a stable set of k vertices?" If the answer
is yes, one can prove it by exhibiting the stable set and show ng that
its vertices are pairwise non-adjacent.

To formalize this notion of polynomal-length proof, we introduce

non-deterministic nachines. A non-determnistic machine may, at various

times during its conputation, nake a guess as to what to do next. The
machi ne accepts a given input if there exists some sequence of guesses
whi ch causes the machine to eventually answer "yes". W define the tine
(or space) required by the machine to accept an input as the mninum
anmount of tinme (or space) used by an accepting conputation. The follow ng
non-determnistic algorithm solves the maxinum stable set problem in
polynomal time: First, guess a subset of k vertices. Next, check all
pairs of these vertices for adjacency. Accept if no two of the vertices
are adjacent. Let p denote the class of yes-no problens solvable
determnistically in polynomal time and |let 7p denote the class of
yes-no problens solvabl e non-determnistically in polynomal time. The
question we wish to answer is, "Are there natural problenms which are in
Nne but not in p ?"

Cook [1971] showed that 7P contains certain "hardest" problens,

cal | ed 7@ -complete problens. A problemP is 79p -complete if

16

it satisfies two properties:
3.4 Pisin ngp.

3.5 If Qisinnp then Qis reducible to P in polynomal tine.

To say that Qis reducible to P in polynomal tine neans that
there is a (determnistic) polynomal-tinme algorithm which, given an
instance of problem Q wll convert it into an instance of problemP ,
such that the answer to the instance of Qis "yes" if and only if the
answer to the instance of P is "yes". |If Qis reducible to P in
polynomal time and P has a polynomal-time algorithm then so does Q.
Thus if any 7@ -complete probl em has a polynomal-time algorithm p = 2p.

Cook's main result was to show that the satisfiability problem of
propositional calculus is 7@ -complete, The satisfiability problemis to
determne whether a given logical fornmula is true for at |east one
assi gnment of the values "true" and "false" to the variables. It is easy
to show that this problemsatisfies 3.4. Cook proved 3.5 by giving a
pol ynoni al -tine algorithm for constructing, from a given non-determnistic
Turing machine, a given input, and a given polynomal time bound, a |ogical
formula such that the fornula is satisfiable if and only if the Turing
machi ne accepts the input within the tinme bound.

If one knows a single problem P to be 7Mp-complete, one can prove
anot her problem Q 7p-complete by showing that Qis in 7 and that P
is reducible in polynomial tinme to Q; property 3.5 then follows fromthe
transitivity of polynomal-tine reducibility. Karp [1972] used this
idea to exhibit a nunber of natural 7p-complete problens. Qhers

continued this work, and the number of known 7 -complete problems is

17

now in the hundreds (see for instance Even, Itai, and Shamr [1976];
Garey, Johnson, and Stockneyer [1976]; Garey, Johnson, and Tarjan [1976];
Karp [1975]; Sahni [1974]; Sethi [1975]; and Ullman [1973]). I n addition
to the satisfiability problem and the maxi num stable set problem,the

following problens are 7p -complete,

Subgraph i sonor phi sm (Cook [1971]). G ven two graphs Gy and Gy is

G, isonmorphic to a subgraph of G, ?

G aph coloring (Karp [1972]). Gven a graph G, can its vertices be

colored with k colors so that no two adjacent vertices have the sane
color? This problemis 7f@-complete even if k = 3 and Gis
pl anar (Garey, Johnson, and Stockmeyer [1976]), whereas it follows
from Appel and Haken's proof of the four color conjecture (Appel and

. Haken [1977]) that there is a polynonmial-tine algorithmto color any

pl anar graph with four colors.

Hami | ton cycle (Karp [1972]). G ven a graph G does it contain a cycle

which passes through every vertex exactly once? This problemis a

speci al case of the travelling sal esman probl em (see Section 4). It

is NP -complete even if Gis planar (Grey, Johnson, and Tarjan [1976]).

Subset sum (Karp [1972]). G ven a set of nunbers NNy ...n, and a sums

does some subset of the nunbers sumto exactly s ?

Maxi num pl anar subgraph (Liu and Geldmacher [1976]). G ven a graph G, does

it contain a planar subgraph with at |east Kk edges?

A nmajor open problem of conplexity theory is to determine whether p = p.
A natural approach to this problem would be to try using diagonalization to
exhibit a problemin @ but not inp . However, recent work by Baker,

G1l, and Solovay [1975] suggests that diagonalization is inpotent for
18

resolving the p = nP? question. Even without a proof that p = qp,
it is still fruitful to add new natural problems to the |ist of

ng -complete ones; the large amount of time spent by bright people
fruitlessly searching for polynomal-time algorithms for 7p-complete
problens is strong evidence that the 7@ -complete problens are in fact

intractabl e.

19

4, Technigues for Good Al gorithns.

Al 'though many inportant conbinatorial problenms seemto be intractable,
many others have good algorithnms. A small nunber of data manipul ation
techniques form the basis for these algorithnms. This section exam nes
these techniques, which are outlined in Table 4.1.

[Tabl e 4.1]

Data Structures.

Any al gorithm (good or bad) requires one or nore data structures to

represent the elements of the problemto be solved and the infornmation
conputed during the solution process. A data structure is a conposite
obj ect conposed of elenents related in specified ways. Associated wth
the data structure is a set of operations for manipulating its elements
- Once a good inplenentation of a given data structure and its operations
I's known, one can regard the operations as primtives when inplenenting
any al gorithm which uses the data structure. The efficiency of the
algorithmwll depend to a large extent upon the inplenentation of the
underlying data structure.

There are two data structures upon which all others are based:

arrays and linked structures. An array is a collection of storage

cells nunbered consecutively. Two operations are associated with an
array: (@iven the number of a storage cell, one can either store a value
in the storage cell (destroying the current value) or retrieve the current
value fromthe storage cell. The nmenory of a random access machine and
of nmost digital conputers is an array. One can use arrays to represent

vectors, matrices, tensors, and nultidimensional arrays (knuth [1968]).

20

A linked structure consists of a collection of records. Each record
is divided into a number of items, each with an identifying nane. The
structure of all records is identical. Itenms are of two kinds, data

itens and reference itens. Data itens contain data. Reference itens

contain pointers to records. Two operations are possible on a linked

structure; given a pointer to a record, one can either store a value

into an itemin the record or retrieve the current value froman item

inthe record. Figure 4.1 illustrates a linked structure. \Wereas

array addresses are integers capable of being manipulated by arithmetic

operations, no operations are allowed on linked structure pointers

except storage, retrieval, and testing for equality. The nemory of a

| inked menory machine is a linked structure, and nost list-

processing |anguages can be regarded as operating on |inked structures
[Figure 4.1]

It is easy to inplenent arrays and linked structures so that
storage and retrieval require constant time. Linked structures can be
i npl emented as col | ections of arrays (see Figure 4.1); this makes list-
processing easy in |anguages such as FORTRAN which do not possess an
explicit list-processing facility. It seems to be inpossible to inplement
an array as a linked structure in such a way that storage and retrieva
take constant tine, though | know of no proof of this fact.

Using arrays and linked structures, one can inplement many different
data structures. | shall consider here five classes of data structures
lists, unordered sets, ordered sets, graphs, and trees

A list is a sequence of elements. The first elenent of a list is

its head; the last elenent is its tail. Sinple operations on a |ist

include scanning the list to retrieve its elenents in order, adding an

21

el ement as the new head of the list (making the old head the second
element); adding an element as the new tail, deleting and retrieving

the head of a list, and deleting and retrieving the tail of & list.

Lists on which only a few of these operations are possible have specia
names. A stack is a list with addition and deletion allowed only at the
head. A queue is a list with addition allowed only at the tail and
deletion allowed only at the head. A deque (double-ended queue) is a

list on which addition or deletion is possible at either end. One can

impl enent a deque either as a circular array (addresses are conputed
modul o the size of the array) or as a singly linked structure (if deletion
fromthe tail is not necessary). See Figure 4.2. In either case, all
operations except scanning require constant time. The array representation
uses no space for storing pointers but requires that an amount of storage

- equal to the maxi mum size of the list be permanently allocated to the |ist.
[Figure 4.2]

Qher inmportant |ist operations include concatenating two lists

(making the head of the second list the elenent following the tail of

the first), inserting an elenent before or after an elenment whose |ocation
in the list is known, and deleting an el enent whose location in the |ist
s known. These operations require a |linked structure for their efficient
implementation. A singly linked structure is sufficient for concatenation
and- for insertion after another elenent, Insertion before another elenent
and deletion require a doubly linked structure. See Figure 4.3. An
alternate way to handle deletion is to provide each element with a flag
which is set to "true" if the element is to be deleted. The elenent is
not explicitly deleted until the next scan through the [ist.

[Figure 4.3]

22

The |ist operations hardest to inplenent are inserting an el enment
at the k-th position in a list, retreiving the elenent at the k-th position
inalist, or deleting the element at the k-th position in a list. It is
possible to inplement these operations to run in 0(log n) tine, where n
is the size of the list, by using AVL trees (Knuth [1973]) or 2-3 trees
(Aho, Hopcroft, and Ullman [1974]), which are rather conplicated |inked
structures. Recently Quibas, McCreight, Pl ass, and Roberts [1977] have
found a way to carry out these operations in 0(log k) tine.

An unordered set is a collection of distinct elements with no inposed

relationship. Basic set operations are adding an element to a set,
deleting an elenment froma set, and testing whether an elenent is in a
set. (One way to represent a set is by a singly linked list. Addition
requires constant time but testing and deletion require Q(n) tine, where
n is the size of the set. Aternatively, if the elements of the set are
val ues which can be conpared and sorted, one can represent the set by an
AVL tree or a 2-3 tree in such a way that all three operations require
0(log n) time (Knuth [1973]; Aho, Hopcroft, and Ullman [1974]).

Another way to represent a set is by a bit vector (Aho, Hopcroft, and
Ullman [197L4]), which is an array with one storage cell for each possible
element. A storage cell has two possible values: true, indicating that

. the set contains the element, and false, indicating that it does not. All
three operations require constant tine using this representation. Bit vector
representation is only feasible if the nunber of possible elenents is snall.

If the nunmber of possible elements is large, one can mnic the behavior
of a bit vector by using a_hash table (knuth [1973]). A hash table consists

of a moderately sjzed array and a hashi ng function which maps each possible

23

element into an array address. If an element is present, the elenent

(or a pointer to it) is stored at (or near) the address specified by the
hashing function. Since two or nore elements may hash to the same address,
sone nechani sm nust be provided for resolving such collisions. Hash tables
are used extensively in conpilers, and many papers have been witten about
them (see Knuth [1973], Morris [1968]). Wth a hash table, addition,
deletion, and testing require Qn) tinme in the worst case but only
constant tine on the average.

