
S U326 P30-56

A NEW PROOFOFGLOBALCONVERGENCE
FORTHETRIDIAGONALQLALGORITHM

W. Hoffmann  and B. N. Parlett

STAN-CS-77-634
OCTOBER 1977

COMPUTER  SCIENCE DEPARTMENT
School of Humanities  and Sciences

STANFORD UNIVERSITY



-. -



A NEW PROOF OF GLOBAL CONVERGENCE

FOR THE TRIDIAGONAL QL ALGORITHM

bY

W. Hoffmann? and B.N. Parlett?'

Abstract

By exploiting the relation of the QL algorithm to inverse iteration

we obtain a proof of global convergence which is more conceptual and less

computational than previous analyses. The proof uses a new, but simple,

error estimate for the first step of inverse iteration.
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1. Introduction-

The QR Algorithm has become the preferred method for finding a22 the

eigenvalues of a given matrix, symmetric or nonsymmetric. One of the high

points in the field of matrix computations is Wilkinson's discovery

[Wilkinson, 19681 that the algorithm, when used with the proper shift

strategy, converges for a22 symmetric, tridiagonal matrices. This result

permits us to write clean efficient programs for computing these eigenvalues;

there is no need for routine checking for rare unacceptable cases. The

excellent asymptotic convergence rate for the method was already known.

Each iteration in the algorithm is effected by making a sequence of

specially chosen plane rotations. Wilkinson's proof is based on a careful

scrutiny of the last three of these rotations and a rather complicated com-

putation is involved. A careful, detailed exposition of the proof can be

found in [Lawson and Hanson, 1974, Appendix B].

The result is so nice that one is tempted to seek a proof which does

not require explicit formulae for the elements of the next matrix in the

QR sequence. The one presented here abandons the plane rotations in favor

of the relation of the QR algorithm to inverse iteration, see for instance

[Parlett and Poole, 19731. The discussion is in terms of the QL algorithm

which is a convenient variation of the original QR algorithm. Section 3

gives more details.

We try to adhere to the standard notational conventions: lower case

roman letters for column vectors, lower case greek letters for scalars (all

real here), and upper case roman letters for matrices (reserving symmetric

letters for symmetric matrices). We write ZT for the transpose of Z,

I for (el,e2,..., en), and A-x for A-H. All matrices are nxn unless

the contrary is stated, llxll = J--Tx x and we write tridiagonal matrices A

as shown below:
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The QL transformation, with shift o, transforms symmetric tridiagonal

T
A into symmetric tridiagonal A = Q AQ where Q = (q1,q2,...,qn)  is

orthogonal and depends on o.

For the busy reader who is familiar with the subject we present a

brief outline of the argument now. One special piece of notation is needed:

Mpk denotes the set of all manic polynomials (leading coefficient 1) of

degree k. We observe that

*
I&I = min ll$(A)qlll 9 Lanczos,

4 EM5

5 n(A-ol)(A-o)q+  the artful choice,

= ll(A-a )elTll , the connection with inverse iteration, Lemma 2,

3 since A is tridiagonal,

l lBpl ’ if o is Wilkinson's shift, Lemma 4,

L I y$l 3 by a characteristic property of

Wilkinson's shift.

Only the strict inequality is really new and a sharper form

of it is used in Sections 5 and 6 to show that (f$(k+l )@+I '12 <

< (2/5)(fi(k-')B(k-l))2
1 2

for all k and also that BF 2 l+~2j/JZ. This

establishes global convergence, i.e. wB1 + 0, in a clean way.
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2. Orthogonal Reduction to Tridiagonal Form

Any symmetric matrix M may be reduced to tridiagonal form A by an

orthognoal similarity transformation. In symbols

(0) i = GTMG , I = GTG = GGT .

In fact, when the off diagonal elements "j are not zero then A is

completely determined by g1 (or by g,). Our interest is in expressions

for products of the ^Bj, j = 1,2,... . From the pioneering work [Lanczos,

19501 we can deduce that

*
IB 1

l l l sj 1 = minll$(M)gll

over all manic polynomials $ of degree j with equality only when @(A)

is the leading principal j xj minor of X-A.

However we prefer to use some alternative formulas which yield rather

more information and are also quite well known.

