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ABSTRACT

For m > 0,- we obtain sharp estimates of the uniform accuracy of

the m-th derivative of the n-point trigonometric interpolant of a

function for two classes of periodic functions on JR. As a corollary,

the n-point interpolant of a function in Ck uniformly approximates

the function to order o(n
1/2-k

1 Y improving the recent estimate of

U(nlWk). These results remain valid if we replace the trigonometric

interpolant by its K-th partial sum, replacing n by K in the estimates.
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1. Introduction and Notation

Using the concept of aliasing, Snider [6] obtains an fl(n
l-k

estimate of the uniform accuracy of the n-point trigonometric inter-

polants of periodic Ck functions for k > 2, improving the

CJ(n-l12) estimate for C2 functions presented in Isaacson and Keller

PI. 0eiss and Oliger [4] use aliasing to show that if the Fourier

coefficients c(e) of a periodic function v(x) satisfy

^v(e) = Cr( Ie Imp) with @ > 1, then the trigonometric interpolants of

V uniformly approximate v to order o(n'-'). Th'1s also gives an

U(nlMk) estimate for ck functions since the largest p we can use

in general is f3 = k. We use aliasing and a different property of the

Fourier coefficients of Ck functions--the fact that Ck is contained

in the Sobolev space Ii! -- to obtain an o(n1/2-k) estimate for

k > 1.

In [5], Kreiss and Oliger estimate the L2 accuracy of trigonometric

interpolants and their derivatives for functions in Sobolev spaces.

This paper applies their approach and an extension of a theorem appearing

in Zygmund [7] to obtain an o(n1/2+m-s
> estimate of the uniform

accuracy of the m-th derivatives of trigonometric interpolants of func-

tions in the Sobolev spaces HS for s > 2L + m. By similar methods

we obtain an
m-k

o(n 1 estimate for functions in Ck whose k-th

derivatives have absolutely converging Fourier series if k > m, and

we show that these two estimates are sharp. We also obtain an

o( n
1/2+-m-k-a

> estimate for functions in the Holder space CkJa if

1
O<CX<land k+a>F+m. These results remain valid if we replace

the trigonometric interpolant by its K-th partial sum, replacing n by
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K in the estimates.

All functions considered will be assumed to be defined on JR and

one-periodic. We use the following notation.

II IIV denotesco suPlv(x)l*

L2 is the set of complex-valued measurable functions v(x) for

which

The Fourier series of a function v(x) e L2 is

co

C C( e)e2nigx

where
1

G( E) = r v(x)e-2'i5xdx .
dO

Dkv denotes kdkv/dx . If we say that Dkv e B for some space

of functions B, we mean that Dk-lv is an indefinite integral

of the function Dkv in B. Ck is the set of functions with k

continuous derivatives.

II IIv Ck
= “c llDjvjlm

j=O

For a real number s > 0, HS is the set of functions v(x) E: L2

such that

II IIV2
HS

= lG(o)12  + mG 12fi~~2S~q~)~2  < 03 .
E=-CO

A is the set of functions v(x) e L
2

with absolutely converging

Fourier series, i.e.,
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For 0 < cx < 1, let

Ed, = sup Ivw-V(Y)l
X,YEB I 1

a
X-Y

For an integer k > 0, (+,a is the set of functions v(x) c Ck

such that [Dkyla. < =m

If v e A, then v is equal a.e. to a continuous function. Since

we are interested in interpolation, we will tacitly assume that

A c Co and similarly that HS c Co 1for s > 2" For an integer

k>l, Hk is the set of functions v(x) such that Dkv E: L2 and

thus Ck c IIF . See Apon [l] for a discussion of L2 derivatives.



2. Trigonometric Interpolation

We state some well known results on trigonometric interpolation.

These appear in this form for odd n in Kreiss and Oliger [4]. See

also Isaacson and Keller [2] and Zygmund [7].