Addi tional set operations are useful if two or nore sets exist. These

include the ability to forma set which is the union, intersection, or

difference of two sets. For nost representations union, intersection

and difference require time proportional to the sum of the sizes of the
sets. However, if the universe of elements is small enough so that a bit
"vector can fit into a few computer words and the conputer possesses bit
vector operations, then union, intersection, and difference require constant
time.

An ordered set is a collection of elenents, each with an associated
nuneric value. Two inportant operations on ordered sets are sorting the
_elements in increasing order and selecting the element with k-th |argest
value. A variety of ways exist to sort n elements in Q'n log n) tine
(knuth [1973]1); if binary conparisons are the only operations used to
mani pul ate the values then q(n log n) time is required in both the average
and the worst case to sort (Knuth [1973]). Selecting the k-th |argest
elenent requires Qn) time (Blum, Floyd, Pratt, Rives-t, and Tarjan [1973];
Schénhage, Paterson, and Pippenger [19751]).

A priority gueue is an ordered set on which the follow ng operations

are allowed: adding an element to the queue, retreiving the mninumvalue

ok

element in the queue, and deleting an el ement whose location is known
fromthe queue. By using binonmial trees (Vuillemn [1977], Brown [1977]),
leftist trees (Knuth [1973]), or 2-3 trees (Aho, Hopcroft, and Ullman
[1974]) one can inplement priority queue operations so that they require
0(log n) tinme, where n is the size of.the queue. These inplenentations
also allow one to conbine two queues into a larger queue (destroying the
smaller queues) in 0 (log n) tinme.

If the values of the elements in an ordered set are integers of
noderate size, then the ordered set operations can be speeded up. Using
a k-pass radix sort, one can sort n integers inthe range 1 to n®
in O(km+n) tinme (Kauth [1973]). Peter van Ende Boas has devised a
method for inplenmenting priority queues with integer values in the range
1 to n so that the queue operations require 0(log log n) tine
(van Emde Boas, Kaas, and Zijkstra [1975]).

A graph is a set of vertices and a set of edges, each edge a pair

of vertices. (One way to represent a graph is by a two-dimensional array A

called an adjacency matrix. The value of A(i,j) is one if (i,3) is an

edge of the graph; otherwise the value of A(i,j)is zero. An alternate

way to represent a graph is by an adjacency structure, which is an array

of lists, one for each vertex. The list for vertex i contains vertex |
if and only if (i,3) is an edge of the graph. See Figure 4.4.
[Figure 4. 41
The adjacency matrix representation savesspace if the graph is dense
(i.e., nost possible edges are present); it also allows one to test the
presence of a given edge in constant time. However, Anderaa and Rosenburg
conj ectured (Rosenberg [1973]) and Rivest and Vuillem n [1975] proved t hat

testing any non-trivial monotoni~/* graph property requires Q(n%)

*
Y A graph property is non-trivial if for any n the property is true for
some graph Of N vertices and talse for some other graph of n Vertices.

A graph property is monotone if adding edges to a graph does not change
thg prpopeprtypfroymtrue fo false. 9 &% orap :

25

probes of the adjacency matrix in the worst case, where n is the nunber

of vertices in the graph. By using an adjacency structure, one can search

a graph in Qn+m tine, where mis the nunber of edges in the graph

thus representation by an adjacency structure is preferable for sparse graphs
Atree is a graph without cycles. Since a tree is a graph it can be

represented by an adjacency structure. A nore conpact way to represent

atree is to choose a root for the tree, conpute the parent of each vertex

with respect to this root, and store this information in an array

(Figure 4.5). This representation is usable as long as the tree is to

be explored from |eaves to root, which is often the case in problens

i nvol ving trees.

[Figure 4. 51

Recur si on

An inportant and very general algorithmc technique is recursion
Recursion is a method of solving a problemby reducing it to one or nore
subprobl ens. The subproblems are reduced in the sane way. Eventually
the subproblens become small enough that they can be solved directly. The
solutions to the smaller subproblens are then conbined to give solutions
to the bigger subproblens, until the solution to the original problemis
conputed. As a sinple exanple of a recursive algorithm consider the

followng definition of the n-th Fibonacci nunber

b1 F(n) := if (n=1) or (n=2) then 1 else F(n-1)+ F(n-2)

Using recursion, one can often state algorithms nuch nmore sinply

than woul d be possible wthout recursion. Many programing |anguages,

i ncl udi ng Algol, PL/1, and LI SP, allow recursive procedures (procedures

26

which call thenselves). In a language without this facility, such as
FORTRAN, one can implement a recursive algorithm by using a stack to
store the generated subprobl ens (Aho, Hopcroft, and Ullman [1974]).

Dynani ¢_programming (Bel | man [1957]) can be viewed as a special kind

of recursion in which one keeps track of the generated subproblens and
never solves the sane problem twice. As an exanple of the work which can
be saved in this way, consider the conputation of the n-th Fibonacci
number. A recursive procedure based on 4.1 requires time proportional
to the size of F(n) to conpute F(n) ; such a procedure perforns
F(n+1-i) conputations of F(i) for each i in the range from1l to n .
A better way to compute F(n) is to conpute each F(i) just once for
each value of, i . The nost efficient way to inplenment a dynam c programing
algorithmis to set up a table of solutions to all subproblens, and to fill
in the table from smallest to |argest subproblem Sonetines one can
discard the solutions for small subproblens as the conputation proceeds
and re-use the space for larger subproblens. One can evaluate F(n) in
Qn) time with two storage locations by using this idea. (0f course,
using acl osed-form expression for F(n) results in an even faster
canputation.)

Dynam c programming has been used with great success on a nunber of
combinatorial problens, including shortest path problems (Floyd [1962]),
. context-free language parsing (Younger [1967], Earley [1970]), error
correction in context-free | anguages (Aho and Peterson [1972]), and

construction of optinum binary search trees (Knuth [1971], Ttai [1976]).

G aph Searching.

Most graph problens require for their solution a systematic nethod
of exploring a graph. A search is an exam nation of the edges of a graph

using the follow ng procedure.
27

Giepilti ali zation): Murk all edges and vertices of the graph new
(unexpl ored).

IStép 2 n(choosen aenew starteng teréex): e x i st s, hal't
(The entire graph has been explored.) Qtherwise, choose a new
vertex and mark it old (explored).

Ceepp ore an edge): If no new edges |lead away fromold vertices,
go to step 2. (Al of the graph reachable fromthe current start
vertex has been explored.) Qtherw se, choose a new edge |eading
away froman old vertex. Mrk the edge old. If the other endpoint

of the edge is new, mark it old. Repeat step 3.

Assume for sinplicity that all vertices in the graph to be searched
are reachable fromthe first start vertex selected in step 2. Then the

search generates a spanning tree. The root of the spanning tree is the

start vertex. The edges of the spanning treeare the edges which lead to
new vertices when explored in step 3. The properties of the spanning tree
depend upon the criteria used to select the starting vertex in step 2 and
the edges to explore in step 3. For sone sinple graph problens, such as
finding connected conponents (Hopcroft and Tarjen [1973c]), any order of
“exploration is satisfactory. However, for harder graph problens the
exploration order is crucial.

“In a depth-first search, the edge selected in step 3 is an edge out

of the last explored vertex with candidate edges. |f a depth-first search
is performed on an undirected graph, the generated spanning tree has the
property that all non-tree edges connect vertices related in the tree
(Tarjan [19721). See Figure 4.6. If such a search is performed on a
directed graph and the vertices are nunbered from1l to n as they are

marked old, then no non-tree edge leads froma vertex to a vertex which is

28

both hi gher nunbered and unrelated in the spanning tree (Tarjan [1972]).
See Figure 4.7. A depth-first search can be inplenented as a recursive
procedure or with an explicit stack to store the old vertices.

[Figure L.6]

[Figure 4,71

In a breadth-first search, the edge selected in step 3 is an edge

out of the first explored vertex with candidate edges. Such a search
partitions the vertices into |evels depending upon their distance from
the start vertex. 1In an undirected graph each edge connects vertices in
the sane level or in tw adjacent levels; in a directed graph, no edge
leads froma level-to a level higher than the next level. See Figure 4.8.
A Dbreadth-first search can be inplemented using a queue to store the old
vertices.
[Figure L.8]

Both depth-first and breadth-first search, if properly inplenented
using an adjacency structure to store the graph, require Q(n+tm tine to
explore an n-vertex, medge graph. Athough these are the nost inportant

search nethods, several others, including topological search (Knuth [1968]),

| exi cographi ¢ search (Sethi [1975]; Rose, Tarjan, and Lueker [1976]), and

shortest-first search (Djkstra [1959], Johnson [1977]), are occasional |y

usef ul .

Opti m zation Methods.

A large class of problens requires the maximzation of a function
defined on a graph with weighted edges. It is usually possible to phrase
these problens as |inear or integer programming problems (Dantzig [1963],

Nemhauser and Garfinkel [1972]), but better algorithns than general - purpose

29

linear or integer programming nethods are available for their solution.

These algorithns use two techniques, greed and augnentation. The nost

general . setting for these techniques is in matroid theory (Lawler [1976]),
but one can understand and apply the techniques to graph problems wthout
knowi ng about matroids.

Consider the problemof finding, in a set with weighted elenents, a
maxi mum wei ght subset satisfying certain additional constraints. The

foll owi ng greedy method m ght be useful in solving this problem sort

the elenments by weight. Examine the elenents in order, heaviest to
lightest, building up a subset elenent-by-elenent. Wen exam ning an
elenment, add it to the subset if some extension of the subset satisfies
the constraint. Gﬁerw’ se throw the el ement away. The resultant subset
certainly satisfies the constraint. Under appropriate conditions, the
subset will be of maxi numpossible weight. (ne problemto which this
method is applicable is the minimm spanning tree problem (Kruskal [1956],
Prim[1957], Dijkstra [1959], Yac [1975], Cheriton and Tarjsn [1976]).
Even if the greedy nethod does not produce optimal solutions, it may
produce solutions which are close to optimal (Garey and Johnson [1976]),
and it is usually easy to inplement and fast.

In situations where the greedy nethod doesn't work, a nethod of
iterative inprovement sonetines does, The idea is to start with any
solution to the constraints and look for a way to augment the weight of
the solution by making |ocal changes. The new solution is then inproved
in the same way, and the process is continued until no inprovenent is
possible. Under appropriate conditions such a locally maximl solution
is also globally maximum Even if the solution is not guaranteed to be

maxi mum the augnentation nethod may be a good heuristic; for instance,

30

Lin [1965] has applied it with good results to the travelling sal esman
problem The travelling salesman problemis to find a shortest cycle
through a1l vertices of a graph with distances on the edges. The
Hamilton cycle problem a special case of the travelling sal esman problem

i S 7P -complete,

Data Updating Methods.

