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Abstract.

Consi derabl e mathematical effort has gone into studying sequences
of points in the interval [0,1) which are evenly distributed, in the
sense that certain intervals contain roughly the correct percentages of
the first n points. This paper explores the related notion in which
a sequence is evenly distributed if its first n points split a given
circle into intervals which are roughly equal in length, regardl ess of
their relative positions. The sequence X = (1og2(2k—l) nod 1) was
introduced in this context by DeBruijn and ErdBs. V& will see that the
gap structure of this sequence is uniquely optimal in a certain sense,

and optinmal under a wide class of neasures.
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Consi der sequences of points on the circunference of a circle of
radius 1/2x, or equivalently in the unit interval [0,1) . Such a
sequence is called uniformy distributed if the percentage of the first
n points which lie in any fixed interval approaches the length of that
interval as n tends to infinity, this concept has been studied
extensively [4]. W can arrive at a different notion of even distribution
by considering instead the lengths of the gaps between elenents of the
sequence. For each n , the first n points of any sequence divide the
circle into n intervals, and we shall study those sequences which nake
these intervals roughly equal in length, regardless of the order in which
they occur around the circle. Putting this another way, we wll study
strategies for successively breaking a unit stick into smaller and
smal ler fragnents, while attenpting to arrange that the n stick
fragnments present at tine n are as nearly equal in length as
possible, for all n.

More formally, | et us define an n-state to be a multiset containing
n nonnegative real nunbers which sumto one; the elements of the n-state
specify the lengths of the sticks present at time n. An n-state Sis

a legal predecessor of an (n+l) -state T if there exists a nunber x

in Ssuch that S-(x) ¢ T. It follows that the multiset T - (S-(x])
nust consist of exactly two nunbers whose sumis x : that is, T arises
from S by breaking a stick of length x into two nonnegative fragments.

A stickbreaking strategy is then an infinite sequence of states

<Sn)nzl , where S is an n-state and a legal predecessor of Sn+l for

each n . Every sequence of points on the circle defines a unique



stickbreaking strategy, and every strategy can be generated by at |east
one sequence.

VW now turn to the study of stickbreaking strategies, in an attenpt
to find those strategies (S ) in which the elements of s, are nearly
equal for each n . There are many different precise notions Iurking

behind this fuzzy concept; for exanple, we mght try to

minimize |imsup {n -max(s )}, or
n

maxi mze 1im inf {n.min(Sn)} , or
n

o . max(sn)

mnimze Ilmnsup W .
DeBruijn and ErdBs considered these three measures in [1], and proved that
the best possible values for any stickbreaking strategy were 1/in 2 ,
1/1n 4, and 2 respectively, where " 1n " denotes " Ioge ". They also
discovered a particular strategy which sinultaneously achieves the optinum
inall three neasures. This strategy is the one defined by the sequence
(xk)kzl W th X = (1g(2k-1) nod 1) ; where "lg " denotes " log, "
and nod 1 denotes the fractional part; we will call this the |og

stickbreaking strategy. The n-states of the log strategy have the

form

CORCPRED)

for each n; the strategy works, in some sense, because

n+l 2n+2 +
(1) = () - 20(52) + w(228)




Note, by the way, that the sequence (xk>k>l whi ch defines the |og

stratégy is not uniformy distributed, since for exanple the ratio

(number of k's such that 1 <k <n and 0 < x, < 1/2)
n

does not approach a linit as n - ». Thus, the sequences which are
excellently distributed in our new stickbreaking sense need not be evenly
distributed at all in the classical sense of uniform distribution.

