
Stanford Heuristic Programming Project
Memo HPP-77-28

August 1977

Computer Science Department
Report No. STAN-CS-77-618

A PRODUCTION SYSTEM FOR AUTOMATIC DEDUCTION

Nils Nilsson

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY





A PRODUCTION SYSTEM FOR AUTOMATIC DEDUCTION

STAN-CS-77-618

Heuristic Programming Project Memo 77-28

1

N i l s  J .  Nilsson

ABSTRACT

A new predicate calculus deduction system based on production rules is
proposed. The system combines several developments in Artif icial
Intell igence and Automatic Theorem Proving research including the use of
domain-specific inference rules and separate mechanisms for forward and
backward reasoning. It has a clean separation between the data base ,
the product ion rules, and the control system. Goals and subgoals are
maintained in an AND/OR tree to represent assertions. The product ion
rules modify these structures unti l  they “connect” in a fashion that
proves the goal theorem. Unlike some previous systems that used production
rules , ours  is  not  l imi ted to  ru les  in  Horn Clause form. Unlike previous
PLANNER- 1 i ke sys terns, ours can handle the full  range of predicate calculus
expressions including those with quantif ied variables, disjunctions and
negations.

KEY WORDS

DEDUCTION, PRODUCTION SYSTEMS, AUTOMATIC THEOREM PROVING, AND/OR TREES,
ARTIFICIAL INTELLIGENCE.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the
o f f i c i a l  p o l i c i e s , e i t h e r  e x p r e e  o r  imp1 ied, of the Defense Advanced
Research Projects Agency or the United States.

This  work  was supported jo int ly  by  SRI  In ternat ional  Pro ject  6171, Of f ice
of Naval Research Contract No. N R  049-405; and by Stanford University
Heur is t ic  Progratrwning  Project ,  ARPA Order  NO . 2494.



I --



July 1977

A PRODUCTION SYSTEM FOR AUTOMATIC DEDUCTION

bY

Nils J. Nilsson

Artificial Intelligence Center
SRI International

Menlo Park, California 94025

Technical Note 148

This work was supported jointly by SRI International Project 6171,

Office of Naval Research Contract No. NR 049-405; and by Stanford

University Heuristic Programming Project, ARPA Order No. 2494.





ABSTRACT

A new predicate calculus deduction system based on production

rules is proposed. The system combines several developments in

Artificial Intelligence and Automatic Theorem Proving research including

the use of domain-specific inference rules and separate mechanisms for

forward and backward reasoning. It has a clean separation between the

data base, the production rules, and the control system. Coals and

subgoals are maintained in an AND/OR tree structure. We introduce here

a structure that is the dual of the AND/OR tree to represent assertions.

The production rules modify these structures until they QonnectY  in a

fashion that proves the goal theorem. Unlike some previous systems that

used production rules, ours is not limited to rules in Horn Clause form.

Unlike previous PLANNER-like systems, ours can handle the full range of

predicate calculus expressions including those with quantified

variables, disjunctions and negations.

i i





CONTENTS

ABSTRACT . . . . . . . . . .

LIST OF ILLUSTRATIONS . . . . . . . . . .

I Background . . . . . . . . . .

II Overview of the System . . . . . . . . . .

III Goal Trees and Fact Trees . . . . . . . . .

A. Conversion of Facts and Goals to Standard Form

B. AND/OR Goal Trees . . . . . . . . . .

c. OR/AND Fact Trees . . . . . . . . . .

D. Connecting Fact and Goal Trees: Proof Termination

E. Transferring Between Fact and Goal Trees: Checking
for Contradictory Facts and Tautological Goals

IV Rules . . . . . .

A. Rule Forms . . . . . .

B. Use of Rules . . . . . .

V Propositional Calculus Examples . . .

VI Extension to Quantification . . . .

A. Overview . . . . . .
B. Skolemization . . . . . .

c. Use of Rules . . . . . .

D. Extending the Definition of CANCEL

E. An Example . . . . . .

VII Some Additional Extensions . . . . .

A. Rubedding  New Rules in Operators .

B. High Complexity Proofs . . . .

VIII Conclusions . . . . . .

IX Acknowledgements . . . . . .

REFERENCES . . . . . .

i i i

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

i i

iv

1

4

6

6

7

8

10

11

15

15

17

18

25

25

25

27

28

29

36

36

37

39

40

41





1.

2.

2
-I  l

4.

E
4 l

6 .

7.

8.

9.

ILLUSTRATIONS

An AND/OR Tree . . . . . . . . . . . . .

An OR/AND Tree . . . . . . . . . . . . .

Example Goal-Fact Tree Pairs . . . . . . . . . . .

Example Fact and Goal Trees . . . . . . . . . . .

An Intermediate Stage of a Proof . . . . . . . . . .

The Final Stage of a Proof . . . . . . . . . . . .

An Example with Variables . . . . . . . . . . . .

The Goal Tree After Applying a REDUCER . . . . . . . .

The Goal Tree After Applying Four REDUCERS . . . . . .

10. The Fact Tree After Applying Four OPERATORS . . . . . .

7

9

12

19

20

21

30

31

32

34

IV





I Background

Logical deduction is a basic activity in many artificial

intelligence (AI) systems. Specific applications in which deduction

plays a major role include question-answering, program verification,

mathematical theorem proving , and reasoning about both mundane and

esoteric domains.

Of the several different approaches to deduction pursued by AI

research, we might mention two extremes. In one (see for example,

Hewitt, 1971), deduction procedures are based on more or less intuitive,

ad hoc, and informal considerations. Such an approach derives its main

advantage, namely efficiency, from the specialized, domain-dependent

heuristics that can be tightly encoded in the system. The approach

sometimes suffers, however, from excessive rigidity that frustrates the

evolutionary development of systems. Most examples of designs based on

this approach also exhibit deficient logical competence. (See Moore,

1975, for a discussion of  these deficiencies and some remedial

suggestions.)

At the other extreme, deduction is based on some formal logical

system such as the predicate calculus. (See for example, Chang and Lee,

1973.) This approach confers the power of a well-developed logical

formalism and is compatible with the evolutionary development of
systems. When deductions are based on uniform ( i . e . , domain-

independent) inference rules, however, the resulting systems are often

too inefficient to be useful.

