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ABSTRACT

For m > 0, we obtain sharp estimates of the uniform accuracy of
the mth derivative of the n-point trigononetric interpolant of a
function for two classes of periodic functions on JR As a corollary,

the n-point interpolant of a function in ¢¥ uni formy approxi mates

n1/2-k)

the function to order of , inproving the recent estimte of

o(nl'k). These results remain valid if we replace the trigononetric

interpolant by its K-th partial sum replacing n by K in the estimates.
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1. Introduction and Notation

Using the concept of aliasing, Snider [6] obtains an o(n| -k

estimate of the uniformaccuracy of the n-point trigonometric inter-
polants of periodic ¢® functions for k > 2, inproving the
O(n'l/g) estimate for ¢ functions presented in Isaacson and Keller
[2]. Kreiss and Qiger [4] use aliasing to show that if the Fourier
coefficients v(&) of a periodic function v(x) satisfy

v(e) = o |t I'B) with g > 1, then the trigonometric interpolants of

l-[B).

v uniformy approximate v to order O(n Th'is al so gives an

c(nl'k) estimte for ¢ functions since the | argest & we can use

in general is B =k. W use aliasing and a different property of the

k k

functions--the fact that ¢ is contained

(1/2-K)

Fourier coefficients of C

in the Sobol ev space #-- to obtain an o estimate for

k> 1

2

In [5], Kreiss and O iger estimate the 1L accuracy of trigononmetric

interpolants and their derivatives for functions in Sobol ev spaces.

This paper applies their approach and an extension of a theorem appearing

l/2+m-s )

in Zygmnd [7] to obtain an of(n estimate of the uniform

accuracy of the mth derivatives of trigonometric interpolants of func-

tions in the Sobol ev spaces g for s > % + m. By simlar nethods
mk) estimate for functions in Ck

we obtain an o(n whose k-th

derivatives have absolutely converging Fourier series if k >m and

we show that these two estimates are sharp. W also obtain an

o(nl/zm'k'a) estimate for functions in the Hol der space ST

O0<a<1l and k+O!>J§'-+m. These results remain valid if we replace

the trigononetric interpolant by its K-th partial sum replacing n by



K in the estinates.

Al functions considered will be assuned to be defined on R and

one-periodic. W use the follow ng notation.

vl denotes sup|v(x)|.

12 is the set of conpl ex-val ued measurable functions v(x) for

whi ch
2 1 2
Il = [ Iveo e <=

The Fourier series of a function v(x) € 12 s

(4]

z

E=-co

C’( g)e2ﬁi§x

wher e v( &) = [1 v(x )e 2™y
“0

o¥v denot es dkv/dxk. If we say that ¥y ¢ B for some space
of functions B, we nean that Dk'lv is an indefinite integral
of the function Dv in B. c* is the set of functions with k

conti nuous derivatives.

k .
M, = = vl
C j=0

For a real number s > 0, H° is the set of functions v(X) e 12

such that

||v.i.|2 S 150)2 ¢ B2 [2®]4(e) |2 < =

E==c0

Ais the set of functions v(x) e L2 with absolutely converging

Fourier series, i.e.,



T vE)] <w

£

For 0 < a < 1, |et

vl [r(x)-v(y) |

= sup
Y xyem XY

k,o k

For an integer k >0, ¢
such that [Dkv]a

is the set of functions v(x) €c

< .

If veA then v is equal a.e. to a continuous function. Since

we are interested in interpolation, we will tacitly assune that

Ac ¢® and sinilarly that 82° c¢c® for s > L For an integer

2
k>1, HK is the set of functions v(x) such that o¥v ¢ 12 and

t hus Ck c Hk See Agmon [1] for a discussion of L2 derivati ves.



2. Trigonometric |Interpolation

W state some well known results on trigononetric interpolation.
These appear in this formfor odd n in Kreiss and oOliger [4]. See

al so Isaacson and Keller [2] and Zygmund [7].

