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Abstract .

Any n-vertex planar graph has the property that it can be divided
into conponents of roughly equal size by removing only o(4/n) vertices,
This separator theorem in conmbination with a divide-and-conquer

strategy, leads to many new conplexity results for planar graph

problems. This paper describes sonme of these results.
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1. [ ntroduction.

One efficient approach to solving conputational problenms is
"divide-and-conquer” [1]. In this method, the original problemis
divided into two or nore snaller problems. The subproblems are sol ved
by applying the nethod recursively, and the solutions to the subproblens
are conbined to give the solution to the original problem Divide-and-
conquer is especially efficient when the subproblens are substantially
smal ler than the original problem

In [14] the followi ng theoremis proved.

Theorem 1. Let G be any n-vertex planar graph wth non-negative
vertex costs sunmming to no nore than one. Then the vertices of G can
be partitioned into three sets A B, C , such that no edge joins a

vertex in Awith a vertex in B, neither A nor B has total vertex
cost exceeding 2/3 , and C contains no nore than 24240 verti ces.

Furthermore A, B, C can be found in Q(n) tine.
In the special case of equal-cost vertices, this theorem becones

Corol lary 1. Let G be any n-vertex planar graph. The vertices of G
can be partitioned into three sets A, B, C, such that no edge joins a
vertex in Awith a vertex in B, neither A nor B contains nore

than 2n/3 vertices, and C contains no nore than on24n vertices.

Theorem 1 and its corollary open the way for efficient application
of divide-and-conquer to a variety of problems on planar graphs. In this
paper we explore a number of such applications. Each section of the

paper describes a different use of divide-and-conquer. The results range



from an efficient approximtion algorithm for finding maxi num i ndependent
sets in planar graphs to |ower bounds on the conplexity of planar
Boolean circuits. The last section mentions two additional applications

whose description is too lengthy to be included in this paper.



2. Approximation A gorithms for NP-Conpl ete Problems.

Di vi de- and- conquer in combination with Theorem 1 can be used to
rapidly find good approximate solutions to certain NP-conplete problens on

planar graphs. As an exanple we consider the maxi num independent set

probl em which asks for a maxi mum nunber of pairwise non-adj acent

vertices in a planar graph.

Theorem 2. Let G be an n-vertex planar graph with non-negative vertex
costs sunming to no nore than one and let 0 < e< 1 . Then there is some
set C of O(\/n/_e) vertices whose renoval |eaves G w th no connected
conponent of cost exceeding ¢ . Furthernmore the set C can be found

in Qnlog n) tine.
Proof . Apply the following algorithmto G.

Initialization: Let C=¢ .

General _Step: Fi nd some connected component K in G mnus C with
cost exceeding ¢ . Apply Corollary 1to K, producing a partition
Ay By 5 0y of its vertices. Let C = cucy - If one of A1 and By
(say A, ) has cost exceeding two-thirds the cost of K, apply
Theorem 1 to the subgraph of G induced by the vertex set A,

producing a partition A,, By, C, of Ay . Let C = CucC, .

Repeat the general step until G mnus C has no conponent with

cost exceeding e .

The effect of one execution of the general step is to divide the
comronent K into snaller conponents, each with no nore than two-thirds

the cost of K and each with no nore than two-thirds as nany vertices



as K. Consider all conponents which arise during the course of the
algorithm  Assign a level to each conponent as follows. [|f the
conponent exists when the algorithm halts, the conponent has level zero.
Qherwise the level of the conponent is one greater than the maxinmum

| evel of the conponents formed when it is split by the general step.
Wth this definition, any two conponents on the sanme level are
vertex-disjoint.

Each | evel one conmponent has cost greater than ¢, since it is
eventual ly split by the general step. It follows that, for i > 1,
each level i conponent has cost at least (3/2) i-land cont ai ns
at | east (5/2)2i vertices. Since the total cost of ¢ is at nost one,
the total nunber of conponents of level i is at nost (2/5)i'l/ €.

The total running tine of the algorithmis o(Z {|k|| K is a conponent
split by the general step)) . Since a conponent of level i contains
at | east (3/2):.L vertices, the maxi numlevel k nust satisfy
(3/2)k <n, or k< 1085/2 n . Since conponents in each level are
vertex-disjoint, the total running tine of the algorithmis
an I0g5/2 n) = Qnlog n) .

The total size of the set ¢ produced by the algorithmis bounded by

o(Z {V |X] | X is a conponent split by the general step))
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The follow ng algorithm uses Theorem 2 to find an approximately

maxi num independent set | in a planar graph G = (V,E)

Step 1. Apply Theorem2 to Gwith e = (log log n)/n and each vertex
having cost |/n to find a sét of vertices C containing
o(n/A1og log n) vertices whose removal |eaves no
connected conponent with nore than log log n vertices.