Sone problens require nore sophisticated data manipulation than is
possible with the sinple data structures discussed early in this section.
Three advanced techniques have been devised for dealing with three diverse
probl ens which require dynanm ¢ updating of data. These techniques are

path compression, partition refinenent, and linear arrangenent.

Path compression is a method of solving the follow ng problem
Consi der a universe of elements, partitioned initially into singleton
sets. Associated with each element is a value. W wish to be able to

carry out the follow ng operations on the sets.

Uni on: Combine two sets into a single set, destroying the old
sets.
Updat e: Modify the values of all elenents in a given set in a

consi stent way.

Evaluat € : Retrieve the value associated with a given element.

A situation of this kind occurs in the conpilation of FORTRAN COWON and
EQU VALENCE statenents (Galler and Fischer [1964]) and in several other
combinatorial probl enms (Tarjan [1975b]). The set union problemto be
discussed in Section 5 is the sinplest such problem gGaller and Fischer

[1964] proposed an al gorithmfor this problemusing trees as a data

31

structure. McIlroy and Mrris confronted the set union probl em when trying
to conpute mnimum spanning trees and proposed an inproved method using
path conpression on trees (sho, Hopcroft, and Ullman [1974]). Their nethod,
which is very sinple to program but very hard to analyze, generalizes to a
nunber of other problens (Tarjan [1975b]). | shal |l discuss this nethod
and its remarkable running tinme in Section 5.

Anot her probleminvolving disjoint sets is the follow ng. Suppose
the vertices of a graph are initially partitioned into several subsets.
Ve wish to find the coarsest partition which is a refinement of the given
partition and which is preserved under adjacency, in the sense-that if two
vertices v and w are contained in the same subset of the partition,
then the sets A(v) {x | (wx)is an edge] and A(W = {x | (wx)is an edge]
intersect exactly the same number of times with each subset of the partition.
This adj acency-preserving partition is easily conputable in O(am) tine.
Hoperoft [1971] devised a nore sophisticated algorithm which runs in
Om log n) tine. Gies [1973] gives a nice description of this algorithm
Partition refinement is useful in solving the state mnimzation problem
for finite automata (Harrison [1965]) and in testing graphs for isomorphism
-(Oorneil and Gottlieb [1970]).

A third problemrequiring a good data updating method is the |inear

arrangenent problem Gven a set of n elenents and a collection of

subsets of the elements, can the elements be arranged in a line so that
each subset occurs contiguously? This problem arises in hiochemstry
(Benzer [1959]) and in archaeol ogy (Kendall [1969]). Booth and Lueker

[1976] have devised a method of solving this problemin Qn+n) tine,
where mis the total size of the subsets, using a data structure they

call a P-Q tree.

32

G aph Mappi ng.

There are two nethods of solving graph problens, deconposition and

shrinking, which are related to the algebraic concepts of subal gebra and

homomorphism. One way to solve certain graph problens is to deconpose the

graph into several subgraphs, solve the problemon the subgraphs, and
combine the solutions to give the solution for the entire graph. 1In nost
instances where this technique is useful, the subgraphs are conponents
(maxi mal subgraphs) satisfying some connectivity relation. In order to
apply the technique, one nust know an efficient way to determne the
conponents. Good algorithms exist for a variety of connectivity problens
(Tarjan [1972], Hopcroft and Tarjan [1973a], Hopcroft and Tarjan [1973c],
Pacault [1974], Tarjan [197la], Tarjan [1975c]).

Mother way to solve sone graph problems is to shrink part of the graph
to a single vertex, solve the problem on the shrunken graph by applying
the idea recursively, and from this solution compute the solution on the
original graph. The shrinking operation corresponds to taking a homomorphic
imge of the graph. Cenerally the part of the graph to be shrunk is a

cycle or a union of cycles.

33

5. Ten Tractabl e Problens.

There are hundreds of conbinatorial problems for which good algorithms
are known. This section examnes ten such problems. | have selected the
probl ens on the basis of their inportance, the range of techniques they
require, and ny famliarity with them The list is not nmeant to be exhaustive
but to be representative of problens with good algorithms, Table 5 .1
lists the problens and the techniques used in the best algorithms for them
Figure 5.1 shows inprovenents in solution time achieved recently for
these probl ens.

[Table 5.1]
[Figure 5.1]

Discrete Fourier Transform

G ven an n-dinmensional vector (ao, a)) . ..,a,n_l) , the discrete Fourier

transform problemis to conpute the vector (bo,bl,...,bn_l) gi ven by

n- |

by = ii‘j‘,oaiw'k , wher e wo,wl,-.-,wn_l

are the (conplex) n-th roots of

one. This problem arises in signal processing. An algorithm for the
discrete Fourier transformis useful as a subroutine in various arithnetic
and al gebraic problems, including polynomal evaluation and interpolation
and integer and polynomal nultiplication (Knuth [1969], sho, Hopcroft,
and Ullman [1974], Borodi n and Munro [1975]).

~It is straightforward to compute the discrete Fourier transformin
O(n2) time. Cooley and Tukey [1965] popul arized an 0o(n log n) -tine

method, called the fast Fourier transform They were not the first to use

the nethod, which originated at |east as early as Runge and KBnig [192L].

The fast Fourier transform uses recursion to cut down the anount of

34

in q@) time. Fredman [1976] showed that the all pairs problem can
be solved using Qne‘s) comparisons and only O(n3(l og log n/log n) 1/5)

time total. Avis, Rives-t, and Yao [1977] proved that at |east Q(n2 log n)
conparisons are required in the worst case to solve the all pairs problem

This |ower bound is one of the few known for a tractable conbinatorial

probl em

Li near Eauations on a Planar G aph.

Suppose A is an nxn matrix, b is an nx1 vector of constants,
X is an nxl vector of variables, and we wi sh to solve the system of
equations Ax = b . A standard method for doing this is Gaussian
elinmnation (Fors{[t he and Mol er [1967], Tewarson [1973]). First, the
matrix A is deconposed into a product of two matrices, A = Ly, such

that L is lower triangular (i.e., L has no non-zero entries above the

di agonal) and U is upper triangular (i.e., U has no non-zero entries

bel ow the diagonal). Then Ax = b is solved in two steps, by solving
Ly = b, called frontsolving, and solving Ux = y , called backsolving,
Because L and U have special forns, frontsolving and backsolving are
very efficient; the slowest part of Gaussian elimnation is the first
step, decomposing A into LU .

The deconposition of A proceeds by means of row operations. A row

operation consists of adding a multiple of one row of A to another row
of A If the multiple is chosen correctly, the nodified row will have
a zero in a previously non-zero position. By systematically applying
such row operations, one can transformthe original matrix A into an
upper triangular matrix U ; the row operations performed define a |ower

triangular matrix L such that LU = A .

36

computation. Recently Wnograd [1975, 1976] proposed a nethod for
conputing the discrete Fourier transform using only Q'n) multiplications.
This method may be superior to the fast Fourier transformin practice,

al though Wnograd has not analyzed the overall running time of his

al gorithm

Matrix Mltiplication.

Gven two nxn matrices, the matrix nultiplication problemis to
determne their matrix product. The standard high school nethod of
matrix nmultiplication requires CXn3) time. Strassen [1969] devised a
way to multiply two 2x2 matrices with only seven nultiplications, and
used this in a-recursive matrix nultiplication algorithmrequiring only

log, 7 | - .
Oo(n) tinme. This surprising result has acted as a stinulus for
ncuh research in the conplexity of algebraic problems. No one knows
whet her Strassen's al gorithmis inprovable. Strassen's al gorithm has
been used to conpute transitive closures of graphs (Minro [1971], Fi scher
and Meyer [1971]) and to do context-free |anguage parsing (Valiant [1975a])
in Qn2'81) time.

A problemrelated to matrix nultiplication is the shortest path

problem Gven a directed graph with positive edge distances, the single

source shortest path problemis to find the mnimm distance froma given

vertex to every other vertex, The all pairs shortest path problemis to

find the mnimm distance between all pairs of vertices. Dijkstra [1959]
devised an algorithmfor the single source problem which requires either
0(n2) time or o(m log n) time depending upon the inplenentation, where
n is the nuber of vertices and m the number of edges in the graph

(Johnson [1977]). Floyd [1962] gave a way of solving the all pairs problem

35

As an exanple of the inprovenent possible by taking advantage of
sparsity, consider the graph in Figure 5,2, Such a kxk grid graph
arises in the nuneric solution of differential equations. Odinary
dense Gaussian elimnation requires o(ne) space and q@) time on
such a matrix, if n= ¥ . The bandwidth schene of sparse elimnation
reduces the space to o(n5/2) and the time to O(ne) (Cuthill and
MKee [19693, Tewarson [1973]). George [1973] di scovered an even better

nethod, called nested dissection, which requires Qn log n) space and

o(n5/2) time. Hoffrman, Martin, and Rose [1973] showed that, to within
a constant factor, nested dissection requires the least fill-in and
computing time of any ordering scheme for Gaussian elimnation on kxk
grid graphs.

Nested dissection is a recursive method which uses the fact that a
(2k+1) x (2k+1l) grid graph consists of four kyxk grid graphs and the
Lktl -vertex boundary between them (Figure 5.2). Many sparse matrices
which arise in practice do not have such a nice structure, and one m ght
ask whether nested dissection has any natural generalization, Recently
Li pton, Rose and Tarjan (Tarjan [1976b]) di scovered a way to 'extend nested
dissection to arbitrary planar graphs so that the storage space is still
Qn log n) and the running time still o(n5/2) . Such graphs arise in

two-di nensional finite elenent problens (Martin and Carey [19731).

d obal Flow Anal ysis.

Systens of linear equations arise in contexts other than |inear

al gebra. For instance, the shortest path problem can be fornulated as a

system of equations, With mnimzation replacing addition and addition

replacing multiplication (Backhouse and Carré [1975]). Another situation

38

If Ais originally a dense (nmostly non-zero) matrix, then ru
deconposi tion requires o(ne) space and qrﬁ) tine, and frontsolving
and backsol ving require o(ne) tinme. In many large systens of equations,
however, the matrix A is sparse. For a sparse matrix, the time and
storage space required by Gaussian elimnation depend in a conplicated
way upon the zero-non-zero structure of the matrix. In particular, a
row operation may introduce new non-zeros (called fill-in) into positions
originally zero. It is desirable to rearrange the matrix A by neans
of row and colum pernutations so that the fill-in and running time of
Gaussian elimnation are reduced.