The graph in Figure 1 depicts the log stickbreaking strategy in action.
A vertical line has been drawn fromthe top of the figure down to the point
<Xy s k> for 1<k<é64. Ahorizontal cut through the resulting picture
at height n reflects the state of the log -strategy at time n . gnuth [3]

has used this type of graph to display the intriguing distribution structure

<yk>k>0 where y, = (ﬁl—;@ mod l)

W now want to build a nore general framework in which to explore the

of the sequence

optimality of |og stickbreaking. CQur first task is to find a partial

order on n-states which captures the notion of a state's elenments being
"nmore nearly equal". Suppose that S and T are n-states containing
5118, and ty» t, respectively, and suppose that S - {81’82} = T- {tl,tg} :
[t nust then be the case that S+ s, = tl+t2 . If, in addition, we have

z'b > s

S1 1 <% 1 1232.
In either situation, we would intuitively say that the elements of T are

it follows that either sl_>_’cl_>_’r:2>_s2 or s; >t, >t
nore nearly equal than those of S. |n particular, we can go from S to
T by robbing (sl-tl) units fromthe rich s, and giving themto the

We will then say that T results fromS by a Robin Hood act.

poor s

2 .
Mre generally, an n-state S wll be said to majorize an n-state T

whenever T can be reached fromS by a finite sequence of Robin Hood acts;

thus, if S nmajorizes T, the elenents of S are at |east as unequal as

the elements of T .
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Mpjorization is a partial order on n-states; interestingly, we can
get the same partial order in a different way. Let n-vectors be points
in B whose conponents are all nonnegative and sum to one; an n-vector

®  sn>and

is an ordered version of an n-state. |f o = <81) Sy
T = <pty . .. .t > are n-vectors, we wll say that o >¢ if, for
all kinthe range 0 <k < n, we have s+ Sptecet s >

PR @ itk in other words, ¢ >t when the partial sums of o
uniformy exceed those of . Now, with each n-state S, we can
associate an n-vector o = S whose conponents are the elenents of S
in nonincreasing order. It turns out that S majorizes T if and only
i f ézf 5 a proof and still another characterization of this sane
partial order can be found in [2], sections 218to 2.20.

Qur first lenmm shows that the relation o >t holds nore often than

one mght expect. One can view this result as a variant of Spitzer's Lemma [8].

Lemma 1. Let o = <8158y eeesS > and 1T = <t te”"’tn> be n-vectors;

lJ
for each k between 0 and n-I , let o(k) 5 <5347 Sieap? + o 0259879505 4 008>

denote the sequence o circularly shifted k places, and define

r () analogously. Then, for some k in the range 0 < k < n, we have

o0 o ()
Proof . Ve want to shift those positions where v s larger towards the
right end. In fact, it is enough to choose k to nmaximze the quantity

Z (t_-S.) . D
1<i<k * 0t

Ve will use Lemma 1 in studying what can happen in a stickbreaking
strategy between tinme n and tine 2n . Define an n-slice to be a

finite sequence of mstates (8, for n <m< 2n, where Sm is a



| egal predecessor of s, .4 for n < m< 2n . The behavior of any
stickbreaking strategy over the interval [n,2n] constitutes an n-slice,
and any n-slice can be extended in many ways to a full stickbreaking
strategy.

W can draw an n-slice as an oriented forest containing n trees
and a total of %n nodes. Each tree will depict the history over the
slice of one of the n sticks which existed at tinme n , and each node
will represent a stick. The nodes will be labelled [f,m] , where ¢
gives the stick's length, and mdenotes the last time at which it
remai ns unbroken. For each stick that-is still unbroken at tine 2n we
wWill wite m=*, and the node will have no offspring. |If m# *,
then n < m< 2n and the node has exactly two offspring representing
its fragments when broken. For exanple, each n-slice of the |og
strategy defines the forest in Figure 2.

If an n-slice contains states with several sticks of the sanme size,
that is, with elements of nmultiplicity greater than one, it may be
possible to draw several different forests which represent that sane
n-slice. A sinple exanple is the 2-slice
{{2/3,1/3},{1/3,1/3,1/3} ,{1/3,1/3,1/6,1/6}} . Each portrayal of an

n-slice as a forest will be called an interpretation. O course, every

legal n-slice nust have at |east one interpretation.