Step 2. I'n each connected conponent of G mnus C, find a maximum
i ndependent set by checking every subset of vertices for
i ndependence. Form | as a union of maxi mum independent sets,

one from each conponent.

Let |* be a maxi num i ndependent set of g . The restriction of
|* to one of the connected conponents fornmed when C is renoved
fromaG can be no larger than the restriction of | to the sanme
component.  Thus |I*| - |I| = o(n/Alog log n) . Since Gis planar,
Gis four-colorable, and |1*¥| > n/4 . Thus (|1x|-|T|)/ |1%]| =
o(l/«/m Y, and the relative error in the size of | tends to
zero with increasing n .

Step 1 of the algorithmrequires Q(n log n) time by Theorem 2.
Step 2 requires o(ni 2n.1) time on a connected conponent of n, vertices.
The total time required by Step 2 is thus

n n. n
O(ma.x Z)n.ZJ'IZ)n.=nandO<ni<IogIogn =
i=1

. 1 T
l=1

-

n log log n _ i
O(log_loé_n(log log n)2 g ) = Qnlog n) . Hence the entire

algorithmrequires Q' n log n) tine.



3. Nonserial Dynam ¢ Progranmm ng.

Many NP-conplete problens, such as the naxi num independent set
problem the graph coloring problem and others, can be fornulated as

nonserial dynamic programing problens [ 2,20). Such a problemis

of the following form ninimze the objective function £(x;,.. %) »
where f is given as a sumof terns fk(~) , each of which is a function
of only a subset of the variables. Ve shall assune that all variables
Xs take on values fromthe sane finite set S, and that the val ues

of the terns fk(‘) are given by tables. Associated with such an

objective function f is an interaction graph G=(V,E) , containing

one vertex v for each variable x, in f , and an edge joi ning X,

and Xx. for any two variabl es %, and x, which appear in a common

J J
term fk(-) .
By trying all possible values of the variables, a nonserial

. . . 0 .
dynami ¢ programming problem can be solved in 2 () time. W shall

show that if the interaction graph of the problemis planar, the

RICEY

probl em can be solved in time. This neans that substantial

savings are possible when solving typical NP-conplete problens restricted
to planar graphs. Note that if the interaction graph of f is planar,
no term f£,(-) of f can contain nore than four variables, since the
conpl ete graph on five vertices is not planar.

In order to describe the algorithm we need one additional concept.
m
The restriction of an objective function f = L; £, Lo aset of

vari abl es Xop e ok Is the objective function
1 J

f'o=% {f) \ £y depends upon one or nore of x.ll, ..-,xij} .



m

G ven an objective function f(xl; .o "Xn> =2 £, and a

subset

S of the variables x

k=1

12Xy whi ch are constrained to have

specific values, the following algorithm solves the problem

maxi m ze

f subject to the constraints on the variables in S .

In the presentation, we do not distinguish between the variables

Xl,...

Step 1.

3tep .

and the corresponding vertices in the interaction graph.

If n<9, solve the problem by exhaustively trying all
possi bl e assignments to the unconstrained variables.
Qherwise, go to Step 2.
Apply Corollary 1 to the interaction graph Gof f . Let
A, B, Cbe the resulting vertex partition. Let f, be
the restriction of f to Ayc and |et £, be the
restriction of f to BycC . For each possible assignment
of values to the variables in GS, perform the follow ng
steps:
(a) Maxinize £, with the given values for the variables
in CyUS by applying the method recursively;
(b) Maximize f, with the given values for the variables
in CUS by applying the method recursively;
(c) Conbine the solutions to (a) and (b) to obtain a maxi mum
value of f with the given values for the variables
in Cys .
Choose the assignment of values to variables in GS which

maximzes f and return the appropriate value of f as

the sol ution.



The correctness of this algorithmis obvious. If n >9, the

,0(V)

al gorithm solves at nost subproblens in Step 2, since C

is of o(\/E) si ze. Each subproblem contains at nost

on/3 + onzAn < 29n/30 variables. Thus if t(n) is the running
L) (oons0)

tinme of the algorithm we have t(n) < Qnlog n)+

if n>9, t(n) =Q1) if n<9. Aninductive proof shows

Vo)

that t(n) < 20(



L.  Pebbling.

The follow ng one-person ganme arises in register allocation
probl ems [21], the conversion of recursion to iteration [16], and
the study of time-space tradeoffs [4 ,10,18]. Let G = (V,E) be
a directed acyclic graph with maxi mumin-degree k . If (v,w) is
an edge of G, v is a predecessor of wand wis a
successor of v . The game involves placing pebbles on the vertices
of G according to certain rules. A given step of the game consists
of either placing a pebble on an enpty vertex of G (called pebbling
the vertex) or renoving a pebble from a previously pebbled vertex.

A vertex may be pebbled only if all its predecessors have pebbl es.
The object of the game is to successively pebble each vertex of G
(in any order) subject to the constraint that at nost a given number
of pebbles are ever on the graph sinultaneously.