For this purpose it is useful to represent the zero-non-zero structure
of A by a graph G. The graph contains one vertex for each row and
colum of A and one edge (i,j) for each non-zero entry (i,j) in A .
If Ais symretric, Gis undirected;, if A is unsymetric, Gis
directed. The graph G represents A and all matrices fornmed by
si mul taneously permuting rows and colums of A . By studying the propertie:
of G it may be possible to find a reordered version of A such that
Gaussian elinmnation is efficient. (It is necessary to know that the
pernutations do not destroy the nuneric stability of the elimnation
process. | shall ignore this issue here; see Forsythe and Moler [1967],
Tewar son [19731.)

Parter [1961] was one of the first to suggest the usefulness of this
approach. The idea has been extensively devel oped. For general results
concerning the relationship between Gaussian elimnation and graph theory,
see Rose [1970]; Harary [1971]; Rose [1973]; Rose, Tarjan, and Lueker
[1976]; Duff [1976]; and Rose and Tarjan [1977].

[Figure 5.2]

37

Hoperoft and Ullman [1972] di scovered an O(m log n) -tine test for

reduci bility, which Ullman [1973] conbined with clever use of 2-3 trees

to give an o(m log n) -time method for global flow analysis. Kennedy
[1975] discovered a rather different method for global flow analysis,

which is o(m log n) -time by a result of Aho and Ullmen [1975].Graham
and Vegman [1976] di scovered how to use path conpression to get yet

another o(m log n) -time algorithm Tarjan [197kc] gave an O(m a(m,n))
-time algorithmfor testing reducibility, and later inproved

the G aham Wgman algorithmto run in O(m a(mmn)) time (Tarjan [1975c]).
Here a(mn) is a functional inverse of Ackermann's function to be defined

bel ow.

Pattern Matching on Strings.

Suppose X and y are two strings conposed of.characters sel ected
froma finite al phabet, and we wish to determ ne where x occurs as a
contiguous substring of y . If mis the length of x and n is the
length of y , then a straightforward al gorithm solves this problemin
O(nm) time. Knuth, Mrris, and Pratt [1977] devised an Q(n+n) -time
algorithm for pattern matching. Their algorithm processes the pattern x ,
creating a data structure representing a programto recognize the pattern.
The al gorithm then scans the string y character-by-character according
to-the steps of the program Boyer and More [1975] proposed an even
better algorithm, which, although it has an O(ntm) running tinme in the
wor st case (Knuth, Mrris, and Pratt [1972]), requires only o(n(logq m)/m)
time on the average, where q is the al phabet size.

A generalization of the pattern matching problemis to find the |ongest

common contiguous substring of two strings x and y. The pattern

40

mat ching al gorithns mentioned above do not seem to apply to this problem,
Karp, Miller, and Rosenburg [1972] described an O((mtn) log(mtn)) -time
algorithm for |ongest comon substrings. \Winer [1973] di scovered an
algorithmusing trees in a new way which solves the problemin Q(n+n

time. MeCreight [1976] has provided a sinplification and clean description

of this algorithm

Strong Conponents.

The strong conponents problemis to determne the strongly connected
components Of a given directed graph with n vertices and m edges.
This problem occurs in finding the irreducible blocks of a non-symetric
matri x (Forsythe and Ml er [1967]), in finding ergodic subchains
and transient states of a Markov chain (Fox and Landy [1968]), and in
finding the transitivity sets of a set of pernutations (MKay and Regener
[1974]). Sargent and Wésterberg [1964] gave an o(ne) -tinme algorithm
Munro [1971] described an inproved al gorithmwith a running-tinme of
Qn log n+m) . Tarjan [1972] presented an O(n+m) -tinme algorithm
which uses depth-first search and a few sinple data structures to solve

this problem

Planarity Testing.

Let G be a graph. The planarity testing problemis to determne
- whether G can be drawn in a plane so that no two edges cross.
Kurakowski [1930] provi ded an elegant mathematical characterization of
pl anar graphs, showing that a graph Gis planar if and only if it does
not contain one of the two graphs in Figure 5.3 as a generalized subgraph.
Unfortunately, Kuratowski's criterion seens to be useless as a practical

test for planarity. Auslander and Parter [1961] proposed an algorithm

41

[y

which tests planarity by trying to construct a planar representation
for the graph. They gave no time bound for the algorithm and their
presentation contains an error: the proposed al gorithm may run forever.
Gol dstein [1963] correctly fornulated this algorithm and Shirey [1969]
gave an CXn3) -tinme inmplenentation of it. Hoperoft and Tarjan [1972]
conbi ned depth-first search and appropriate data structures
inan Qn log n) -tine inplenentation, which was later sinplified and
inproved to Q'n) (Hopcroft and Tarjan [1974]).
[Figure 5. 31

Lenpel, Even, and Cederbaum [1967] presented another good al gorithm
without giving an explicit tinme bound. Their algorithmcan easily be
i npl emented to run in O(nz) time. Booth and Lueker [1976] showed how
to use their P-Q tree data structure in an Qn) -tinme inplenentation of

the algorithm

Maxi mum Net wor k Fl ow.

Let Gbe a directed graph with two distinguished vertices, a
source s and asinkt . For each edge e in G let c(e) be a

non-negative real-valued capacity. A flow f on Gis a non-negative

value f(e) on each edge such that, for all vertices v except s and t ,
the total flow on edges entering v isS equal to the total flow leaving v .
The value of the flowis the total flow |eaving s (which is equal to
the total flow entering t). The maxi mum network flow problemis to
determne a flow f(e) of maxinum value satisfying f(e) < c(e) for
all edges e.

Gassic work by Ford and Ful kerson [1962] produced an el egant al gorithm

whi ch augnents flow along paths. Unfortunately, in the worst case their

Yo

algorithmrequires exponential time, though it works exceedingly well

in practice. Ednonds and Karp [1972], by using breadth-first search

to guide the selection of augnenting paths, produced an O(nm-) -tine
variation of the Ford-Fulkerson algorithm, |ndependently, Dinic [1970]
used breadth-first search plus inproved updating nethods to achieve an
o(ngm) time bound. The best algorithmso far found for this problemis

due to Karzanov [197L4], who inproved Dinic's algorithmto obtain an

o(r?) time bound.

G aph Mt chi ng.

If Gis an undirected graph, the graph matching problemis to find
a nmaxi mum numbe“r of edges in G, no tw hating a conmon endpoi nt. Such

a set of edges is a maxinmum natching. An inportant special case of this

problemis its restriction to bipartite graphs, A graph is bipartite if
its vertices can be partitioned into two sets so that no edge connects
two vertices in the same set.

The bipartite graph matching problem can be transfornmed via a
linear-time algorithminto a network flow problemin which all edge
capacities are one (Ford and Fulkerson [1962]); for such a problem the
For d- Ful kerson al gori thm has an O(am) time bound. Kuhn [1955] used
results of Egervdry to obtain essentially the same algorithm called the
-Hungarian nethod. Hoperoft and Karp [1973] used breadth-first search
and inproved updating methods to achieve an o(nl/2 m time bound.
Their algorithmis essentially the same as Dinic's (Even and Tarjan
[19751).

Berge [1957] and Norman and Rabin [1959] proved that an augmenting

path method can sol ve the maxi mum matching problem on non-bipartite graphs,

43

t hough a good al gorithm does not follow fromtheir results. Ednonds [1965]
used cycle shrinking plus the augnenting paths idea to give a polynomial-
time algorithm He claimed an CXn4) time bound, though it is not hard
to inplement Edmonds' algorithmto runin 0(n2 m time. Law er [1976]
and Gabow [1976] i ndependent|y gave O(mm) -time algorithns. Even and
Kariv [1975] ingeniously conbined the ideas of Hopcroft and Karp and the

data structures of Gabow to obtain an Can/2 m log n) -time algorithm

Set _Union
Let S),5,...,58 be n disjoint sets, each containing a single
element. The disjoint set union problemis to carry out a sequence of

operations of the following two types on the sets.

—_

i nd(x): determne the nanme of the set containing element x .

upion(A,B): add all elenents of set B to set A (destroying

set B).

The operations are to be carried out on-line; that is, each instruction
nmust be conpleted before the next one is known. Assune for convenience
that the sequence of operations contains exactly n-1 union operations
(so that after the last union all elenents are in one set) and m >n
intermxed find operations (if m < n , some elenents are never found)

Galler and Fischer [1964] proposed an al gorithmfor this problemin
which each set is represented by a tree. Each vertex of the tree represents
one element. The root of the tree contains the name of the set, and each
tree vertex has a pointer to its parent in the tree, See Figure 5.4.
Afind on element x is performed by starting at the vertex representing
x and follow ng parent pointers until reaching the root of the

tree; this root contains the set nane. A union of sets Aand Bis

44

performed by maeking the root of the A tree the parent of the root
of the B tree.
[Figure 5.41
This algorithmrequires o(mm) 'tinme in the worst case, since an
unfortunate sequence of unions can build up a tree consisting of a single
long path. Galler and Fischer nodified the union procedure in the
following way: if B contains nore elenents than A, then the root
of the B tree is made the parent of the root of the A tree, and the
nane Ais noved to the old root of B. See Figure 5.5. This wei ghted
union heuristic inproves the algorithm considerably; Galler and Fischer
proved an o(m-log n) time bound.
[Figure 5.51
MeIlroy and Morris (Aho, Hopcroft, and Ullman [197L4]) nodified the

find procedure by adding a heuristic called path conpression: after a

find on element x , all vertices on the path fromx to the root are
made children of the root. See Figure 5.6. This increases the tine of
a find by a constant factor but may save time on |ater finds.

[Figure 5,6]

The set union algorithmwth path conpression is very easy to program
but very hard to analyze. Fischer [1972] proved an O(mnl/g) upper bound
~and an Q(m log n) |ower bound on the worst-case running time of the algorithm
with path conpression but wthout weighted union. Paterson [1972] inproved
the upper bound to o(m log n) and thus determned the running tine to
within a constant factor for the case when m is Q' n) . Wth both path
conpression and wei ghted union, the algorithmis even harder to analyze.

Fi scher [1972] proved an o(m log log n) upper bound on the running tine.

45

Hopcroft and Ullman [1973] i nproved the upper bound to Q'mlog* n),

i times

>

* r N\
where log n = min{i|log log . . . logn <1}. Tarjan [1975a] i nproved

t he upper bound to o(m a(mn)) , where d(mn)is a
functional inverse of Ackermann's function (Ackermann [1928]) defi ned
as follows.

For i, > 0 let the function A(i,j) be defined by

(5.1) Ai,O =0 ;
AQj) =20 forj >1;
A(i,1) = A(i-1,2) for i >1;

A(i,3) = A(i-1,A(1,3-1)) for i >1,) >2.