A useful way of understanding the relationships hidden in (0) is to

equate columns on each side of the equation

(1) GA = MG

and deduce that the columns {gl,g2,..., gjl form an orthonormal basis for

the so-called Krylov subspace Kj of IR" which is spanned by

2
q,Mq,M q~-.,M

j-l
g1 .

Let P.
J

denote the orthogonal projection of R" onto K
j

and let i
j

be

its complement. For example, P1 = glg:, P2 = g1gi+g2gi.



,
LEMMA 1. Let Gi = MG with G = (gl,.,.,gn)  orthogonal, then

g2$1 = &Mq 9

g& = P2M+Mg1 .

Proof. By equating the (l,l),  (1,2),  and (2,2) elements on each side

of (1) we find

NOW equate first columns on each side of the equation GA = MC7 and rearrange:

(3)

924 = Mgl - 9+1 '

= Mg, - q(g)%+)  y using  (2) y
T

= (I-glgl )Mq 3

= PIMgl .

Next equate the second columns on each side and rearrange:

(4)

g3B2 = Ms2-9p~-q~l  '

= Mg2 - g2(g;Mg2) -gl(g;Mg2)  9 using (2) 3

T T
= (I-g2g2-qq h2 '

= P2Mg2  .

Multiply (4) by El and use (3) to obtain the formulas in the lemma. cl

In the next section we will apply this lemma to the case when M = A

is also tridiagonal and Mgl lies in the plane of g1 and el.
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3. The QL Transform and Inverse Iteration

The QL transform of A is denoted by A, has the same form as A,

and is defined by

(1) i8 = QTAQ

where Q is the orthogonal matrix which satisfies

(2) A - a = Q L

and L is lower triangular with positive diagonal elements. The scalar CT

is called the shift. Note that Q is the result of performing the Gram-

Schmidt orthonormalizing process to the columns of A-a from right to left.

The QL algorithm iterates the QL transform, choosing an appropriate shift

at each step.

The QL transform is related to the earlier QR transform in a very simple way:

if 'i=(e en' n-l ,...,el) and fi is the QL transform of A then ?A: is

the QR transform of iA?. The QL algorithm has some minor advantages from

the programner's  point of view and has become the preferred method. Conse-

quently we will present our results in its terminology.

In practice the matrix Q which turns A into A is never formed

explicitly. Even in theory the columns of Q are determined in the order

9,4,,1'"*'4241* Nevertheless A is completely determined by q1 and

q1
connects the QL transformation with simpler processes like inverse

iteration.

We are now going to formulate a result which is quite well known.
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LEMMA 2. Let QTAQ = 1 be the QL transform of unreduced tridia-

gonul A with rea2 shift CT. Then q1 E Qe, satisfies

(A-o)ql = elT .

If CJ is an eigenvake of A then T = 0; othemise T is the

scale factor which ensures that llqlll  = 1; SO 'I = l/ll(A-o)-'elll.

QTQ

Proof. Transpose equation (2) above, post multiply by Q, and use

='I to find

(3) (A-0)~ = Lo .

Equating  column 1 on each side shows that

(4) (A-++ = epll 3
Rll 20 l

If o is not an eigenvalue then

(5) 1 = llq1 II = II (A-o)-’  el II l R1 1

and we have written +-r for R,l. If o is an eigenvalue then

0 = det(A-a) = det Qmdet L .

The Gram-Schmidt process begins with qn : (A-a)en/Rnn. Because A is

unreduced Rnn = II (A-ojenll # 0. Moreover, for the same reason, the last

(n-l) columns of A-a are linearly independent. Consequently

R
jj

> 0 , j = n,n-1,...,3,2 ,

for all o. It follows that on the last step of the Gram-Schmidt process

a null vector is obtained. Hence kll 3 T = 0 and q1 may be any unit



9

vector orthogonal to all the other q's. This gives only a choice of sign

for 91 and in either case (A-o)ql  = 0. cl

Equation (4) shows that the first column of Q is the normalized

result of one step of inverse iteration with shift 0'.

We now use Lemma 2 to get expressions for the off diagonal elements

which are produced in the course of the QL algorithm.

TLEMMA 3. Let 8 : Q AQ be the QL transform of A with real shift

CT. Then

* IIB I1 = +in elI ,

A
I fi1 f32 I = TI$ sirN2) ,

where 8.
1

is the angle between e.
1

and the KqZov space K.,1

i = 1,2.