It is easy to pebble any vertex of an n-vertex graph in n steps
using n pebbles. W are interested in pebbling nethods which use
fewer than n pebbles but possibly many nmore than n steps. It is
known that any vertex of an n-vertex graph can be pebbled with
0(n/log n) pebbl es [10] (where the constant depends upon the maxi mum
in-degree), and that in general no better bound is possible [18]. W
shall show that if the graph is planar, only o(vn) pebbles are
necessary, generalizing a result of [18]. An exanple of Cook [ %]

shows that no better bound is possible for planar graphs.

Theorem 3.  Any n-vertex planar acyclic directed graph with maximm

i n-degree k can be pebbl ed using o(Wn + k log, n) pebbl es.

10



Proof . Let a = 22 and B =2/3. Let Gbe the graph to be
pebbled. Use the follow ng recursive pebbling procedure. [If n < ny
wher e ny = (oc/(l-g))2 , pebble all vertices of G without deleting
pebbles. If n >n,, find a vertex partition A, B, C satisfying
Corollary 1. Pebble the vertices of Gin topol ogical order. X

To pebble a vertex v , delete all pebbles except those on C. For
each predecessor u of v, let Qu) be the subgraph of G induced
by the set of vertices with pebble-free paths to u . Apply the nethod
recursively to each Qu) to pebble all predecessors of v , |eaving
a pebbl e on each such predecessor. Then pebble v .

[f p(n) is the maxi mum nunber of pebbles required by this nethod

on any n-vertex graph, then
p(n) = n if nSnO s
p(n)gan+k+p(2n/3+<1«/;) if n>n

An inductive proof shows that p(n) is O(\/-I-l.‘i'k log, n . d

It is also possible to obtain a substantial reduction in pebbles
while preserving a polynonial bound on the number of pebbling steps,

as the follow ng theorem shows.

Theorem 4. Any n-vertex planar acyclic directed graph with nmaxi num

- in-degree k can be pebbled using o(n"a/3 +k) pebbles in o(kn5/3) time.

Y That is, in an order such that if v is a predecessor of w,
V is pebbled before w .

11



Froof. Let -C be a set of O(n2/5) vertices whose renmoval |eaves
2/3

G with no weakly connected conponent ﬂcont aining nore than n
vertices. Such a set C exists by Theorem 2. The following pebbling
procedure places pebbles pernmanently on the vertices of C. Pebble
the vertices of Gin topological order. To pebble a vertex v ,

pebbl e each predecessor u of v and then pebble v . To pebble a
predecessor u , delete all pebbles from G except those on vertices
in Cor on predecessors of v . Find the weakly connected conponent
in Gmnus Ccontaining u. Pebble all vertices in this conponent,
in topol ogical order.

The total nunber of pebbles required by this strategy is o(n2/5)
to pebble vertices in C plus n2/3 to pebble each weakly connected
conponent plus k to pebble predecessors of the vertex v to be

.p.ebbl ed. The total nunber of pebbling steps is at nost
o(een-n®3) = 03y . O

/A weakly connected conponent of a directed graph is a connected
component Of the undirected graph formed by ignoring edge directions.

12



5. Lower Bounds on Boolean Crcuit Size

A Boolean circuit is an acyclic directed graph such that each

vertex has in-degree zero or two, the predecessors of each vertex are
ordered, and corresponding to each vertex v of in-degree two is a

bi nary Bool ean operation bv . Wth each vertex of the circuit we
associate a Boolean function which the vertex computes, defined as
follows. Wth each of the k vertices vy of in-degree zero (inputs)

we associate a variable x., and an identity function fv-(xi) = X, .

1 i
Wth each vertex w of in-degree two having predecessoré u, v we
associ ate the function fVV' bw(fu,fv) . The circuit conputes the
set of functions associated with its vertices of out-degree zero
(out puts)

W are interested in obtaining |ower bounds on the size (nunber
of vertices) of Boolean circuits which conpute certain common and
important functions. Using Theorem 1 we can obtain such |ower bounds
under the assunption that the circuits are planar. Any circuit can be
converted into a planar circuit by the followi ng steps. First, enbed
the circuit in the plane, allowing edges to cross if necessary. Next
repl ace each pair of crossing edges by the crossover circuit illustrated
in Figure 1. It follows that any |lower bound on the size of planar
circuits is also a |ower bound on the total number of vertices and

edge crossings in any planar representation of a non-planar circuit,
In a technology for which the total nunber of vertices and edge
crossings is a reasonable neasure of cost, our |ower bounds inply that

it may be expensive to realize certain comonly used functions in

har dwar e.

13



A superconcentrator is an acyclic directed graph with minputs

and m outputs such that any set of Kk inputs and any set of k
outputs are joined by k vertex-disjoint paths, for all k in the

range 1 <k <m.

