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Abstract

The knowledge engineer practices the art of
bringing the principles and tools of AI research
to bear on difficult applications problems
requiring experts’ knowledge for their solution.
The technical issues of acquiring this knowledge,
representfng it, and using it appropriately to
construct and explain lines-of-reasoning, are
important problems in the design of knowledge-
based systems. Variouz’systems  that have achieved
expert level performance in scientific and medical
inference illuminate the art of knowledge
engineering and its parent science, Artificial
Intelligence.

1 INTRODUCTION: AN EXAMPLE

This is the first of a pair of papers that
will examine emerging themes of knowledge
engineering, illustrate them with case studies
drawn from the work of the Stanford Heuristic
Programming Project , and discuss general issues of
knowledge engineering art and practice.

Let me begin with an example new to our
workbench: a system called PUFF, the early fruit
of a collaboration between our project and a group
at the Pacific Medical Center (PMC) in San
Francisco.

A physician refers a patient t o  PMC’S
pulmonary function testing lab for diagnosis of
possible pulmonary function disorder. For one of
the tests, the patient inhales and exhales a few
t’imes in a tube connected to an
ipstrument/computer  combination. The instrument
acquires data on flow rates and volumes, the so-
called flow-volume loop of the patient’s lungs and
airways. The computer measures certain parameters
of the curve and presents them to the
diagnostician (phys ic ian  or PUFF) for
interpretation. The diagnosis is made along these
lines: normal or diseased; restricted lung disease
or obstructive airways disease or a combination of
both; the severity; the likely disease type(s)
(e.g. emphysema, bronchitis, etc. 1; and other
factors important for diagnosis.

PUFF is given not only the measured data but
also certain items of information from the patient
record, e.g. sex, age, number of pack-years of
cigarette smoking. The task of the PUFF system is
to infer a diagnosis and print it out in English
in the normal medical summary form of the
interpretation expected by the referring
physician.

Everything PUFF knows about pulmonary
function diagnosis is contained in (currently) 55
rules of the IF...THEN... form. No textbook of
medicine current 1 y records these rules. They
constitute the partly-pub1 ic, partly-private
knowledge of an expert pulmonary physiologist at
PMC, and were extracted and polished by project
engineers working intensively with the expert over
a period of time. Here is an example of a PUFF
rule (the unexplained acronyms refer to various
data measurements):

RULE 31

IF:
1) The severity of obstructive airways
disease of the patient Is greater than or
equal to mild, and
2) The degree of diffusion defect of the
patient is greater than or equal to mild,
and
3) The tlc(body box)observed/predicted of
the patient is greater than or equal to 110
and
4) The observed-predicted difference in
rv/tlc of the patient is greater than or
equal to 10

THEN:
I) There is strongly suggestive evidence
(.9) that the subtype of obstructive airways
disease is emphysema, and
2) It is definite (1.0) that “OAD,
Diffusion Defect, elevated TLC, and elevated
RV together indicate emphysema.” is one of
the findings.
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One hundred cases, carefully chosen to span
the variety of disease states with sufficient
exemplary information for each, were used to
extract the 55 rules. As the knowledge emerged, it
was represented In rule form, added to the system
and tested by running additional cases. The
expert was sometimes surprised, sometimes
frustrated, by the occasional gaps and
inconsistencies in the knowledge, and the
incorrect diagnoses that were logical consequences
of the existing rule set. The interplay between
knowledge engineer and expert gradually expanded
the set of rules to remove most of these problems.

As cumulation of techniques in the art
demands and allows, a new tool was not invented
when an old one would do. The knowledge engineers
pulled out of their toolkit a version of the MYCIN
system (to be discussed later), with the rules
about Infectious diseases removed, and used It as
the inference engine for the PUFF diagnoses. Thus
PUFF, like MYCIN, is a relatively simple backward-
chaining inference system. It seeks a valfd line-
of-reasoning based on Its rules and rooted in the
Instrument and patient dater With a little more
work at fitting some existing tools together, PUFF
will be able to explain this line-of-reasoning,
just as MYCIN does.

As it is, PUFF only prints out the final
interpretation, of which the following is an
example:

PATIENT DATA:
The degree of dyspnear MODERATELY-SEVERE
The severity of coughing: MILD
Sputum production MODERATELY-SEVERE
The number of pack-years of smokfng: 48
referral diagnosis: BRONCHITIS
IVC/IVC-predicted: 8 0
RV/RV-predic  ted : 191

_ FVC/FVC-predicted: 8 7
TLC(body  box)observed/predicted: 127
Predfcted FEVlIFVC: 83
TLC (DLCO)observed/predicted:  83
FEVl/FVC  ratio: 50
RV/TLC Observed-Predicted: 21
MMF/l4fF-predicted:  i9
the-DLCO/DLCO-predicted: 48
The slope (F5O_obs-FZS-obs)/FVC-ohs:  19

DEGREE OF OBSTRUCTIVE AIRWAYS DISEASE:

GAD degree by SLOPE: (MODERATELY-SEVERE
700 )
OAD degree by MMF: (SEVERE 900)
GAD  degree by FEVI: (WODERATELY-SEVERE
700 )

FINAL OAD DEGREE: (MUDERATELY-SEVERE
910) (SEVERE 900)
No conflict. Final degree:
(MODERATELY-SEVERE 910)

INTERPRETATION :

150 cases not studied during the knowledge
acquisition process were used for a test and
validation of the rule set. PUFF inferred a
diagnosis for each. PUFF-produced and expert-
produced interpretations were coded for
statistical analysis to discover the degree of
agreement. Over various types of disease states,
and for two conditions of match between human and
computer diagnoses (“same degree of severity” and
“within one degree of severity”), agreement ranged
between approximately 90% and 100%.

The PUFF story Is just beginnfng  and will be
told perhaps at the next IJCAI. The surprising
punchline to my synopsis is that the current state
of the PUFF system as descrfbed above was achieved
In less than 50 hours of interaction with the
expert and less than 10 man-weeks of effort by the
knowledge engineers. We have learned much in the
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past decade of the art of engineering knowledge- ultimately to translate WHAT he really
based intelligent agents!

In the remainder of this essay, I would like
to discuss the route that one research group, the
Stanford Heuristic Programming Project, has taken,
Illustrating progress vith case studies, an&.
discussfng themes of the work.

wants done into processing steps that
define HOW it shall be done by a real
computer. The research activity aimed at
creating computer programs that act as
“intelligent agents’ near the WHAT end of
the WHAT-To-HOW spectrum can be viewed as
the long-range goal of AI research.”
(Felgenbaum,  1974)

2 ARTIFICIAL INTELLIGENCE & KNOWLEDGE ENGINEERING,

The dichotomy that was used to classify the
collected papers in the volume
Computers and Thought still characterizes well the
motivations and research efforts of the AI
community. First, there are some who work toward
the construction of Intelligent artifacts, or seek
to uncover principles, methods, and techniques
useful in such construction. Second, there are
those who view artificial intelligence as (to use
Newell’s phrase) “theoretical psychology,” seeking
explicit and valid information processing models
of human thought.