A. n is odd. Let N > 0 be an integer and h = & and let

X
V
= uh for v = 0,1,2,...,2N. There is a unique trigonometric

polynomial I-j&x> of order at most N which interpolates v(x) at

the points xv for 0 < v 5 2N given by

(1)

where

(2)
2N

a(E) = h C v(xV)e
-2rcigxV

.
v=o

The effect called aliasing is the fact that

(3) a(E) = C c(E + j@N+l)) Id _<N.J =-co

provided that the Fourier series for v(x) converges at the points xv

for 0 < v <2X?.- -

t4

Following the notation of Zygmund, define for 1 < K 5 N

> IN,K (
v x

where a(k) is given by (2). IN lKV is the K-th partial sum of IN",

and FNJV = v*
If v(x) is real-valued, so is IN,Kv'
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B. N is even. Let N > 0 be an integer and h = & and let

X = vh for 0 < v < 2N-1.

;c >

There is a unique trigonometric polynomial- -

v x of order at most N which interpolates v(x) at the points

X 'v for 0 < v 5 2N-1 given by

(5)
N

Egr(x) = C' a(e)e2'iSx
E=-N

which also satisfies

a(-N) = a(N) .

The C' notation indicates that the first and last terms are multiplied

by l/2. The coefficients are given by

2N-1
a(E) = h C v$,)e

-2niExv
l

v = o

Provided that the Fourier series for v(x) converges at the points

X v for 0 < v < 2N-1, we have- -

(7) a ( E ) =  i G(E+j
*-3 --co

Gw)

(8)

Define for 1 < K < N

a( 5 >e
2fliEx

l",LI 5=-K

) is given by (6), and let EN
lNV = TrT*

If v(x > is

real-valued, so is
TNX

for K < N. If w(x) is a trigonometric poly-

nomial of order at most N and G(N) = w"(-N), then ENw = w.
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3. Accuracy Estimation

Define

&(v,m,N,K) = II Dmv - Dm(h Kv)IIa9

E(v,m,N,K)  = IIDmv - Dm(s Kv)llaJ9

The m = 0 case of the following lemma appears in Theorem 5.16 of

Chapter 10 in Zygmund [7].

Lemma 1. Let m 2 0 be an integer, and suppose that u = Dmv E A.

Then

Gb,WbK) 5 2

Proof. Let

(9) vL(x)  = E 2( E)eprrisx
5=-K

00) wL = %,KvL

v&x> = c
2niEx

Id > K

We = T\J,KV~

Then v = vL + vR and
TN3 = wL + WR'

Since WL = vL,

(11)

SO

(12)

Bs’ (31,

V-
INJV = 33 - WR

6(v,m,N,K)  5 ilDmv&,, + Iln”w,ll, ’



so

03)

_ Also

(14)

K
w,(x) = c

k=-K j=-,
;R( 6 + j 2N+l >

e23-ciEx

5=-K j=-co
j@N+l

IIDmv&  5 ,~, G I’(r;)l
> K

+j

Combining (12), (13), and (14) gives the lemma.

Lemma 2. Let m > 0 be an integer, and suppose that u = Dmv E A.-

Then

+v-@,K)  5 2 c IWI
Id >K

+v,bN) 5 2 c I~WI
Id _> N

for K < N

Proof. For K < N, the proof is the same as in Lemma 1.
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Using (9) with K = N - 1 and replacing (10) by

05) wL = Ff!?L WR = !NVR

we obtain

06)

By (71,

‘b,m,N,N) 5 (IDmvRIlo,  + IIDmwRII,

N
W,(x> = c' ii h4 =- *_N 3- vR(t + j(m))e2niSX

-03

and the lemma follows as'in the proof of Lemma 1.

Theorem 1.
1Let m > 0 be an integer and v c HS with s > 2 + m.