Theorem 5.  Any minput, moutput planar superconcentrator contains

at |east m2/72 vertices.

Proof. Let G be an minput, moutput planar superconcentrator.
Assign to each input and output of G a cost of 1/(em) , and to every
other vertex a cost of zero. Let A, B, C be a vertex partition
satisfying Theorem 1 on G (ignoring edge directions). Suppose C
contains p inputs and outputs. Wthout loss of generality, suppose
that Ais no nore costly than B, and that A contains no nore
outputs than inputs. A contains between 2m/3 - p and m- p/2
inputs and outputs. Hence A contains at |east m/3 - p/2 inputs

and at nost m2 - p/k outputs. B contains at |east mp- (m/2 - p/L) =
m/2 - 3p/4 outputs. Let k = min{(m/3 - p/27, m/2 -3p/471} . Since
G is a superconcentrator, any set of k inputs in A and any set of
k outputs in B are joined by k vertex-disjoint paths. Each such
path must contain a vertex in C which is neither an input nor an
output.  Thus 224n - p > minfm/3 - p/2,m/2 - 3p/k} >m/3 - p,

and n zm2/72 . O

The property of being a superconcentrator is a little too strong
to be useful in deriving lower bounds on the conplexity of interesting
functions. However, there are weaker properties which still require

Q(mg) vertices. Let G= (V,E) be an acyclic directed graph with m

1k



nunbered inputs v 0 ©70 and m nunbered outputs w [

l’vg’ ) l) Wg) .o
Gis said to have the shifting property if, for any k in the range

1<k<m, any zinthe range 0 <t < mk , and any subset of k

sources {vil,...,vl.k} such that ii,ig,. i Sm-2, there are k

vertex-disjoint paths joining the set of inputs {vi 5 ::;.V-l } with
1 k

the set of outputs {vi1+£""’vik+£} ‘

Theorem 6, Let G be a planar acyclic directed graph with the

shifting property. Then G contains at |east |_m/2_12/l62 vertices.

Proof. Suppose that G contains n vertices. Assign a cost of |/m
to each of the first |m/2] inputs and to each of the last |m/2]
outputs of G, and a cost of zero to every other vertex of G. Call
the first |m/2) inputs and the last |m/2] outputs of G costly.
Let A, B, C be a vertex partition satisfying Theorem1 on G
(ignoring edge directions).

Wthout |oss of generality, suppose that Ais no nmore costly
than B, and that A contains no nore costly outputs than costly
inputs. Let A' be the set of costly inputs in A B' the set of
costly outputs in B, p the nunber of costly inputs and outputs
in C and q the nunber of costly inputs and outputs in A . Then
2lm/2]/3 - p < q < w2) -p/2. Hence |A'|> 9/2 > |m/2]/5 -p/2.

Also

15



|at]-|B'] > |aT|-(Lw/2] - p - (a- |A"])

v

/2 (Lm/2] - p - q/2)

(Lw/23/3 - p/2)(|w/2] - p - m/2]/3 + p/2)

v

(Lm/21/3 - p/2) (e m/2]/3 - p/2)

> 2\m/21%/q - p|m/2]/2.

For v, eA', wieB', and 2 in the range 1< ¢ < |m/2]
call v.,, w. , ramitchif j-i =2. For every v, cA' and
Wy eB' there is exactly one value of ¢ which produces a match;
hence the total number of matches for all possible Vi W IS
|a|-|B'| > 2\m/2,%/q - pLm/2j/2 . Since there are only |m/2|
~values of a, sone value of s produces at least 2|m/2]/q - p/2
matches.  Thus, for k = 2\ m/2/q - p/2, there is some value of
and sone set of k inputs A" = {vi.l,v. roe ;hvik} c A' such that
B" = {wil”,wi RS

2 k
property, there nust be Kk vertex-disjoint paths between A" and B" .

oW e B Since G has the shifting

But each such path must contain a vertex of ¢ which is neither an
’ input nor an output. Hence 2«/-2-«/;1. -p>2m/2)/q - p/2 , and

n > Lm/2_|2/l62 . g

A shifting circuit is a Boolean circuit with mprinary inputs

X15Xps +eesXy » ZErO OF TIOTE auxiliary inputs, and moutputs ZysZpreeesZp

such that, for any k in the range 0 < k <m, there is sone assignment
of the constants 0 , 1 to the auxiliary inputs so that output Z: ik

conputes the identity function X for 0 <i <mk . The Bool ean

16



convol ution of two Boolean vectors (Xl’xz"'“*xm) and (yl,ye,, , .,ym)

is the vector (22’73’-'. ’ng) given by z, = i+;@_k XYy -

Corollary 2. Any planar shifting circuit has at [east l_m/ef/l62

vertices.

Proof . Any shifting circuit has the shifting property.

See [23,2L4]. O

Corollary 3,  Any planar circuit for conputing Boolean convolution has

at | east Lm/2_]2/l62 vertices.