For purposes o&this  essay, I wish to focus
on the motivations of the first group, these days
by far the larger of the two. I label these
motivations “the Intel llgent agent viewpoint” and
here is my understanding of that viewpoint:

‘The potential uses of computers by
people to accomplish tasks can be ‘one-
dimensional ized l into a spectrum
representing the nature of instruction
that must be given the computer to do its
job. Call It the WHAT-TO-HOW spectrum.
At one extreme of the spectrum, the user
supplies his intelligence to instruct the
machine with precision exactly ROW to do
h i s  j o b , step-by-step. Progress in
Computer Science can be seen as steps avay
from the extreme 'HOW' point on the
spectrum: the familiar panoply of assembly
languages, subroutine libraries,

a compilers, extensible languages, etc.  At
the other extreme of the spectrum is the
user with  his real problem (WMT he wishes
the computer, as his instrument, to do for
him). He aspires to communicate  WHAT he
wants done in a language that is

- comfortable to him (perhaps English) ; via
communication modes that are convenient

for him (including perhaps, speech or
pictures); with s o m e generality, some
vagueness, fmprecislon, even error ;
without having to lay out in detail all
necessary subgoals for adequate
performance - with reasonable assurance
that he is addressing an Intelligent agent
that is using knowledge of his world to
understand his intent, to fill in his
vagueness, to make specific his
abstractions, to correct his errors, to
discover appropriate subgoals, and

Our young science is still more art than
science.  Art: ‘the principles or methods governing
any craft or branch of learning.” Art: “skilled
workmanship, execution, or agency. ” These the
dictionary teaches us. Rnuth tells us that the
endeavor of computer programming is an art, in
just these ways. The art of constructing
Intelligent agents is both part of and an
extension of the programming art. It is the art of
building complex computer programs that represent
and reason with knovledge of the world. Our art
therefore lives in symbiosis with the other
worldly arts, whose practitioners -- experts of
their art -- bold the knowledge ve need to
construct intelligent agents. In most “crafts or
branches of learning” what we call “expertise” is
the essence of the art. And for the domains of
knowledge that we touch with our art, it is the
“rules of expertise” or the rules of “good
judgment” of the expert practitioners of that
domain that we seek to transfer to our programs.

2.1 Lessons of the Past

TV0 Insights from previous work are
pertinent to this essay.

The first concerns the quest for generality
and power of the Inference engine used In the
performance of intelligent acts (what Minsky and
Papert [see Goldstein and Papert, 19771 have
labeled “the power strategy”). We must hypothesize
from our experience to date that the problem
solving power exhibited in an intelligent agent’s
performance is primarily a consequence of the
specialist’s knowledge employed by the agent, and
only very secondarily related to the generalfty
and power of the inference method employed. Our
agents must be knovledge-rich, even If they are
methods-poor. In 1970, reporting the first major
sumary-of-results  of the DENDRAL program (to be
dfscussed later), ve addressed this issue as
follows :

“. . .general problem-solvers are too
weak to be used as the basis for building
high-performance systems. The behavior of
the best general problem-solvers we know,
human problem-solvers, is observed to be
weak and shallow, except in the areas in
which the human problem-solver is a
specialist. And it is observed that the
transfer of expertise betveen specialty
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areas is sl ight. A chess master is
unlikely to be an expert algebraist or an
expert mass spectrum analyst , e tc .  In
this view, the expert is the specialist,
with a specialist’s knowledge of his area
and a specialist’s methods and
heuristics.” (Feigenbaum, But hanan and
Lederberg, 1971, p. 187)

Subsequent evidence from our laboratory
others has only confirmed this belief.

and

AI researchers have dramatically shifted
their view on generality and power in the past
decade. In 1967, the canonical question about the
DENDRAL program was : “It sounds like good
chemistry, but what does it have to do with AI?’
In 1977, Goldstein and Papert write of a paradigm
shift in AI:

“Today there haa. been a shift in
paradigm. The fundamental problem of
understanding intelligence is not the
i d e n t i f i c a t i o n  o f  a few powerful
techniques, but rather the question of how
to represent large amounts of knowledge In
a fashion that permits their effective use

. and interaction.” (Goldstein and Papert,
1977)

The second insight from past work concerns
the nature of the knowledge that an expert brings
to the performance of a task. Experience has
shown us that this knowledge is largely heuristic
knowledge, experiential, uncertain -- mostly “good
guesses” and “good practice,” in lieu of facts and
rigor. Experience has also taught us that much of
this knowledge is private to the expert, not
because he is unwilling to share publicly how he
performs, but because he Is unable. He knows more
than he is aware of knowing. [Why else is the
Ph.D. or the Internship  a guild-like
apprenticeship to a presumed “master of the
craft?” What the masters really know is not
written in the textbooks of the masters.] But ve
have learned also that this private knowledge can
be uncovered by the careful, painstaking analysis
of a second party, or sometimes by the expert
himself, operating In the context of a large
number of highly specific performance problems.
Finally, we have learned that expertise is multl-
faceted, that the expert brings to bear many and
var led sources of knowledge in performance. The
approach to capturing his expertise must proceed
on many fronts simultaneously.

2.2 The Knowledge Engineer

The knowledge engineer is that second party
j us t discussed. [An historical note about the
term. In the mid-60s,  John McCarthy, for reasons
obvious from his work, had been describing
Artificial Intelligence as “Applied Epistemology.’
When I first described the DENDRAL program to
Donald Michie  in 1968, he remarked that it was
“epistemologlcal engineering ,” a clever but
ponderous and unpronounceable turn-of-phrase that
I simplified into “knowledge engineering.“] She
(in deference to my favorite knowledge engineer)
works intensively with an expert to acquire
domain-specific knowledge and organize it for use
by a program. Simultaneously she is matching the
tools of the AI workbench to the task at hand --
program organizations, methods of symbolic
inference, techniques for the structuring of
symbolic information, and the like. If the tool
f i t s ,  o r  near ly  f i t s ,  she  uses  i t . If not,
necessity mothers AI invention, and a new tool
gets created. She builds the early versions of the
intelligent agent, guided always by her intent
that the program eventually achieve expert levels
of performance In the task. She refines or
reconceptualizes the system as the increasing
amount of acquired knowledge causes the AI tool to
“break” or slow down intolerably. She also refines
the human interface to the intelligent agent with
several aims: to make the system appear
“comfortable” to the human user in his linguistic
transactions w i t h  i t ; to make t h e  s y s t e m ’ s
inference processes understandable to the user;
and to make the assistance controllable by the
user when, in the context of a real problem, he
has an Insight that previously was not elicited
and therefore not incorporated.

In the next section, I wish to explore (in
summary form) some case studies of the knowledge
engineer’s art.

3 CASES FROM THE KNOWLEDGE ENGINEER’S WORKSHOP

I will draw material for this section from
the work of my group at Stanford. Much exciting
work in knowledge engineering is going on
elsewhere. Since my Intent is not to survey
literature but to Illustrate themes, at the risk
of appearing parochial I have used as case studies
the work I know best.

My collaborators (Professors Lederberg and
But hanan ) and I began a series of projects,
Initially the development of the DENDRAL program,
in 1965. We had dual motives: first, to study
scientific problem so Iv lng and discovery,
particularly the processes scientists do use or
should use in inferring hypotheses and theories
from empirical evidence; and second, to conduct
this study in such a way that our experimental
programs would one day be of use to working
scientists, providing intelligent assistance on
important and difficult problems. By 1970, we and

4



our co-workers had gained enough experience that
we felt comfortable in laying out a program of
research encompassing work on theory formation,
knowledge utilization, knowledge acquisition,
explanation, and knowledge engineering techniques.
Although there were some surprises along the way
(like the AM program), the general lines of the.
research are proceeding as envisioned.

THEMES

As a road map to these case studies,
useful to keep in mind certain major themes

it is
:

This principle is,  of course, not a logical
necessity, but seems to us to be an engineering
principle of major importance.