In this paper we shall propose a deduction system that enjoys most

-of the logical power of the formal systems without embracing their

inefficient uniformity. It uses specialized, domain-dependent inference
rules that are encoded as producti-. As with most production systems,

1



it can easily be modified and extended by adding new production rules or

by modifying old ones. The system is based on a synthesis of several
ideas from various authors in artificial intelligence and automatic

theorem proving. (The most immediate intellectual debts are to Bledsoe,
1977; Fikes and Hendrix, 1977; Hewitt, 1971; Kowalski, 1974a,b;  Moore,

1975; and Sickel, 1976. Related work has been done by Nevins, 1975;

Reiter, 1976; and Wilkins, 1974.)

Before describing the system in detail, we shall briefly mention

some of the factors affecting its design. First we would like, in

particular, to avoid the inefficiencies of resolution-based theorem

proving systems. As has been observed by several authors, the "clause

form"  used by resolution theorem provers contributes to inefficiencies

in two major ways: common sub-expressions in goals or axioms are

"multiplied-out" into several different clauses each provoking its own

separate but possibly redundant proof attempts; and conversion to clause

form destroys possibly valuable heuristic information carried by the

form of implicational statements among the axioms.

Second, we prefer a system in which the basic deduction steps have

%ommon-sense" intuitive appeal. The process of resolution is, for

some, difficult to relate to more familiar reasoning processes. This

feature is especially important in those systems whose reasoning must be

easily understood by users. Ease of understanding is also advantageous

during system design and debugging. The processes of "natural

deduction" more closely realize this goal than does resolution.

We want to be able to incorporate domain-specific knowledge into

the system. This knowledge might consist of special inference rules and

how to use them. In this regard, it is sometimes especially important,

for eff iciency, whether a deduction step proceeds forward (from the

assertions toward the goal) or backward (from the goal toward the

assertions). The domain expert, who participates in the design of the
system, can often indicate the most efficient direction for each
inference.



We are sufficiently impressed with the advantages of production

systems (Davis and King, 1977) that we would like to model our design on

that paradigm. Previous production system designs for deduction

systems, however, had somewhat limited logical power. (An example is

the restriction to Horn clauses in Kowalski, 1974b.)  We want our system

to be able to employ the full expressive power of the first-order

predicate calculus, including the ability to reason with disjunctive

assertions, negations, and quantification of variables. Certainly our

system should be sound (i.e., it should not prove invalid expressions).

With regard to completeness (i.e., being able to prove any theorem), we

are less doctrinaire. We insist only that it behave reasonably

according to criteria specif ic  to the domain of application. Any

incompletenesses that cannot be tolerated must be repairable by

evolutionary changes to the system.

We also note that the production system paradigm permits a

convenient separation ,between the “logical knowledge” embodied in the

assertions and in the production rules and the use of this knowledge by

a control system. Changes can be made to each component separately,

depending on whether the logic or its control is to be changed. In

particular we envision a more domain-specific control system than the
simple, uniform interpreter used by most resolution systems.

We want the methods used by our system to be easily extendible to

representations that are lVicherlt  than the usual implementations of

predicate calculus data bases. We have in mind, specifically, semantic

networks ( Fi kes and Hendrix, 1977) and “structured-object?’

representations (Bobrow  and Winograd, 1977) with various built-in

features for indexing, taxonomic reasoning, and sorting of arguments

according to type.

Lastly, we attach great importance to the “esthetic appeal”  of the

-system. It should have a clean design, and it should itself be a clear

statement of a useful synthesis of some of the best ideas in automatic
theorem proving. We will gladly trade some efficiency for enhanced

clarity.

3



II Overview of the System

The classical model of theorem proving in the predicate calculus

involves three major components. First, there is a set of axioms or

assertions that express information about the domain of application.

For geometry, for example, these would be the fundamental postulates

plus whatever other theorems we want to start with. (It is neither

necessary nor desirable to limit the assertions to some primitive or

minimal set. ) Second, there are domain-independent, uniform rules of

inference (such as resolution, modus ponens) that can be used to derive

new assertion3 from existing ones. Finally, there is a conjectured

theorem, or goal, to be proved. A proof consists of a sequence of

inference rule applications ending with one that produces the goal.

AI research has produced an important deviation from this approach.

_ The assertions are divided into two distinct sets: facts and rules.

Facts are specific statements about the particular problem at hand. For

example, “Triangle ABC is a right triangle” would be expressed as a

fact. Rules are general statements, usually involving implications or

quantified variables. For example, “The base angles of an isoceles

triangle are equal” would be expressed as a rule. Rules are used in

combination with facts to produce derived facts. One could think of

them as specialized, domain-dependent inference rules.

This distinction can be further explained by a simple example. In

the classical approach, from the two assertions A and A=>B we could

derive the assertion B by modus ponens. In the AI approach, from the

fact A we could derive the fact B by using the special rule A=>B. The

distinction between facts and rules is an important part of our

deduction system.



The rules will be used as production rules. They will be invoked

by a pattern matching process. Some will be used only in a forward

direction for converting facts to derived facts; others will be used

only in a backward direction for converting goals to subgoals. The
developing sets of facts and goals will be represented by separate tree

structures. Goals will be represented in an AND/OR goal tree, and facts

will be represented in a newly proposed structure that we shall call a

fact tree. Rules are employed until the fact tree joins the goal tree

in an appropriate manner. The entire process will be under the

supervision of a control strategy that decides which applicable rule

should be employed at any stage. We shall not propose any specific

control strategies in this paper but shall merely point out that the
designer has the freedom to use any domain-specific information

whatsoever in the control system.

Several designs of this general sort have been proposed (see, for

example, Kowalski , 1974b), but most of them have had restrictions on the

kinds of logical expressions that could be accommodated. Although

AND/OR goal trees have been used before, the notion of a fact tree, dual

to the goal tree, allows some interesting correspondences, such as that
between o reasoning by cases” and dealing with conjunctive goals, for
example.

We shall first explain the system using the propositional calculus

and then indicate how we deal with quantification.

5



III Goal Trees and Fact Trees

A. Conversion & Facts and Goals &Q Standard Fora

In this section we shall introduce the tree structures used to

represent collections of facts and goals. Facts and goals can be any

expressions of the predicate calculus (propositional calculus for this

section).  We do convert them, though, into a standard form.

Implications are changed to disjunctions by using the equivalence

between (A=>B) and (-A & B). Negations are “moved  in,, by using the

equivalences between -(A & B) and (-A v -B) and between -(A v B) and (-A

8 -B) . Repeated negations are eliminated by using the equivalence

between -“A and A. Once a goal or fact expression has been converted to

this standard form, it will consist of a conjunctive/disjunctive com-

bination of literals. For example, the expression -H => [G & -(F & -B)]

-would be converted to H v [G & (-F v B) 1.