Proof . A circuit for computing Bool ean convolution is a shifting
circuit if we regard X), 0 4050 as the primary inputs and Zyo vensZo g

as the outputs, O

Corollary 4. Any planar circuit for conputing the product of two m

bit binary integers has at |east Lm/2J2/162 vertices.

Proof . Acircuit for nultiplying two mbit binary integers is a

shifting circuit. O

The last result of this section is an Q(mh) | ower bound on the
size of any planar circuit for multiplying two mxm Bool ean matri ces.
We shal | assune that the inputs are, X.. ., Yy for 1<1i,j < mand
the outputs are z. 13 for 1 <i,j<m. The circuit computes
Z=XY, where Z = (Zij) , X = (Xij) , and Y = (yij) .\ use
the following property of circuits for nultiplying Boolean nmatrices,

17



called the matrix concentration property [23,24], For any k in the

range 1 < k < n2, any set {X}}“lgrgk} of k inputs fromX ,

and any pernutation o of the integers one through n, there exist

k vertex-disjoint paths fromi{x. . |1sr <k} to (74 gy yl1<r <k},
1.3 19y

Simlarly, for any k in the range 1< k gne , any set

. |1 <r<k) of k inputs fromy , and any pernutation o

id
rr
of one through n , there exist Kk vertex-disjoint paths from

{y
fvig, |1 <r <k} to {zc(ir)jrllfrgk}.

Theorem 7. Any planar circuit G for nmultiplying two mxm Bool ean

. . L . - .
matrices contains at |east cm vertices, for sone positive constant c .

Proof.  This proof is somewhat involved, and we nake no attenpt to
‘maximze the constant factor, Suppose G contains n vertices, and
that mis even. Assign a cost of l/(umg) to each input x,, and
each i nput Very @ cost of l/(2m2) to each output z..,, and a cost
of zero to every other vertex. There is a partition A, B, Cof the
vertices of G such that neither A nor B has total cost exceeding
1/2, no edge joins a vertex in Awth a vertex in B, and C
contains no nore than 2'\/‘5\/-5/ (1 - /-2_/_5-) = cl«/;x- vertices. This

is a corollary of Theorem 1; see [14]. Wthout loss of generality,
suppose that B contains no fewer outputs than A, and that A

contains no fewer inputs x,. than inputs Yogq - Then B contains

J
at | east (m2 - cl «/?1)/2 outputs, which contribute at |east
/4 - cl«/;/(hme) to the cost of B. Thus inputs contribute at nost

1/ - cl«/H/(hmz) to the cost of B, and B contains at nost

18



n° + cl"ﬁl inputs, A contains at least EmS- (n% 'fC'L'.‘/?l) -cll\/ﬁ =
e -2clx/'ﬁ inputs, of which at |east m2/2 - clﬁ are inputs X'iJ

One of the follow ng cases nust hol d.

Case 1. A contains at |east 3m2/5 i nputs Xij - Let p be the
nunber of colums of X which contain at |east im/7 el ements of A .
Then pm+ (m-p)(4m/7) >_3m2/5 , and p > m/15 . Let g be the nunber
of colums of Z which contain at |east Lm/9 elenents of B. Then
qn+ (m-q)(4m/q) > ne/2 - clAfH/e , and q > m/10 - 9cl&/(10m) .

Let k = min{m/lS,m/lO—9cl*f£/(lOm)} . Choose any k col utms
of x, each of which contains at |east um/7 el enents of A, Mtch
each such column of X with a colum of Z which contains at [east
km/9 elements of B, For each pairof matched col umns Xyj 0 Zxg o
select a set of Lm/7+ km/9-m = m/63 rows ¢ such that x,, is
in A and Zys is in B. Such a selection gives a set of km/63
elements in xnA and a set of km/63 elements in ZnB Wwhi ch nust
be joined by km/63 vertex-disjoint paths, since ¢ has the matrix
concentration property. Each such path nust contain a vertex of C.
Thus mm/63 < clf\/;{ , which neans either m2/(15-63) < cl\/E (i.e.,
(n/(15-65¢,))% < n ) or m/63(m/10 - 9e W/ /(1om)) < e vm

e, (@/(9+69¢)% <n).

Case 2. A contains fewer than 3m2/5 inputs X Then A contains

]
at | east 2m2/5 - 2cl\73 i nputs y.iJ. Let s be the set of m2

col ums of Z which contain the npst elements in B .

19



Subcase 2a. S contains at |east 3m9/1o elenents in B. Let p

be the nunber of colums of X which contain at |east 4m/9 elenents

of A. Then pm+t 4(m-p)m/9 > m2/2 - clx/'rT , and p > m/10 - 9cl«/H/(5m) .
Let g be the nunber of colums of Z which contain at |east Lm/7
elenents of B. Then an+ k(m/2 - q)m/7 > 5m2/10 , and q > m/30 .