Multiple Sources of Knowledge: The formation and
maintenance (support) of the line-of-reasoning
usually require the integration of many disparate
sources of knowledge. The representational and
inferential problems in achieving a smooth and
effective integration are formidable engineering
problems.

Explanation: The ability to explain the line-of-
reasoning in a language convenient to the user is

Generation-and-test: Omnipresent in our necessary for application and for system
experiments is the “classical” generation-and- development (e.g. for debugging and for extending
test framework that has been the hallmark of AI the knowledge base). Once again, this is a n
programs for two decades. This is not a engineering principle, but very important. What
consequence of a doctrinaire attitude on our part constitutes “an explanation” is not a simple
about heuristic search, but rather of the concept, and considerable thought needs to be
usefulness and sufficiency of the concept. given, in each case, to the structuring of

explanations.
Situation => Action Rules: We have chosen to
represent the knowledge of experts in this form. CASE STUDIES
Making no doctrinaire claims for the universal
app l icab i l i ty  o f  ‘.this representation, we In this section I will try to illustrate
nonetheless point to the demonstrated utility of these themes with various case studies.
the rule-based representation. From this
representation flow rather directly many of the
characteristics of our programs: for example, 3.1 DENDRAL: Inferring Chemical Structures
ease of modif ication of the knowledge, ease of
explanation. The essence of our approach is that
a rule must capture a “chunk” of domain knowledge 3.1.1 Historical Note
that is meaningful, in and of itself, to the
domain specialist. Thus our rules bear only a Begun in 1965, this collaborative project
historical relationship to the production rules with the Stanford Mass Spectrometry Laboratory has
used by Newell and Simon (1972) which we view as become one of the longest-lived continuous efforts
“machine-language programming” of a in the history of AI (a fact that in no small way
recognize => act machine. has contributed to its success). The basic

framework of generation-and-test and rule-based
The Domain-Specific Knowledge: It plays a critical representation has proved rugged and extendable.
role in organizing and constraining search. The For us the DENDRAL system has been a fountain of
theme is that in the knowledge is the power. The ideas, many of which have found their way, highly
interesting action arises from the knowledge metamorphosed, into our other projects. For
base, not the inference engine. We use knowledge example, our long-standing commitment to rule-
in rule form (discussed above), in the form of based representations arose out of our

m inferentially-rich models based on theory, and in (successful) attempt to head off the imminent
the form of tableaus of symbolic data and ossif ication of DERDRAL  caused by the rapid
relationships (i.e. frame-like structures). accumulation of new knowledge in the system around
System processes are made to conform to natural 1967.
and convenient representations of tbe domain-

_ specific knowledge.
3.1.2 Task

-Flexibility to modify the knowledge base: I f  the
so-called “grain s i t e ”  o f the knowledge To enumerate plausible structures (atom-bond
representation is chosen properly (i.e. small graphs) for organic molecules, given two kinds of
enough to be comprehensible but large enough to information: analytic instrument data from a mass
be meaningful to the domain specialist), then the spectrometer and a nut lear magnetic resonance
rule-based approach allows  great flexibility for spectrometer; and user-supplied constraints on the
adding, removing, or changing knowledge In the answers, derived from any other source of
system. knowledge (instrumental or contextual) available

to the user.
Line-of-reasonfng: A central organizing principle
in the design of knowledge-based Intelligent
agents is the maintenance of a line-of-reasoning
that is comprehensible to the domain specialist.



Situation: Particular atomic
configuration
(subgraph)

1 Probability, P,

I
of occurring

V

Action: Fragmentation of the
particular configuration
(breaking links)

-=

Rules of this form are
mass spectromet rists.

natural and expressive to

3.1.4  Sketch of Method

DENDRAL’s inference procedure is a heuristic
search that takes place in three stages, without
feedback: plan-generate-test.

“Generate” (a program called CONGEN) is a
generation process for plausible structures. Its
foundation is a combinatorial algorithm (with
mathematically proven properties of completeness
and non-redundant generation) that can produce all
the topological ly legal candidate strut tures.
Constraints supplied by the user or by the “Plan”
process prune and steer the generation to produce
t_he plausible set ( i .e . those satisfying the
constraints) and not the enormous legal set.

“Test” refines the evaluation of
plausibility, discarding less worthy candidates
and rank-ordering the remainder for examination by
the user. “Test ” first produces a “predicted” set
of instrument data for each plausible candidate,
using the rules described. It then evaluates the
worth of each candidate by comparing its predicted
data with the actual input data. The evaluation
is based on heuristic criteria of goodness-of-fit.
Thus, “test” selects the “best” explanations of
the data.

“Plan” produces direct (i.e. not chained)
inference about likely substructure in the
molecule from patterns in the data that are
indicative of the presence of the substructure.
(Patterns in the data trigger the left-hand-sides

of substructure rules). Though composed of many
atoms whose interconnections are given, the
substructure can be manipulated as atom-like by
“generate.” Aggregating many units entering into a
combinatorial process into fewer higher-level
units reduces the size of the combinatorial search
space. “Plan” sets up the search space so as to be
relevent to the input data. “Generate is the
inference tactician; “Plan” is the inference
strategist. There is a separate “Plan” package
for each type of instrument data, but each package
passes substructures (subgraphs) to “Generate ”
Thus, there is a uniform interface between “Play”
and “Generate.” User-supplied constraints enter
this interface, directly or from user-assist
packages, in the form of substructures.

3.1.5 Sources of Knowledge

The various sources of knowledge used by the
DENDRAL system are:

Valences (legal connections of atoms);
stable and unstable configurations of atoms; rules
for mass spectrometry fragmentations; rules for
NWR sh i f t s ;  exper t ’ s  ru les  fo r planning and
evaluation; user-suppl fed constraints
(contextual).

3.1.6 Results

DENDRAL’s structure elucidation abilities
are, paradoxically, both very general and very
narrow. In general, DENDRAL handles all molecules,
cyclic and tree-like. In pure structure
elucidation under constraints (without instrument
data),CONGEN  is unrivaled by human performance. In
strut ture elucidation with instrument data,
DENDRAL ‘s performance rivals expert human
performance only for a small number of molecular
families for which the program has been given
specialist’s knowledge, namely the families of
interest to our chemist collaborators. I will
spare this computer science audience the list of
names of these families. Within these areas of
knowledge-intensive specialfzation, DENDRAL ’ s
performance is usually not only much faster but
also more accurate than expert human performance.

The statement just made summarizes thousands
of runs of DENDRAL on problems of interest to our
experts, their colleagues, and their students. The
results obtained, along with the knowledge that
had to be given to DENDRAL to obtain them, are
published in major journals of chemistry. To date,
25 papers have been published there, under a
series tit le “Applications of Artificial
Intelligence for Chemical Inference: Cspecif ic
subject>” (see references).

The DENDRAL system is in everyday use by
Stanford chemists, their collaborators at other
universities and collaborating or otherwise
interested chemists in industry. Users outside
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Stanford access the system over commercial
computer/communications network. The problems
they are solving are often difficult and novel.
The British government is currently supporting
work at Edinburgh aimed at transferring DENDRAL to
industrial user communities in the UK.

3.1.7 Discussion

Representation and extensibility. The
representation chosen for the molecules,
constraints, and r u l e s  o f instrument data
interpretation is sufficiently close to that used
by chemists in thinking about strut ture
elucidation that the knowledge base has been
extended smoothly and easily, mostly by chemists
themselves in recent years. Only one major
reprogramming effort took place in the last 9
years -- when a new generator was created to deal
with cyclic structures.