Ordinarily the domain expert, who is providing us with facts and

rules, would not give us any facts containing implications. These would

be given as rules. Also, goal statements would not ordinarily contain

implications. (The “hypotheses” of a theorem to be proved would

ordinarily be represented as facts, the conclusion as a goal.) We may

have disjunctive facts, however. The distinction between -A v B as a

fact and A=>B as a rule is simply this: as a fact, the domain expert is

simply saying that either -A or B is true and he doesn’t know which. As

a rule, the domain expert is saying that A is useful for proving B. The

system makes quite different use of the two forms.

Also note that our conversion of facts and goals to standard form

is not the same as conversion to clause form in resolution. In general,

clause form involves more expressions. Our standard form is very close

to the form of the original expressions.

6



B. AM>/OAmTrees

For a goal of the form (Al & . . . 8 An) we must prove all of the

goals Al and . . . and An. For a goal of the form (Al v . . . v An), it

suffices to prove one of the goals Al or . . . or An. Structures called

A N D / O R  goal trees (Nilsson, 1971) are used in ma.ny AI systems to

represent collections of subgoals and their relation to the main goal.

Any goal expression that has been converted to our standard form

can be represented by an AND/OR goal tree having single literal8 at its

tips. For example, the expression H v [G & (-F v B)] would be

represented by the AND/OR tree shown in Figure 1.

H V [G & i-F V f3)l

H

S A - 6 1 7 1 - l

Figure 1. An AND/OR Tree

In AND/OR goal trees, nodes (such as node G in Figure 1) whose

incoming branches are connected together by an arc are called AND nodes.

If their incoming edges are not so connected, the nodes are called Q&

nodes.



c. -Fact-

It is convenient to represent the facts to be used in a deduction

by a structure that is the dual of the AND/OR goal tree. We shall call

this dual structure an OR/AND fact tree. The notational conventions for

the fact tree are the reverse of those for the goal tree. We shall

represent conjunctive facts by a structure consisting of AND-nodes,

thus:

Disjunctive facts will be represented by a structure consisting of

OR-nodes, thus:

Note that for fact trees the arc connecting the branches is used with

disjunctions rather than with conjunctions. Also, fact trees are drawn

“upside down” compared with goal trees.

Any fact expression that has been converted to our standard form

can be represented by an OR/AND fact tree having single literal8 at its

tips. For example, the expression A & [B v (C & E)] & D would be
represented by the OR/AND tree shown in Figure 2.

8



A & [B V (C & E)] & D

S A - 6 1 7 1 - i

Figure 2. An OR/AND Tree

The reason that we use opposite conventions to denote disjunctions

and conjunctions in fact and in goal trees has to do with the nature of

their duality. We shall see later that these opposite conventions will

simplify some definitions.

(For both goals and facts we will represent repeated instances of

the same literal by different nodes. This practice allows us to use

trees instead of graphs. )



D. Connecting Fact and Goal Trees: Proof Termination ,

The problem of making a deduction is to QonnecV1  the goal tree to

the fact tree. This will be done mainly by using rules to extend the

trees. We will also admit a process that ailows a type of tree pruning.

But before moving on to discuss these subjects, let us first define

precisely what is meant by “connectingl’ a goal tree to a fact tree.

The connections between fact and goal trees are at nodes labeled by

the same literal. In the original trees, such nodes must be tip nodes.

After the trees are extended by rule applications, the connections might

occur at any node labeled by a single literal. We shall call nodes

labeled by a single literal Jiteral nodeg. After all such connections

are made, we still have the problem of determining whether or not the

expression at the root of the goal tree logically follows from the

expression at the root of the fact tree. Our proof procedure will

terminate when this determination can be made (or when we can conclude

that it can never be made). The termination condition is a simple

generalization of the condition for determining whether the root node of

an AND/OR tree is %olved” ( N i l s s o n ,  1971, p.89.) The termination

condition is based on a simple symmetric relationship, called CANCEL,

between a fact node and a goal node. In the definition of CANCEL we use

the phrase arced nodes to refer both to AND nodes in goal trees and to

OR nodes in fact trees. If CANCEL holds for two nodes n and m, we shall

say that n and m CANCEL each other. CANCEL is defined recursively as

follows :

Two nodes n and m CANCEL each other [that is, CANCEL(n,  m> holds]

if one of (n, m) is a fact node and the other a goal node, and

0) if n and m are labeled by the same literal,

or 1) if n has arced successors, IS,}, such that CANCEL(Si,  m)

holds -for all of them,

or 2) if n has unarced successors, Csi) 9 such that CANCEL(Si,  m)
holds for at least one of them.

10



Our definition of CANCEL supports a simple termination checking

process that starts at nodes labeled by the same literal and propagates

the CANCEL relation toward the roots. The proof procedure terminates

successfully whenever we can show that the root of the fact tree and the

root of the goal tree CANCEL each other.

Note, in particular, that our proof procedure treats conjunctive

goal nodes correctly. Each conjunct must be proved before the parent is

proved. Disjunctive fact nodes are treated in a dual manner. In order
to use a disjunct in a proof, we must be able to prove the same result

using each of the other disjuncts in turn. This process is sometimes

called “reasoning by cases.,,

tree

E.

goal

The reader might like to establish termination for the goal-fact

pairs of Figure 3.

Transferru  B e t w e e n  -Fact m m T r e e s :  C h e c k i n g  f o r

ContradictorvFactsandTautolonicalGoals

Being cancelled by the fact tree is only one of the ways that a

can be satisfied. We can also show that a goal is true by reducing

i t  to  a  tauto logy . Recognizing some tautologies in goals can be
accomplished by a simple extension of the termination process just
described. We shall introduce our discussion of this extension by
describing how nodes could be transferred between the goal and fact

trees.

Suppose from a given set, F, of facts, we must prove a disjunctive

expression of the form Cl v G2, where Cl and G2 can be any expressions.
In logical notation we can represent this problem by the expression:

F I- Gl v G2

(The expression ,,A t- B,, means ,,B logically follows from A” .> Now
we can invoke what we shall call here the &t~a transfer to convert

this problem into either of the following ones:

11



(A V B) & C

GOAL TREE

A 4

FACT TREE

(A V B) & C

GOAL TREE

FACT TREE

S A - 6 1 7  l - 3

Figure 3. Example Goal-Fact Tree Pairs

12



(F & -Gl) I- G 2

or

(F % -G2) I- Gl

That is, one of the goal disjunct8 can be negated and transferred to the

fact tree, where it is conjunctively associated with the other facts.