Note that each of the trees in the above unique interpretation of
a slice of the log strategy contains exactly three nodes. A tree
with only a single node represents a stick which survives unbroken from
tine ntotinme 2n ; call such sticks atoms. Call an n-slice_atomless
if it has at least one atomless interpretation. The following |emma shows

that all the best slices are atomless.
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Lenma 2. is any n-slice, there exists an atomless

I <Sm>n<_111<_gn

'n-slice such that Sy maj ori zes T, for al1 m . That

<Tm>n§m§2n
is, any n-slice can be uniformy inproved upon by an n-slice with an

atomless interpretation.

Pr oof . Let (s ) be an n-slice, and fix a particular interpretation

of (Sm) which has at least one atom By induction, it suffices to show
that there exists an n-slice (Tm) whi ch uniformy inproves upon CI
and an interpretation of (T,) wi th one [ ess atom

Choose any at om of (Sm) , and let its length be a . Since the
atomis represented by a tree with a single node, there nust be sone
other tree in the interpretation of (s, with at |east five nodes.
That tree nust include a | eaf node at level p where p > 2 . Thus,
( sm) must have the formshown in Figure 3,where the triangles indicate
arbitrary trees whose roots have the lengths shown. Note that, if p =2,

the nodes labelled ¢; and Ly are actual l'y identical.

[n-2 other trees]

Fi gure3
9



The construction of the desired n-slice (T ) divides into two cases,

dependi ng upon the size of a . Since bh21t>. . .2 !p—l > !p, at least one

of the inequalities a > Jb_l and a < ¢y nust hold. Suppose first that a >/zp_|.
In this case, we can inprove upon the slice <sm) by breaking a and

| eaving ¢ al one, as shown in Figure L, Let (T, be the n-slice

p-1
defined by this interpretation; clearly (T )'s interpretation has one
| ess atom than the given interpretation of (8, - Now, for m< mo_y
the state T, is identical to S, For m>m, _, , we can go froms
to T by replacing the pair {a,zp} Wit h {IP-I , et =L, g . Since

a2 dy | >k this replacement constitutes-a Robin Hood act. Hence,

p
S, maj ori zes Tm for all m, and the first case is conplete.

(T, if azlp_l

[n-2 other trees]

Fi gure4

10



On the other hand, suppose that a < L In this case, we can
i nprove upon (S ) by adjusting what happens early in the slice, instead
of late. In particular, we can change the lengths of the initia
intervals and get a as the result of a break, as shown in Figure 5.
Once again, |et ﬂﬁ) be defined by this interpretation, and note that
we have reduced the number of atons by one. Now, for m>m,, we have

T =8 For m<m we can get from Sm to T, by replacing the

m m 0
pair {a,zo} Wi th {El, a+to—zl} ;. since Iy 24, 2 &, this is again

a Robin Hood act, and the proof is conplete. O

<Tm> if a < £

[n-2 other trees]

Fi gureb



V& can now show that a rather wide class of stickbreaki ng slices
has a weak formof optimality. In particular, we will define an n-slice
(sm) to be perfect if each break in the slice breaks the currently
| argest stick exactly in half, and if the slice is atomless. Let

<Sm>n§m_<_2n be a perfect n-slice, and |et Sn = <8158,y 00098 > be

the n-vector whose conponents are the sizes of its sticks at tinme nin

nonincreasing order. Note that, since Y is atom ess, we nust have

Sn+k for 0<k<n must be

s, > sl/e . Hence, the (n+k) -vectors

given by

105

S = s s 5 5=, = f_2. %2 S£ "k
n+k - kt1?"kt2? 2 %n? 22 22 o o e T 0

128 > . >s, are any nonnegative nunbers whose

sumis one, and if Sy 2 sl/2 , there is a unique associated perfect

Conversely, if s

n-slice whose states are specified as above. Qur next theorem shows

that all these n-slices have a certain optimlity.

‘Theorem 1. Let (S8 ) be a perfect n-slice, and |et

m nfm__<2n

<Tm>n5m_<_2n be an arbitrary n-slice. Then, for some k in the range

0O<k<n, the state Tn+kvmll nmej ori ze Sn+k * that is, at sone tine

the slice (Tm> must do at |east as poorly as <Sn?