. . _ 1
A n is odd. Let N> 0 be an integer and h = = and | et

x, = vh for v = 0,1,2,...,2N. There is a unique trigononetric

pol ynoni al INv(x) of order at mpst N which interpolates V(x) at

the points x for 0 < v < 2N given by

N

(1) (x) = T a(g)e™Ex
INv X Iy a e
wher e
2N -2ﬂi§xv
(2) a(¢) = h T v(x )e
V=0

The effect called aliasing is the fact that

(3) a(g) = T V(& + i(an)) le] <w
J=-co
provided that the Fourier series for v(x) converges at the points X
for 0 <v < 2N.
Fol | owing the notation of Zygnund, define for 1 < K< N
-

) LR

a(é)eQﬂiEX

where a(t) is given by (2). IN,KV is the K-th partial sumof I,

and IN,NV _ Ly If v(x) is real-valued, so is IN,Kv.
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BB Nis even. Let N> 0 be an integer andh:% and | et

x, = vh for 0 <v < 2n-1. There is a unique trigonometric polynom al

ENV(X) of order at nost N which interpolates v(x) at the points
x for 0 <v < 2N-1 given by
(g)eEnigx

N
=
(5) ENv(x) I a

which also satisfies

The ' notation indicates that the first and last terms are multiplied
by 1/2. The coefficients are given by

oN-1 -omiEx
(6) a(t) . h T v(x )e

Provided that the Fourier series for V(Xx) converges at the points

X, for 0 <v < aN-1, we have

@) a(E)= T V(& + j(an)) le] CN

j=-o

Define for 1 < K< N

K .
2
(8) By (%) = T a(z)e”
’ E=-K
where a(t) is given by (6), and let EN v _ Ev. If v(x) is
, -—
real -valued, so is ENKV for K< N [f w(x) is a trigononmetric poly-
J

nonial of order at nost N and w(N) = w(-N), t hen B = W

6



3.  Accuracy Estimation

Define
8(v,m,N,K) = [D"v - Dm(IN,KV)”m
&(v,m,N,K) = D% - Dm(EN,KV)“&

The m = 0 case of the followi ng |emma appears in Theorem5.16 of

Chapter 10 in Zygmund [7].

Lemma 1. Let m > O be an integer, and suppose that u = v e A

Then
8(v,m,N,K) < 2 T |ale)]
le| >k
Proof. Let
K . | onitx Ay 2TLEX
(9) VL(X) = T v( t)e VR(X) = ¥ v(g)e
E=-K e >K
(20) vy, _ Iy, k'L vz = Iy, xR

= + - . i =
Then v vy, Vi and IN,KV _ v N W Since w V.

(11) v - H\],KV = Vg - Vg
so
(12) 8(v,m,N,K) < “DmVRHm + I]meR“m .

By (3),



K ©
wp(x) = L L Gt aml e
E=-K j=-w

2niEx

©

K
Mgl < £ leme|™ T 90 + a(aw))]

E=-K jmme
K o m A
< = o len(e + g )|MVR(E + s(ew))|
E=-K j=-o
< T lem[Mi )]
E==c0
SO
(23) % l, < T lace)]
lel >k
_A'so
(14) D™, < T [ace)]
le]> K

Conbi ning (12), (13), and (14) gives the |emm

Lemma 2. Let m > 0 be an integer, and suppose that u = D e A

Then
G(V)m;N:K) <2 z ‘a(’é)l for K< N
le] >k
€(v,mN,N) < 2 T lae)]
lel >N

Proof. For K< N, the proof is the sane as in Lemma 1.



Using (9)

(15)

we obtain

(16)

By (7),

with K= N-1 and replacing (10) by

VL = By, Vg = Iy

(v,mN,N) < HDmVRHm + HmeR“m

N )
wo(x) = £ ¥ v.(t+ j(aw))e
. g jmoo T

2niéx

N ®
D™l < =0 B len(e + 3(2an)[Mlg(e + 5(aw)|
g:..N j:—m

- |2nt " [95(8)|

E=-c0

and the lemma follows as'in the proof of Lemma 1.

Theorem 1.

Then for

(17)

wher e

Let m > 0 be an integer and v € H with s > -2-1
each K,
sup &(v,m,N,K) < CRK(V)K:L/2+ m-s
N >K

+

Me



and

v) = \ o 2s & 2y1/2 .
Rl = (B 1m0
Also
(18) sup €(v,m,N,K) < CRK(V)Kl/Qm-S
N>K
and
19) ¢(v,mK,K) < CR_, (v) (K-1)1/2+m'5

Note that since v € H, R.K(V) 50 as K- w

Proof. By Lemma 1, for N > K we have

s(v,mN,K) <2 x |ext|"|5(¢)]
le] >k

o % |2ﬂ§|25|\7(5)|2)1/2( > IgﬂHE(m-s))l/E
El>x £l >k

IN

s +2(m-s) 1/2
> B (v)(en )R £

IN

and (17) follows. (18) and (19) follow similarly from Lemma 2.