(5.2) ofm n) =min{s > 1| Ali ,L2n/n)) > logy n} .Y/

The bound o(m a(m,n)) is a rather conplicated one for such a sinple
algorithm One may naturally ask whether it is inprovable. Tarjan [1975a]
showed that there are worst-case instances of the set union problem
which require Q(m a(mn)) tinme when solved by the path conpression
‘aI gorithm In fact any linked nenory nachine requires q(m a(m,n))
time in the worst case to solve the set union probl em (Tarjan [1977]).

Thus Ackermann's function is inherent in the problem

il For any real number x , |x) denotes the greatest integer not |arger
t han x.

46

6. Future Directions.

The field of conbinatorial algorithnms is too vast to cover in a
singl e paper or even in a single book. | have tried to point out
some of the major results and underIyTng ideas in this field, but there
are certainly many inportant results | have had to onit. Though much
work on conbinatorial algorithms has been done, nuch remains to be done.
In this concluding section | would like to suggest five areas for future
research, areas in which relatively little work has been done but in

which the rewards are potentially great.

Is = Ne?

Answering this question would be a major breakthrough in conplexity
theory. Although nany people have attenpted to solve this problem very
little progress has been made. It seens that some nmjor new idea is
needed; the evidence of Baker, Gll, and Solovay [1975] suggests that
di agonal i zation, the standard technique for proving problems hard, nay
not be powerful enough to show @ # np. It is even conceivabl e that
the » = @2 problem cannot be solved within the framework of forma
set theory (Hartmanis and Hoperoft [1975]).

More generally, we now know al nost nothing about the relative power
of determnistic and non-determnistic algorithms, and about the

-relationship between tinme and space as neasures of conplexity. Any
results in this area would be inportant. Recently, Hopcroft, Paul, and
Valiant [1975] were able to show that any conputation requiring t(n)
time on a multitape Turing machine can be carried out in t(n)/log t(n)
space. Thus, at least for nultitape Turing machines, space is a nore

val uabl e resource than time. This is the only such result known.

¥y

One approach to the p = np? question is to consider for a particular
7 -complete probl em a restricted class of algorithnms and to show that
every algorithmin this |imted class requires nmore than polynomial time,
Results of this kind have been obtained for the satisfiability problem
(Galil [1975 1), the maxi mum stable set problem (Chvatal [1976]), and the
graph coloring probl em (McDiarmid [1976]).

Anot her approach is to consider nodel s of conputation other
than Turing machines. One possibility is to study the size of Bool ean
circuits for conmputing Boolean functions. For results in this area,
see savage [1976]. A related nodel is the pebbl e game used by Hopcroft,
Paul, and Valiant to- obtain their tinme-space tradeoff result. A study
of Boolean circuits and the pebble gane |eads rapidly to unanswered

combi natorial questions (Valiant [1975b, 1976]).

Aver age- Case Anal ysi s.

Al though most of the work on conbinatorial algorithms outside the
areas of sorting and searching has been worst-case analysis, average-case
analysis is potentially inportant and useful. The results of Erd8s and
Renyi [1960] and others on random graphs form a starting place for
.average-case anal ysis of graph algorithms. Spira [1973] has devised
an o(ne(log n)2) average time algorithmfor the all-pairs shortest
path problem which Bloniarz, Fischer, and Meyer [1976] nodified to
conpute transitive closures in o(n2 | og n) average tine. Schnorr [1977]
has devised an Q(n log n+n) average tine transitive closure algorithm
Yao [1976], Doyl e and Rivest [1976], and Knuth and Sch¥nhage [1977] have
anal yzed the behavior of set union algorithns for several probability

distributions. Mich nmore work in this area is needed,

43

G111 [1974] and Rabi n [1976] have proposed another kind of average-
case nodel of conplexity, in which the algorithm makes use of random
choices. For such an algorithm one may be able to say that the algorithm
runs fast on the average independentof the input distribution, because
the average is taken not over the input but over the possible conputations
of the algorithmon a given input. Algorithnms exist for testing primlity
(Strassen and solovay [1977], Rabin [1976]), finding closest points
(Rabi n [1976]), and hashing (Carter and Wegman [1977]) which are good

in this sense.

Constant Factors and Al gorithm Trade-Ofs.

The choice of an algorithmin practice may depend upon nore than
asynptotic running tine. A sinple algorithm may be better on intermediate-
sized problens than a nore conplicated algorithmwith a faster asynptotic
running tinme but a larger constant factor. If two algorithms have the
same asynptotic running time, then the constant factors may govern the
choice between them Mre careful analysis to deternine constant factors
and trade-offs between algorithms would be a useful contribution to
practical computing. Such analysis for a nunber of problens appears
in Knuth's books (Knuth [1968, 1969, 1973]). A recent exanple of this
research is work by Brown [1977], which conpares inplenentations of

- priority queues and suggests that the binomal tree representation is

best in nmost circunstances.

Low Order Lower Bounds.

Just as little is known about the boundary between tractable and intractable
problens, little is known about whether or not the existing good

algorithms are inprovable. Figure 5.1 suggests several tantalizing questions.

49

Can two matrices be nultiplied in less than (Xn2'81) time? Can the
discrete Fourier transform be conputed in less than Q'n log n) tine?

Can maxi mum network flows be found in less than CXr?) time? Non-1linear

| oner bounds exist for only a few problens, such as sorting (knuth [1973]),
finding shortest paths (Yao, Avis, and Rivest [1977]), disjoint set union

(Tarjan [19771), and eval uation of symmetric functions (Strassen [1973]).

General Properties of Data Structures and Basic Methods.

The range of techniques and al gorithms outlined in Sections 4 and 5
suggests a basic question: Confronted with a problem how does one
construct a good algorithmfor it? |s there a "calculus of data structures”
by which one can choose the appropriate data representation and techni ques
for a given problen? Wat nmakes one data structure better than another
for a certain application? The known results cry out for an underlying
theory to explain them This is perhaps one of the most challenging

probl ens facing researchers in algorithmc conplexity.

50

Appendi x: Terni nol ogy (See al so Berge [1962], Busacker and Saaty [1965],

and Harary [1969]).

A ggaph = (V,E) is an ordered pair consisting of a set v of
vertices and a set E of edges. Either the edges are ordered pairs (v,w)
of distinct vertices (the graph is directed), or the edges are unordered
pairs of distinct vertices, also respresented as (v,w) (the graph is
undirected). If (v,w) is an edge, v and ware its endpoints and
are adjacent. The edge (v,w) leads fromv to w. (If undirected,
the edge also leads fromwto v .) A graph ¢' = (V',E') i S a subgraph
of Gif V <« Vand E'c E. a' is spanning if V =v . A graph

G = (v',E') is a homonorphic image of ¢ if there is a mapping fromV

onto V' such that (x,y)eE'if and only if x = f(v) andy = f(w
for some (v,w)eE . G and G are isonorphic if the mapping is

one-to-one. A graph G = (V',E') is a generalized subgraph of Gif

G is a subgraph of a homonorphic inage of G.

1
This path is said to contain edges (vl,v2) yeoes (vn_l,vn) and vertices

A path fromv, to Vi in Gis a sequence of edges (vl,vg), . (vn_l,vn) .

Vys. .oV, , and to avoid all other edges and vertices. The path is sinple
if vye..,vy, are distinct except possibly v; and v, ; the pathis a

cycle if v, =v, . The transitive closure of G=(V,E) is the graph

¢ = (V,E+) such that (v,w)e E+ if and only if v # wand there is a
~path fromv to win G.
M undirected graph is connected if there is a path fromany vertex to

any other vertex. A directed graph is strongly connected if there is a

path from any vertex to any other vertex. The maxinum connected (strongly

connect ed) subgraphs of a graph are called its connected conponents

(strongly connected conmponents). A graph is planar if it can be drawn in

the plane (with vertices as points and edges as sinple curves) so that no

51

two edges intersect except at a conmon endpoint.
Atree T is a connected, undirected graph which contains no
cycles. In a tree there is a unique sinple path between any pair of

distinct vertices. A rooted, undirected tree (T,r) is a tree with a

di stinguished vertex r , called the root. A rooted, directed tree is a

directed graph T with.a unique vertex r such that

(i) there is a path fromr to any other vertex;

(i) each vertex except r has exactly one edge leading to it;

(iii) r has no edges leading to it.
Any rooted, undirected tree (T,r) can be converted into a rooted,
directed tree by directing each edge (v,w) so that v is contained in
the path fromr to w.

In a rooted, directed tree, a vertex wis a descendant of a vertex
v (v is an ancestor of w)if there is a path fromv to w A vertex
v is achild of v (v is the parent of w) if (v,w)is an edge in the
tree. These definitions extend to rooted, undirected tree by directing the

edges of the tree as above. |If Gis a graph, a spanning tree of G is a

rooted tree which is a spanning subgraph of G.

A partition » of a set Sis a collection of subsets 5,58, ¢ wua S

k
of s such that Uus. =S and s.n%..—.;z& if 1435 . If o,
j=ll 1 1

are partitions of S, s is a refinement of » (and ' is a
coarsening of ») if, for all s;e, there is sone ,;5 ¢t such that

o/’ige’j.

52

S.

C

Ref er ences

Ackermenn [1928]., "Zum Hi | bertshen aufbau der reelen Zahlen,"
Mat h. Ann. 99, 118-133,

V. aho, J. E. Hopcroft, and J. D. Ullman [1974]. The Design and Analysis

of Conputer Al gorithms, Addison-\Wsley, Reading, Mass.

V. sho and T. G Peterson [1972]. "A mninum distance error-correcting

parser for context-free |anguages,”" SIAM J. Conput. 1, 305-312,

V. #ho and J. D. Ullman [1975]. "Node listings for reducible flow

graphs," Proc. Seventh Annual ACM symp. on Theory of Conputing, 177-185.

E. Allen [1970]. "Control flow analysis,”" SIGPLAN Notices 5, 1-19,

E. Allen and J. Cocke, "A program data flow anal ysis procedure,
Conm__ACM 19, 137-146,
Appel and W. Haken [1977]. "Every planar map is four colorable,"”

Illinois J. Math., to appear.

Auslander and S. V. Parter [1961]. "On inbedding graphs in the plane,"”

J. Math. and Mech. 10, 517-523.

C. Backhouse and B. A Carré [1975]. "Regul ar al gebra applied to

path-finding problens," J. Inst. Maths. Applics. 15, 161-186,

Baker, J. G|, andR. Sol ovay [1975]. "Relativizations of the P = 2 Np

question,” SI AM J. Comput. 4, L431-Lko,

. E. Bellnman [1957]. Dynani c_Programming, Princeton University Press,

Princeton, N J,
Benzer [1959]. "On the topology of the genetic fine structure,”

Proc., Nat. Acad. Sci. U S A L5, 1607-1620,

Berge [1957]. "Two theorems in graph theory," Proc. Nat. Acad. Sci.

U S A L3, 8ko-84L,

o3

C.

K.

-R.

G

E.