Proof. First, if-every interpretation of (Tm) contains atons, we
can use Lemma 2 to construct a uniformy superior atomless Slice.
Hence, we may assume without |oss of generality that (Tm> has an
atomless interpretation.

Under this interpretation, every stick represented by an el ement

of T, is broken exactly once during the course of the slice (T -

12



Nunmber the el ements of T, in the order in which they are broken,
-— t "

T, = {tl,te,...,tn} , and | et ti and ti be the lengths of the

fragments of ts for 1<i < n . Furthernmore, choose the names

to make t; > t','l. Then, consider the vectors

T n = <tl, tg, . . ey tn>

Ttk = <tk+l’ esey 'tn: ti: t:'lt.’ té: 't;: cos) tl'c’ 'ti;>
- R L U L S T

Ton ot ee bty

Note that the conponents of T &€ exactly the elenents of Tn+k :
but not necessarily in sorted order.

Now, recall that the perfect slice (Sﬁ) takes the form

S

<sl,52’.o.’s >

n n

. ¢ I e R - Gl
n+k“§sk+1"“’n’2’2’2’2"@’2" 2(
. s S s s S s_{

= {4 1 2 2 noo b

Con TNVBE P E? T E 0t B By ’

By applying Lemma 1 to the n-vectors T, and % , we deduce that there
nust exist some Kk intherange O <k <n, such-that -rrgk) 3?(k) ‘

that is, such that

> <Sk+l,cco,sn,sl, to-,sk> .

~

<tk+l’ o0 o,tn, tl, L) .,tk>

This is almost enough information to conclude that, in fact, Ttk 2 Sos

that is, that

13

K



N s s : s s
<t )-oc’t ,‘t’,t",oco,t”t"> > S e eoe S —:L' —g- . _1{'_ _15
k+1 n’ "1° "1 ¥k Z k+1 >"n? 2 7 2 202 0 R

The only partial suns that haven't been handl ed are those which include

a tf but not the corresponding t{ . Note, however, that we do know
t hat
’ck+l+---+’cn+tl+uo+1:i 1 ® Sppptoeent S, t R Y and

+ eee+ . _ L. >

Feeett +
K Tty 21 01 2 St

L ] + 2 +
k+1 ‘ Sn S

+o-o+ﬁ'_|+s_ .

1 1

W can deal with the remaining partial suns by averaging these two

inequalities, and then using the additional-fact that ti >ty inplies

1
ty > t;/2 . Thus, v > S
Finally, note that Toa 1S S mply a rearrangenent of Ttk into
a possibly non-sorted order. Thus, we nust also have Toike 2 Spik

since the sumof the largest j conponents of any vector is certainly
at |least as large as the sumof the leftnost | conponents. 1t follows

that T O

L+ MBI Orizes s

n+k '’

In light of Theorem1, it mght seemto be rather hopeless to find a sense
in which any particular stickbreaking strategy is uniquely optimal. |In
fact, Theorem 1 shows that stickbreaking is a rather zero-sum proposition;
a strategy does well at some tines by doing correspondingly poorly at
other times. And different strategies do well at different tines. To
progress further in our study of stickbreaking, we nust be willing to
conpare mstates and n-states where m#£ n , That is, we nust extend
the majorization partial order to deal with nultisets of different

cizes.

14



One possibility is to generalize majorization by USi Ng Lorenz
curves. These curves are used in econonics for studying inequity in
distributions of income or wealth [7]. In our context, we wll define

the Lorenz curve of an n-state 8, to be the function %n: [0,1] = [0,1]

W th %n(r) given by the sumof the rn l|argest elenments of S, | f
rn is not an integer, we will define the value of %n(r) by interpolating
linearly between the nearest two values of r which nake rn integral.