Representation and the Integration of
multiple sources of knowledge. The generally
difficult problem of integrating various sources
of knowledge has been made easy in DENDRAL by
careful engineering of the representations of
objects, constraints, and rules. We insisted on a
common language of compatibility of the
representations with each other and with the
inference processes: the language of molecular
structure expressed as graphs. This leads to a
straightforward procedure for adding a new source
of knowledge, say, for example, the knowledge
associated with a new type of instrument data. The
procedure is this: write rules that describe the
effect of the physical processes of the instrument
on molecules using the situation -> action form
with molecular graphs on both sides; any special
inference process using these rules must pass its
results to the generator only(!) in the common
graph language.

It is today widely believed in AI that the
use of many diverse sources of knowledge in
problem solving and data interpretation has a
strong effect on quality of performance. How
strong is, of course, domain-dependent, but the
impact of bringing just one additional source of
knowledge to bear on a problem can be startling.
In one difficult (but not unusually difficult)
mass spectrum analysis problem*, the program using
its mass spectrometry knowledge alone would have
generated an impossibly large set of plausible
candidates (over 1.25 million!). Our engineering
response to this was to add another source of data
and knowledge, proton NMR. The addition on a
simple interpretive theory of this NMR data, from
which the program could infer a few additional
constraints, reduced the set of plausible
candidates to one, the right structure! This was
not an isolated result but showed up dozens of
times in subsequent analyses.

--------------------
* the analysis of an
C20H45N.

ac yc 1 ic amine with formula

DENDRAL and data. DENDRAL’s robust models
(topological, chemical, instrumental) permit a
strategy of finding solutions by generating
hypothetical “correct answers” and choosing among
these with critical tests. This strategy is
opposite to that of piecing together the
implications of each data point to form a
hypothesis. We call DENDRAL’s strategy largely
model-driven , and the other data-driven. The
consequence of having enough knowledge to do
model-driven analysis is a large reduction in the
amount of data that must be examined since data is
being used mostly for verification of possible
answers l In a typical DENDRAL mass spectrum
analysis, usually no more than about 25 data
points out of a typical total of 250 points are
processed. This important point about data
reduction and focus-of-attention has been
discussed before by Gregory (1968) and by the
vision and speech research groups, but is not
widely understood.

Conclusion. DENDRAL was an early herald of
AI’s shift to the knowledge-based paradigm. It
demonstrated the point of the primacy of domain-
specific knowledge in achieving expert levels of
performance. Its developme!.  t brought to the
surface important prob lems o f know1 edge
representation, acquisition, and use. It showed
that, by and large, the AI tools of the first
decade were sufficient to cope with the demands of
a complex scientific problem-solving task,or were
readily extended to handle unforseen difficulties.
It demonstrated that AI’s conceptual and
programming tools were capable of producing
programs of applications interest, albeit  in
narrow specialties. Such a demonstration of
competence and sufficiency was important for the
credibility of the AI field at a critical juncture
in its history.

3.2 META-DENDRAL: inferring rules of mass
spectrometry

3.2.1 Historical note

The META-DENDRAL program is a case study in
automatic acquisition of domain knowledge. It
arose out of our DENDRAL work for two reasons:
f i r s t ,  a decision that with DENDRAL we had a
sufficiently firm foundation on which to pursue
our long-standing interest in processes of
scientific theory formation; second, by a
recognition that the acquisition of domain
knowledge was the bottleneck problem in the
bu i ld ing  o f applications-oriented intelligent
agents.

3.2.2 Task

META-DENDRAL’s  j o b  i s  t o  i n f e r  r u l e s  o f
fragmentation of molecules in a mass spectrometer
for possible later use by the DENDRAL performance
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program. The Inference is to be made from actual
spectra recorded from known molecular structures.
The output of the system is the set of
fragmentation rules discovered, summary of the
evidence supporting each rule, and a summary of
contra-indicating evidence. User-supplied
constraints can also be input to force the form of
rules along desired lines.

3.2.3 Representations

as
The rules are, of course, of the same

used by DENDRAL that was described earlier.
form

3.2.5 Results

META-DENDRAL produces rule sets that rival
in quality those produced by our collaborating
experts. I n  s o m e  t e s t s , META-DENDRAL recreated
rule, sets that we had previously acquired from our
experts during the DENDRAL project. In a more
stringent test involving members of a family of
complex ringed molecules for which the mass
spectral theory had not been completely worked out
by chemists, META-DENDRAL discovered rule sets for
each subfamily. The rules were judged by experts
to be excellent and a paper describing them was
recently published in a major chemical journal
(Buchanan, Smith, et al, 1976).

3.2.4 Sketch of Method In a test of the generality of the approach,
a version of the META-DENDRAL program is currently

MRTA-DENDRAL, like DENDRAL , uses the being applied to the discovery of rules for the
generation-and-test framework. The process is analysis of nuclear magnetic resonance data.
organ1 zed in three stages: Reinterpret the data
and summarize evidence (INTSUM); generate
plausible candidates for rules (RULEGEN); test and 3.3 MYCIN and TEIRESIAS: Medical Diagnosis
refine the set of plausible rules (RULF;MOD).

INTSUM: gives every data point in every
spectrum an interpretation as a possible (highly
specific) fragmentation. It then summar  I ze s
statistically the “weight of evidence” for
fragmentations and for atomic configurations that
cause these fragmentations. Thus, the job of
INTSUM is to translate data to DENDRAL subgraphs
and bond-breaks, and to summarize the evidence
accordingly.

RULEGEN: conducts a heuristic search of the
space of a l l  ru les that are legal under the
DENDRAL rule syntax and the user-supplied
constraints. It searches for plausible rules, i.e.
those for which positive evidence exists. A search
path is pruned when there is no evidence for rules
of the class just generated. The search tree
begins with the (s ingle)  most general rule
(loosely put, “anything” fragments from
“anything”) and proceeds level-by-level toward
mare detailed specifications of the “anything.”
The heuristic stopping criterion measures whether
a rule being generated has become too specific, in
particular whether it is applicable to too few
molecules of the input set. Similarly there is a
criterion for deciding whether an emerging rule is
too general. Thus, the output of RULEGEN is a set
of cantlidate rules for which there is positive
evidence.

RULEMOD:  tests the candidate rule set using
more complex criteria, including the presence of
negative evidence. It removes redundancies in the
candidate rule set; merges rules that are
supported by the same evidence; tries further
specialization of candidates to remove negative
evidence; and tries further generalization that
preserves positive evidence.

3.3.1 Historical note

MYCIN originated in the Ph.D. thesis of E.
Shortliffe (now Shortliffe, M.D. as well), in
collaboration with the Infectious Disease group at
the Stanford Medical School (Shortliffe, 1976).
TEIRESIAS, the Ph.D. thesis work of R. Davis,
arose from issues and problems indicated by the
MYCIN project but generalized by Davis beyond the
bounds of medical diagnosis applications (Davis,
1976). Other MYCIN-related theses are in
progress.

3.3.2 Tasks

The MYCIN performance task is diagnosis of
blood infections and meningitis infections and the
recommendation of drug treatment. MYCIN conducts
a consultation (in English) with a physician-user
about a patient case, constructing lines-of-
reasoning leading to the diagnosis and treatment
plan.

be d
The TEIRESIAS knowledge acquisition task can

escribed as follows :

In the context of a particular consultation,
confront the expert with a diagnosis with which he
does not agree. Lead him systematically back
through the line-of-reasoning that produced the
diagnosis to the point at which he indicates the
analysis went awry. Interact with the expert to
modify offending rules or to acquire new rules.
Rerun the consultation to test the solution and
gain the expert’s concurrence.
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3.3.3 Representations:

MYCIN’s rules are of the form:

IF <conjunctive clauses> THEN <implication>

Here is an example of a MYCIN rule for blood
infections.