Then for each K,

07)

where

SUP
N>K

G(v,m,N,K) < CRK(~)I;L/2+m-s

c =,*

9



IA N -
c m

z IV F
i

A

e, cn
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(20)

where

SUP
N>_K

G(v,m,N,K) 5 CrK(v)pok

C = 2(274m-k

and

rJ&V) = 12~ElklWl  l

Also

(21)

and

(22)

SUP
N > K

'(v,m,N,K) < CrK(v)Kmgk

E(v,m,K,K) 5 CrK,1 ( v)KTk

Note that since Dkv E A, rK(v) +O as K +a,

Proof. By Lemma 1, for N >, K we have

+w,N,K) 5 2 c l~~~lrnl~(E)l
1~1 >K

. and (20) follows. (21) and (22) follow similarly from Lemma 2.

Theorem 3. Let m 20 be an integer and v e CkJa with

k+a>$+m. Then for each K,
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(23)

where

sup 6(v,m,N,K) < C[Dk~]$/2+m-kwn
N>_K

(24) sup "(v,m,N,K) < C[Dkv], I;L/2+m-k-a
N>_K

Proof. The method of proof is similar to that of Bernstein's theorem

that C"ja
1

CA for a>~. See Katznelson 1.33. Let u = Dmv and

f = Dkv. If t = ; 2-v and 2' 5 1~1 < 2'+l, then 1 e2rri5t-l\ >fl,

so since

f(x+t) - f(x) = g (e2rriEt - l)$(~)e2'isx
k=-03

Parseval's relation implies that

c
P5 15152v+1

lW12 5 5 2v< lEi;<2v+lle2fiiEt  - ~121W12

5 ; llf(x+t > - f cx ,ig

5; llf(x+t > - f(4ll~

5 ; t2yfl;

l257 -2Va[,l;
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By the Schwarz inequality,

(2v+l=
c --WY22v<Icl<2v+1 12x~12 k-m

< (3.pk  2V(1/2+m-q2 c
2v( 15 I< 2v+1

1&)l2l1/2

1. (2fl)m-k 2~(l/2+m-k-a)[fl N

Given K, let j satisfy 2j < K < 2j% Then by Lemma 1, for

N 2 K we have

dv,m,N,K)  5 2 c IWI
Id-> K

52 c
v=j 2’(Ie ‘i<2’+l

IWI

5 2( 2n)m-k[f],  ; &P~-k-4

v=j

j 1/2+m-k-a

and (23) follows since
K * 1~>2~ and F+m-k-a<O. (24) follows

similarly from Lemma 2.
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4. Sharpness of Estimates

Theorem 1 shows that if v e HS and s > 22~ + m, then

dv,m,N,K) and e(v,m,N,K) are o( $1
2+m-s

> 9 independent of N > K.

Theorem 2 shows that if Dkv e A and k > m, then h(v,m,N,K) and

e(v,m,N,K) are o(~-k>., independent of N > K. We prove in this

section that these estimates are sharp: they cannot be improved for

these two classes of functions.

Theorem 4. Let (yv] be a sequence of positive numbers converging to

0.
1

Let m >, 0 be an integer, and s > F + m. Then there exists a

v c HS such that

(25) lim sup
K+aJ

YK
$/2+m-s

=CO

Proof. Let PO = 1 and define a strictly increasing sequence (p,}

of positive integers inductively such that for j > 1, if j is odd

'j = ?Pj-1, and if j is even p.
3

is a power of 2 such that

(26)
.

Y, 5 FJ for

Define the sequence (b,] for v 2 1 by

(27)
.

20J l/2
b =(

V pj+l - pj
1 for Pj 5 v < Pj+l

OD

Then c b;= ; C b2= ; 2-j < 63.
v=l j=O pj<v<p. '

J+l
j=O
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3

Note that by 2 bv+l for v > 1 since p. > 2p
J- j-l for j>O. Let

co
(28) v(x) =

Since
E;
; 12~4~~lj(S)l~ = ; b2 < 03, v E HS.
Z-~ v=l v

Define vL, vR, w
L'

and wR as in (9) and (10). By (ll),

(29)

NOW

so

(30)

~hVb~) 2 ll~~v~il, - IID~w~II, .