For example, the tautological goal A v -A can be represented as a goal A

and a fact A. The termination check now reveals that the two root nodes

CANCEL, so we have a proof.

In a dual fashion, we could recognize contradictory facts by

transferring one of the conjunct8 of a fact conjunction over to the goal

tree. To do so, we negate the fact tree to be transferred and

disjunctively append it to the goal tree. In either case, when a tree

is negated prior to transfer we need only negate the literal nodes; the

reversed conventions about arced and unarced nodes automatically provide

the correct interpretations when the tree is transferred.

But we really do not have to perform these transfer operations

explicitly in order to deal with tautological goals and contradictory

facts. Instead, we can allow oppositely signed literal8 of the same

tree to CANCEL each other and then use the rest of the definition of

CANCEL to propagate CANCELled  nodes toward the roots. In this manner,

the definition of CANCEL is extended to apply to nodes in the same tree.

In applying the definition, we need to label the root of the goal tree

and the root of the fact tree with the same identifier. Termination can

now occur if the root of one tree CANCELS either itself or the root of

the other.

Note that proof strategies based on proof by contradiction

(refutation) involve transferring the entire negated goal tree to a

conjunctive branch of the fact tree. Also in some theorem proving
systems (e.g., Fikes and Hendrix, 1977), disjunctive goals are split

into alternative subproblems in which the negation of the sibling goals
can be my added to the fact base for each subproblem. This

13



strategy corresponds to a local transfer process. For our purposes,

with our extended definition of CANCEL, it doesn't really matter whether

we leave the fact and goal trees as originally given or whether we

perform explicit transfer operations.

The reader will note that computing CANCEL relations within the

same tree corresponds to a type of resolution process. General

resolution of facts (or goals) is not 30 simply accomplished, however.

The transfer operation is one way of transforming a given problem

into a set of equivalent ones. Another type of transformation is used

in some systems (such as that of Fikes and Hendrix, 1977) for dealing

with'disjunctive facts. Suppose our problem is to prove

G from the expression F & (Fl v F2), where G, F, Fl, and

expressions. We can convert this problem into either of

pairs of problems:

the expression

F2 can be any

the following

and
F I- -Fl

F& F2 1-G

or

and
F I- -F2

That is, we first prove one disjunct false and then use the other to

prove G. But the subproblem F !- -Fl corresponds to a transfer

operation that really does not need to be performed by our system with

its extended definition of CANCEL. The other subproblem, F & F2 i- G,

evolves naturally in our system as a result of the recursive definition

of CANCEL. There is a dual explanation that can be given for dealing

with conjunctive goals.

Now that we are well equipped to recognize when our proof process

can be terminated, we can begin discussing how rules are used to extend

the fact and goal trees. We first discuss the form of the rules.

14



IV Rules

A* RuleForms

We allow tw basic types of rules. One, called an OPERATOR, is

used to extend the fact tree. OPERATORS permit the system to reason in

a forward direction. The other type, called a REDUCER, is used to

extend the goal tree. REDUCERS permit the system to reason in a

'backward direction. OPERATORS and REDUCERS are roughly analogous to the

antecedent and consequent theorems, respectively, used in the PLANNER

language (Hewitt, 1971). As in PLANNER, OPERATORS and REDUCERS  are

invoked by a pattern matching process. Each has a distinguished

literal, called the pattern, that is used to match a corresponding

literal in the fact or goal tree.

The basic form of an OPERATOR is

A => EXP

where EXP is any predicate calculus expression, and where an underline

beneath a literal indicates that this literal is the pattern. Thus

OPERATOR S are always implications whose antecedent consists of a single

literal that is the pattern. If this pattern matches a literal in the

fact tree, then the fact tree can be extended at this node by sprouting

a descendant OR/AND tree representation of EXP.

The basic form of a REDUCER is

EXP => e

where EXP can be any predicate calculus expression. Aga.in, the pattern
is underlined. REDUCERS are always implications whose consequent
consists of a single literal that is the pattern. If this pattern

15



matches a literal in the goal tree, then the goal tree can be extended

at this node by sprouting a descendant AND/OR tree representation of

EXP.

It is only for reasons of simplicity that we constrain our rules to

have single-literal patterns. Useful variants of our system can be
devised in which tree structures more complex than a literal node are

used as patterns. Of course the matching process for these more complex

structures would be correspondingly more tedious. Also, later we shall

discuss a technique for achieving the effect of more complex OPERATOR

antecedents by allowing OPERATOR consequent8 to contain rules.

'It has been argued by Moore (1975)  that the contrapositive of a

REDUCER should be expressed as an OPERATOR and vice versa. Thus if h =>

EXP is useful as an OPERATOR, its contrapositive form, namely -(EXP) =>

-A, would also be useful as a REDUCER. Our system will automatically

add these contrapositive forms for every rule entered into the system.

(Note that after negating an expression, we must move the negation in.)

The existence of the contrapositive forms of rules means that it

-does not make any difference to our system whether goals and facts are

kept on their own side of the line or transferred. If a goal invokes a

given REDUCER, then the fact resulting from transferring that goal would

invoke the corresponding OPERATOR. Thus, it is really unimportant

whether we maintain goals and facts as given or whether we negate all of

the goals, for example, add them to the fact base, and look for a

refutation. We shall adopt the convention of maintaining goals and

facts as given, mainly to ease the process of explaining the behavior of
the system to the user.

16



B. & Pf Rules

The basic cycle of operation of our deduction system can be

informally described by the following steps:

(1) Initialize the goal and fact trees to the given
expressions.

(2) If the termination check succeeds, exit.

(3) Use the domain-specific control strategy to select
one of the literal nodes and an OPERATOR or REDUCER whose
pattern matches this literal node.

(4) Apply the selected rule, extend the goal or fact
tree, and go to (2).

Rule application is thus a pattern-directed process having effects

on data bases (fact and goal trees). The system design can thus

reasonably be described as a “production systemtt in the sense in which

that term is generally used in AI research. In the next section we

shall show how the system might work on some propositional calculus

examples.

17



V Propositional Calculus Examples

As a first example of how the system works, suppose we want to
prove {H v [G & (B v -F)]) from the expression {A & [B v (C & E)] & D).