A proof similar to that in Case 1 shows that n > cmLL for some positive

constant c .

Subcase 2b. s contains fewer than 3m2/lO elements in B . Then the
m 2 colunns Of Z not in S contain at |east m‘Q/S' - cl'\/;/'e el enent s
in B. Let q be the nunber of columms of Z not in S which contain
at |least m/10 el e}ents in B. Then gmt (nm2 - q)(m/10) > m2/5 - cl «/3/2,
and q > m/6 - Scl\/;/(9m) .If 0 >9g > m/6 - 5c1lfr'f/(9m) » then
~(3m2/(lOcl))2 >n . Hence assune g >0 . Then all colums in 8
must contain at |east m/10 elenents in B, and 2m/3 - 5c;vn/(9m)
colums of Z nust contain at |east m/10 elenments in B .
Let p be the nunber of colums of Y which contain at |east n 25
elenments of A. Then pm+ (m-p)(m/25) > 2m'9/5 - zcl'\/'r-l', and '
p >3m/8 - 25¢)\n/(12m).
‘ For any i nput Yij eA and integer ¢ in the range -ntl < ¢ < n-1

cal Yoig £ a match if z. B. By the previous computations,

14,36
there are at |east 2m/3 - 5cl\[5/(9m) + 3m/8 - 25cl\/;/(12m) -m =
m/25 - 9501'\/.;/(36m) = m/25 - cl‘\/;/m colums j such that Vs
contains m/25 elenents of A and Zyy cont ains m/10 el ements

of B . Each such colum produces m2/250 mat ches; thus the total
nunber of matches is at |east m3/6250 - mcl«/;f/eso . Since there are

only 2m-1 values of ¢, some value of ¢ produces at |[east

20



kK = m2/12,500 - ch/‘g/SOO mat ches. Since G has the matrix
concentration property, this set of matches corresponds to a set

of k elements in YNA and a set of k elenents in znB which
nust be joined by k vertex-disjoint paths. Each such path nust
contain a vertex in C. Thus k < clﬁ , Which means

m4 /(12,500(cl + cg/soo))2 <n,

4 L :
In all cases n > cm for some positive constant ¢ .  Choosing
the mininumc over all cases gives the theoremfor even m. The

t heorem for odd m fol | ows immediately. O

The bounds in Theorems 5 - 7 and Corollaries 2 -4 are tight to

within a constant factor. W |eave the proof of this fact as an

exerci se.
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6. Embedding of Data Structures.

Let d = (Vl,El) and G, = (v ,E_2) be undirected graphs. An

enbedding of G, in G, is a one.-to-one map g: VI - v, The worst-case
proxinmty of the enbedding is max{de(yf(v),_jé(w)) | {v,w}eE;} , where

dz(x,y) denotes the distance between x and .y in G, - The average

proximity of the enbedding is ]E—ll[ T {4, @), 8(0) | (vsw}eE ] .

These notions arise in the following context. Suppose we wish to

represent some kind of data structure by another kind of data structure,

in such a way that if two records are logically adjacent in the first

data structure, their representations are close together in the second.

W can nodel the data structures by undirected graphs, with vertices
denoting records and edges denoting |ogical adjacencies. The representation
problemis then a graph enbedding problem in which we wsh to mninze

worst-case or average proximty. See [5,13,19] for research in this area.

Theorem 8. Any planar graph with maxi mum degree k can be enbedded in
a binary tree so that the average proximty is a constant depending only

upon k .

Proof. Let G be an n-vertex planar graph. Enbed Gin a binary
tree T by using the follow ng recursive procedure. |If G has one
vertex v , let T be the tree of one vertex, the inage of v .
Qtherwise, apply Corollary 1 to find a partition A, B, C of the
vertices of G. Let v be any vertex in C (if Cis enpty, let v
be any vertex). Embed the subgraph of G induced by Ayc-{v}lin a
binary tree T, by applying the method recursively. Embed the subgraph

of G induced by Bin a binary tree T, by applying the method
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recursively. Let T consist of a root (the image of v ) with two
children, the root of Ty and the root of T, . Note that the tree
T constructed in this way has exactly n vertices.
Let h(n) be the maximum depth of a tree T of n vertices
produced by this algorithm  Then
h(n) < 9 if n<9 ,
h(n) < h(en/3 + 24240 - 1) < h(29m/30) if n >9.
It follows that h(n) is 0(log n) .
Let ¢ = (V,E) be an n-vertex graph to which the algorithmis
applied, let G be the subgraph of G induced by Ayc , and |et
G, be the subgraph induced by B . If s(§ = 2 {8, (p(v),8(w)) | (v;w) e E},
then s(Q =0 if n=1, and s(Q < s(G)+ s(G,)+k [C|n(n) if
n>1. This follows fromthe fact that any edge of Gnot in @ or G,

must be incident to a vertex of C.

