
APPLICATIONS OF A PLANAR SEPARATOR THEOREM

by

Richard J. Lipton and Robert E. Tarjan

STAN-CS-77-628
OCTOBER 1977

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UN IVERS ITY

Applications of a Planar Separator Theorem

f*Richard J. Lipton
Computer Science Department
Yale University
New Haven, Connecticut 06520 . .

--/*3c
Robert Endre Tarjan
Computer Science Department
Stanford University
Stanford, California 9433

August, 1977

Abstract.

Any n-vertex planar graph has the property that it can be divided

into components of roughly equal size by removing only 0(/G) vertices,

This separator theorem, in combination with a divide-and-conquer

strategy, leads to many new complexity results for planar graph

problems. This paper describes some of these results.

Keywords: algorithm, Boolean circuit complexity,

divide-and-conquer, geometric complexity, graph embedding,

lower bounds, maximum independent set, non-serial dynamic

programming, pebbling, planar graphs, separator,

space-time tradeoffs.

:-I*
This research partially supported by the U.S. Army Research Office,
Grant No. DAAG 29-76-G-0338.

-f** This research partially supported by National Science Foundation grant
MCS-75-22870 and by the Office of yaval Rescsrch contract NOOO~~-76-c-0688.

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

1

1. Introduction.

One efficient approach to solving computational problems is

"divide-and-conquer" [l]. In this method, the.original problem is

divided into two or more smaller problems. The subproblems are solved

by applying the method recursively, and the solutions to the subproblems

are combined to give the solution to the original problem. Divide-and-

conquer is especially efficient when the subproblems are substantially

smaller than the original problem.

In [lb] the following theorem is proved.

Theorem 1. .Let G be

vertex costs summing to

any n-vertex

no more than

be partitioned into three sets A, B

planar graph with non-negative

one. Then the vertices of G can

4, such that no edge joins a

vertex in A with a vertex in B , neither A nor B has total vertex

cost exceeding 213 7 and C contains no more than 27/x vertices.

Furthermore A, B, C can be found in O(n) time.

In the special case .of equal-cost vertices, this theorem becomes

Corollary 1. Let G be any n-vertex planar graph. The vertices of G

can be partitioned into three sets A,B,C, such that no edge joins a

vertex in A with a vertex in B , neither A nor B contains more

than 2n/3 vertices, and C contains no more than e&K /vertices.

Theorem 1 and its corollary open the way for efficient application

of divide-and-conquer to a variety of problems on planar graphs. Inthis

paper we explore a number of such applications. Each section of the

paper describes a different use of divide-and-conquer. The results range

from an efficient approximation algorithm for finding maximum independent

sets in planar graphs to lower bounds on the complexity of planar

Boolean circuits. The last section mentions two additional applications

whose description is too lengthy to bs included in this paper.

3

3
LO Approximation Algorithms for NP-Complete Prdblems.

Divide-and-conquer in combination with Theorem 1 can be used to

rapidly find good approximate solutions to certain NP-complete problems on

planar graphs. As an example we consider the maximum independent set. .

problem, which asks for a maximum number of pairwise non-adjacent

vertices in a planar graph.

Theorem 2. Let G be an n-vertex planar graph with non-negative vertex

costs summing to no more than one and let 0 < E < 1 . Then there is some- -

set C of O("Jn/e) vertices whose removal leaves G with no connected

component of cost exceeding E . Furthermore the set C can be found

in O(n log n) time.

Proof. Apply the following algorithm to G .

Initialization: Let C = $3 .

General Step: Find some connected cmponent K in G minus C with

cost exceeding E . Apply Corollary 1 to K , producing a partition

Al 7 Bl > Cl of its vertices. Let C = cucl. If one of A1 and Bl

(say Al) has cost exceeding two-thirds the cost of K, apply
a

Theorem 1 to the subgraph of G induced by the vertex set Al ,

producing a partition A2, B2, C2 of Al . Let C = cut, .

Repeat the general step until G minus C has no component with

cost exceeding E .

The effect of one execution of the general step is to divide the

coml,onent K into smaller components, each with no more than two-thirds

the cost of K and each with no more than two-thirds as many vertices

4

as K. Consider all components which arise during the course of the

algorithm. Assign a level to each component as follows. If the

component exists when the algorithm halts, the component has level zero.

Otherwise the level of the component is one greater than the maximum._

level of the components formed when it is split by the general step.

With this definition, any two components on the same level are

vertex-disjoint.

Each level one component has cost greater than E , since it is

eventually split by the general step. It follows that, for i > 1 ,

each level i component has cost at least (3/2) % -and contains

at least (3/2)i vertices. Since the total cost of G is at most one,-=

the total number of components of level i is at most (2/3)i-1/ E: .

The total running time of the algorithm is 0(x {IKl 1 K is a component

split by the general step)) . Since a component of level i contains

at least (3/2)i vertices, the maximum level k must satisfy

(3/2jk < n , or k < 103,~ n . Since components in each level are

vertex-disjoint, the total running time of the algorithm is

O(n lo
$1

2 n) = O(n log n) .

a The total size of the set C produced by the algorithm is bounded by

m Ill pq 1 K is a component split by the general step))

5

The following algorithm uses Theorem 2 to find an approximatelgr

maximum independent set I in a planar graph G = (V,E) .