We are given the REDUCERS

Rl: c i?c  E => 3
and

R2: D => G

From these, we construct the corresponding OPERATORS

01: E => -c v -E
and

02: -G => -D

The fact and goal expressions are already in standard form. We show
-their tree representations in Figure 4.

In Figure 4, we use capital letters next to the tip nodes for
literala, and we use numerals to label the nodes themselves for later

reference. We connect matching nodes by dashed lines. From Figure 4

we see that nodes 9 and 5 CANCEL. Using the definition of CANCEL, we

note that nodes 12 and 5 CANCEL. It will be helpful to keep a list of

the CANCELled  pairs. This list is also shown in Figure 4.

None of the OPERATORS is applicable, but both of the REDUCERS are.

Suppose we apply R2 first adding node 15 to the goal tree. After this
cycle, the situation is as depicted in Figure 5. We have updated the
list of  CANCELled  p a i r s . At this stage we have essentially reasoned

only about one case of the disjunct B v (C & E).

Now we apply the only remaining applicable rule, Rl. The resulting
trees are shown in Figure 6. The list of CANCELled  pairs includes (1,
11, so we terminate successfully.

18



G O A L TREE

CANCELLED PAIRS

(9.5)

(12,5)

FACT TREE

l-i  V [G & (B V -F)]

A & [B V (C 8t El1  & D

S A - 6 1 7 1 - 4

Figure 4. Example Fact and Goal Trees

19



GOAL TREE

CANCELLED PAIRS \
\

(9,5) \
(12,5) \

(15,3) \

(11,3)
\

\
(11,l) \

\
\
\
\
\

FACT TREE

2

S A - 6 1 7 1 - 5

Figure 5. An Intermediate Stage of a Proof

20



H

GOAL TREE

CANCELLED PAIRS

(9,5)  (16,6)

(12,5) (17,6)

(15,3)  (lo,61

(I 1,3) (12,6)
(II,11 (12,4)

(16,7) (12,l)
(l7,8)  (14,l)

(I,11

a

FACT TREE

S A - 6 1 7 1 - 6

Figure 6. The Final Stage of a Proof

21



For our second example, we will illustrate how CANCELling  nodes in
the same tree can be used to obtain a proof. Suppose our goal is to
prove B v C and we are given,the following OPERATORS:

01: -I; => D
and

02: & => B

We will assume we have no facts. The problem would be straightforward
if we were to split B v C into two disjunctive subgoals such that while

working on subgoal B we could assume (locally) the fact -C. This fact

would combine with OPERATOR 01 to produce fact D, which in turn would
combine with 02 to produce B.

Our system does not make these local assumptions, but the use of

contrapositive rules and CANCELling  nodes within a tree accomplishes the
same thing. The contrapositives of our OPERATORS are the REDUCERS

Rl: -D => c

R2: -B => -Q

Now Rl can be used on subgoal C to produce subgoal -D. REDUCER R2
can be used on this subgoal to produce subgoal -B. This subgoal CANCELS

the earlier subgoal B, with the ultimate result that the root CANCELS

i tse l f . (The reader may want to verify this with the help of a

diagram.1

A case of special interest occurs when a rule application produces

a literal node that CANCELS one of its own literal node ancestors. This
corresponds to a special case of ancestor resolution. Propagation of

the CANCEL relation may then ultimately result in a node CANCELling

i tse l f . For purposes of CANCEL propagation, any node that CANCELS

itself can be regarded as being CANCELled  by the root node of the

opposite tree. (Self-CANCELling goal nodes correspond to tautologies,

and self-CANCELling fact nodes correspond to contradictions.)

22



Another interesting case occurs when a pair of sibling nodes CANCEL

each other. If the siblings are unarced,  then obviously their parent

CANCELS itself, and we have the previous case. If the siblings are

arced, the parent node cannot possibly appear in a proof, so it is

eliminated from the tree. If this parent node is itself  arced,  its

parent is eliminated, and so on. If a root node is ever eliminated, the

entire proof attempt fails.

There are some problems (even in propositional calculus) that our

system cannot solve. Our tolerant attitude towards this sort of

incompetence is explained as follows. We are relying on the domain

expert to provide us guidance about which rules are useful and in which

direction they should be used. Hopefully, his expertise enhances the

efficiency of the system. But dependence on the expert carries a price:

gaps in his expertise decrease the competence of the system. There are

some simple examples that illustrate this point.

Suppose the goal is B v C and the OPERATORS are A => B and -A=> C.

Unfortunately these rules work in the wrong direction; if they were

REDUCERS instead, the goal would be easy to prove. (The contrapositive

REDUCERS of the given OPERATORS are of no help.) One way around this

difficulty is to use the implicit fact A v -A as if it were explicitly

in the fact tree. The given OPERATORS could then be used to obtain a

proof. Obviously this strategy of assuming all tautologies to be

explicit facts would defeat our attempts at efficient operation, because

it would allow every OPERATOR to be used in every problem. Another

possible approach to this problem would be to analyze the OPERATORS to

look for pairs having oppositely signed patterns. The disjunction of

their consequents could then be added to the fact tree. (A dual

approach could be used with REDUCERS,) But this catches only first-

level difficulties. The main point is that to increase efficiency we

are using the rules only in a given direction, and we are not allowing

the rules to interact among themselves; therefore the domain expert must

pose the problem in such a way that the system can still find a solution

even with these restrictions.

23



Another troublemaker involves the goal A => C (that is, -A v C) and

the facts A => B (that is, *A v B) and B => C (that is, -B v C) .

Suppose there are no OPERATORS and no REDUCERS. Since facts cannot

interact among themselves, we cannot produce a proof. Again the domain
expert has failed us in not structuring the problem correctly.

Our attitude toward these problems is to avoid the easy but

inefficient approach of allowing intrafact and intrarule inferences.

That is precisely what our system is trying to escape. Instead, we will

exploit the inherent modularity of the system to correct inadequacies in

the rule and fact base as they are discovered.

24



VI Extension to Quantification

A. Overview

The system we have described for propositional calculus can be

easily modified to deal with quantified variables in expressions. The

modif icat ions involve : (1) replacing certain variables by Skolem

functions, (2) using unification during CANCEL operations, and (3)

‘associating a substitution with each CANCEL relation. In this section,

we shall discuss these modifications and present some examples.