Berge [1962]. The Theory of Gaphs and its Applications, A Doig,

transl., John Wley, New York.

A Bloniarz, M. J. Fischer, and AL R Meyer [1976]. "A note on the
average time to conpute transitive closures," Technical Menorandum 76,
Laboratory for Conputer Science, Mss. Inst. of Technol ogy.

Blum, R. Floyd, V. Pratt, R Rives-t, and R. Tarjan [1973]. "Tine bounds

for selection," J. Conputer and System Sciences 7, Li8-L61,

S. Booth and G S. Lueker [1976]. "Testing for the consecutive ones
property, interval graphs, and graph planarity using P-&ree

algorithms," J. Conputer and System Sciences 13, 335-379.

Borodin and |. Munro [1975]. The Conputational Conplexity of Al gebraic

and Numeric Problems, American El sevier, New York.

S. Boyer and J. S. More [1975]. "A fast string searching algorithm"
unpubl i shed manuscript, Stanford Research Institute and Xerox Palo
Alto Research Center.

R Brown [1977]. "The analysis of a practical and nearly optimal priority
queue, " Ph.D. thesis, STAN-CS-77-600, Conputer Science Dept., Stanford
Uni versity.

G Busacker and T. L. Saaty [1965]. Finite Gaphs and Networks:

Introduction with Applications, MGawH Il, New York, 196-199.

Cantor [1874]. "Uber ei ne Eigenshaft des |nbegriffes aller reelen

algebraischen Zahlen," J. reine angew. Math. 77, 258-262,

Cardoza, R Lipton, and A R. Meyer [1976]. T"Exponential space conplete
problens for Petri nets and comutative sem groups: prelimnary

report," Proc. Ei ght Annual ACM Symp. on Theory of Conputing, 50-5k.

5k

L. Carter and M N. Wegman [1977]. "Uni versal classes of hash

functions," Proec. Ninth ACM Symp. on Theory of Conputing, to appear.

Cheriton and R E. Tarjan [1976]. "Finding m nimum spanning trees,"

SIAM J. Conput. 5, 72k-Tk2.

Church [1936]. "An unsolvable problem of elenentary nunber theory,"

Anerican J. Math. 58, 345-363,

Chvatal [1976]. "Determining the stability nunmber of a graph,”
Technical Report STAN CS-76-583, Conputer Science Dept., Stanford
Uni versity.

Cocke [1970]. "d obal common subexpression elimnation," SIGPLAN
Notices 5, 20-2L.

A. Cook [1971]. "The conplexity of theorem proving procedures,"

Proc. Third Annual ACM Symp. on Theory of Conputing, 151-158,

A. Cook and R A Reckhow [1973]. "Tine-bounded random access machines,”

J. Conputer and System Sciences 7, 354375,

M Cooley and J. W Tukey [1965]. "An algorithm for the machine
calculation of conplex Fourier series," Math. Comp. 19, 297-301.

G Corneil and C. C. Cotlieb [1970]. "An efficient algorithm for
graph isonmorphism" J. ACM 17, 51-6k,

Cuthill and J. McKee [1969]. "Reducing the bandwi dth of sparse

symetric matrices," Proc. 24th National Conf. ACM 157-172.

.J. Dahl, EE W Dijkstra, and C. A R Hoare [1972]. Structured
Progranm ng, Academ c Press, New York.

B. Dantzig [1963]. Li near Progranm ng and Extensions, Princeton

University Press, Princeton, N.J.

25

M Davis, Y. Matijasevic, and J. Robinson [1976]. "Hilbert's tenth
problem Diophantine equations: positive aspects of a negative

solution," Mathenatical Devel opments Arising from Hil bert Probl ens,

Arer. Math. Soc., 323-378,
E. W Dijkstra [1959]. "A note on two problems in connexion wth graghs,"

Numer. Math. 1, 269-271.

m

W Dijkstra [1976]. A Discipline of Progranm ng, Prentice-Hall,

Engl ewood Ciffs, N J.
E. A Dinic [1970]. "Algorithm for solution of a problem of maxinum

flowin a network with power estimation," Sov. Math. Dokl., 11,

1277-1280.)
J. Doyle and R L. Rivest [1976]. "Linear expected time of a sinple

union- find algorithm" Info. Proc. Letters 5, 146-148,

"I. s. Duff [1976]. "A survey of sparse matrix research," Technical Report
CSS 28, Conputer Science and Systens Division, AERE Harwel | .

J. Earley [1970]. "An efficient context-free parsing algorithm"
Comm ACM 13, 9Lk-102,

J. Ednonds [1965]. "Paths, trees, and flowers," Canad. J. Math. 17,449-467.

.J. Edmonds and R M Karp [1972]. "Theoretical inprovements in algorithmec
efficiency for network flow problens," _J. ACM 19, 248-26k,
P. Erdds and A. Renyi [1960]. "On the evolution of random graphs,"

Magyar Tud. Akad. Mat. Kut. In-t. Kozl. 5, 17-61.

S. Even, A Itai, and A chamir [1976]. "On the conplexity of tinetable and

nul ticonmodity flow problems," SIAM J. Conput. 5, 691-703.

56

S. BEven and 0. Kariv [1975]. "An o(n2‘5) al gorithm for maxi num mat chi ng

in general graphs,"” Conf. Record, |EEE 16th Annual Symp. on

Foundations of Conputer Science, 100-112,

S. Even and R E. Tarjan [1975]. "Network flow and testing graph

connectivity," SIAM J. Conput. 4, 507-518.

M J. Fischer [1972]. "Efficiency of equivalence al gorithms," Complexity

of Conputer Conputations, R E. Mller and J. W. Thatcher, eds,,

Pl enum Press, New York, 153-168.
M J. Fischer and A. R Meyer [1971]. "Boolean matrix nmultiplication and

transitive closure,” Conf. Record, IEEE 12th Annual Symp. on

Swi t chi ng _and Aut omata Theory, 129-131,

M J. Fischer and M, 0. Rabin [1974]. "Super-exponential conplexity of
Presburger arithnmetic," Project MAC Technical Menmorandum 43, Mass.
Inst. of Technol ogy,

R W Floyd [1962]. "Al gorithm 97: shortest path," Com. ACM 5, 345,

R W Floyd [1967]. "Assigning meanings to programs,” Mathenatical
Aspects of Conputer Science, J. T. Schwartz, ed., Amer. Math. Soc.,

Providence, R |[|., 19-32,

L. R. Ford and D. R Fulkerson [1962]. Flows in Networks,. Princeton

University Press, Princeton, N J,

G Forsythe and C. B. Miler [1967]. Computer System of Linear Al gebraic

Systens, Prentice-Hall, Englewod Ciffs, N J.
B. L. Fox and D. M Landy [1968]. "an algorithmfor identifying the ergodic
subchains and transient states of a stochastic matrix," Conmtn, ACM 11,

619-621,

57

M L. Fredman [1976]. "New bounds on the conplexity of the shortest path

problem" sl AMJ. Conput. 5, 87-89.

H. N. Gabow [1976]. "An efficient inplenmentation of Ednonds' algorithm

for maxi mum natching on graphs,"_J. ACM 23, 221-23L,

Z. Galil [1975]. "On the validity and conplexity of bounded resolution,”

Proc, Sevent h Annual Aom Symp. on Theory of Conputing, 72-82.

B. A Galler and M J. Fischer [1964]. "An inproved equivalence algorithm"
Comm__ACM 7, 301-303.
M R Garey and D. S. Johnson [1976]. "Approximation algorithm for

conbi natorial problens: an annotated bibliography,” A gorithms and

Conpl exity: New Directions and Recent Results, J. F. Traub, ed.,

Acadenic Press, New York, L1-52.

M R Garey, D. S. Johnson, and L. J. Stockmeyer [1976]. "Some sinplified

NP-conpl ete graph problens,” Theoretical Conputer Science 1, 237-267.
M R Garey, D. S. Johnson, and R E Tarjan [1976]. "The planar

Ham ltonian circuit problemis NP-conplete,"_SIAM J. Comput. 5, 704-71L,
J. A George [1973]. "Nested dissection of a regular finite elenment nesh,”

SIAM J. Numer, Anal . 10, 345-363,

J. T. GII 111 [1974]. "Conputational conplexity of probabilistic Turing

machi nes," Proc. Sixth Annual ACM Symp. on Theory of Conputing, 91-95.

K. @8del [1931]. "Uver formal unentschei dbare S&tze der Principia Mathematica

- und verwandter Systene |," Mbnatshefte fiir Mathematik und Physik 38

17%-198.
A J. Goldstein [1963]. "An efficient and constructive algorithm for

testing whether a graph can be enbedded in a plane," Gaph and
Conbi natorics Conf., Contract No. NONR 1858-(21), Office of Naval

Research Logistics Proj., Dept. of Mth., Princeton University.

58

S. L. Gahamand M wegnan [1976]. "A fast and usually linear algorithm

for global flow analysis," J. ACM 23, 172-202.

D. Gies [1973]. "Describing an algorithm by Hopcroft," Acta Informatica 2,

97-109.
L. Quibas, E. McCreight, M Plass, and J. Roberts [1977]. "A new

representation for linear lists," Proc. N nth Annual ACM Synp. on

Theory of Conputing, to appear.

F. Harary [1969]. Gaph Theory, Addison-\ésley, Reading, Mass,

F. Harary [1971]. "Sparse matrices and graph theory," Large Sparse Sets

of Linear Equations, J. K Reid, ed., Academ c Press, London, 139-150,

M A Harrison [1965]. Introduction to Switching and Autonmata Theory,

MGawH I, New York.

J. Hartmanis and J. E Hopcroft [1976]. "Independence results in conputer
science," SIGACT News 8, 13-2k,
J. Hartmanis, P. M Lewis, and R E Stearns [1965]. "Cassification of

conputations by tine and nmemory requirements,” Proc, | FIP Congress 65,

Spartan, New York, 31-35,
J. Hartmanis and R E. Stearns [1965]. "On the conputational conplexity
of algorithns,” Trans. Anmer. Math. Soc, 117, 285-306.

D. Hilbert [1926]. "Uber das Unendliche," Math, Annalen 95, 134-151,

C. A Hoare [1969]. "An axiomatic basis of computer programmng," Comm. ACM
12, 576-580, 583.
A J. Hoffman, M S. Martin, and D. J. Rose [1973]. "Conpl exity bounds for

regular finite difference and finite element grids,” SIAMJ. Numer.

Anal. 10, 36L-369.
J. E. Hopcroft [1971]. "An n log n algorithmfor mnimzing states in a

finite automaton," Theory of Machines and Conputations, Zz. Kohavi and

A Paz, eds., Acadenic Press, New York, 189-196.
59

(&

(&

(&

A

E. Hopcroft and R M Karp [1973]. "An n

o/2 algorithm for nmaxi mum

matching in bipartite graphs,” SIAMJ. Conput. 2, 225-231.