Step 1. Apply Theorem 2 to G with E = (log log n)/n and each vertex

.

having cost l/n to find a set of vertices C containing

0(+&Z&G) vertices whose removal leaves no

connected component with more than log log n vertices.

Step 2. In each connected component of G minus C , find a maximcun

independent set by checking every subset of vertices for

independence. Form I as a union of maximum independent sets,

one from each component.

Let I* be a maximum independent set of G . The restriction of

I* to one of the connected components formed when C is removed

from G ca.n be no larger than the restriction of I to the same

component. Thus II*\ - II

G is four-colorable, and

0(1/d=), and the

zero with increasing n .

= O(n/Js) . Since G is planar,

II*1 2 n/4 . Thus (\I*\-III)/ II"1 =

relative error in the size of I tends to

Step 1 of the algorithm requires O(n log n) time by Theorem 2.
n.

Step 2 requires O(ni 2 i) time on a connected component of ni vertices.

The total time required by Step 2 is thus

n n. n
0 C ni 2 7. I C ni = n and 0 < ni < log log n =

. 1 .1= l=l

0 log Tog n (log log n)21°g log n = O(n log n) . Hence the entire

algorithm requires O(n log n) time.

6

3

3. Nonserial Dynamic Programming.

Many NP-complete problems, such as the maximum independent set

problem, the graph coloring problem, and others, can be formulated as
l

nonserial dynamic programming problems [2,201. Such a problem is

of the following form: minimize the objective function f(xl' . . ., xn) 9

where f is given as a sum of terms fk(*) , each of which is a function

of only a subset of the variables. We shall assume that all variables

Xi take on values from the same finite set S , and that the values

of the terms fk(e) are given by tables. Associated with such an

objective function f is an interaction graph G = (V,E) , containing

one vertex Vi for each variable xi in f , and an edge joining xi
--

and x.
J

for any two variables xi and
xj

which appear in a c-on

term fk(a) .

By trying all possible values of the variables, a nonserial

dynamic programming problem can be solved in 20b) time. We shall

show that if the interaction graph of the problem is planar, the

problem can be solved in 2O(~) time . This means that substantial

savings are possible when solving typical NP-complete problems restricted

to planar graphs. Note that if the interaction graph of f is planar,

no term fk(') of f can contain more than four variables, since the

complete graph on five vertices is not planar.

In order to describe the algorithm, we need one additional concept.

m
The restriction of an objective function f = c fk to a set of

k=l

variables x.
5

,xi is the objective function
3

f' = C (fk \ fk depends upon one or more of x.
il

,...,x.
'3

3 .

7

m
Given an objective function f(xl,x.) = c fk and a

k=l

subset S of the variables xl,...,xn which are constrained to have

specific values, the following algorithm solves the problem:

maximize f subject to the constraints on the variables in S .

In the presentation, we do not distinguish between the variables

x1' xn. . ., and the corresponding vertices in the interaction graph.

Step 1. If n-Q, solve the problem by exhaustively trying all

possible assignments to the unconstrained variables.

Otherwise, go to Step 2.

2 .Step Apply Corollary 1 to the interaction graph G of f . Let

A, B, C be the resulting vertex partition. Let fl be

the restriction of f to AuC and let f2 be the

restriction of f to BuC. For each possible assignment

of values to the variables in C-S , perfomn the following

steps:

(a) Maximize fl with the given values for the variables

in CUS by applying the method recursively;

(b) Maximize f2 with the given values for the variables

in ClJS by applying the method recursively;

(c) Combine the solutions to (a) and (b) to obtain a maximum

value of f with the given values for the variables

in CUS.

Choose the assignment of values to variables in C-S which

maximizes f and return the appropriate value of f as

the solution.

The correctness of this algorithm is obvious. If n > 9 , the

algorithm solves at most 2OG) subproblems in Step 2, since C

is of O(G) size. Each subproblem contains at most

2n/3 + 23/F& 5 29n/30 variables. Thus if t(n) is the running
. .

time of the algorithm, we have t(n) 5 O(n log n)+2
em . t (29n/30)

if n>9, t(n) s O(1) if n <, 9 . An inductive proof shows

that t(n) 5 206 1 .

9

4. Pebbling.

The following one-person game arises in register allocation

problems [21], the conversion of recursion to iteration [16], and

the study of time-space tradeoffs [4 ,~0,18]. Let, G = (v,E) be

a directed acyclic graph with maximum in-degree k . If (v,w) is

an edge of G , v is a predecessor of w and w is a

successor of v . The game involves placing pebbles on the vertices

of G according to certain rules. A given step of the game consists

of either placing a pebble on an empty vertex of G (called pebbling

the vertex) or removing a pebble from a previously pebbled vertex.

A vertex may be pebbled only if all its predecessors have pebbles.

The object of the game is to successively pebble each vertex of G

(in any order) subject to the constraint that at most a given number

of pebbles are ever on the graph simultaneously.

It is easy to pebble any vertex of an n-vertex graph in n steps

using n pebbles. We are interested in pebbling methods which use

fewer than n pebbles but possibly many more than n steps. It is

known that any vertex of an n-vertex graph cstn be pebbled with

-
O(n/log n) pebbles [lo] (where the constant depends upon the maximum

in-degree), and that in general no better bound is possible [18]. We

shall show that if the graph is planar, only O(G) pebbles are

necessary, generalizing a result of [18]. AI-I example of Cook [41

shows that no better bound is possible for planar graphs.