B. Skolemizatio~

Fact expressions receive the same initial preparation as for the

propositional calculus case; implications are eliminated, and negations

are moved in. We use the equivalences between

-(EXISTS X) F(x) and (FORALL x)C-F(x)]

and between

-(FORALL  X) F(X) and (EX I S TS x)[-F(x)]

to move negations in through quantifiers. Next we replace all instances

of existentially quantified variables by Skolem functions of those

universally quantified variables in whose scopes they reside. Next we

drop all quantifiers and henceforward adopt the convention (for facts)

that all variables are universally quantified. When a fact expression

is in this form, it can be represented as an OR/AND fact tree. The

literal8 at the tip nodes may contain variables, of course.

Goal expressions also receive the same initial treatment.

Skolemization, however, is different. In goal expressions, we replace
all instances of universally quantified variables by Skolem functions of

25



those existentially quantified variables in whose scopes they reside.

(Recall that goals can be regarded as negated facts and that negated

existential quantifiers are equivalent to universal ones. Thus, it

shouldn, t be surprising that Skolemization of goal expressions uses

conventions dual to those of Skolemization of facts. If we are able to
prove some expression F(a) where a is a constant different from those
used in the facts and rules- that is, it is a Skolem constant--then we

can deduce (FORALL x) F(x) by universal generalization. Skolemization

of universally quantified variables in goals can thus be regarded as

using the rule of universal generalization in reverse.)

,After elimination of the universally quantified variables, we can

drop all of the quantifiers and adopt the convention that all variables

(in goals) are existentially quantified. When a goal expression has

been thus prepared, it can be represented as an AND/OR tree.

Skolemization of  variables in rules is  just slightly more
complicated. (We allow rules of the same general form as in the

propositional calculus case, however, they can have arbitrary

-quantification.) Quantifier scopes in rules can be of three types: the

scope can be the entire implication or limited to either the antecedent

or the consequent. We Skolemize any existential whose scope is either

the entire implication or its consequent. We Skolemize any universal

whose scope is limited to the antecedent of the implication.

After Skolemization, we can drop the quantifiers, and the variables

will “behave correctly.,, That is, when an OPERATOR is used, those

variables occurring in the new fact nodes will have assumed universal
quantification, and similarly for REDUCERS.

26



c. JseofRules

When a rule is used to extend the fact or goal tree, its pattern

must be unifiable with the literal at the node from which it extends.

It will be convenient to represent this matching process by an explicit

edge of the tree and associate the most general unifier (mgu) with this

edge. Thus, when the OPERATOR 8(x, a) => B(z, x) is used to extend the

fact node A(b, y), we produce the following structure:

%

B(z, x>

Ah, a)
i
I (b/x, a/y)
I

I!B A (b, y>

We represent “match edges,, in trees .by dashed lines and label them by

the mgu obtained in unification. (Note that we do not apply to the rule

consequent the substitution obtained by unifying with the antecedent.

The equivalent of this operation will be incorporated into our new

definition of CANCEL.) When a match edge is added to the tree, the node

associated with the rule pattern is always an ,,unarced”  node.

The variables that occur in the fact and goal trees should be kept

standardized anart. This means that any variables that are common

across goal disjunct8 or fact conjunct8 can be given different names.

For example, the goal expression A(x) v B( x> can be changed to A(x) v

Bty?. The fact expression C(x) & D(x) can be changed to C(x) & D(y).

27



D. Extending the &finition sf CANCEL

We must extend the definition of CANCEL so that it takes into

account the substitutions obtained during matching. For example, in

propagating CANCEL relationa involving arced nodes to the parent of the

arced nodes, we must make sure that the substitutions for variables at

these nodes are llconsistent /I The necessary elaboration involves

associating a substitution with each CANCEL relation and modifying the

definition of CANCEL to check for substitution consistency.

In the definition, we use the concept of a unifving composition

T h e  u n i f y i n g(UC). composition of two substitutions, u, and u2, is a

most g,eneral substitution, u, satisfying

(Lu,)u = (Lu)u,  = L u  = (Lu2)u = (Lu)u2

for an arbitrary literal L. (The expression Lu denotes the result, of

applying substitution u to literal L.) If no such u exists, then the U C

is undefined. The UC of a set of substitutions {u,, . . . , un) is the U C

of any member, ul, of the set with the U C of the rest of the set {u,,

. . . . U& The substitutions in a set are inconsistent if the set has no

UC.

The fcllowing are examples of unifying compositions (Sickel,  1976):

I a/xl 1 b/x) undefined
WY1 Iy/zl WY, x/z)
{ f( z> /xl tf(a)/x) {f(a)/x, a/z)
I x / y ,  x/z) {a/z) {a/x, a /y ,  a/z)
bd I 1 bl

The new definition of CANCEL is that nodes n and m CANCEL

(1.1) If n and m are literal nodes of different trees and if the

corresponding literal8 are unifiable. In this case, we associate the

mgu with CANCEL(n,  m> ,

28



or (1.2) If n and m are literal nodes of the same tree and if one

of the corresponding literals unifies with the negation of the other.

In this case, we associate the mgu with CANCEL(n, m),

or (2) If n has arced successors, Isi), such that CANCEL(si,  m)
holds for all of them, and the unifying comnosition  (UC) of the set of

substitutions associated with the individual CANCELS exists. In this

case, we associate the UC with CANCEL(n,  m),

or (3) If n has unarced successors, fsi), such that CANCEL holds
for at least one of them and the UC of the edge substitution and the

substitution associated with the individual CANCEL exists. In this

case, we associate the UC with CANCEL(n,  m).

The consistency requirement on the individual substitutions in part

2 of our definition for CANCEL ensures proper propagation of CANCEL

through arced nodes. The consistency requirement in part 3 of our

definition ensures that the proper instances of matched rules are used

to extend the trees. (In using part 3 of the CANCEL definition, we

assume that the empty substitution is associated with nonmatch edges.)

Several Important mechanisms are implicit in our definition of

CANCEL. These can best be understood by detailed examination of an

example. The example is illustrated in graphical form in Figure 7.

The fact expression is shown at the bottom of the figure in OR/AND tree

Wform; the variable s l1 is assumed to have universal quantification. The

goal expression is shown at the top in AND/OR tree form; the variable

“x” is assumed to have existential quantification. The rules are simply

shown as unconnected pieces of graph near the tip nodes where they

ultimately will be used. All nodes in the graph are given a number.