W Paul, and L. Valiant [1975]. "On tine versus space and

related problens," Conf. Record, |EEE 16th Annual Synp. on Foundations

Hoperoft and R Tarjan [1972], "Planarity testing in V log V steps:

extended abstract," Information Processing 71, Vol une 1 - Foundations

and Systems, North-Holland, Amsterdam 85-90.

E. Hoperoft and R E. Tarjan [1973a]. "Dividing a graph into triconnected

conponents," SIAM J. Comput. 2, 135-158.

E. Hoperoft and R E. Tarjan [1973b]. "A V log V algorithm for

i sonor phi sm of triconnected planar graphs,” J. Computer and System

E. Hoperoft and R E. Tarjan [1973c]. "Al gorithm LL7: efficient

algorithns for graph manipul ation," Comm. ACM 16,372-378,

Hopcroft and R Tarjan [1974], "“Efficient planarity testing," J. ACM 21,

E. Hoperoft and J. D. Ullman [1972]. "an n log n algorithmfor

detecting reducible graphs," Proc. 6th Annual Princeton Conf. on Info.

E. Hopcroft and J. D. Ullman [1973]. "Set merging algorithns," SIAM J.

[1973]. "The equival ence problem for regular expressions wth

intersection is not polynomal in tape," Technical Report 73-156,

Conputer Science Dept., Cornell University,

Hopcrof t,
of Conputer Science, 57-6L4.
Sci ences 7, 323-331.
549-568,
Sci ences and Systens, 119-122,
Conput. 2, 29L4-303.
B. Hunt |11
ltai [1976].

"Optimal al phabetic trees," SIAM J. Conput. 5, 9-18.

60

M. Jazayeri, W. F. Ogden, and W C. Rounds [1975]. "The intrinsically

exponential conplexity of the circularity problem for attribute
granmmars," Comm, AcM 18, 697-706.

D. B. Johnson [1977]. "Efficient algorithms for shortest paths in sparse
networks," J. ACM 24, |-13.

J. P. Jones [1974]., "Recursive undecidability - an exposition," Anmerican

Math. Monthly 81, 72L4-738.

R M Karp [1972]. "Reducibility among conbinatorial problems," Conplexity

of Conputer Conputations, R E. Miller and J. W Thatcher, eds.,

Pl enum Press, New York, 85-10k,
R M Karp [1975]. "On the conputational conplexity of conbinatorial
probl ems," Networks 5, 45-68.
R M Karp, R E Mller, and A L. Rosenberg [1972]. "Rapid identification

of repeated patterns in strings, trees, and arrays," Proc. Fourth ACM

Symp. on Theory of Conputing, 125-1%6,

A. V. Karzanov [1974]. "Determning the maximal flow in a network by the

nethod of preflows,” Sov. Math. Dokl, 15, 43L4-L437,

D. G Kendall [1969]. "Incidence nmatrices, interval graphs, and seriation

in archaeology,” Pacific J. Mth. 28, 565-570.

K. W Kennedy [1975]. "Node listings applied to data flow analysis,"
Conf. Record, Second ACM symp. on Principles of Programmng Languages,

10-21,
G A Kildall [1973]. "A unified approach to global program optim zation,"

Conf. Record, ACM Symp. on Principles of Programm ng Languages, 194-206,

61

V. Klee anl G. J. Minty [1972]. "How good is *h= sinplex algorithn®?, "

Inequalities - 111, 0. Shisha, ed., Academic Press, N Y., 159-175,

S. C. Kleene [1936]. "General recursive functions of natural nunbers,”

Mat h. Annalen 112, 727-7h2.

D. E. Knuth [1968]. The Art of Computer Programming, Volume 1: Fundanental

Al gorithns, Addison-Vesley, Reading, Mass.
D. E Knuth [1959]. The Art of _Conputer Programming, Volume 2: Seminungrical

Al gorithms, Addison-\esley, Reading, Mass.

D. E Knuth [1971]. "Optinum binary search trees," Acta Informatica 1, 14-25.

D. E. Knuth [1973]. The Art of Conputer Programming, Volume %: Sorting

and Searchi ng, Addi son-Vesley, Reading, Mass.

D. E Xauta, J. H Mrris, Jr., and V. R, Pratt [1977]. "Fast pattern
matching in strings," _SIAM J. _Comput. 6, to appear.

D. E Knuth and A Schonhage [1977]. "The expected linearity of a sinple
equi val ence algorithm™ Technical Report STAN-CS-77-599, Conputer
Sci ence Dept., Stanford University.

A N Kol nogorov [1953]. "On the notion of an algorithm" Uspehi Mat. Nauk,

8, 175-176.
,A. N Kolmogorov and V. A Uspenskii [1963]. "On the definition of an
algorithm" Amer. Math. Soc. Transl. Il 29, 217-245,

J. B. Kruskal, Jr. [1956]. "On the shortest spanning subtree of a graph

and the travelling salesman problem" Proc. Aner. Math. Soc. 7, 48-50.

H W Kuhn [1955]. "The Hungarian method for the assignment problem"

Naval Res. Logist. Quart. 2, 83-97.

C. Kuratowski [1930]. "Sur |e probl eme des corbes gauches en topologic,"

Fundamenta Mathematicae 15, 271-233,

62

E. L. ILawler [1976]. Conbinatorial Optimzation: Networks and Matroids,

Holt, Rinehart, and Wnston, New York.
A. Lempel, S. Even, and |. Cederbaum [1967]. "An algorithmfor planarity

testing of graphs,” Theory of Gaphs: International Synposium Rong,

July, 1966, P. Rosenstiehl, ed., Gordon and Breach, New York, 215-232,

Lin [1965]. "Conputer solution of the travelling sal esman problem"

v

Bel | System Tech. J. Lk, 2245-2269,

P. C Liu and R C Geldmacher [1976]. "On the deletion of nonplanar edges
of a graph," Dept. of Electrical Engineering, Stevens Inst. of Tech.

Z. Manna [1969]. "The correctness of prograns," J. Conputer and System

Sci ences 3, 119-127.

H C Mrtin and G F. Carey [1973]. Introduction to Finite Elenent Analysis,

MGawH Il, New York.

E. M McCreight [1976]. 'A space-economical suffix tree construction
algorithm" J. Acm 23, 262-272.

C. McDiarmid [1976]. "Determning the chromatic nunber of a graph,”
Techni cal Report STAN-CS-76-576, Conputer Science Dept., Stanford
Uni versity.

J. MKay and E. Regener [197k]. "Algorithm 482: transitivity sets,"
Comm ACM 17, 470.

A R Myer and L. Stockneyer [1972]. "The equival ence problem for regular
expressions wth squaring requires exponential space," Conf.

Record, |EEE 13th Annual Symp. on Switching and Autonata Theory,

125-129,
R Mrris [1968]. "Scatter storage techniques,” Comm ACM 11, 38-Lk,
. Munro [1971]. "Efficient determination of the transitive closure of

a directed graph,” Info. Proc, Letters 1, 56-58,

63

\Te

R.

el
De

M

M.

Nemhauscr and R Garfinkel [1972]. 1nteger Progranm ng, John wiley,
New YorKk.
Z. Norman and . 0. Rabin [1959]. "an algorithm for a mninum cover of a

graph, " Proc., Amer. Math. Soc. 10, 315-319.

F. Pacault [1974]. "Conputing the weak conponents of a directed graph,”

SIAM J. Conput. 3, 56-61.

V. Parter [19(1]. "The use of |inear graphs in Gaussian elimnation,"
SI AM Revi ew 3,119-130.

Pat erson [1972]. trivate communicati on.

L. Post [1936]. "Finite conbinatory processes-fornmalismi1," J. Synbolic
Logic 1, 103-105.

C. Prim/[1957]. "Shortest connection networks and sone generalizations,"

Bel | System Tech. J. %6, 1389-1L01.

0. Rabin [1976]. "Probabilistic algorithms," Algorithms and Conplexity:

New Directions and Recent Results, J. F. Traub, ed., Academ c Press,

New York, 21-40.
Rivest and J. Wuillenin [1975]. "A generalization and proof of the

Ander aa- Rosenburg conjecture," _Proc. Seventh Annual ACM Symp._on

Theory of Conputing, ©6-11.

J. Rose [1970]. "Triangulated graphs and the elimnation process,"

J. Math. Analysis and Applications %2, 597-609.

J. Rose [1973]. "A graph-theoretic study of the nunmerical solution of

sparse positive definite systems of linear equations," Gaph Theory

and Conputing, R Read, ed., Academ c Press, New York, 18%-217.

J. Rose and R E. Tarjan [1977]. "Agorithmc aspects of vertex

elimnation on graphs,” StaM J. Appl. Mth,, to appear.

6l

C.

S.

M

C.

A

R

R

J. Rose, R E. Tarjan, and G S, Lueker [1976].

of vertex elimnation on graphs,” _SIAM J. Conput.

L. Rosenburg [1973].

graphs: a problem" SIGACT News 5, 15-16.

"Algorithmc aspects

5, 266-283,

"On the time required to recognize properties of

Runge and H Konig [1924]. Di e Grundl ehren der nat hemati schen

Wssenschaf'"ten, Volume 11, Springer, Berlin.

Sahni [1974].
262-279.

"Conputationally related problems," SIAM J, Conput. 3,

W H Sargent and A W Westerberg [1964]. "' Speed up' in chemical

engi neering design," Trans. Inst. Chem Engrs. k2, 190-197.

E. Savage [197€]. The _Conplexity of Conputing, John Wley and Sons,

New York.

schaefer [1973]. A Mathematical Theory of G obal Program Optim zation,

Prentice-Hall, Englewood diffs, N J.

P. Schnorr [1977].

expected tinme," unpublished manuscript,

Universitat Frankfurt.

Schinhage [19731,

machi nes by storage modification machines," Project

Mermor andum 37, Mass. Inst. of Technol ogy.

"An algorithm for transitive closure with |inear

Fachberei ch WMat hemati k,

"Real -tinme sinulation of multidinensional Turing

MAC Techni cal

Schénhage, M Paterson, and N. Pippenger [1975]. "Finding the median,"

Theory of Computation Report 6, Conputer Science Dept.,

Varwi ck.
Sethi [1975].

226- 248.
Sethi [1976].

73-82.

"Conpl ete register allocation problens,"”

"Schedul i ng graphs on two processors,"

65

Uni versity of

S| AM J. Conput.

SI AM J. Conput.

Ds

by

R W Shirey [1969]. "Inplenmentation and analysis of efficient graph
planarity testing algorithms,” Ph.D. thesis, University of Wsconsin.
P. M Spira [1973]. "A new algorithm for finding shortest paths in a

graph of positive arcs in average time o(n2 1og2 n) ," SIAMJ. Conput.