Theorem 3. Any n-vertex planar acyclic directed graph with maximum

in-degree k can be pebbled using O(& + k 10% n) pebbles.

10

Proof. Let a = 2& ad p=2/3. Let G be the graph to be

pebbled. Use the following recursive pebbling procedure. If n 5 no ,

where no = (a/(l-@))2 , pebble all vertices of G without deleting

pebbles. If n > no y find a vertex partition A, B, C

Corollary 1. Pebble the vertices of G in topological

To pebble a vertex v , delete all pebbles except those

each predecessor u of v, let G(u) be the subgraph

satisfying

f*order.

on C . For

of G induced

by the set of vertices with pebble-free paths to u . Apply the method

recursively to each G(u) to pebble all predecessors of v , leaving

a pebble on each such predecessor. Then pebble v .

If p(n) is the maximum number of pebbles required by this method

on any n-vertex graph, then

p(n) = n if

p(n) < all;; +

n<n- 0 '

k + p(2n/3 + 6) if n>n
0 l

An inductive proof shows that p(n) is 0(&+klog2 n) . Cl

It is also possible to obtain a substantial reduction in pebbles

while preserving a polynomial bound on the number of pebbling steps,

e as the following theorem shows.

Theorem 4. Any n-vertex planar acyclic directed graph with maximum

- in-degree k can be pebbled using O(n2/j +k) pebbles in O(kn5/') time.

*
-/ That is, in an order such that if v is a predecessor of w ,

V is pebbled before w .

11

Proof. Let -C be a set of O(n213) vertices whose removal leaves

f*G with no weakly connected component containing more than nv3

vertices. Such a set C exists by Theorem 2. The following pebbling

procedure places pebbles permanently on the vertices of C . Pebble

the vertices of G in topological order. To pebble a vertex v ,

pebble each predecessor u of v and then pebble v . To pebble a

predecessor u , delete all pebbles from G except those on vertices

in C or on predecessors of v . Find the weakly connected component

in G minus C containing u . Pebble all vertices in this component,

in topological order.

The total number of pebbles required by this strategy is O(n2j3 >

to pebble vertices in C plus n213 to pebble each weakly connected

component plus k to pebble predecessors of the vertex v to be
. .
pebbled. The total number of pebbling steps is at most

O(k0n.n . 0

2' A weakly connected component of a directed graph is a connected
camponent of the undirected graph formed by ignoring edge directions.

12

5. Lower Bounds on Boolean Circuit Size.

A Boolean circuit is an acyclic directed graph such that each

vertex has in-degree zero or two, the predecessors of each vertex are

ordered, and corresponding to each vertex v of in-degree two is a-.

binary Boolean operation bv . With each vertex of the circuit we

associate a Boolean function which the vertex computes, defined as

follows. With each of the k vertices vi

we associate a variable x.
1

and an identity

With each vertex w of in-degree two having

of in-degree zero (inputs)

function fv (xi) = xi .
i

predecessors u, v we

associate the function fW = bw(fu,fv) l The circuit computes the

set of functions associated with its vertices of out-degree zero

(outputs).

We are interested in obtaining lower bounds on the size (number

of vertices) of Boolean circuits which compute certain common and

important functions. Using Theorem 1 we can obtain such lower bounds

under the assumption that the circuits are planar. Any circuit can be

converted into a planar circuit by the following steps. First, embed

the circuit in the plane, allowing edges to cross if

replace each pair of crossing edges by the crossover-

in Figure 1. It follows that any lower bound on the

necessary. Next,

circuit illustrated

size of planar

circuits is also a lower bound on the total nwnber of vertices and

edge crossings in any planar representation of a non-planar circuit,

In a technology for which the total number of vertices and edge

crossings is a reasonable measure of cost, our lower bounds imply that

it may be expensive to realize certain commonly used functions in

hardware.

13

A superconcentrator is an acyclic directed graph with m inputs

and m outputs such that any set of k inputs and any set of k

outputs are joined by k vertex-disjoint paths, for all k in the

range l<k<m.- -

Theorem 5. Any m-input, m-output planar superconcentrator contains

at least m2/72 vertices.

Proof. Let G be an m-input, m-output planar superconcentrator.