In particular, if § = <sy,s,..0,5,>, then

27

Sn(k/n) = 2 s, for 0<k<n ,
i

and én(r) for other r is found by piecew se linear interpolation.
(Warning: these Lorenz curves are "upside down" in conparison to the
Lorenz curves of economics.)

The Lorenz curve of a state is a piecew se |inear and concave
function, which assumes the values O and 1 at 0 and 1 respectively.
Furthernore, the discontinuities in the derivative of the function occur
only at rational points. Conversely, any function with these properties
is the Lorenz cuve of an infinite famly of states. For exanple, the
identity function is the Lorenz curve of the n-state {l/n,1/n, . ., 1/n}
for each n .

Suppose t hat S, and T, are two n-states. Recal | t hat Sy
mejorizes T, if and only if §; i@; , In terms of their Lorenz
curves, the latter condition states that én(r) > ﬁ?n(r) for r in
fo,1n,2/n, . . . . 1) . But since Lorenz curves are linear in each
region [k/n, (k+1)/n] = we can conclude that S, maj ori zes T, i f

and only if én(r)z?rr{r) for all r in[0,1]. This latter condition

15



IS a.matural partial order on Lorenz curves; we will say that :%n > in
when én(r) >_'i’n(r) for all r . W can now extend majorization to
relate states of different sizes by defining an mstate s, 1o naj ori ze
an n-state T~ exactly when §m > '}n . Note that this nore general

maj orization is not quite a partial order on the set of all states, since
two distinct states with the same Lorenz curve would each majorize the

ot her.

W could arrive at the same generalization wthout using Lorenz
curves. In order to conpare an mstate Sy and n-state T, e could
di vide each el enent of Sy into n equal pieces, and each el ement of
T, into m equal pieces. This would generate two (mm) -states, which
we could conpare by the old nethods. Since this refining process does
not change the associated Lorenz curves, this idea |eads to the same
general ization of majorization that we found above.

The Lorenz curves of the log strategy have a particularly sinple
form In fact, let L, denote the state of the log strategy at time
n, and define the envelope to be the graph of the function 1g(l+r)
on the unit interval, Then, in Is exactly the function which piecew se
linearly interpolates the envelope at the points (0, 1/n,2/n, . . . . 1}.
This gives a good graphical intuition for the behavior of the in ; for
exanple, we can now see that L, majorizes L for every k and n ,

According to our definitions, no slice of the log strategy is
perfect. Butwecan construct for each n a unique perfect n-slice which
begins with the state L i it is only necessary to note that the
bi ggest el enent of L, Is less than twice as large as the smallest.

Let the perfect n-slice so defined be witten <Pn,m>n<m_<_2n .

where P is the state at tine m. Not e

16



~

that" ?ﬂ also has a simple structure; in particular, P interpolates
Ii, m

1y n,m

the envelope over the n intervals defined by the (n+l) points

0. 2 on-m-1 2n-m 2n-m+2  2n-mth m-2
Jm’m)"', m J m 2 m ) m ) o0 )y m’ .
.
We finally have enough information to characterize the log stick-

bresking strategy in a non-trivial way.

Theorem 2, Log stickbreaking is the unique strategy with the property
that none of its Lorenz curves anywhere exceed the envelope. In more
detail, if an arbitrary strategy <%n%n>1. remains on or below the
envelope everywhere before time 2n , iéimust actually equal the log

strategy until time n .

Proof. Suppose that (Sm>m:>l does lie on or under the envelope before

time 2n ; that is, Sm(r) <1lg(l+r) for 0<r<1l and l<m<2n.

~

Equivalently, we could assume that im > Sm for 1<m<2n, Apply

Theorem 1 to the perfect slice (P and the n-slice

nmﬁngmien \%QnSmSEn'

The theorem allows us to conclude that there exists a k in the range

Hence, we have

0<k<n such that Sn+k majorizes Pn,n+k .
Ln+k 2 Sn+k Z Pn,n+k )

The graph in Figure 6 illustrates the situation for k=1 and n=2 .