RULE 85

IF:
1) The site of the culture is blood, and
2) The gram stain of the organism is

gramneg , and
3) The morphology of the organism is

rod, and
4) The patient is a compromised host

THEN :
There is suggestive evidence (.6) that
the identity of the organism is
pseudomonas-aerugin-osa

--------------------______________c_____----------

TEIRESIAS al lows the representation of
MYCIN-like rules governing the use of other
rules,i.e. rule-based strategies. An example
follows.

e

METARULE 2

IF:
1) the patient is a compromised host, and

-2) there are rules which mention in their
_ premise pseudomonas
-3) there are rules which mention in their
premise klebsiel las

THEN:
There is suggestive evidence (.I) that the
former should be done before the latter.

3.3.4 Sketch of method

MYC IN employs a generation-and-test
procedure of a familiar sort. The generation of
steps in the line-of-reasoning is accomplished by
backward chaining of the rules. An IF-side clause
is either immediately true or false (as determined

-.by patient or test data entered by the physic ian
in the consultation); or is to be decided by
subgoaling. Thus, “test” is interleaved with
‘generation” and serves to prune out incorrect
lines-of-reasoning.

Each rule supplied by an expert has
associated with it a “degree of certainty”
representing the expert’s confidence in the
validity of the rule (a number from 1 to 101.
MYCIN uses a particular ad-hoc but simple model of
inexact reasoning to cumulate the degrees of
certainty of the rules used in an inference chain
(Shortliffe and Buchanan, 1975).

It follows that there may be a number of
“somewhat true” lines-of-reasoning -- some
indicating one diagnosis, some indicating another.
All (above a threshold) are used by the system as
sources of knowledge indicating plausible lines-
of-reasoning.

TEIRESIAS’ rule acquisition process is based
on a record of MYCIN’s search. Rule acquisition is
guided by a set of rule models that dictate the
form and indicate the likely content of new rules.
Rule models are not given in advance, but are
inferred from the knowledge base of existing
rules.

3.3.5 Language of Interaction

The language used looks like it might be
English but is actually the dialect ‘Doctor-ese”
used by members of the tribe of healing arts
practitioners. Reasonably simple language
processing methods suffice. When ambiguities of
interpretation are encountered, they are fed back
to the user for decisions about meaning.

3.3.6 Example diagnosis and treatment plan

The following is an example of a diagnosis
reported by MYCIN to one of its users following a
consultation. An example consultation will not be
shown, but one can be found in Shortliffe’s book
(Shortliffe, 1976).

--------------------------------------------------

My therapy recommendations will be designed
to treat for organisms that are either very
likely or, although less likely, would have
a significant effect on therapy selection
if they were present. It is important to

9



cover for the following probable
Infection(s) and associa ted organ1

--
sm(s):

INFECTION-1 is CYSTITIS
<Item 1> PSEUDOMONAS-CEPACIA  [ORGANISM-51
<Item 2> CITROBACTER-DIVERSUS  (ORGANISM-41
<Item 3> E.COLI [ORGANISM-31

INFECTION-2 is UPPER-RESPIRATORY-INFECTION
<Item 4> LISTERIA [ORGANISM-21

INFECTION-3 is BACTEREMIA
<I tern 5~ ENTEROCOCCUS [ORGANISM-I]

[REC-11  My preferred
is as follows:

therapy recommendation

In order to cover for I tems ~1 2 3 4 5>:
Give the following in combination:
1) KANAMYCIN
Dose: 750 mg (7.5 q/kg) q12h IM (or IV)

for 28 days
Comments: Modify dose &I renal failure
2) PENICILLIN
Dose: 2,500,OOO  units (25000 units/kg)

q4h IV for 28 days

MYCIN: Is the patient's illness with
ORGANISM-l a hospital-acquired infection?
USER: WHY
TEIRESIAS: (i.e. WHY is it important to
determine whether or not the infection with
ORGANISM-l was acquired while the patient
was hospitalized?)

[l.Ol This will aid in determining the
category of ORGANISM-l.

It has already been established that

Il.11 the gram stain of ORGANISM-l is
g ramneg , and
f1.21  the morphology of ORGANISM-l is rod,
and
[l-3]  the aerobicity of ORGANISM-l is
facultative

Therefore, if

l1.41 the infection with ORGANISM-l was not
acqui red while the patient was hospitalized

--------------------------------------------------
then

3.3.7 Results

MYCIN is currently being prepared for
clinical evaluation. In a preliminary evaluation,
done outside of the clinical setting, a panel of
expert judges was asked to r a t e  MYCIN's
performance along a number of dimensions (e.g.
infecting organism identification, organism
significance). In 90% of the cases submitted to
the judges, a majority of the judges said that the

a program's decisions were the-same-as or as-good-as
the decisions they would have made.

3.3.8 Explanation

- MYCIN can expose its line of reasoning by
offering explanations of various kinds.
"How" questions

"Why" and
can be asked by the user during

the consultation. "MY" is the user's way of
inquiring, "Why do you want to know that?” “How”
is his way of asking, “How did you conclude
t h a t . . . ? ” In a post-consultat ion,  he can s imi la r ly
inquire about how the diagnostic conclusions were
reached, and inquire about the reasons why certain
other conclusions were ruled out. Examples of the
MYCIN-TEIRESIAS explanation capabilities follow:

there is strongly suggestive evidence c.8)
that the category of ORGANISM-l is
enterobacteriaceae

Also: there is weakly suggestive evidence
(.l) that the identity of
ORGANISM-l is pseudomonas-aeruginosa
[RULE 371

USER: HOW 1.3

TEIRESIAS: [i.e. HOW was it established
that the aerobicity of ORGANISM-l is
facultative?]

The following were used:

[3.1]  RULE 27 indicated there is strongly
suggestive evidence (.8) that the
aerobicity of ORGANISM-l is facultative

13.2)  RULE 27 indicated there is weakly
suggestive evidence c.2) that the
aerobicity of ORGANISM-1 is anaerobic

Since this gave a cumulative CF of (.8) for
facultative, and (.2) for anaerobic, it has
been established that the aerobicity of
ORGANISM-l is facultative.

10
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USEK: WHY DIDN’T YOU CONSIDER
STKFM’OCKCUS  AS A I’OSSTBILITY  FOR
ORCANT SM-I ?

TEIRESIAS: The following rule could have
been used to determine that the identify of . .
ORGANISM-l was streptococcus: RULE 33

But clause 2 (“the morphology of the
organism is coccus”) was already known
to be false for ORGANISM-I, so the rule was
never tried.

wit bout the explanation capability’ I
assert, user acceptance of MYCIN would have been
nil , and there would have been a greatly
diminished effectiveness and contribution of our
experts.