Assign to each input and output of G a cost of 1/(2m) , and to every

other vertex a cost of zero. Let A, B, C be a vertex partition

satisfying Theorem 1 on G (ignoring edge directions). Suppose C

contains p inputs and outputs. Without loss of generality, suppose

that A is no more costly than B , and that A contains no more

. outputs than inputs. A contains between 2m/3 - p and m - p/2

inputs and outputs. Hence A contains at least m/3 - p/2 inputs

and at most m/2 - p/4 outputs. B contains at least m-p- (m/2 - p/4) =

42 - 3P/4 outputs. Let k = min(rm/3 - p/21, rm/2 - 3~141) . Since

G is a superconcentrator, any set of k inputs in A and any set of

k outputs in B are joined by k vertex-disjoint paths. Each such
a

path must contain a vertex in C which is neither an input nor an

output. Thus 2&& - p 1 minTm/3 - p/2) m/2 - 3p/4] L m/3 - p 9

and n 2 m2/72 . 0

The property of being a superconcentrator is a little too strong

to be useful in deriving lower bounds on the complexity of interesting

functions. However, there are weaker properties which still require

n(m2) vertices. Let G = (V,E) be an acyclic directed graph with m

14

numbered inputs vpp. l ☺Vm and m numbered outputs wpp l l l .?wm l

G is said to have the shifting property if, for any k in the rage

1 < k < m , any I in the range 0 < 1 < m-k , and any subset of k- -

sources Cv. ,...,v.)
=1 'k

such that ii,i2, . . ., ik -<m-I, there are k

vertex-disjoint paths joining the set of inputs iv.
=1

Y l **, V.
'k

) with

the set of outputs {vi +a,..*,vi +,I .
1 k

Theorem 6. Let G be a planar acyclic directed graph with the

shifting property. Then G contains at least im/2j2/162 vertices.

Proof. Suppose that G contains n vertices. Assign a cost of l/m

to each of the first Lm/21 inputs and to each of the last Lm/2 J

outputs of G , and a cost of zero to every other vertex of G . Call

the first Lm/2 J inputs and the last Lm/2 J outputs of G costly.

Let A, B, C be a vertex partition satisfying Theorem 1 on G

(ignoring edge directions).

Without loss of generality, suppose that A is no more costly

than B, and that A contains no more costly outputs than costly

inputs. Let At be the set of costly inputs in A, B' the set of-

costly outputs in B , p the number of costly inputs and outputs

in C, and q the number of costly inputs and outputs in A . Then

'2Lm/2]/3-P5 q< Lm/2J -p/2. Hence IA' 1 > Cl/2 > L@J/3 - P/2 l
_ _

Also

15

IA')+'(2 jA'I++J - P - (q- \A')))

L d2' (p/q - P - q/2)

1 (LmPJ/3 - ~/2)(Lm/2J - P - Lm/2J/3 + p/2)

= (Lm/2J/3 - ~/2)(2Lm/2J/3 - P/2)

2 2Lm/2J2/q - PL@J/~ l

For viEA' , wjeB' , and I! in the range l<l< p@'J ,

call v. , w. ,1 1
I a match if j-i = 1 . For every vieA' and

wj EB'
there is exactly one value of I which produces a match;

hence the total number of matches for all possible vi , w. , & is
J

\A'*~B'(> 2Lm/2J2/q - pLm/2J/2 . Since there are only Lm/2J-

valuesof a, some value of I produces at least qJ@J/q - P/2

matches. Thus, for k = 2L+J/s - P/2 Y there is some value of !

and some set of k inputs A" = [v. ,vi Y l l 0, such that
=1 2

B" = {Wi +a,wi +a, .,.,wi Since G has the shifting
1 2

+~) c B' .
k

property, there must be k vertex-disjoint paths between A" and B" .

But each such path must contain a vertex of C which is neither an
d
input nor an output. Hence 2 2 nd--d- - P 2 2Lm/2J/q - P/2 I amf

n 2 Lm/2J2/162 . 0

A shifting circuit is a Boolean circuit with m primary inputs

xpp "'YXm Y zero or more auxiliary inputs, and m outputs Z1JZ2Y “4Jm I

such that, for any k in the range O<k<m, there is some assignment_ _

of the constants 0 , 1 to the auxiliary inputs so that output zi+k

computes the identity function xi , for 0 5 i 5 m-k . The Boolean

16

convolution of two Boolean vectors (xp2’ l l l , ",) and (Yl,Y,, y.,

is the vector (Z2, 3~ l l l YZ,) given by Zk =

Corollary 2. Any planar shifting circuit has at least ~m/2~~/162

vertices.

Proof. Any shifting circuit has the shifting property.

See [23,24]. 0

Corollary 3. Any planar circuit for computing Boolean convolution has

at least Lm/2J2/162 vertices.

circuit if we regard
x1J l .*,⌧m

as the outputs, 0

as the primary inputs and z
2' "4~1

Corollary 4. Any planar circuit for computing the product of two m

bit binary integers has at least Lm/2 J2/162 vertices.

Proof. A circuit for computing Boolean convolution is a shifting

Proof. A circuit for multiplying two m-bit binary integers is a

- shifting circuit. 0

The last result of this section is an
4

n(m) lower bound on the

Isize of any planar circuit for multiplying two mxm Boolean matrices.

We shall assume that the inputs are x.. , yij for 15 i,j < m and
13 -

the

Z =

the

outputs are z. .
1J

for 1 < i,j < m .- The circuit computes

X*Y , where Z = (zij) , X = (xij) , and Y = (yij) . We use

following property of circuits for multiplying Boolean matrices,

17

called the matrix concentration property [23,2&l, For any k in the

range 1 < k < n2 , any set (xi j 115 r 2 kj of k inputs from X ,- -
rr

and any permutation o of the integers one through n , there exist
,'T

k vertex-disjoint paths from *Ix.
l,jr

\l<r<k) to (z.
=$j,!

\l<r<_k].