If s(n) is the maxi mumvalue of s(Q for any n-vertex graph G,

t hen

s(1) =0 ;

s(n)

max(s(i)+ s(n-i)+ckvn log n[n/3 - 24240 < i < 2n/3 + 2424/n }

IN

if n>1, for sone positive constant c .
An inductive proof shows that s(n) is Q(kn)
If Gis a connected n-vertex graph enbedded by the algorithm then
G contains at least n-l edges, and the average proximty is o0O(k) .
If Gis not connected, enbedding each connected conponent separately
and conbining the resulting trees arbitrarily achieves an 0(k) average

proximty. O
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It is natural to ask whether any graph of bounded degree can be
enbedded in a binary tree with 0(1) average proximty. (Gaphs of
unbounded degree cannot be so enbedded; the star of Figure 2 requires
Q(log n) proximty.) Such is not the case, and in fact the property
of being enbeddable in a binary tree with 0(1) average proxinty is
closely related to the property of having a good separator.

To meke this statement nore precise, let s be a class of graphs.

The class s has an f(n) -separator theorem if there exist constants

a<1l, B >0 suchthat the vertices of any n-vertex graph in S can
be partitioned into three sets A B, C such that |A|,|B| < an
|c] < Bf(n) , and. no vertex in Ais adjacent to any vertex in s.

Let s be any class of graphs of bounded degree closed under the
subgraph relation (i.e., if G,e 8 and d is a subgraph of Gy s
t hen Gype S ). Suppose S satisfies an ng(n)/(log n)2 separ at or
t heorem for sonme non-decreasing function g(n) . Using the idea in
the proof of Theorem 8, it is not hard to show that any graph in g
can be enbedded in a binary tree with Q(g(n)) average proximty.
Conversely, suppose any graph in a class S can be enbedded in a binary
tree with Q(g(n)) average proxinmity. Then § satisfies an ng(n)/log n
separator theorem In particular, if S satisfies no o(n) -separator
theorem then enbedding the graphs of S in binary trees requires
a(log n) average proximty. Erd8s, G aham and Szemerédi [7 ] have
shown the existence of a class of graphs of bounded degree having no

o(n) -separator theorem
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7. The Post O fice Problem

In [11], Knuth nmentions the followi ng problem given n points
(post offices) in the plane; determne, for any new point (house),
which post office it is nearest. _Any preprocessing of the post offices
is allowed before the houses are processed. Shanmps [22] gives an
0(log n) -time, o(ne) -space algorithm and an 0((log n)e) -tinme,
Qn log n) -space algorithm See also [6]. Using Theorem 2 we can
give a solution which requires 0(log n) tine and Q'n) space, both
minimm if only binary decisions are allowed,

A polygon is a connected, open planar region bounded by a finite
set of line-segnents. (For convenience, we allow the point at infinity
to be an endpoint of a line segnent; thus a line is a line segnent.)

A polygon partition of the plane is a partition of the plane into

pol ygons and bounding line segnents. A triangulation of the plane is

a polygon partition, all of whose polygons are bounded by three Iine

segments. A triangulation of a polygon partition is a refinenment of

the partition into a triangulation, Two polygons in a polygon partition
are adjacent if their boundaries share a line segnent. A set of polygons
I's connected if any two polygons in the set are joined by a sequence of
adj acent pol ygons.

W shall solve the following triangle problem given an n-triangle

triangulation and a point, determne which triangle or line segment of
the triangulation contains the point. The post office problem can be
refornulated as a triangle problem the set of points closest to each
post office forns a polygon [22]. W shall nake use of the follow ng

| enma, which we do not prove.
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Lemma 1. Any n-polygon partition has a refinement whose total nunber

of triangles is bounded vy n plus the nunmber of Iine segnents bounding
non-triangles plus a constant (a line segment bounding two non-triangles

counts twice in this bound).

W shall build up a sequence of nore and nore conplicated (but

nore and nore efficient) algorithms, the last of which is the desired one.

nl+e )

Theorem 9. Gven an 0(log n) -tinme, O -space algorithm for the

triangle problemwth ¢ > 0, onecan construct an 0(log n) -tine,

nl+2<—:/3)

o( -space algorithm

Proof . Let T be a triangulation and v be a vertex for which the

triangle problemis to be solved. By Theorem 2 there is a set of O(n2/5)
triangles ¢, whose renoval from T |eaves no connected set of nore than
O(n2/3) triangles.

Merge pairs of adjacent triangles which are not in Cy to forma
pol ygon partition Fj . P, cont ains at nost Qne/B) line segnents,
since each such line segnent nust be a bounding segment of a triangle
in T. Find a triangulation To of B, with o(n2/3) triangles,
which exists by Lemma 1. Using the given algorithm determne which
triangle or line segnent of T, cont ains v .