Now, consider what Sn+ could be like; it must arise from

k-1

combining two elements of Sn+k . But from the above relation, we know

+
must sum to precisely lg( ntk ) .

that the smallest two elements of Sn+ TTRoT

k

A

Furthermore, since Sn+k-l must fit on or under the envelope, the state

17



2/3

1/3

0
0 1/3 2/3 1
Figure 6
+k

Spik.y cannot afford any elenent larger than 1g(nfk_l); the only
choice Is to conbine the smallest two el enents of S Hence, we
have Liik-1 2 Spex-1 2 Pr1,n+k-~l ’

Continuing inductively, we eventually conclude that I, >§ >P - &

n— n -— n,l’l n !

and thus 8 =T, . Pushing the same argument even further, we find that
the history continues to be forced, and that r%: Lm for 1<m<n. .

Mext, we want to use this characterization to show that |og otick-

breaking is actually uniquely optimal in sone sense. Define an mstate

18



‘to be decent if, for every stickbreaking strategy (Tk) , there

k>1
exists an infinite number of indices k such that T, mgjorizes Sm.
Intuitively, a decent state is not too bad, since every strategy nust
do at least as poorly infinitely often. The next theorem shows that

the envel ope marks the dividing line between decent and indecent states.

Theorem 3.  Let %m be the Lorenz curve of an mstate s . If
%m(r) < 1g(+r) for all r in the open interval (0,1), then the

state S is decent. If there exists an r in (0,1) where

éxﬁ(r> > 1g(1+r) , then s is not decent.

Proof . The second inplication is easier. If %m actual |y exceeds

the envel ope at some point, then no state of the |og strategy can
possi bly najorize s, - Hence, s, cannot be decent.

For the first inplication, et S, be an mstate whose Lorenz
curve liesstrictly under the envel ope except at 0 and 1 . Qur first
goal is to prove the existence of perfect slices all of whose states
maj orize § . Consider the states P . for large nand n < k < 2n .
Each curve %n,k(r) is a piecewise |inear interpolate of 1g(l+r).
Furthermore, as n tends to infinity, the lengths of the chords involved
tend to zero, uniformy in k . Hence, the i’n’k(r) converge to the
envel ope 1g(ltr) uniformMy inr and k . Finally, since all Lorenz
curves are concave, We can check that any k-state T, majorizes Sy
merely by checking that ?L‘k(r) > ém(r) for r inthe finite set
{0, 1/m 2m,. . .,1) . Therefore, by choosing n sufficiently Iarge,
we can guarantee that the states P,k majorize S for all k in

the range n <k <2n.

19



-Fix an n which is sufficiently large by this criterion, and |et

(T be any strategy which chal |l enges the decency of S By

k>k_>_l
applying Theorem 1 to the perfect n-slice P k'n<k<on and the n-slice

<Tk>n§k§2n » We deduce that there exists some k in the range

n < k < 2n such that T\ maj ori zes Pk Since majorization is
)

transitive, o will also mgjorize Sm. Finally, since the above

works for all sufficiently large n , we find that the strategy

<Tk>k21 maj ori zes Sm infinitely often; hence s is decent. O
Unfortunately, the above theorem does-not settle the really
interesting cases! In particular, we would like to know whether or not

the states L, of the log strategy are decent. The author rather
suspects that they are, but that question seems difficult to resolve.
Instead, let us resort to the following definition, Call an n-state

. [— . n . . .
s, nearly decent if S, as a vector in R is an accunul ation poi nt

of the set of T, for decent Tn' That is, a state Sn = {Sl’se’ ’"’Sn}
Is nearly decent when arbitrarily small perturbations of the s; exi st
which make the state decent. The usefulness of this definition lies in

the follow ng theorem

Theorem L., An n-state S, is nearly decent if and only if its Lorenz

A~

curve S = never exceeds the envel ope.

Proof . Once again it is convenient to do the easy half first. Suppose
t hat én actual |y exceeds the envel ope at some point. Then, it must in
fact exceed the envel ope at some point of the formk/n for 0 <k <n ;

that is, we have é(k/n) =1g(l + k/In)+ ¢ for sone ¢ > 0 .