HYCIN was the first of our programs that
forced us to deal with what we had always
understood: that experts’ knowledge is uncertain
and that our inference engines had to be made to
reason with this uncertainty. It is less important
that the inexact reasoning scheme be formal,
rigorous, and uniform than it is for the scheme to
be naturnl to and easily understandable by t h e
experts and users.

c

English is thalanguage most natural and
comfortable for our experts and users, and was
therefore the language chosen for interactive
consultation, explanation, and external
representation of the rules (the internal format
is INTERLISP). This situation is not peculiar to
doctors; in most a r e a s  o f application of
intelligent agents T believe that English (i.e.
natural language) will be the language of choice.
Programming an English language processor and
front-end to such sys terns is not a s c a r y
enterprise because:

a) the domain is special ized,
possible interpretati one are const rained

so that

b) specialist-talk Ls replete with standard
Jargon and stereotyped ways of expressing
knowledge and queries -- just right for text
templates, simple grammars and other simple
processing schemes.

c) the ambiguity of interpretation resulting
from simple schemes can be dealt with easily by
feeding back Interpretations for confirmation. If
this is done with a pleasant “I didn’t quite
understand you.. .” tone, it is not irritating to
the user.

English may be exactly the wrong language
for representation and interaction in some
domains. It would be awkward, to say the least, to
represent DENDRAL’s chemical structures and
knowledge of mass spectronetry in English, or to
interact about these with a user.

Simple explanation schemes have been a part
of the AI scene for a number of years and are not
hard to implement. Really good models of what
explanation is as a transaction between user and
agent, WI t h programs to implement these models,
will be t h e subject (I predict) of much future
research in AI.

All of these points can be summarized by
saying that MYCIN and its TEIRESIAS adjunct are
experiments in the design of a see-through system,
whose representations and processes are almost
transparently clear to the domain specialist.
“Almost” here is equivalent to “with a few minutes
of introductory descrfption.”  The various pieces
of MYCIN -- the backward chaining, the English
transactions’ the explanations, etc. -- are each
simple in concept and realization. But there are
great virtues to simplicity in system design; and
viewed as a tota l  Intel1 igent agent system,
MYCIN/TEIRESTAS  is one of the best engineered.

3.4 SU/X: signal understanding

3.4.1 Historical note

SUIX 1s a system design that was tested in
an application whose details are classified.
Because of this, the ensuing discussion will
appear considerably less concrete and tangible
than the preceding case studies. This system
design vas done by H.P. Nil and me, and was
strongly influenced by the CMU Hearsay II system
design.

3.4.2 Task

SU/X’s task is the formation and continual
updating, over long periods of time, of hypotheses
about the identity, location, and velocity of
objects in a physical space. The output desired is
a display of the “current best hypotheses” wf  th
full explanation of the support for each. There
are two types of input data: the primary signal
(to be understood); and auxiliary symbolic data
(to supply context for the understanding). T h e
primary signals are spectra, represented as
descriptions of the spectral lines. The various
spectra cover the physical space with some spatial
overlap.



3.4.3 Representat ions

The rules given by the expert about objects,
their behavior, and the interpretation of signal
data from then are all represented in the
situation => action form. The “situations”
constitute invoking conditions and the “act ions”
are processes that modify the current hypotheses,
post unresolved issues, recompute evaluations,
etc. The expert’s knowledge of how to do analysis
in the task is also represented in rule form.
These strategy rules replace the normal executive
program.

The situation-hypothesis is represented as a
node-link graph, tree-like In that it has distinct
“levels ,‘I each representing a degree of
abstraction (or aggregation) that is natural to
the expert in his understanding of the domain. A
node represents an hypothesis; a link to that node
represents support for that hypothesis (as in
HEARSAY II, “support from above” or “supper  t from
below”). “Lower” levels are concerned with the
specif its o f the signal data. “Higher” 1 evels
represent symbolic abstractions.

3.4.4 Sketch of method --.

The situation-hypothesis is formed
incrementally. As the situation unfolds over time,
the triggering of rules modifies or discards
existing hypotheses, adds new ones, or changes
support values. The situation-hypothesis is a

. common workspace (“blackboard,” in HEARSAY jargon)
for all the rules.

In general , the incremental steps toward a
more complete and refined situation-hypothesis can
be viewed as a sequence of local generate-and-test
activities. Some of the rules are plausible move
generators, generating either nodes or links.
Other rules are evaluators, testing and modifying
node descriptions.

In typical operation, new data is submitted
for processing (say, N time-units of new data).
This initiates a flurry of rule-triggerings and

e consequently rule-actions (called “events”). Some
events are direct consequences of the data; other
events arise in a cascade-like fashion from the
triggering of rules. Auxiliary symbolic data also
cause events, usually affecting the higher levels
of the hypothesis. As a consequence, support-
from-above for the lower level processes is made
avaclable; and expectations o f  po5sible  l o w e r
level events can be formed. Eventually all the
relevant rules have their say and the system
becomes quiescent, thereby triggering the input of
new data to re-energize the inference activity.

The system uses the simplifying strategy of
maintaining only one “best’* situation-hypothesis
at any moment, modifying 1 t incrementally as
requfred  by the changing data. This approach is
made feasible  by several characteristics of the

domain. First, there is the strong continuity
over time of objects and their behaviors
(specifically, they do not change radically over
time, or behave radically differently over short
periods). Second, a single problem (identity,
location and velocity of a particular set of
objects) persists over numerous data gathering
periods. (Compare this to speech understanding in

..which each sentence is spoken just once, and each
presents a new and different problem.) Finally,
the system’s hypothesis is typically “almost
r ight  ,” in part because it gets numerous
opportunl t ies to refine the solution (i.e. the
numerous data gathering periods), and in part
because the availability of many knowledge sources
tends to over-determine the solution. As a result
of a l l  o f these , the current best hypothesis
changes only slowly with time, and hence keeping
only the current best is a feasible approach.

Of interest are the time-based events. These
rule-like expressions, created by certain rules,
trigger upon the passage of specified amounts of
time. They implement various “wait -and-eee”
strategies of analysis that are useful in the
domain.

3.4.5 Results

In the test application, using signal data
generated by a simulation program because real
data was not available, the program achieved
expert level5 of performance over a span of test
problems. Some problems were difficult because
there was very little primary signal to support
inference. Others were difficult because too much
signal induced a plethora of alternatives with
much ambiguity.

A modified SU/X  design is currently being
used as the basis for an application to the
Interpretation of x-ray crystallographic data, the
CRYSALIS program mentioned later.

3.4.6 Discussion

The role of the auxiliary symbolic sources
of data is of critical importance. They supply a
symbolic model of the existing situation that is
used to generate expectations of events to be
observed in the data stream. This allows flow of
inferences from higher levels of abstractfon to
lower. Such a process, so familiar to AI
researchers, apparently is almost unrecognized
among signal processing engineers. In the
application task, the expectation-driven analysis
iS essential In controlling the combinatorial
processing explosion at the lower levels,exactly
the explosion that forces the traditional signal
processing engineers to seek out the largest
possible number-cruncher for their work.

The design of appropriate explanations for
the user takes an interesting twist in SiJ/X.  The
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situation-hypothesis unfolds piecemeal over time,
but the “appropriate” explanation for the user Is
one that focuses on Individual objects over time.
Thus the appropriate explanation must be
syntheslxed  from a history of all the events that
led up to the current hypothesis. Contrast this.
with the MYCIN-TEIRESIAS reporting of rule
Invocations in the construction of a reasoning
chain.

Since its knowledge base and its auxiliary
symbolic data give it a model-of-the-situation
that strongly constrains interpretation of t h e
primary data stream, su/x is relatively
unperturbed by errorful or missing data. These
data conditions merely cause fluctuations in the
credibility of individual hypotheses and/or the
creation of the “wait-and-see” events. W/X can be
(but has not yet been) used to control sensors.
Since Its rules specify what types and values of
evidence are necessary to establish  support, and
since it is constantly processing a complete
hypothesis structure, it can requeat “critical
readings” from the sensors. In general, this
al lows an efficient use of llmfted sensor
bandwld th and data acquisition processing
capability.