If visin some triangle of Cc,, the problemis solved. Qherwise,

0
V is known to be in sone connected set ¢y of tr‘i angles in T mnus Cy .
Merge pairs of adjacent triangles which are not. in C; to form a pol ygon
partition Pi . Since Py contains at nost O(n2/3) l'ine segnents,
there is a triangulation Ty of P; Wi th 0(n2/3) "triangles. Using'"
the given algorithm determne which triangle or line segment of T,

contains v . This solves the problem
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The sets C; pol ygon partitions Pl , and triangul ations T,
are all precomputed. Thus the time required by the algorithmis
0(1og n2/5) to discover which triangle of T, contains v, plus
0(log ne/j) to discover which triangle of T.1 contains v . The
total tine is thus 0(log n) . The total space is
> o(lz, % < o™ | g
Corollary 5. For any ¢ > 0 there is an 0(log n) -tine, o(nhe)

-space algorithm for the triangle problem

Proof . | medi ate from Theorem 9, using the 0(log n) -tine,

o(ne) -space algorithm of [22] as a starting point. a

Theorem 10. There is an 0(log n) -tinme, Q(n) -space solution to the

triangl e problem

Proof . Let T be a triangulation and v a vertex for which the triangle
problemis to be solved. |If T contains no nore than Ny triangles,
wher e n, is a sufficiently large constant, determne which triangle

contains v by testing v against each |line segment bounding a triangle
of T. Qherwise, let C be a set of (Xn,5/5) t riangles whose renoval
-from T | eaves no connected set of nore than O(nh/E) triangles. Goup

the connected sets of triangles in T mnus C, into sets C; each

0
o L 4/5 :

containing within a constant factor of n triangles.
Merge pairs of adjacent triangles which are not in Cy to form

a polygon partition Py - By contains at nost O(n,3/5) line segnents.
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Find a triangulation T, of P W t h o(n5/5)triang|es. Usi ng an

0
0{log n) -tine, o(n7/6) -space algorithm determne which triangle
of T, cont ains v .

If v is some triangle of ¢, , the problemis solved. Qherwse
v is known to be in sone set c . Merge pairs of adjacent triangles
which are not inc, to form a polygon partition P, . Each line
segment bounding a non-triangular polygon of P, nust bound a triangle
of Cqy - Thus there is a triangulation T, of P, cont ai ni ng
[Ci| + o(n5/5) triangles. Apply the algorithm recursively to discover
which triangle of T, cont ains v . This solves the problem

The sets C; pol ygon partitions P, , and triangul ations T,

are all precomputed. If t(n) is the worst-case time required by the

algorithm on an n-triangle triangulation, then

t(n)

1§

a1) if n<ng,
t(n) = t(O(nh/5))+ 0(log n) ot herwi se.

An inductive proof shows that t(n) is 0(log n) if n, i s chosen
sufficiently large.

If s(n) is the worst-case storage space required by the algorithm
on an n-triangle triangulation, then

s(t) = 0(1) i f n<ng
“s(n) < An"/2%) +max{D s(n, +0(x®?)) |Zn, <n and
cp /5 <n; < cenh/5}
for sone positive constants cl and ¢, -

An inductive proof shows that s(n) is Qn) . O



The preprocessing time required by the algorithm of Theorem 10
is Qnlog n) . See [22]. W do not advocate this algorithmas a
practical one, but its existence suggests that there may be a practical

algorithm with an 0(log n) tine bound and an Q(n) space bound.
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8. Qther Applications.

As illustrated in this paper, Theorem 1 and its corollaries have
many interesting applications, and the paper does not exhaust them
V¢ have obtained two additional results which require fuller discussion
than is possible here. (ne is the application of Theorem 1 to Gaussian
elimnation. George [8] has proposed an Q(n log n) -space, o(n5/2) -tinme
method of carrying out Caussian elinmination on a system of equations whose
sparsity structure corresponds to a Vn x«/; square grid. W can
generalize his method so that it applies to any system of equations
whose sparsity structure corresponds to a planar or alnost-planar graph.
Such systens arise in the solution of two-dimensional finite-elenment
problems [15]. W shall discuss this application in a subsequent paper;
we hope that it will prove of practical, as well as theoretical, value.
Anot her application involves the power of non-determnismin one-tape
Turing machines. W can prove that any non-deternministic t(n) -time-
bounded one-tape Turing machine can be sinulated by a t(n) alternating
one-tape Turing machine with a constant nunber of alternations, where
y < 1 is a suitable constant and t(n) satisfies certain reasonable
restrictions. Alternation generalizes the concept of non-determ nism
and is discussed in [3,12]. Qur result strengthens Paterson's space-

efficient simulation of one-tape Turing machines [17].
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Figure 1. Elimnation of a crossover by use of three
"exclusive or" gates. Reference [ 9] contains
a crossover circuit which uses only "and" and
"not" .
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Figure 2. A star.
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