Similarly, for any k in the range 15 k 5 n2 , any set

cyirjr 11 < r < k) of k inputs from Y , and any permutation c
- -

of one through n , there exist k vertex-disjoint paths from

CYirjr 11 5 r 5 kj to (Zo(i >j 11 5 r 5 kl c
r r

Theorem 7. Any planar circuit G for multiplying two mxm Boolean

matrices contains at least cm
4 vertices, for some positive constant ‘c .

Proof. This proof is somewhat involved, and we make no attempt to

‘maximize the constant factor, Suppose G contains n vertices, and

that m is even. Assign a cost of 1/(4m2) to each input x.. and
13

each input y.. , a cost of
13

l/(2m2) to each output z.. , and a cost1J

of zero to every other vertex. There is a partition A, B, C of the

vertices of G such that neither A nor B has total cost exceeding

J/2 Y no edge joins a vertex in A with a vertex in B , and C

contains no more than 2~&K/(l - 8~6) = cl4.K vertices. This

is a corollary of Theorem 1; see [14]. Without loss of generality,

suppose that B contains no fewer outputs than A , and that A

contains no fewer inputs x.. than inputs y.. . Then B contains
13 13

at least (m2 - cl n02 outputs, which contribute at least

l/4 - Cl&/(4m2) to the cost of B . Thus inputs contribute at most

l/4 - Cl &/(4m2) to the cost of B , and B contains at most

18

in-puts. A contains at .Lezst 3 2pJl- . (m- + c
I.
;,nf> -c In

1 d-
=

m2 -2cll/;; inputs, of which at least m2/2 - cl,& are inputs x.. .
=J

One of the following cases must hold.
. .

Case 1. A contains at least 3m2/5 inputs xij ' Let p be the

number of columns of X which contain at least km/7 elements of A .

Then pm+ (m-p)&m/7) > 3m2/5 , and p > m/15 . Let q be the number- -

of colums of Z which contain at least km/V elements of B . Then

qm+ (m-q)(Gm/q) 2 m2/2 - c14E/2 , and q 1 m/l0 - 9cl&/(10m) .

Let k = min(m/l5,m/10-9cl&&l~m)) . Choose any k columns

of x, each o-f which contains at least 4m/7 elements of A , Match

each such column of X with a column of Z which contains at least

WV elements of B , For each pair-of matched columns x++~ , ‘*j '

select a set of 4m/7+ 4m/9-m = m/63 rows 1 such that xai is

in A and z
lj

isin B. Such a selection gives a set of km/63

elements in XnA and a set of km/63 elements in ZnB which must

be joine$ by h/63 vertex-disjoint paths, since C has the matrix

concentration property. Each such path must contain a vertex of C .

- Thus b/63 2 cl& , which means either m2/(15e63) < cl& (i.e.,

(m2/(15*63c1))2 < n) or m/Q+/10 - g~l&/(~~m)) < cl&- -

_ (i.e., (m2/(W9cl))2 < n >.

Case 2. A contains fewer than 3rn'/5 inputs x
ij l

Then A contains

at least 2m2/5 - 2cl&Y inputs y.. .
=J

Let S be the set of m/2

columns of Z which contain the most elements in B .

Subcase 2a. S contains at least 3m2/10 elements in B . Let p

be the number of columns of X which contain at least 4m/9 elements

of A . Then pm+ 4(m-p)m/V 2 m2/2 - cl6 , and p ,> m/l0 - Vcl&/(5m) .

Let q be the number of columns of Z which contain at least 4m/7

elements of B . Then qm+ 4(m/2 - q)m/7 2 3m2/10 , and q 2 m/30 .

A proof similar to that in Case

constant c .

Subcase 2b. S contains fewer

1 shows that n > cm
4 for some positive-

than 3m2/10 elements in B . Then the

3. F.
m/2 COlUmnS Of Z not in S contain at least m-/5 - clrdn/2 elements

in B . Let q be the number of columns of Z not in S which contain
--_

at least m/l0 elements in B . Then qm+ (m/2 - q)(m/lO) 2 m2/5 - cl0n 2 ,

and q > m/6 - 5cl&/(9m) . If 0 > q 2 m/6 - 5c,&/@m) , then- *-

-(3m2/(10cl))2 > n . Hence assume q > 0 .-

must contain at least m/l0 elements in B

columns of Z must contain at least m/l0

Let p be the number of columns of Y

Y and 2m/3 - 5cl&/(9m)

elements in B .

which contain at least m/25
9). P- 1

elements of A . Then pm+ (m-p)(m/25)) 2m-/5 - 2cl.\ln , and

p >3m/8 - 25c1&/(J-2m) l-
-

For any input yij EA and integer I in the range -n+l 5 I 5 n-l ,

call y.. , I
13

a match if z. :EB .
=+f,J

By the previous colrrputations,

there are at least 2m/3 - 5y&/@m) + 3m/8 - 25cl&/(12m) - m =

m/25 - 95clJ;;/(36m) = m/25 - clG/m columns j such that y*j

contains m/25 elements of A and z
*j

contains m/l0 elements

Then all columns in S

of B . Each such column produces m2/250 matches; thus the total

number of matches is at least m3/6250 - mcl6/250 . Since there are

only 2m-1 values of I , some value of I produces at least

20

k= m2/12,500 - c20n 500 matches. Since G has the matrix

concentration property, this set of matches corresponds to a set

of k elements in YnA and a eet of k elements in ZnB which

must be joined by k vertex-disjoint paths. Each such path must

contain a vertex in C . Thus k < cl& , which means

4
m /(12,500(c1+ c2/500)j2 5 n l

4
In all cases n ,> cm for some positive constant c . Choosing

the minimum c over all cases gives the theorem for even m . The

theorem for odd m follows imediately. c]

The bounds in Theorems 5 - 7 and Corollaries 2 -4 are tight to

within a constant factor. We leave the proof of this fact as an

exercise.