(In this example, it happens that the rules will be used at most once,

so we prenumber their o nod es” for convenience. ) Rule patterns are

indicated by the usual convention. Lower-case letters near the
beginning of the alphabet (for example, a, b, c, . . .) denote constants,

29



A(X)  & B(X)

GOAL TREE

E
FACT TREE

E ( a )  & F(a) & [K(S) V L(s)1

S A - 6 1 7 1 - 7

Figure 7. An Example with Variables

30



and lower-case letters near the end of the alphabet (for example, . . .

x, y, z> denote variables. All variables have been standardized apart.

We have not shown the contrapositive forms of the given rules since they

won’ t be used in this example.

At the outset we notice that there are several applicable rules.

Since we have not yet advocated any particular control strategy, we

shall trace through this example in an order that best illustrates the

points we wish to make.

First, let us match node 30 with the REDUCER node 26.  The mgu is

f y/xl . (When a variable is substituted for another variable, we adopt

the convention of substituting the variable about to be added to the

tree for the one already in the tree.) The goal tree that results after

this match is shown in Figure 8. No CANCEL relations are established

yet, but we do associate {y/x) with the match edge between nodes 26 and

30. Let’s next match goal nodes against REDUCER nodes 27, 28,  and 29.

The goal tree will now be as shown in Figure 9.

A(x)  & B(x)

S A - 6 1 7 1 - 8

Figure 8. The Goal Tree After Applying a REDUCER

31



A(x)  8 1  B(x)

C(v)

S A - 6 1 7 1 - 9

Figure 9. The Goal Tree After Applying Four REDUCERS

We could continue to apply REDUCERS or OPERATORS until some nodes

could be CANCELled,  but at this stage it is possible to predict that

certain later attempts at CANCELling  will fail. Notice in Figure 9 that

any attempt to propagate a CANCEL relation up through node 27 to node 30

will  involve the substitution I b/x). But this substitution is

inconsistent with all of the substitutions shown below node 31. If we

have exhausted all possible matches to node 31, then we know that the

substitution {b/x) at node 30 can never occur in a proof because only a

or c can be substituted for x. Such an occurrence would correspond to a

violation of horizontal consistencv (Sickel,  1976). Thus, there can be

no unifying composition of a CANCEL relation propagated up through node

27 with a substitution for any CANCEL relation in which node 31

participates. At this stage, we can prune node 27 (and, with it, node

23) from the goal tree and save ourselves the effort of attempts to

prove G(z).

32



Quite analogous considerations would allow us to prune node 11

(and, with it, node 18) from the fact tree after we have matched against

the OPERATOR nodes 10, 11, 12, and 13. After all of this, the fact tree

is as shown in Figure 10.

Now, we can do some CANCELling  between the literal nodes of the

fact and goal trees. The following CANCELled  pairs can be established:

(17,  241 1 1

and (“’ 24) ’ ’
(20,  25) (c/t)

By using the CANCEL definition we can for example, determine next

the following CANCELled  pairs:

( 2 9 ,  20) k/t}
(31,  2 0 )  {c/x, c/t)
(31, 13) h/x, c/t)
(31, 6) {c/x, c/t, d/s)

The associated substitutions are merely unifying compositions between

edge substitutions and previous CANCEL substitutions. If a UC did not

exist for a proposed CANCEL relation, then we could not establish this

relation. Such an occurrence corresponds to a violation of vertical

consistency (Sickel, 1976).

We can also obtain another CANCEL relation between nodes (31, 6) by

a different route and thus with a different substitution, namely (d/s,

a/x). We represent both of these substitutions by repeated instances of

CANCEL(31,6).

The other CANCEL relation of interest that can be established at

this stage is between the node pair (5, 31) with associated substitution

Id/s, a /x ) . To summarize , the CANCEL relations of interest (i.e. ) those

between nodes closest to the roots of the trees) are now:

(6, 31) k/x, c/t, d/s]
(6, 31)  {d/s,  a/x)
(5, 31)  {d/s, a/x)

33



E ( a )  &  F(a) & [K(s) V L(s)1

S A - 6 1 7 1 - 1 0

Figure 10. The Fact Tree After Applying Four OPERATORS

34



We note that the last two CANCEL relations can be combined to yield

CANCEL& 31) with associated substitution {d/s, a/x). This in turn
yie lds  CANCEL(1, 31),  {d/s, a/x).

In a straightforward manner, we can next match against the OPERATOR

nodes 7 and 8 and perform matches between literal nodes to obtain:

CANCEL(2, 21) (a/Y)
CANCEL(3,  22) {a/Y)

These relations produce the sequence:

CANCEL(1, 21) b/Y)
CANCEL(1,  22)  b/Y)
CANCELS,  26) IaM

Proceeding through the match edge between nodes 26 and 30, we

obtain:

CANCEL(1, 30) b/x)

Combining this relation with CANCEL(1,  311, {d/s, a/x), we obtain

finally:

CANCEL(1, 1) Id/s, a/x)

Thus the goal is proved from the given facts. The relevant

instance of Fact I- Goal, useful for many information retrieval

applications, can be simply obtained by applying the substitution

associated with CANCEL(1, 1) to both the fact and goal expressions.

This operation yields:

E(a) & F(a) & [K(d)  v L(d)] I- [A(a) & B(a)]

35



VII Some Additional Extensions

A. mbeddinq New Rules J.JJ Operators

One way of relaxing the single-literal restriction on rule patterns

is to allow rules to be embedded in the consequents of OPERATORS. Since

(A& a => C is equivalent to & => (B => C), we can get the effect of

the conjunctive pattern by adding the new OPERATOR & => C when A appears

in the fact tree. One cannot simply add the new rule to the global rule

base, however. Suppose we have the OPERATOR A => (& => C) and the feet

A v D. When & => C is added as a new OPERATOR, we must be careful not

to use it on the disjunct D. The rule & => C can only be used "in the

context" of A.

A simple generalization of our rule-based system supports the

correct use of OPERATORS embedded in the consequents of OPERATORS.

-(Embedding REDUCERS in OPERATORS appears to be much more complex. Thus,

we will not use REDUCER contrapositive forms of embedded OPERATORS.)

The generalization involves associating each OPERATOR with a node of the

fact tree. The initial set of conjunctive OPERATORS is associated with

the root of the fact tree. An OPERATOR added at node n is associated

with node n. The OPERATORS associated with node n can be used on facts

associated with node n or its descendants.