1 nieID~vR(~)I= I >CK (2xip)mC( E)e I = C (2rrv)m-sbv
Id v>K

IIDmv& >, c (2flv)m-sb
v>K v l

Bsr  (31,

w,(x> =
E=-K

where for kl 5 K,

Since 2N + 1 is odd, this last series is an alternating series of

terms decreasing in absolute value, so
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Hence

K
5 c 12x(! +2N +l

E=-K

Ia(k)l < I;(! + ‘213 + l>l .-

>ImlG(E + 2N + 1

2N+l+K
-Z c (2fiv)m-sb
v=2N+l-K V

3K+l
_ C< (2rtv)m-sb

Vv=K+l

since the b 's form a decreasing sequen
V

and (30) yields

6(v,m,N,K)  >, ii
v=3K+2

e. Combining this with (29)

231v)~-~b~ l

For even j > 4, let K. = p/4. Then since
J 3 pj+l = 2p.,

J

> c (2nv)m-s(p 2j)01i2
Pj ~v<Pj+l j

1 (Pj,j)-1i2(2n)m-s J
2P3 b-
Pj x

s-m

)I

N0w s
2Pj dx 1-B

.B
= '@Pj where

'3
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2l’kl

i-p

log 2
h

for

for

B#l

B=l

soif d
B

= 2=‘~,-~,
B'

G(v,m,N9Kj)  2 ‘s-m
2-j/2(2n)m-sp 1/2+m-s

3

Thus (26) implies that

Gb,W,K. 1
$/2+,j, L ds-,2j’2

'Kj j

and the theorem follows.

Theorem 5. Let (y,] be a sequence of positive numbers converging to

0. Let k > m 2 0 be integers. Then there exists a v with

Dkv e A such that

inf 6(v,m,N,K)

(31)
n>K

lim sup - k =03 .
K-,@ 7K ?-

Proof. Same as the proof of Theorem 4 with the following alterations.- -

Replace s by k throughout the proof. Replace (26) by

(26’) yv 1. 2
-2j

for ' >, Pj/4 '
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.

Define b =
20J

for
V

pj+l - pj

Pj 5 ' < Pj+l l

09

Then C bV < a3 and so Dkv C A. We have
v=l E=-co

for even j > 4

G(v,m,N,Kj) 2 i (2gv)m-kbv
VT.

J

> c (2rrv)m-k(p  2j)-l
Pj<-'<P*

j
3+1

> (p 2j)-1(2n)m-k
2P.

J =
- 3 s

'3
xk-m

= ck-m2-j(2n)m-kpYJl-k

Thus (26') implies that

= i %,m2-jI$-k

and the theorem follows.

The following lemmia is geometrically obvious.

Lemma 3. Let (p ]
V

be a decreasing sequence of positive numbers

converging to 0. Then g p .2fliv/3

v=l v
converges and

Imc B e
v=l v

2w3 1 5 f3, .
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Theorem 6. Let (y,] be a sequence of

to 0. Let m > 0 be an integer, and

a v c HS such that

positive numbers

s>$+m. Then

(32)

and

(33)

converging

there exists

If k is an integer with k > m, then there exists a v with Dkv E A

such that

(34)

and

(35)

. +v,N,K)
lim sup N%,3[N =oO
K+-a YK p-k

lim sup +v,N,N) = oJ .
N + 63 yN Nmok

Proof. The proof of (32) is the same as the proof of Theorem 4 with

the following alterations. Replace (28) by

00

V(X) = C e2niv/3 1 b .2rrivx

v=l (2rrv)s v l

For N > K, we have

E(~,m,N,K) >, IID~v~II, - ll~"w,ll,
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where vR is given by (9) and wR = s
,KVR' Now

ID~v~($)I = 1 lEl~ K(2ni~)mG(C)e4"i"/31 = C (2nv)m-sbv
> v>K

so IID~v~I~, 2 c (2fl)m-sb
v>K v '

Bsr (7)Y

W,(X)  = 55 a(E)e211iSx
k=-K

where for

Suppose 3 x N. Then j(2N) cycles through the equivalence classes

14 5 KY

mod 3, so by Lemma 3,

Hence, as before,

3K+l
Il~~~,ll, 5 c

v=K+l
(2Nm-sbv

and the rest of the proof goes through, establishing (32).