21

6. Rribedding of Data Structures.

Let Gl = (Vl,El) and G2 = (V2,1Z2) beundirec,ted graphs. An

embedding of Gl in G2 is a one.-to-one map Jf3: Vl + V2 . The worst-case

proximity of the embedding is , where

d.&Y) denotes the distance between x and .,y in G2 . The average

proximity of the embedding is

These notions arise in the following context. Suppose we wish to

represent some kind of data structure by another kind of data structure,

in such a way that if two records are logically adjacent in the ,first

data structure, their representations are close together in the second.--

We can model the data structures by undirected graphs, with vertices

denoting records and edges denoting logical adjacencies. The representation

. problem is then a graph embedding problem in which we wish to minimize

worst-case or average proximity. See [5,13,19] for research in this area.

Theorem 8. Any planar graph with maximum degree k can be embedded in

a binary tree so that the average proximity is a constant depending only

upon k .
d

Proof. Let G be an n-vertex

tree T by using the following

vertex v , let T be the tree

Otherwise, apply Corollary 1 to

planar graph. Embed G in a binary

recursive procedure. If G has one

of one vertex, the image of v .

find a partition A, B, C of the

vertices of G . Let v be any vertex in C (if C is empty, let v

be any vertex). mbed the subgraph of G induced by AuC-{v) in a

binary tree Tl by applying the method recursively. mbed the subgraph

of G induced by B in a binary tree T2 by applying the method

22

recursively. Let T consist of a root (the image of v) with two

children, the root of Tl and the root of T2 . Note that the tree

T constructed in this way has exactly n vertices.

Let h(n) be the maximum depth of a tree T of n vertices

produced by this algorithm. Then

h(n) 5 9 if n<V,-

h(n) 5 h@n/3 + 2&& - 1) < h(2%/30) if n > 9 .

It follows that h(n) is O(log n) .

Let G = (V,E) be an n-vertex graph to which the algorithm is

applied, let Gl be the subgraph of G induced by AUC , and let

G2 be the subgraph induced by B . If s(G) = c I%#(v)Ym) 1 (VYW) E El Y
c

then s(G) = 0 if n

n>l. This follows

must be incident to a

If s(n) is the

then

s(l) = 0 ;

=l, and s(G) f s(Gl)+ s(G2)+k \Clh(n) if

from the fact that any edge of G not in Gl or G2

vertex of C .

maximum value of s(G) for any n-vertex graph G ,

s(n) <_ max(s(i)+ s(n-i)+ckdn log n[n/3 - 2421./n 5 i 5 2n/3 + 2q/2z/n]

- if n>l, for some positive constant c .

An inductive proof shows that s(n) is O(kn) .

If G is a connected n-vertex graph embedded by the algorithm, then

G contains at least n-l edges, and the average proximity is
004 l

If G is not connected, embedding each connected component separately

and combining the resulting trees arbitrarily achieves an O(k) average

proximity. 0

23

It is natural to ask whether any graph of bounded degree can be

embedded in a binary tree with 00) average proximity. (Graphs of

unbounded degree cannot be so embedded; the star

Q(log n) proximity.) Such is not the case, and

of being embeddable in a binary tree with 00)

closely related to the property of having a good

To make this statement more precise, let S

The class S has an f(n) -separator theorem if

of Figure 2 requires

in fact the property

average proximity is

separator.

be a class of graphs.

there exist constants

a<l, f3>0 such that the vertices of any n-vertex graph in s can

be partitioned into three sets A, B, C such that IAl, IBI 5 an ,

ICI 5 Bfb) Y and no vertex in A is adjacent to any vertex in B .--

Let S be any class of graphs of bounded degree closed under the

subgraph relation (i.e., if G2e S and Gl is a subgraph of G2 y

then Gle S). Suppose S satisfies an ng(n)/(log n)2 separator

theorem for some non-decreasing function g(n) . Using the idea in

the proof of Theorem 8, it is not hard to show that any graph in S

can be embedded in a binary tree with O(g(n)) average proximity.

Conversely, suppose any graph in a class S can be embedded in a binary

tree with O(g(n)) average proximity. Then S satisfies an ng(n)/log n

separator theorem. In particular, if S satisfies no 44 -separator

theorem, then embedding the graphs of S in binary trees requires

fl(log n) average proximity. Erdes, Graham, and Szemergdi [7] have

shown the existence of a class of graphs of bounded degree having no

44 -separator theorem.

7a The Post Office Problem.