Theorem 2. Let k >m > O be integers, and suppose Dkv € A. Then

for each K,



and

Al so

(21)

and

(22)

Note that sinc

sup  &(v,m,N,K) < CI‘K(V)KJTI"k

N> K

C=2(2n)m"k
r(v) = % |ene|®|9(e)]
K le|> K

sup €(v,m,N,K) < CI‘K(V)Km-k
N> K

e(v,mK,K) < CrK_l(V)Km-k

e Dkv € A rK(v) -0 as K = w.

Proof. By Lemma 1, for N > K we have

8

and (20) follows.

Theorem 3. Let

k+05>%+m.

(VJmJN}K) <2 z IQ“E lml{}(g)l
lel >k

< o)™ |eme[B|v(e)|
lel>k

(21) and (22) follow sinilarly fromLema 2.

K,

m >0 be an integer and v € C’7 with

Then for each K

11



k 2+m-k-Cx

(23) sup &(v,m,N,K) < C[D v]aKl/ m
N>K
wher e
.- 2Ot+l/2ﬂm-k
1_21/2+m-k-0t

Also
(2&) sup G(V,m,N,K) < C[DkV]a K;/2+m-k-a

N>K

Proof. The nethod of proof is simlar to that of Bernstein's theorem

that ¢c%ca for a> %. See Katznel son [3]. Let u = D"v and
onitt

f=p% If t= % 2"V and 2¥ < |¢] < oVt then e -1 >V 5,

S0 since

© . R Sqd
(x+t) - £(x) = 1 (2TLEL L 1)B(g)e” X

Parseval's relation inplies that

HOIEE
?—"Slezl?s2 7

IN

1 a2
3 lf(x+t) - £ (x )]]2

IN

I lleGert ) - 2002

20

1 2
3 +7{f]

o

IN

1 =2vQ 2
<3 @ (£l

12



By the Schwarz inequality,

lace)| < (2> = £)|2)H?

z
2"S|§|<2\’+l V< e] <

_ (2v+l 7 f(g)lg )1/2
2V <le[<aV™ |one B

m-k ,v(1/2+m-k )( o

oVl Ju

< (2n) = HOIBEG

V< g <™

)m k 2\)(1/2“{11-1{-05) [

< (en f]

0
Gven K, let j satisfy 2 < K< 29*L. Then by Lemma 1, for

N > K we have

6(v,m,N,K) < 2 z la(g)I
le|>K

> ¥ [ae)]
v=j 2V<| e?< oVt

IN

< 2 2“>m-k[f]o¢ ; 2\)(1/2+m-k-0t)
v=J

(23 1/2Hmk-a

X
2(2x)" " L] T/omE—

IN

el

oL

223 and é+m-k-oz<o. (24) foll ows

and (23) follows since 5

simlarly fromLema 2.
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4. Sharpness of Estimates

Theorem 1 shows that if v e 5° and s > % +m then
s(v,m,N,K) and €(v,mN,K) are o(Kl/gm'S), i ndependent of N > K
Theorem 2 shows that if Dv ¢ A and k > m, then §(v,m,N,K) and
€(v,m,N,K) are o(Km'k), i ndependent of N> K W& prove in this
section that these estimates are sharp: they cannot be inproved for

these two classes of functions.

Theorem 4. Let {7\)} be a sequence of positive nunbers converging to

1+ m Then there exists a

0. Let m> 0 be an integer, and s > 3

v € B such that
inf
s(
(25) lim sup N> K
K>w® /2+m-s
7 K-

v,m,N,K)

= @

Proof. Let Py = 1 and define a strictly increasing sequence {pj}
of positive integers inductively such that for j > 1, if j is odd

Py = E‘pj_l, and if j is even P is a power of 2 such that
(26) y < o™d for \)zpj/h

v -

Define the sequence {bv}forvz 1 by

b 2l Ve f <
o =(—= or i < .
(e1) y (pj+l = Pj) Pl Sv<Piy
Then £ b = T T bv=.22-1<oo