20



-Now, %n( k/n) equals the sumof the k largest elements of s,
A sufficiently small nei ghborhood of the n-vector E; in B will
therefore contain only n-vectors whose Kk largest conponents also sum
to something strictly greater than 1g(1 + k/n) , Applying Theorem 3,
we conclude that no state in this neighborhood can be decent, thus S,

is not even nearly decent.

~

Conversely, suppose that S/ lies everywhere on or under the
envel ope. Note that it can actually touch the envelope only at a finite
nunber of points of the formk/n . Let
v ={k|0<k <n and én(k/n)= 1g(1 + k/n)} , To prove that Sy is
nearly decent, we want to find a famly of decent n-states whose n-vectors
converge to E; in B . Ve will construct these n-states by constructing
their Lorenz curves; and we will do the latter by distorting én alittle
in the neighborhood of the points k/n for k in V. But what is
"a little"?

First, note that for each k in V we nust have
(k1 ~ [k ~ (k o (k-1 ) ,
Sn(T) B Sn(ﬁ) < Sn(ﬁ) B Sn( n ’
that is, the stick corresponding to the interval [k/n, (k+1)/n] must be
strictly smaller than the one corresponding to [(k-1)/n, k/n] . This

foll ows since én actual |y touches the curving and concave envel ope at

k/n . Let the slack in this inequality be denoted By and | et

1 .
P = 7 min .
2 keV Ak

For ¢ intherange 0 <e<p, define the function %n,g at the points

k/n by
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. _ én(k/n)-e if kev

?['n’ E(k/n) =

5, (k/n) if o<k<n and k¢v ,

and extend arn . to the unit interval by linear interpolation. The
)
tricky point nowis to show that T, _ is concave. It suffices to

check that the slope does not increase at each corner between |inear

segments. Consider the corner k/n ; if kis not inV , the change
from S to T only makes things better. If kis in V, the
n I’l,E

change to i‘n . can at nost affect the difference between the Iengths
2

of the sticks corresponding to [k/n, (kt1)/n] and [(k-1)/n, k/n]

~ ~

by 2¢ . Since 2¢ <4, , the change from S to Tn,g does not

destroy concavity.
Thus, for 0 <e<p, the function T _ is avalid Lorenz curve
)
for an associated n-state T . Note that the stick lengths of T
n,e n, ¢
each differ by at nost ¢ fromthe corresponding stick |engths of S, -

Hence, as ¢ goes to zero, Tn ] converges to 'S_I: in B . Since
Dad)

each Tn 3 lies strictly bel ow the envel ope on (0,1) , we deduce from
)

Theorem 3 that each T, 3 is decent; therefore, Sy Is nearly decent, O
)

Corollary. The log stickbreaking strategy is the unique strategy all

of whose states are nearly decent.

Proof". This follows imediately from Theorens 2 and 4 O

This Corollary is the promsed denonstration that |og stickbreaking
ic uniquely optimal in some sense. To wrap things up, we will use this

general optimality to show that 10g stickbreaking is also optimal in a
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fairly wide class of real-valued neasures; in particular, this class
wi Il include the three measures studied by Erd8s and DeBruijn.

A real -valued functional vy on the set of all states will be called

a nonotone neasure if it has the follow ng two properties:

(i) I[f an mstate s, Mjorizes an n-state T , t hen v(Sm):>v(Tn),

(i) For each fixed n, w(s ) = vw({syys5-..s.}) is jointly

continuous in the s, -

our earlier discussion of majorization shows that property (i) is

equivalent to the followng pair of conditions together

(2') Performng a Robin Hood act never increases the value of y

(1”) Two states with the same Lorenz curve nust have the same val ue

of v .

This latter pair of conditions is often easier to verify,

If the author's suspicions are correct and the states L, of the
log strategy are actually decent as well as nearly decent, then the
continuity requirenent, property (ii), could be dropped.