Proof. Recall that in Lerrna 1 P1 = 1 -qlqt, P2 = 1 -qlq: T- 9292*

We have

q2@1 = plAql , Lemma 1

= P1(qlc+elT) , Lemma 2

= Plel-r

= .r(el - q1 cos el) .

Further

43^81& = p2AblAql , Lemna 1

= Tp2A(el -ql COSC+) , two lines up,

= ~~2(el~l+e2B1  -ql cosel) , A is tridiagonal,

= G$P2e2 , p2 annihilates K2 = span(ql,Aql)

= span(ql,el) .

On taking norms the results follow. El
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Using the same technique it can be shown that

, Lemma 3 holds for any shift strategy but the global convergence follows

from a simple bound on 'I: which holds when Wilkinson's shift is used.

4. . Wilkinson's Shift- -

Given A then Wilkinson's shift w is that eigenvalue of 1 7 @l

1 9 c12
which is closer to a1'

In case of a tie either eigenvalue may be used.

So we.have

(
2

a1 -w) (a2-w)  - B1 = 0

and

I a1 -WI 5 Icxp' 1 .

Let us write 6 = (~1~-c9)/2  and observe that

w, w' = (a1+a2)/2  + 6 ++ .F

This shows that

I a1 -4 I bpl

with equality if, and only if, 6 = 0. By noting that (+I is the geometric

mean of Ic~~-wI and ~cx~-wI we have

with e-quality if, and only if, 8 = 0.



11

5. A Residual Estimate for Inverse Iteration

Since A is symmetric and tridiagonal we know that when fil is small

compared with Icll-~21 then el is a good approximation to an eigenvector

and Wilkinson's shift w is an even better eigenvalue approximation than

9' A well known way to obtain an improved normalized eigenvector is to

solve for q 1 the equation

(1) (A-w)ql = el=

where -r is the positive scale factor which ensures that llqlll = 1.

Our concern here is at the opposite extreme. If fi, is not necessarily

small and el is a poor approximation to an eigenvector of A how bad can

7(ti,q,) be as an approximate eigenpair. A good measure for this approxima-

tion is,

~/llAll ,

which is the norm of the "residual" vector (A-w)ql relative to llAl1.

We now show that (w,ql) cannot be arbitrarily bad; in fact 'I: < IB21.

For convenience we write

a.
1

= a.-w
1

and define p = (-IT~,~~~JT~,...) T
by

(A-w)p = el .

LEMMA 4. When WiZkinson's shift o is used in (1) then

2
2 < 1 61 -1

-2 2
'I:

-
i - 2+-22 -- 1
-2
9+B1 V2

<--T' c11B2

9
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Proof. If w is an eigenvalue of A then the QL transform will make

q1 an eigenvector, so 'I: = 0. From now on assume that A-w is invertible.

From (1) and (2) we have

q1 = p/IIpII

and

(3)
2 2 2 2 2T = l/llpll < l/(JTl+T2+r3)  l

-

The first two equations in (2) are

(4) qT1 + 817T2 = 1 ,

(5) BllTl  +a2n2 + B2?13 = 0 .

Recall the definition of o and form (+/$)x(4)- (5) to find

(6) O+O-@2lT3 = Bl/CXl l

In fact (6)' together with the fact, from (4), that ITS and ITS

cannot vanish simultaneously, is sufficient to prove that T < IB210

2 2
However, we can easily bound IT~+V~ away from 0. By elementary geometry

the distance of the origin from the line (4) in the IT~,~~ plane is

l/m. Hence

(7)

and the result follows readily from using (6) and (7) in (3). 0

The surprisingly simple expression (6) for 'rr3 ensures, by itself, that

Blb2 is monotone decreasing. The extra information contained in (7) shows

that the decrease is linear right from the start.

Lemma 4 gives more information than we need. To simplify later discus-

sion we use the harmonic mean, defined for positive 5, n by

H(Lq) = Z/($+7?) .
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On majorizing Iill by @1 Lemma 4 simplifies to the useful

I
COROLLARY.

6. Global Convergence -of the QL Algorithm

The QL algorithm produces a sequence of unreduced symmetric tridiagonal

matrices A (k) , k = 1,2,... and the glorious fact is that, always,

04
9 -t 0 rapidly as k -+ 03, revealing a (k)

1 as an increasingly good

approximation to an eigenvalue of A (1) . When (k)B1 is accepted as

negligible the algorithm continues to transform all but the first row and

column of A (k) and thus all the eigenvalues may be found in turn.