3.5 OTHER CASE STUDIES

Space does not allow more than just a brlef
sketch of other intereating projecta that have
been completed or are in progress*

L 3.5.1  AM: mathematical discovery

AM is a knowledge-based sys tern that
conjecture5 interesting concept5 in elementary
mathematics. It Is a discoverer of Interesting
theorems to prove, not a theorem proving program.
It was conceived and executed by D. Lenat  for his
Ph.D. thesis, and is reported by him in these
proceedings (“An Overview of AM”).

AM’5 knowledge Is basically of two types:
rules that suggest possibly interesting new
concepts from previously conjectured concepts; and
rule5 that evaluate the mathematical
“interestingness” of a conjecture. These rules
attempt to capture the expertise of the
profe5slonal mathematician at the task of
mathematical discovery. Though Lenat  is not a
professional mathematician, he w a s able
successfully to serve as his own expert In the
building of this program.

AM conducts a heuristic search through the
space of concepts treatable from Its rules. Its
baa ic framework is generation-and-test. The
generation is plausible move generation, as
indicated by the rules for formation of new
concepts. The test is the evaluation of
“interestingness.” Of particular note is t h e
method of tent-by-example that lends the flavor of

scientific hypothesis  testing to the enterprise of
mathematical discovery.

Initialized with concepts of elementary set
theory, it conjectured concepts in elementary
number theory, such as “add,” “multiply” (by four
distinct paths!), “primes ,” the unique
factorization theorem, and a concept similar to
primes but previourly not much studied called
“maximally divisible numbers.”

3.5.2 MOLGEN: planning experiments In molecular
genetics

MOLGEN , a collaboration with the Stanford
Genetics Department, is work in progress.
MOLGEN’s task is to provide Intelligent advice to
a molecular geneticist on the planning of
experiments involving the manipulation of DNA. The
geneticist has various kinds of laboratory
techniques available for changing DNA material
(cuts, joins, insertions, deletions, and 50 on);
techniques for determining the biological
consequences of the changes ; various instruments
for measuring effects; various chemical methods
for inducing, facilitating, or inhibiting changes;
and many other tools.

HOLGEN will offer planning assistance in
organizing and sequencing such tools to accomplish
an experimental goal. In addition MOLTEN  will
check user-provided experiment plan5 for
feasibility; and Its knowledge base will be a
repository for the rapidly expanding knowledge of
this specialty, available by Interrogation.

Current efforts to engineer a knowledge-base
management system for MOLGEN are described by
Uartin et al in a paper in these proceedings. This
subsystem uses and extends the techniques of the
TEIRESIAS system discussed earlier.

In MOLGEN the problem of Integration of many
diverse sourcea of knowledge Is central since the
essence of the experiment planning process is the
successful merging of biological, genetic,
chemical, topological, and Instrument knowledge.
In MOLGEN the problem of representing processes is
also brought into focus since the expert’s
knowledge of experimental Wrategies  - -  proto-
plans -- must also be represented and put to use.

3.5.3 CRYSALIS: inferring protein structure from
electron density IMPS

CRYSALIS, too, is work in progress. Its task
is to hypothesize the structure of a protein from
a map of electron density that is derived from x-
ray crystallographic data. The map  is three-
dimensional, and the contour information is crude
and highly ambiguous. Interpretation is guided
and supported by auxiliary Information, of which
the amino acid sequence of the protein’s backbone
is the most important. Density map interpretation
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is a protein chemist's art. As always, capturing
this art in heuristic rules and putting it to use
with an Inference engine is the project's goal.

The Inference engine for CRYSALIS is a
modification of the SU/X  system design described
above. The hypothesis formation process must deal
with many levels of possibly useful aggregation
and abstraction. For example, the map itself can
be viewed as consisting of “peaks,” or “peaks and
valleys,"  or "skeleton." The protein model has
“atoms,” ” amide planes," "amino acid sidechains,"
and even massive substructures such as "helices."
Protein molecules are so complex that a systematic
generation-and-test strategy like DENDRAL's  is not
feasible. Incremental piecing together of the
hypothesis using region-growing methods is
necessary.

The CRYSALIS design (alias SU/P)  i s
described in a recent paper by Nli and Feigenbaum
(1977).

4 SUMMARY OF CASE STUDIES
--.

Some of the themes presented earlier need no
recapitulation, but I wish to revisit three here:
generation-and-test; situation => action rules;
and explanations.

'4.1 Generation and Test

Aircraft come in a wide variety of sixes,
shapes, and functional designs and they are
applied in very many ways. But almost all that fly
do so because of the unifyiag physical principle
of lift by airflow; the others are described by
exception. So it is with intelligent agent
programs and, the information processing
psychologists tell us, with people. One unifying
principle of "intelligence" i s  generatlon-and-
test. No wonder that It has been so thoroughly
studied in AI research!

e In the case studies, generation is
manifested in a variety of forms and processing
schemes. There are legal move generators defined
formally by a generating algorithm (DENDRAL's
graph generating algorithm); or by a logical rule
of ihference (MYCIN's backward chaining).  When
legal- move generation ie not possible or not
efficient, there are plausible move generators (as
in su/x and AM). Sometimes generation is
interleaved with testing (as in MYCIN, SU/X,  and
AM). In one case, all generation precedes testing
(DENDRAL). One case (MBTA-DENDRAL)  is mixed, with
some testing taking place during generation, some
after.

Test also shows great variety. There are
simple tests (MYCIN: "Is the organism aerobic?";
su/x: "Has a spectral line appeared at position
P?")  Some tests are complex heuristic evaluations
(AM: "Is the new concept 'interesting'?"; MOLGEN:

"Will the reaction actually take place?")
Sometimes a complex test can involve feedback to
modify the object being tested (as in META-
DENDRAL).

The evidence from our case studies supports
the assertion by Newell and Simon that generation-
and-test is a law of our science (Newell and
Simon, 1976).

4.2 Situation - > Action rules

Situation => Action rules are used to
represent experts' knowledge in all of the case
studies. Always the situation part indicates the
specific conditions under which the ru le  i s
relevant. The action part can be simple (MYCIN:
conclude presence of particular organism; DENDRAL:
conclude break of particular bond). Or it can be
quite complex (MOLGEN: an experiential procedure).
The overriding consideration in making design
choices is that the rule form chosen be able to
represent clearly and directly what the expert
wishes to express about the domain. As
illustrated, this may necessitate a wide variation
in rule syntax and semantics.

From a study of all the projects, a
regularity emerges. A salient feature of the
Situation *> Action rule technique for
representing expert's knowledge is the modularity
of the knowledge base, with the concomitant
flexibility to add or change the knowledge easily
as the experts' understanding of the domain
changes. Here too one must be pragmatic, not
doctrinaire. A technique such as this can not
represent modularity of knowledge if  that
modularity does not exist in the domain. The
virtue of this technique is that it serves as a
framework for discovering what modularity exists
in the domain. Discovery may feed back to cause
reformulation of the knowledge toward greater
modularity.

Finally, our case studies have shown that
strategy knowledge can be captured in rule form.
In TEIRESIAS, the metarules capture knowledge of
how to deploy domain knowledge; in SU/X, the
strategy rules represent the experts' knowledge of
"how to analyze" in the domain.