V= ¥ j=0 ps<v<py,y 10



T

Note that b > Db ., for v > 1 since p:.]?_QIi_I for j>0 Let

(28) V(X) = ¥ (_l)\) 1 ’ bez:ti\)x
v=l (2ny)® VY

Si nce z|2xg|25|{}(g)|2 =¥ =
§=-oo \):l vV

and W asin (9) and (10). By (11),

S .
< © veH. Define Vis Ve, W

(29) 6(vsmyN,K) > [ID"vpll - 0™l .
NOW
IDva(%)l“—" | = (2nie)™( £)e'f = T (2mv)™ 5
leb k v>K v
S0
(30) ID™ell, > T (209)" %
v>K :
By (3),
K .
WR(X) = X a(g)eQﬂlgx
E=-K

where for |¢| < K,

@© ©

] a(f) = T vplt +(a+1)) = £ W& + j(ana1))

J==e J=1
Since 2N + 1 is odd, this last series is an alternating series of

terms decreasing in absolute value, so

15
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la(e)| < [v(e +on + 1)] .

Hence

D™l < = lexe|MaCe)]

K
< g): |on(e + 2w + 1)|™%(e + on + 1)
=-K
2N+1+K
= z (Qﬂv)m—sb
v=2N+1-K v
3K+1
< % (ew)™®p
v=K+1 v

since the b\; s forma decreasing sequen, Conbining this with (g9)

and (30) yields

)
G(V)mJN)K) > ) (an)m-sb
v=IK+2 v

For even j > 4, let K = p./4k. Then since _
J ’ J p:/ Pss1 = QPJ"

@
6(v;m,W,K;) > T (2ﬂv)m'sbv

v=Pj

> T (2:(\))m_s'(p,2‘j )'1/2
Pj Sv <Pj+l J

v

S-m

(pjgj)—l/2(2ﬂ>m-s [ -2Pj dx
Pj X

16



1-p
27 "-1
15 for B#FL

log 2 for B =1

. 1- -
so if dB - o+B, BCB,

8(v,m,N,K) > e Q'J/e(en)m-spjl/gﬂn_s

-4 2-3/2K1/2+m-s
s=-m J

Thus (26) inplies that

and the theorem foll ows.

Theorem 5. Let {7\)} be a sequence of positive nunbers converging to
0. Let k >m > 0 be integers. Then there exists a v with
0¥y € 4 such that

inf &(v,mN,K)

n>K

(31) lim sup— -
K- 7KKmK

= o .

Proof. Sanme as the proof of Theorem4 with the followi ng alterations.

Replace s by k throughout the proof. Replace (26) by

(26") y < 27

v S for v > pj/h .

17



-J
. 2
Defi ne bh = —m—mMm —— for Pj < v < op., .
V. Py T Py = Jl

-]

Then T b <eand I lone |5 |9(e)] <= so v e A Ve have
v=1 £=-c0

for even j > 4

y m-k.
e(v,m,N,Kj) > T (2w) b

> oz (e e
p.<V <Pj+l
> ( 23)-1(2H)m-kfpj dx
pj k-m
p. X
J
_ J m-k_m-k
=y 2 Y(2n) 12
-1 -J -k
2 dk—m2 Kgl
Thus (26') inplies that
6(V)m:N:Kj) S 1 23
——F 25 %

7 .
K.
39
and the theorem fol | ows.

The following lemma i s geonetrically obvious.

Lenma 3. Let {Bv} be a decreasing sequence of positive nunbers

converging to 0. Then % Bvegﬁi\"/5

v=1L

converges and

PPy
v=l

18



Theorem 6. Let {7\)} be a sequence of positive nunbers converging

to O. Let m > 0 be an integer, and s>52L-+m. Then there exists

a v eH such that

inf e(v,m,N,K)
(32) lim sup N>K’3’h§ =
K o o y Kl7 -5
K
and

(33) 1lim sup < V?IQT_FN) =
Now g M m-s

If k is an integer with k > m then there exists a v with v € A
such that
inf e(V:m;N:K)
(3k4) lim sup N>K34N - =
Koo yKKm
and
(35) limsup SN _

N- o ™ Nm-k

Proof. The proof of (32) is the sane as the proof of Theorem 4 with

the following alterations. Replace (28) by

©

w(x) = T e2niv/5 1 _
v=l (27v) v

2nivx
e

For N > K, we have

m
€(V,m,N,K) 2 “D VR”w = “meR”w

19



where v is given by (9) and w, = EN)KVR- Now

R
P = | T (emae)(s)e O] = b (2m)
le]> K v>K
50 ™.l > £ (2nv)" %
Rl v>K v
By (7),
K .
we(x) = © a(g)e”™H
g:—

where for |e] < K,

a(t) = T V(e + j(aN)) = T (e + j(2N))
J== J=1
Suppose 3 I N. Then j(2n) cycles through the equival ence classes

mod 3, SO by Lemma 3,

la(e)| < |¥(e + on)| .