To prove (33) for this v, imitate the proof of Theorem 4 as above

with-the following changes. Define vL and vR by (9) with K = N - 1,

and define wL and wR by (15). Then

E(V,m,N,N ) >, llDmvf& - IIDmwRii,  ’
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As above,

llDmvRll,  2 c (2nv)m-sbv  l

v>N

By (7)Y

w,(x> =
E=-N

where

a(!> = i ?E + j(2N))
j=l

for I I6 <N

a(-N) = a(N) = i G(N + j(2N))
j=O

For N = Kj for even j > 4, 3 1 N, so by Lemma 3,

la(-N)I = la(N)1  5 I;(N)!

for 151 <N

.

Hence

IIDmw,il,  5
N
C’ 12~~lrn14E>l

E=-N

N-l
< C 12x(E + 2N)(mlG(E
- e=-N+l

+ 2N)I + ]2dNlm13N)I

3N-1
= C (2nv)m-sbv

v=N

SO

co

+,m,N,N)  2 C (2m)m-sb
v=3N V

and (33) follows.
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(34) and (35) follow by similar alterations to the proof of

Theorem 5.

21 2+m-s
Remarks. Theorem 4 shows that the o( > estimate of

&(v,m,N,K) given by Theorem 1 is sharp by showing that there is no

function g(K) going to 0 faster than K?
2+m-s for which

G(v,m,N,K) = @g(K)) for all v e HS. Note that we can obtain a

real-valued function in Hs satisfying (25): since the trigonometric

interpolants of real-valued functions are real-valued, at least one

of the real or imaginary parts of the v constructed must also satisfy

(25). Similar statements hold for Theorem 5 and 6. Also, many of the

details of the constructions are for convenience, e.g. making the pj's

powers of 2, and placing the singularities at x = $ in the odd case and

in the even case.
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5. Corollaries and Summarv

Let wn denote the n-point trigonometric interpolant of v.

i.e.,if n=2N+l,w =n IN
v andif n=2N,w = v.n ?N

Corollary 1. Let m 2 0 be an integer. If v e h$ with s > i + m,

then

II V- Wnll
cm

= o( ,1/2+m-s >

If Dkv s A and k > m, then

IIv - Wnll
cm

= o(nmok)

If v e ckya 1and k + a > F + m, then

IIV- Wnll = fl(n
1/2+m-k-a

> .
cm

The m = 0 case gives the improved estimate for Ck functions:

Corollary 2. If v e Ck and k > 1, then

IIv - wn(Im = o(n1/2-k) .

These corollaries also hold for the K-th partial sums of wn if we replace

n by K in the estimates.

Although we gain an extra half power of n in the estimate for

general Ck functions over the recent @(nl-k ) estimate, there are

other classes of functions for which fieiss and Oliger's O(nl-')

estimate for functions satisfying 35) = e( 151 -B ) yields better
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results. For example, if Dkv is not necessarily continuous but

is of bounded variation, then &.) = cY( 1~ Iokol), so

IIv - wn IloJ = C7(nok). Or, if D
k-lv is absolutely continuous (or

equivalently if Dkv e L 1), then j(s) = o( ltj-k), and Kreiss and

Oliger's proof shows that Ilv - wnJlm = o(nlok) if k > 1. See

Katznelson [S] and Zygmund [7] for discussions of the growth of

Fourier coefficients. We conclude with a table of estimates.

If Dkv e then Ilv - wnlloD =

L1 l-k
ob 1

L2 o( n1/2-k >

cOYa a(n
1/2-k-a

>

HS Oh
112-k-s

>

B.V. d(nok)

A
-k

o(n >

for

k>2

k>l

k+al;

k+s>$

k>l

k > O .
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