The convergence of (k)(+ I need not be monotonic but the key fact is

_ that ~IB{~)@!~)/, k=l,Z,. ..I is monotone decreasing and its limit is 0.

Using the corollary of Lemma 4 in Lemma 3 and noting that H&J-J) 2 fi

we obtain

' LEMMA 5. When WiZkinson's shift is used in the QL algorithm,

(a> i$ < T' < mi~i2B~y~~y~B1B2~/~  ,

b) (81^a2)2 < f+'
2 2 21 2

< (61i32)  H(a,/t3,,7)  < (8182) .

This establishes the monotonic decline of I+(k)8kk)j but to see that

the limit is zero it suffices to consider two successive steps in the

algorithm and so the superscript k can be dropped.

Lemma 5(b) shows that the reduction in B1B2 is substantial unless

I f3p1 I is small. However Lerrna 5(a) shows that such an unfortunate ratio



14

cannot persist. The next result makes this precise. We recall that the

harmonic mean, H(c,n), of positive numbers 5 and n is symmetric, homogeneous

(of degree 1) and monotonic increasing in each of its arguments separately,

THEOREM 1. Let A, A, i be three successive terms in the QL

sequence using WiZkinson's  shift. Then

(@2)' < (6162)22/(3+j-) < (2/5)(~,8,)~ .

Proof.
"2"2
V2 1

< g2q2 , Lemma 5b for h,

< ^B+(B:,$;) , Lemna  4 Corollary for ii,

= H(i4 Q2g2)
1 ' 2 1 2  ' homogeneity of H,

< H(T
4 1 2 2
Y$$' > Y monotonicity and Lemma 5 for A,

2 12 2
= ?: f$f+~ > , homogeneity and symmetry of H,

< H(B~,~~)oH(~:,H(~~,~~))  , Lemma 4 Corollary for A,

2 2 1 - 1 1  1 2 2
= Blf32H(~y~  )H(~,H(L~)) , homogeneity,of  H, P = B2/Pl ,

< B#/(3+fi) , maximizing over all p > 0.

We note that

H($&i(;,H(l,$)) = (& '
z+(W)) '

2 P

COROLLARY 1. For the QL algorithm with WiZkinson's  shift

(k) (k) - o as

9 B2 k--too.
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Proof. 16C2k+l)8(2k+l)I  < 1~(2k)0(2k)l < (2,5)klb(l)B(l)/
1 2 1 2 12 l c l

The asymptotic convergence rate is much better than this. What is

remarkable is that convergence is linear, with a good ratio, right from

the start.

I COROLLARY 2. For the QL algorithm with WiZkinson's shift

(k)6, --to as k-+m.

Proof. By Lemma 5(a), 8; < IBli3,1/J;r. Convergence follows from

Corollary 1. 0
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7. Local Convergence

We suppress the fact that all the elements al, B,, etc. depend on k,

the iteration count. We know that as k -f 00 both Gl j 0, B1 -f 0.

In the usual case B2 + 0 as well. In this case G2 -+ 6 # 0 because

the eigenvalues of an unreduced tridiagonal matrix are distinct (although

sometimes very close). The question we take up now is the asymptotic

convergence rate. From Lemma 3 l&I = -rlsin ell, but the estimate for -r

in Lerrrna  4 does not reflect the asymptotic regime. In fact, as k -t ~0,

'I: = l/llpll = O(l/lVJ)

where (A-w)p = e,.

Solving these equations as before yields
-a 2

C12G3 B3r4

r2 = 2 - B2 '
V2

-2-
a2a3 '2@3'4 + o2

9=- 22+ B1B2 2'
V2 @l

In the usual regime

2

I

7-r +***+7r
lsin ell = 2' 2

; 112

IT1  +7T2+  l l l t7l;
I

= o(l$

and using the first terms in the expressions for IT, and IT 2

ii1
3 2 -3

- f31B2/c12 = O(B3B2)12 '

This is better than cubic convergence.
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We have not been able to prove that the analysis given above always

obtains. The possibility remains open that G2 -f 0, B2 -+ r) # 0. In this

case TT 1 still dominates the other elements of r but it is the third

term in the above expression for 71-1 which brings this about, Thus, in

such a case

lsin  ell - 'w Bla3/B2

and

Thus quadratic convergence occurs even in this unstable, and very special,

eventuality.
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