Hence, as before,

gl <3 (om )
Dw < % (2nv b
Rl Tv=K+1 v
and the rest of the proof goes through, establishing (32).
To prove (33) for this v, imtate the proof of Theorem k as above
with-the following changes. Define v, and vy by (9) with K= N- 1,

and define W and w, by (15). Then

R
m
e(v,mN,N ) > D VR”m> - ”Dm"“R“°°

20



As above,

m m-s
I0™vell, > £ (2wv) b

R v>N
By (7),
N .
we(x) = T' a(g)et X
E=-N
wher e
a(e) = £ (& + j(an)) for || <n
J=1
a(-N) = a(N) = £ v(y + j(en))
j=0
For1\I=Kj foreven j>4,3 fJN,s0 by Lema 3,
la(e)] < |58 + am)| for le] <w
la(-N)| = |a(m)] < |¥(w)]
Hence
m N m
IP%gll, < 2 |ene|Ma(e)]
E=-N
N-| - X
< T len(e + 2N)|M[F(e + aw)| + [2my|™|v(w)|
E=-N+1
3N-1
= 5 (2v)™ 5
v=N v
S0

and (33) foll ows.

21



(34) and (35) follow by simlar alterations to the proof of

Theorem 5.

Remarks.  Theorem4 shows that the O(Kl/2+m‘s) estimate of

s(v,m,N,K) given by Theorem 1 is sharp by showi ng that there is no
function g(K) going to O faster than /2" for which
s(v,m,N,K) = &(g(k)) for all v ¢ E°. Note that we can obtain a
real-valued function in H° satisfying (25): since the trigononetric
interpolants of real-valued functions are real-valued, at |east one

of the real or imaginary parts of the v constructed nust also satisfy
(25). Simlar statenents hold for Theorem 5 and 6. Also, many of the

details of the constructions are for convenience, e.g. making the pj's
1

powvers of 2, and placing the singularities at x = in the odd case and

5
2
at x = 3 in the even case.

22



5. Corol laries and Summary

Let w_  denote the n-point trigonometric interpolant of v.

i.e., if n = 2N + 1, Vi :INV and if n=21\T,wn:ENv.

Qorollary 1. Let m > O be an integer. If v eg® with s >%+m

t hen

[v - w | = of n*/2'm2)

If D™ ¢ A and k > m, then

V-l = o(n™™)

If v e cfo® andk+a>§1+m, t hen

Iv - Wn” - U(nl/2+m-k_a)

"

The m = 0 case gives the inproved estimate for ¢& functions:

Corollary 2. If v e Ck and k > 1, then
IV - ll, = o(n/2%) .

These corollaries also hold for the K-th parti al sumsof v if wereplace

n by Kin the estimtes.
Al though we gain an extra half power of n in the estimate for
nl—k)

gener al ck functions over the recent @ estimate, there are

other classes of functions for which Kreiss and Oliger's o(n™~P)

estimate for functions satisfying %(e) = c(|g|‘8) yi el ds better

25



]

. k. : .
results. For exanple, if Dv is not necessarily continuous but

is of bounded variation, then w(&¢) = o |t ™)

'k). o, if oY is absol utely continuous (or

s SO
v - % ], = on
equivalently if v e L), then w(t) = o |§|'k), and Kreiss and
Aiger's proof shows that |v - wnHco = o(nl'k) if k > 1. See
Kat znel son [3] and Zygnund [7] for discussions of the growth of

Fourier coefficients. W conclude with a table of estinates.

k

If Dv e t hen “V'Wn”mz for
i o(nl'k) k>2
12 of nl/z'k) k>1
o0, 0(nl/ 2-k-a) K + o >22"
1 (n112-k-s) kK +5> %
B.V o(nF) k> 1
A o(n’¥) k>O.
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