Many intuitively reasonable yardsticks of stickbreaking performance
can be phrased as nonotone measures. Here is a list of exanples which

begins with the three covered by DeBruijn and Erd8s; | et S, be an

n-state with Sn <sl,s2,...,sn> )

(1) v(s,) =n . min(s) « . (0)

(2) ws) = = @ dinsy) =-80).
max(s)  §,(0)

(3) v(Sn) min(Sn) = 6;1(1) .
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1.
(4) ws) = hH T = [ NP a
1l<i<n 0

for fixed p > 1, especially p = 2.

(5) w(s)) = 8§, (r) for fixed r in (0,1).
L. 1
(6) v(s ) = S (r)dr =3. 3 (2n-2i+1)s, .
" J‘O " an 1<i<n +
(7) Generalizing 5 and 6, we can have

l ~
o) = [ (1) ()

for any nondecreasing F. [0,1] - R .

Gven any particular nonotone neasure, we can rate the performnce

of a stickbreaking strategy <Sn>n>l by limnsup v(sn) , Where small

values of this limsup are desirable. Qur final result is
that |og stickbreaking has the optiml im sup in any nonotone

nmeasure.

Theorem5. |If v is any nonotone neasure and G ns1 I's any

stickbreaking strategy, then

lim sup v(s,) > 1mksup v(Ly) = sukp v(Ly)
n

Proof . Fix an arbitrary k > 1 ; we want to show that

lim sup v(Sn) > \)(Lk)
n

Since L, is nearly decent, there exists a sequence of decent k-states
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—<Tk,§>p>l such that Tk,p converges to L_k in JRk . By property (ii),

the real nunbers V(Tk,p) must converge to V(Lk) .
Now, each k-state Tkp is decent; hence there exists an infinite
3

nunber of indices n such that Sy nmejorizes T Therefore,

k,p

13 S > T
mn sup v(S,) > ( k,p)

for every p. Letting p go to infinity, we deduce

lim sup v(Sn) > "(T'k) for each k , and
n

t hus

lim sup v(s,)) > skup v(Iy) -
n

Finally, the above argunment with Sy = Ly shows t hat

lim sup w(L ) > suﬁn v(Ly)
n

hence these two quantities nust in fact be equal. Alternatively, we
coul d have deduced their equality at once by recalling that Ly

mej orizes I for every k and n . O

Acknow edgnent s.

The author would like to thank Tom Cover, who suggested the problem
and christened it "stickbreaking"; Frances Yao and Andrew Yao, who
redi scovered sone of the results of [1]; Don Knuth, who sinplified the
proof of Lemma 1; and Leo Guibas, who vol unteered his hel pful insights

t hr oughout .

25



Ref er ences

[1] DeBruijn, N. G and Erdbs, P.: "Sequences of points on a circle,"
| ndagat i ones Mathematicae 11 (1949); 1k-17,

(2] Hardy, G H., Littlewood, J. E., and Pdlya, G : Inequalities,
Canbridge University Press, 1952.

(3] Knuth, D. E.: The Art of Conputer Programming, Vol ume 3, Sorting
Searching, Addison-Wesley, 1973; pages xiv, 510 and 511.

(4] Kuipers, L. and Nederreiter, H: Uniform Distribution of Sequences,
John Wley & Sons, 197k,

[51 Ostrowski, A.: "Eine Verschirfung des Schubficherprinzips in einem
linearen Intervall," Archiv der Mathematik 8 (1957); 1-10, 330,
[ 6] Ostrowski, A : "Zum Schubficherprinzip in einem linearen Intervall,"

Jahresbericht der Deutschen Mathematiker Verei ni gung 60 (1957); 33-39,
[7] Samuel son, P. A : Economcs (Tenth edition), MGawH I, 1976;

[8] Spitzer, F.: "A Conbinatorial Lemma and its Applications to
Probability Theory," American Mathematical Society Transactions 8

(1956); 323-339.

26