In [IJJ, Knuth mentions the following problem: given n points

(post offices) in the plane; determine, for any new point (house),

which post office it is nearest. Jny preprocessing of the post offices

is allowed before the houses are processed. Shamos [22] gives an

O(log n) -time, O(n2) -space algorithm and an O((log n)2) -time,

O(n log n) -space algorithm. See ALSO [63. Using Theorem 2 we can

give a solution which requires O(log n) time and O(n) space, both

minj,mum if only binary decisions are allowed,

A polygon is a connected, open planar region bounded by a finite

set of line-segments. (For convenience, we allow the point at infinity

to be an endpoint of a line segment; thus a line is a line segment.)

A polygon partition of the plane is a partition of the plane into

polygons and bounding line segments. A triangulation of the plane is

a polygon partition, all of whose polygons are bounded by three line

segments. A triangulation of a polygon partition is a refinement of

the partition into a triangulation, Two polygons in a polygon partition

are adjacent if their boundaries share a line segment. A set of polygons

is connected if any two polygons in the set are joined by a sequence of

adjacent polygons.

We shall solve the following triangle problem: given an n-triangle

triangulation and a point, determine which triangle or line segment of

the triangulation contains the point. The post office problem can be

reformulated as a triangle problem; the set of points closest to each

post office forms a polygon [22]. We shall make use of the following

lemma, which we do not prove.

25

Lemmal. Any n-polygon partition has a refinement whose total number

of triangles is bounded by' n plus the number of line segments bounding

non-triangles plus a constant (a line segment bounding two non-triangles

counts twice in this bound). .I ' '

We shall build up a sequence of more and more complicated (but

more and more efficient) algorithms, the last of which is the desired one.

Theorem 9. Given an O(log n) -time, O(n'+e) -space algorithm for the

triangle problem with E > 0 , one cm construct an O(log n) -time,

o(n1+2e/3) -space algorithm. . ,'

--

Proof. Let T be a triangulation and v be a vertex for which the

triangle problem is to be solved. By Theorem 2 there is a set of O(n213 >

. triangles Co whose removal from T leaves no connected set of more than

O(n
2/3) triangles.

Merge pairs of adjacent triangles which are not in Co to form a

polygon partition PO . PO contains at most O(n213) 1’ine segments,

since each such line segment must be a bounding sepent of a triangle

in T . Find a triangulation To of PO with O(n2i3) triangles,
-

which exists by Lemma 1. Using the given algorithm, determine which

triangle or line segment of To contains v .

If v is in some triangle of Co , the problem is solved. Otherwise,

v is known to be in some connected set Ci of triangles in T minus Co .
* 1

Merge pairs of adjacent triangles which are not in Ci to form a polygon

partition Pi . Since Pi contains at most O(n2i3) line segments,

there is a triangulation Ti of Pi with O(n2i3) 'triangles. Using'"

the given algorithm, determine which triangle or line segment of Ti

contains v . This solves the problem.

26

The sets Ci , polygon partitions P. , and triangulations T.
1 1

are all precamputed. Thus the time required by the algorithm is

O(log n2j3) to discover which triangle of TO contains v, plus

O(log n213

. .
) to discover which triangle of T.

1
contains v . The

total time is thus O(log n) . The total space is

C O((Tila) 5 O(n

x+26/3 >

l q
i

Corollary 5. For any E > 0 there is an O(log n) -time, O(n1+-E)

-space algorithm for the triangle problem.

Proof. Immediate from Theorem 9, using the O(log n) -time,

O(n2) -space algorithm of [22] as a starting point. 0

Theorem 10. There is an O(log n

triangle problem.

) -time, O(n) -space solution to the

Proof. Let T be a triangulation and v a vertex for which the triangle

problem is to be solved. If T contains no more than no triangles,

where no is a sufficiently large constant, determine which triangle

- contains v by testing v against each line segment bounding a triangle

of T . Otherwise, let C be a set of O(n3i5) triangles whose removal

-from T leaves no connected set of more than C(n415) triangles. Group

the connected sets of triangles in T minus Co into sets Ci , each

containing within a constant factor of n4/5 triangles.

Merge pairs of adjacent triangles which are not in Co to form

a polygon partition PO . PO contains at most O(n'15) line segments.

27

Find a triangulation To of PO with O(n3j5) triangles. Using au

O(log n) -time, O(n716) -space algorithm, determine which triangle

of To contains v .

If v is some triangle of Co , the problem is solved. Otherwise

V is known to be in some set Ci . Merge pairs of adjacent triangles

which are not in Ci to form a polygon partition Pi S Each line

segment bounding a non-triangular polygon of Pi must bound a triangle

of co . Thus there is a triangulation Ti of Pi containing

lCil + O(n3/5) triangles. Apply the algorithm recursively to discover

which triangle of Ti contains v . This solves the problem.

The sets Ci , polygon partitions Pi , and triangulations Ti

are all precomputed. If t(n) is the worst-case time required by the

algorithm on an n-triangle triangulation, then

t(n) = O(1) if n<n- 0'

> otherwise.t(n) = t(O(n4/5))+ O(log n

An inductive proof shows that t(n)

sufficiently large.

is O(log n) if no is chosen

If s(n) is the worst-case storage space required by the algorithm
e
on an n-triangle triangulation, then

s(t) = o(1) if n<n- 0 y

- s(n) 5 O(n7/y +max(C s(ni+O(n3'5)) II2Zn-j. _<n and

cn 4151 5 ni 5 c2n

for some positive constants cl and c2 .