This technique even generalizes nicely to permit "disjunctive"

OPERATORS. Suppose we have an OPERATOR of the form J! => [(& => C> v (0

=> E)]. Before such a rule disjunction is associated with the fact tree

at literal node A, we split node A into the disjunction A v A arid

represent the disjunction by two OR node descendants of A. A diffcrcnt

rule disjunct is then associated with each of the OR ncdes. If the

initial OPERATORS are in some complex logical relationship to each
other, we represent this relationship by the appropriate OR/AND tree and



label each of the tip nodes of this tree by the initial fact expression.

This fact expression is then put in OR/AND tree form at each of the
tips.

If the embedded OPERATORS contain quantified variables, these can
be Skolemized at the time the OPERATORS are associated with nodes in the

fact tree. Care must be taken to ensure that the appropriate instance

of an embedded OPERATOR is added.

B. High  Complexity Proofs

Our system, as we have described it so far, is n o t  ab le  to  f i n d

proofs for which any of the goal or fact expressions need to be

rewritten with different variables and used a multiple number of times.

(We can, of course, use the same node any number of times, but such

usage does not rewrite any variables in the expression at the node.

Also, we can use rules any number of times, each with different

variables.) In analogy with a definition of proof complexity given by

Sickel (1976), we shall say that the complexity level of a proof is

precisely the number of times a fact or goal expression must be

rewritten for multiple use. So far then, our system can produce only

proofs of complexity level zero.

As examples of problems requiring complexity-level-one proofs, we

have :

1) G o a l :  A(x)

Fact: A(a) v A(b)

and its dual,

2) Goal : B(a) & B(b)

F a c t :  B(x)

Straightforward attempts at proofs for these problems by our system are

frustrated by horizontal consistency violations. However, if in problem
1, for example, we replace the goal by the equivalent one A(x) v A(y),

then a proof is easy to obtain.

37



Following Sickel,  we might adopt the strategy of trying first to

obtain a complexit y-level-zero proof. I f  that  at tempt  fails, we can

look for higher complexity proofs in stages. The search  for a

complexity-level-one proof would involve selecting each of the goal and

fact variables (in turn) and rewriting as a disjunction (for goals)  or

as a conjunction (for facts) the highest node in the goal or fact tree

that contains that variable. Substitution consistency violations

provide obvious clues about which variables should be rewritten.

To rewrite a goal node A(x), for example, we produce the following

tree structure:

To rewrite a goal node A(x) & B(x), for example, we produce the

following tree structure:

A(x) ii B(x)

A(y) ii B(y)

A

A(z) ii B(z)

A(y) B(y) A(z) B(z)

38



VIII Conclusions

We have presented a design for a general system that uses

production rules and a data base of fact and goal trees to per form

deductions. The system can be regarded as a synthesis of many current

and some new ideas in automatic deduction. The major innovations

presented in this paper are the OR/AND fact tree and the CANCEL

operation. These ideas bring a simplifying symmetry to several of the

standard techniques for reasoning about facts and goals.

Logical completeness of the general system has not been a design

goal. Instead, we assign responsibility for acceptable performance of

any specific system to the domain expert, who provides the rules, and to

the designer of the specific system, who can repair any unacceptable

deficiencies in performance by adding or modifying rules or facts.

An important topic that we have not yet addressed concerns the

control strategy for the system. Specialized control strategies for

different domains of application (for example, deductive retrieval,

theorem proving, common sense reasoning) will probably be necessary in

order to achieve high performance. The control system must ensure that

the appropriate rule is used sufficiently often to prevent the usual

combinatorial explosion. Separation of facts, OPERATORS, and REDUCERS

should, we believe, help contain this explosion.

It is also hoped that the proposed system will serve as the

beginning of a theoretical foundation for the various applications of

Y-ule-based systemsfl now being developed by AI research. Many of these

systems are fundamentally deduction systems even though some of them

-allow uncertain or probabilistic facts and rules. Extending the present

system so that it could also deal with uncertain knowledge would be a
valuable future project.

39



IX Acknowledgements

The author would like to thank the following people for providing

helpful suggestions and criticisms and for their comments on early

versions of this paper: Douglas Appelt, W. W. Bledsoe, Richard Fikes,

Gary Hendrix, Robert C. Moore, and Earl Sacerdoti.

40



REFERENCES

Bledsoe, W. W. (1977), "Non-resolution Theorem Proving," Artificial
Jntellinence, in press.

Bobrow,  D. and T. Winograd (1977), "An Overview of KRL, a Knowledge
Representation Language," Cognitive Science, Vol. 1, No, 1,
January.

Chang, C., and R. C. Lee (1973), Svmbolic  Logic and Mechanical Theorem
Proving, Academic Press, Inc., New York.

Davis, R., and J. King (1977), "An Overview of Production Systems," in
E. Elcock and D. Michie (eds.), Machineutellinence 8: Machine
Renresentationgpf  Knowledge, Wiley, New York.

Fikes, R., and G. Hendrix (1977),  " A Network-Based Knowledge
Representation and its Natural Deduction System," Proc,  JJCAl-77.

Hewitt, C. (1971), "Procedural Embedding of Knowledge in PLANNER,', Proc
JJCAI-71, British Computer Society, London, England, pp 167-182.

Kowalski, R. (1974a),  4 Proof Procedure Using Connection Graphs,
University of Edinburgh School of Artificial Intelligence Memo No.
74, February.

Kowalski, R. (1974b),  wit for Problem Solving, University of Edinburgh
School of Artificial Intelligence Memo No. 75.

Moore, R. C. (1975))  Reasoning from IncomDlete&nowledng~a  Procedural
Deducti-  Svstetg,  MIT Artificial Intelligence Laboratory Report No.
AI-TR-347, December.

Nevins, A. J. (1975)) "A Relaxation Approach to Splitting in an
Automatic Theorem Prover," &tificmtellirta, V o l .  6 ,  N o .  1 ,
Spring, pp. 25-39.

Nilsson,  N. J. (19711, Problem Solving Methods & Artificial,
Intelligence, McGraw Hill Book Co., New York.

Peiter, R .  (1976), "A Semantically Guided Deductive System for Automatic
Theorem Proving," IEEE Trans. on Computers, Vol. C-25, No. 4,
April, pp. 328-334.

41



Sickel, s. ('976), IfA Search Technique for Clause Inter-connectivity
Graphs  2' IEEE TranS.  en ComDuters.. yol, c - 2 5  ASL 22, August.

Wilkins, D., (1974), "A Non-Clausal Theorem Proving System,ff proc. AISB

42