4.3 Explanation

Most of the programs, and all of the more
recent ones, make available an explanation
capability for the user, be he end-user or system
developer. Our focus on end-users in applications
domains has forced attention to human engineering
issues, in particular making the need for the
explanation capability imperative.

The Intelligent Agent viewpoint seems to us
to demand that the agent be able to explain its
activity; else the question arises of who is in
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control of the agent’s activity. The issue is not
academic or philosophical. It is an engineering
Issue that has arisen in medical and military
applications of intelligent agents, and will
govern future acceptance of AI work in
applications areas. And on the philosophical level
one might even argue that there is a moral
fmperat ive to provide accurate explanations to
end-users whose intuitions about our systems are
almost nil.

Finally, the explanation capability is
needed as part of the concerted attack on the
knowledge acquisition problem. Explanation of the
reasoning process is central to the interactive
transfer of expertise to the knowledge base, and
it is our most powerful tool for the debugging of
the knovledge base.

5 EPILOGUE

What ve have learned about knowledge
engineering goes beyond what is disceraible  in the
behavior of our case study programs. In the next
paper of this two-part series, I will raise and
discuss many of the general concerns of knowledge
engineers, including these:

What
techniques?

constitutes an “application” of AI

There is a difference between a serious
application and an application-flavored toy
problem.

What are some criteria for the judicious
selection of an applicatioa  of AI techniques?

What are some applications areas worthy of
serious attention by knowledge eagiaeers?

For example, applications to sc fence, to
signal interpretation, and to human
interaction with complex systems.

How to find and fascinate an Expert.

The
expert.

background and prior training of the

The level
elicited.

Des igaing
do.”

of commitment that can be

sys terns

Sustaining attention
and incrementa progress.

that “think the way I

Focusing attention
problems.

by

to data

quick feedback

and specific

The side benefits to the expert of his
investment in the knowledge engineering
activity.

Gaining consensus
.edge of a domain.

among experts about the

The consensus may be a more valuable
outcome of the knowledge eagineerfng effort
than the building of the program.

Problems faced by knowledge engineers today:

The 1.ack o f
computer hardware.

te and appropriate

The difficulty of export of systems to
end-users, caused by the lack of properly-
sized and -packaged combinations of hardware
and sof tvare

The chronic absence of cumulation of AI
techniques in the form of software packages
that can achieve wide use.

The shortage of
engineers.

The difficulty
sustaining funding for
engineering projects.

trained knowledge

of obtaining and
interesting knowledge

6 ACKNOWLEDGMENT

The work reported herein has received long-
term support from the Defense Advanced Research
Projects Agency. The National Institutes of Health
has supported DENDRAL, META-DENDRAL, and the
SUMEX-AIM  computer facility on which we compute.
The National Science Foundation has supported
research on CRYSALIS and HOI&EN. The Bureau of
Health Sciences Research and Evaluation has
supported research on MYCIN. I am grateful to
these agencies for their continuing support of our
work.

I vish to express my deep admiration and
thanks to the faculty, staff and students of the
Heuristic Programming Project, and to our
collaborators in the various worldly arts, for the
creativity and dedication that has made our work
exciting and fruitful. My particular thanks for
assistance in preparing this manuscript go to
Randy Davis, Penny Nil, Reid Smith, and Carolyn
Taynai .

Providing ways
expert knowledge.

to express uncertainty of

15



7 REFERENCES

General

Felgenbaum. E.A. "Artificial Intelligence
Research: What is It? What has it achieved?
Where is it going?," invited paper, Symposium on
Artificial Intelligence, Canberra, Australia,
1974.

Goldstein, I . and S. Papert, "Artificial
Intelligence, Lwwv3e, and the Study of
Knowledge," Cognitive Science, Vol.1,  No.1, 1977.

Gregory, R., "on How so Little Information
Controls so Much Behavior," Bionics Research
Report No. 1, Machine Intelligence Department,
University of Edinburgh, 1968.

Newell, A. and H.A. Simon, Human Problem Solving,
Prentice-Hall, 1972.

Newell, A. and H.A. Simon, "Computer Science as
Empirical Inquiry: Symbols sad Search," Corn ACM- -1
19, 3, March, 1976.

DENDRAL and META-DENDRAL

Feigenbaum, E.A., Buchanan, B.C. and J. Lederberg,
"On Generality and Problem Solving: a Case Study
Using the DENDRAL Program," Machine Intelligence
5, Edinburgh Univ. Press, 1971.

Buchanan, B.G., Duffield, A.M. and A.V. Robertson,
"An Application of Artificial Intelligence to the
Interpretation of Mass Spectra," Mass
Spectrometry Techniques and Applications, G.K
Milne, Ed., John Wiley 6 Sons, Inc., p* 121,
1971.

Michie, D. and B.C. Buchanan, "Current Status of
the Heuristic DENDRAL Program for Applying
Artificial Intelligence to the Interpretation of
Mass Spectra," Computers for Spectroscopy, R.A.G.
Carrington, ed., London: Adam Hilger, 1974.

Buchanan, B.G., "Scientific Theory Formation by
Computer," Nato Advanced Study Institutes Series,
Series E: Applied Science, 14:515,  Noordhoff-
Leyden; 1976.

Buchanan, B.G., Smith, D.H., White, W.C., Gritter,
R.J., Feigenbaum, E.A., Lederberg, J. and C.
Djerassi, "Applications of Artificial
Intelligence for Chemical Inference XXII.
Automatic Rule Formation in Mass Spectrometry by
Means of the Meta-DENDRAL  Program," Journal o f
the ACS, 98:6168,  1976.

Davis,  R., Buchanan, B.C. and E.H. Shortliffe,
'Production Rules as a Representation for a
Knowledge-Based Consultation Program," Artificial
Intelligence, 8, 1, February, 1977.

Shortliffe, E.H. and B.G. Buchanan, "A Model of
Inexact Reasoning in Medicine," Mathematical
Biosciences, 23:351,  1975.

TEIRESIAS

Davis, R., "Applications of Meta  Level Knowledge
to the Construction, Maintenance and Use of Large
Knowledge Bases ," Memo HPP-76-7, Stanford
Computer Science Department, Stanford, CA, 1976.

Davis, R., "Interactive Transfer of Expertise I:
Acquisition of New Inference Rules," these
Proceedings.

D a v i s ,  R. and B.C. Buchanan, "Meta-Level
Knowledge: Overview and Applications," these
Proceedings.

Nil ,  H.P. and  E.A. Feigenbaum, "Rule Based
Understanding of Signals," Proceedings of the
Conference on Pattern-Directed Inference Systems,
1977 (forthcoming), also Memo HPP-77-7, Stanford
Computer Science Department, Stanford, CA, 1977.

AM

Lenat, D., "AM: An Artificial Intelligence
Approach to Discovery in Mathematics as Heuristic
Search," Memo HPP-76-8, Stanford Computer Science
Department, Stanford, CA, 1976.

MOLGEN

Martin, N., Fr ied land ,  P . ,  K ing ,  J., and M.
Stefik, "Knowledge Base Management for Experiment
P lanning  in Molecular Genetics," these
Proceedings.

CRYSALIS

Engelmore, R. and H.P. Nil, "A Knowledge-Based
System for the Interpretation of Protein X-Ray
Crystallographic Data," Memo HPP-77-2, Department
of Computer Science, Stanford, CA, 1977.

MYCIN

Shor t l i f f e ,  E . Computer-based Medical Consul-
tations: MYCIN, New York, Elsevier, 1976.

16