An inductive proof shows that s(n) is O(n) . 0

28

The preprocessing time required by the algorithm of Theorem 10

is O(n log n) . See [22]. We do not advocate this algorithm as a

practical one, but its existence suggests that there may be a practical

algorithm with an O(log n) time bound and an O(n) space bound.

29

8.

mitny

Other Applications.

As illustrated in this paper, Theorem 1 and its corollaries have

interesting applications, and the paper does not exhaust them.

We have obtained two additional results which require fuller discussion. .

than is possible here. One is the application of Theorem 1 to Gaussian

elimination. George [81 has proposed an O(n log n) -space, O(n3j2) -time

method of carrying out Gaussian elimination on a system of equations whose

sparsity structure corresponds to a AX& square grid. We can

generalize his method so that it applies to any system of equations

whose sparsity structure corresponds to a planar or almost-planar graph.

Such systems arise in the solution of two-dimensional finite-element

problems [15]. We shall discuss this application in a subsequent paper;

we hope that it wiU prove of practical, as well as theoretical, value.

Another application involves the power of non-determinism in one-tape

Turing machines. We can prove that any non-deterministic t(n) -time-

bounded one-tape Turing machine can be simulated by a t(n)' a,lternating

one-tape Turing machine with a constant number of alternations, where

y < 1 is a suitable constant and t(n) satisfies certain reasonable

restrictions. Alternation generalizes the concept of non-determinism

and is discussed in [3,l2]. Our result strengthens Paterson's space-

efficient simulation of one-tape Turing machines [17].

30

References

Dl

El

[31

[41

[51

WI

[71

WI

[91

[lOI

w-1
e

WI

I D31

D41

1151

A, V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Efficient Computer Algorithms, Addison-Wesley, Reading, Mass., lp4.

U. Bertele and F. Brioschi, Nonserial Dynamic Programming, Academic

Press, New York, 1972, -.

A. K. Chandra and L. J. Stochneyer, "Alternation," Proc. Seventeenth

Annual Symp. on Foundations of Computer Science (lg6), 98-108.

S. A. Cook, "An observation on time-storage tradeoff," Proc. Fifth

Annual ACM Symp. on Theory of Computing (1973), 29-33.

R. A. DeMillo, S. C. Eisenstat, and R. J. Lipton, *'Preserving

average proximity in arrays," School of Information and Computer

Science, Georgia Institute of Technology (1976).
D. Dobkin and R. J. Lipton, "Multidimensional searching problems,"

SIAM J. Comput. 5 (196), 181-186.-=.
P. Erdijs, R. L. Graham, and E. Szemeredi, "On sparse graphs with

dense long paths," STAN-CS-75-504, Computer Science Dept., Stanford

University (1975).

J. A. George, "Nested dissection of a regular finite element mesh,"

SIAM J. Numer. Anal. 10 (1973), 345-363.

L. Goldschlager, "The monotone and planar circuit value problems are

log space complete for P," ACM SIGACT News 9, 2 (1977), 25-29.

J. Hopcroft, W. Paul, and L. Valiant, "On time versus space,"

Journal ACM 24 (1977), 332-337.

D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973.-
D. Kozen, "On parallelism in Turing machines," Proc. Seventeenth

Annual Qmp. on Foundations of Computer Science (196), 89-g.

R, J. Lipton, S. C. Eisenstat, and R. A. DeMillo, "Space and time

hierarchies for control structures and data structures," Journal

ACM 23 (lg76), 720-732.

R. J, Lipton and R. E, Tarjan, "A separator theorem for planar

graphs," to appear.

H. C. Martin and G. F. Carey, Introduction to Finite Element Analysis,

McGraw-Hill, New York, 1973.

31

D-61 M. S. Paterson and C. E. Hewitt, "Comparative schematolow,"

Record of Project MAC Conf. on Concurrent Systems and Parallel

Computation (lgTO>, 119-128.

D71

V-81

M. S. Paterson, "Tape bounds for time-bounded Turing machines,"

Journal Computer and System Sciences 6 (1972), 116-124.
W. J. Paul, R. E. Tarjan, and J. R. Celoni, "Space bounds for a

game on graphs," Math. Systems Theory 10 (1977), 239-251.

D91 A. L. Rosenberg, "Managing storage for extendible arrays,"

SIAM J. Comput. 4 (1975), 287-306.

PO1 A. Rosenthal, "Nonserial dynamic programming is optimal-," Proc.

Ninth Annual ACM Symp. on Theory of Computing (1977), 98-105.

[=I R. Sethi, "Complete register allocation problems," SIAM J. Comput.

4 (1g75), 226-248,

WI

1231

1241

M. J. Shamos, "Geometric complexity," Proc. Seventh Annual ACM

Symp. on Theory of Computing (197.5), 224-233.

L. G. Valiant, "On non-linear lower bounds in computational

complexity," Proc. Seventh Annual ACM Symp. on Theory of Computing

0975 >, 45-53 l

L. G. Valiant, "Graph-theoretic arguments in low-level complexity,"

Computer Science Dept., University of Edinburgh (1977).

32

Figure 1. Elimination of a crossover by use of three

"exclusive or" gates. Reference [g] contains

a crossover circuit which uses only "and" and

"not" .

33

Figure 2. A star.

34