2, 28-32,
L. J. Stockmeyer and A. R Meyer [1973]. "Wrd problens requiring exponential
time: prelimnary report,” Proc. Fifth Annual ACM Symp. on Theory of

Conputing, 1-9.

v. Strassen [1969]. "Gaussian elinination is not optinal,

Nuneri sche
MVat hemati k 13, 354-356.
V. Strassen [1973]. "Di e Berechnungskomplexetst von el ementarysynmetri schen

Funktionen und von Interpol ations koeffizienten,” Nunerische Mathematik

20, 238-251.
V. Strassen and R Solovay [1977]. "A fast Mnte-Carlo test for

primality," SIAM J. Comput., to appear.

R E. Tarjan [1972]. "Depth-first search and linear graph algorithns,"”

S1AM J. Conput. 1, 1L46-160.

R E Tarjan [197kal. "a new algorithmfor finding weak conponents,"

I nfo. Proc. Letters 3, 13-15.

R Tarjan [1974b]. "Finding dom nators in directed graphs," SIAM J.

conput. 3, 62-89.
R. E. Tarjan [197kc]. "Testing flow graph reducibility,

J. Conput er and

Syst em Sci ences 9, 355-365.

R E Tarjan [1975a]. "Efficiency of a good but not l|inear disjoint set
union algorithm" gJ. ACM 22, 215-225.

R E Tarjan [1975b]. "Applications of path conmpression on balanced trees,"
Techni cal Report STAN-CS-75-512, Conputer Science Dept., Stanford

Uni versity.
66

R E. Tarjan [1975c]. "Solving path problems on directed graphs,"
Techni cal Report STAN CS-75-528, Conputer Science Dept., Stanford
University.

R. E. Tarjan [1976al. "Gaph theory-and Gaussian elimnation," Sparse
Matrix Conmputations, J. R Bunch and D. J. Rose, eds., Academc

Press, New York, 3-22,
R E. Tarjan [1976b]. 'Generalized nested dissection,” unpublished notes.
R E. Tarjan [1977]. 'Reference machines require non-linear tine to

maintain disjoint sets," Proc. N nth Annual ACM Symp. on Theory of

Computing, t0 appear.

R P. Tewarson [1973]. Sparse Matrices, Academ ¢ Press, New York.

A M Turing [19%36-7]. "On conputable nunbers, with an application to the

Ent schei dungs problem" Proc. London Math. Society, series 2, k2,

230-265; corrections, |bid, 43 (1937), 5LL-546,
J. D. Ullman [1973a). "A fast algorithmfor the elimnation of common

subexpressions," Acta Informatica 2, 191-213.

J. D. Ullman {1973b]. "Polynom al conplete scheduling problems," Proc,

Fourth Symp. on Operating System Principles, 96-101.

L. G Valiant [1975a]. "General context-free recognition in |ess than

cubic tine," J. Conputer and System Sciences 10, 308-315.

L. G Valiant [1975b]. "On non-linear |ower bounds in conputational

conplexity," Proc. Seventh Annual ACM symp. on Theory of Conputing,

b5 =53,
L. G Valiant [1976]. "Some conjectures relating to super |inear
conpl exi ty bounds," unpublished manuscript, Centre for Conputer

Studies, University of Leads.

67

A

A

A

van Emde Boas, R Kaas, and E. zijlstra [1975]. "Design and inplenentation

of an efficient priority queue," Mathematisch Centrum, Ansterdam
Vuillemin [1977]. "A data structure for manipulating priority
queues," Comm, ACM to appear.

Wi ner [1973]. "Linear pattern matching algorithnms," |EEE 14th Annual

Symp. on Swi tching and Automata Theory, |-11.

Wnograd [1975]. "The effect of the field of constants on the number

of multiplications," Proc. Sixteenth Annual Synp. on Foundations of

Conput er Sci ence, |-2.

W nograd [1976]. "On conputing the discrete Fourier transform" _Proc.

Nat . Acad. Sci. U.S. A. 73, 1005-1006.

Wrth [1971]. "The programming | anguage Pascal," Acta Informatica 1,

35-63.
C. Yao [1975]. "an O(|E| log log |v|) algorithm for finding m ninmm

spanning trees,"_Info. Proc. Letters L, 21-23.

C. Yao [1976]. "On the average behavior of set nmerging algorithns,"”

Proc. Eighth Annual ACM Symp,_on Theory of Conputing, 192-19.

C. Yao, DD M Avis, and R L. Rivest [1977]. "m Q(n2 l og n)

| ower bound to the shortest path problem"™ _Proc, NNnth Annual ACM

symp. on Theory of Conputing, to appear.

H. Younger [1967]. “Recognition and parsing of context-free [anguages,"

Info. and Control 10, 189-208.

68

siize
complexity 20 50 100 200 500 1000
1000 1 .02 .05 .l Iy) 1
sec sec sec sec sec sec
.09 3 .6 1.5 4.5 10
1000 n Tog n sec sec sec sec sec sec
sec sec sec sec sec mn
10 n3 .02 1 10 1 21 2.7
sec sec sec mn min hr
nIog n oh 1.1 220 125 5.10
sec hr days cent cent
2n/3 .0001 .1 2.7 3.10
sec sec hr cent
o1 1 35 310
sec yr cent
5n 58 2.109
mn cent
Table 3.1. Running Tine Estinates.

(One step = one nicrosecond;

69

| ogarithns are base two.)

pine | 1 sec 107 sec 10" see 108 see 107 sec 10%0 sec
conpllexiitty (L.7min) (2.7 hr) (12 days) (3 years) (3 cent)
1000 n 100 10° 107 107 10t 101
1000 n log n 1hx10% 7.7x10° 5.2%10° 3.9x10" 3.1x10° 2.6x10™
100 n° 10° 10° 10" 10° 10° 107
10 16 2.1 x10° 100 h6x100 2.1x10% 10
o8 B 22 36 5k 79 112 156
2™/2 59 79 99 119 139 159
" “ 19 26 33 39 46 53
z" 12 16 20 25 29 33

Table 3.2. Maxi num Size of a Sol vabl e Probl em

(A factor of ten increase in machine speed corresponds to

a factor of ten increase in tine.)

70

L Data structures (built from arrays and linked structures).
a Li sts.
b. Unordered sets.
C. Ordered sets.
d. G aphs.
e. Trees.
2. Recursion.
a. Dynam ¢ progranm ng.
3. Graph searching.
a. Depth-first.
b. Breadth-first.
i Shortest-first.
ii. Lexicographic.
L, Optimzation nethods.
a. Greed.
b. Augnent ati on.
5. Data updating methods.
a. Path conpressi on.
b. Partition refinenment.
C. Li near arrangement.
6. @Gaph napping.
a. Deconposi tion (by subgraphs),
b. Shrinking (by graph homonor phisny.

Table 4.1. Techni ques for Good Al gorithms.

71

val ue link 1 link 2

(a)
— val ue link 1 link 2
s{pleqs]? { 1| 3 3 2
x —J
2 6 1 1
) 3| & 6 i
L1e 2 ‘ o——-il l 1 L 2 3 5
L 5 1 3 3
Y 6 5 7 6
H i : -
8 3 7 T
Y o pmm—
1]l {3]?
() (c)

Figure 4.1. A linked structure and its representation by arrays.
(a) Record fornat.
(b) Linked structure.

(c) Representation by three arrays.

72

deque

1 6 head ——M 3| ¢
2 N tail =2
3 o ¢
4
2 1
6 3 ' head =6
7| 2 <4
514
8 1
9 5
an

tail —EE

Figure 4.2. Representation of a deque containing 3,2, 1, 5,6,%4,
(a) Array representation

(b) Linked representation.

5

head —-)b

[

- 1o '6————0 —

&

671:_
tail —f L [g] &

Figure 4.3, Representation of list 3, 2, 1, 5,6, 4 by doubly

linked structure.

T4

H o O M
H O K M
[R =)

o + + O

(a) (b)

head

(c)

Figure 4.4. Representation of a graph.
(a) Gaph.
(b) Adjacency nmatri x.

(c) Adjacency structure.

>

parent

1] ©
2 1
3 1
yl 2
51 2
6| 3
71 3
8| 6
9| 7
10| 7
11| 7
12 T
(@) (b)

Figure L4.5. Representation of a tree.

(a) Tree.

(b) Parent array for root 1.

76

(a) (b)

Figure 4.6. Depth-first search of an undirected graph.
(a) G aph.
(b) Spanning tree generated by search,

Vertices nunbered as explored.

7

D(1)

(b)

Figure 4.7. Depth-first search of a directed graph.
(a) G aph.
(b) Spanning tree generated by search.

Vertices numbered as explored.

78

(b)

Figure 4.8. Breadth-first search. Level indicated in parentheses.
(a) Search of graph in Figure 4.6,
(b) Search of graph in Figure L.7.

79

. 9'

10.

Discrete Fourier transform (DFT):

recursion.
Matrix multiplication (MV:

recursion. 3
Linear equations on a planar graph (LEQ:

recursion, deconposition by connectivity, breadth-first search.
Global flow anal ysis (GFA):

deconposition by connectivity, path conpression, depth-first
Pattern matching on strings (PV:

data structures.

Strong conponents (SO):
depth-first search.
Planarity testing (PT):
dept h-f & search.
Maxi mum network flow (MNF):
augnent ation, breadth-first search.
G aph matching (GV):
augnentation, breadth-first search, cycle shrinking.
Set union (SU):
path conpression.

. Table 5.1.

Ten Tractable Problens and Methods for Solving Them

80

sear ch.

exponentia

p)

a’/“mog n
2

n
3/2
mlog n

n log n+m

nlog n A

mlog log n
mlog* n

m (m,n)

m-n

DFT

Figure 5.1.

Recent

%Y

conpl exity inprovenents.

LEG GFA

¥

PM

¥

SC

4#
+

—
¢

3+

PT MNF GM sU

n = Size (nunber of vertices in graph problems).

m = second parameter (nunber of edges in graph -problems).

81

Figure 5.2. Ni ne xnine grid graph.

Vertices in cross separate grid iato four Lx4 grids.

82

(a)

phs.
bgr a

i su

atowskl

Kur

5030

i gure

Fi gu

(a) Xs
(b) X5 5

83

(b)

T A7)

Figure 5.k, Representation of set A = {a,b,c,d, e, f, g}

by a trze. Size of set in parentheses.

8l

=V V-7V

A(x) B(y)

A(x+y
(a)

ifx<y $

Alxty)

(b)

Figure 5.5. | npl enentation of union.
(a) Basic nethod.

(b) Weighting heuristic.

85

find(e):

A(x) A(x)

Figure 5.5, Implementation of find with path conpression.

86

