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Abstract.

Considerable mathematical effort has gone into studying sequences

of points in the interval [O,l> which are evenly distributed, in the

sense that certain intervals contain roughly the correct percentages of

the first n points. This paper explores the related notion in which

a sequence is evenly distributed if its first n points split a given

circle into intervals which are roughly equal in length, regardless of

their relative positions. The sequence \ = (log2(2k-1) mod 1) was

introduced in this context by DeBruijn and Erd&%s. We will see that the

gap structure of this sequence is uniquely optimal in a certain sense,

and optimal under a wide class of measures.
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Consider sequences of points on the circumference of a circle of

radius 1/2n , or equivalently in the unit interval [O,l) . Such a

sequence is called uniformly distributed if the percentage of the first

n points which lie in any fixed interval approaches the length of that

interval as n tends to infinity; this concept has been studied

extensively [4]. We can arrive at a different notion of even distribution

by considering instead the lengths of the gaps between elements of the

sequence. For each n , the first n points of any sequence divide the

circle into n intervals, and we shall study those sequences which make

these intervals roughly equal in length, regardless of the order in which

they occur around the circle. Putting this another way, we will study

strategies for successively breaking a unit stick into smaller and

smaller fragments, while attempting to arrange that the n stick

fragments present at time n are as nearly equal in length as

t possible, for all n.

More formally, let us define an n-state to be a multiset containing

n nonnegative real numbers which sum to one; the elements of the n-state

specify the lengths of the sticks present at time n . An n-state S is

a legal predecessor of an (n+l) -state T if there exists a number x

in S such that S-(x) 5 T . It follows that the multiset T - (S-(x])

must consist of exactly two numbers whose sum is x ; that is, T arises

from S by breaking a stick of length x into two nonnegative fragments.

A-stickbreaking  strategy is then an infinite sequence of states

(Snjn>l  t where sn is an n-state and a legal predecessor of S
n+l for

-
each n . Every sequence of points on the circle defines a unique
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stickbreaking strategy, and every strategy can be generated by at least

one sequence.

We now turn to the study of stickbreaking strategies, in an attempt

to find those strategies (S,) in which the elements of Sn are nearly

equal for each n . There are many different precise notions lurking

behind this fuzzy concept; for example, we might try to

minimize lim sup [n emax( , or
n

maximize lim inf {n l min(Sn)J , or
n

minimize lim sup
m=$.J

n { >min(s,7 l

DeBruijn

the best

l/h 4 .,

and Erd&s considered these three measures in [l], and proved that

possible values for any stickbreaking strategy were l/In 2 ,

and 2 respectively, where " ln 'I denotes " log 'I.e They also

discovered a particular strategy which simultaneously achieves the optimum

in all three measures. This strategy is the one defined by the sequence

%)k_>l with xk = (lg(2k-1) mod 1) t where YLg " denotes " log2 "

and mod 1 denotes the fractional part; we will call this the log

stickbreaking strategy. The n-states of the log strategy have the

form

for each n ; the strategy works, in some sense, because

l@:(Y) = lg(F) = lg[F)+ lg(%& .



Note, by the way, that the sequence {xkk>l which defines the log
m

strategy is not uniformly distributed, since for example the ratio

(number of k's suchthatl<k<n  andO<xk<l/2)- -
n

does not approach a limit as n --) 03 . Thus, the sequences which are

excellently distributed in our new stickbreaking sense need not be evenly

distributed at all in the classical sense of uniform distribution.

The graph in Figure 1 depicts the log stickbreaking strategy in action.

A vertical line has been drawn from the top of the figure down to the point

*k> for l<k<64.- - A horizontal cut through the resulting picture

at height n reflects the state of the log -strategy at time n . KjFmth [31

has used this type of graph to display the intriguing distribution structure

of the sequence (Y >k k>O where yk = (
k(l mod 1

2 >
.

We now want to build a more general framework in which to explore the

optimality  of log stickbreaking. Our first task is to find a partial

order on n-states which captures the notion of a state's elements being

"more nearly equal". Suppose that S and T are n-states containing

s1 Y s2 and tl,t2 respectively, and suppose that S - (sl,s2] = T- (tl,t2] .

It must then be the case that sl+ s2 = tl+t2 . If, in addition, we have

s1 ,> tl L 52 ’ it follows that either s1 2 tl 2 t2 > s
- 2

or s1 L $ ,> tl L 52 l

In either situation, we would intuitively say that the elements of T are

more nearly equal than those of S . In particular, we can go fram S to

T by robbing (sl -tl) units from the rich s1 and giving them to the

poor s2 l
We will then say that T results from S by a Robin Hood act.

More generally, an n-state S will be said to majorize an n-state T

whenever T can be reached from S by a finite sequence of Robin Hood acts;

thus, if S majorizes T , the elements of S are at least as unequal as

the elements of T .
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Majorization is a partial order on n-states; interestingly, we can

get the same partial order in a different way. Let n-vectors be points

in lRn whose components are all nonnegative and sum to one; an n-vector

is an ordered version of an n-state. If 0 = <s 1' s2J l .,sn> and

z = <t1,t2, . . . . tn> are n-vectors, we will say that CT >7 if, for
A

all k in the range 0 < k < n , we have 6 +s1 2 +...+s- - k->

tl+t2+ l **+tk ; in other words, c >z when the partial sums of c-

uniformly exceed those of 't . Now, with each n-state S , we can

associate an n-vector c = 8 whose components are the elements of S

in nonincreasing order. It turns out that S majorizes T if and only

if S>r';N a proof and still another characterization of this same

partial order can be found in [2], sections 2.18 to 2.20.

Our first lemma shows that the relation c >z holds more often thanN

one might expect. One can view this result as a variant of Spitzer's Lemma [8].

Lemma 1. Let (3 = <s1,~2,.o.,sn> and 7 = (tl,t2,...,tn>  be n-vectors;

for each k between 0 and n-l , let c04 = -k+l� �k+2� l l l � sn� �1� ‘29 l l l � �k>

denote the sequence c circularly shifted k places, and define

z w analogously. Then, for some k in the range 0 < k < n , we have

Proof. We want to shift those positions where 'I is larger towards the

right end. In fact, it is enough to choose k to maximize the qumtity

c -s.).o(t
l<i<k i i

We will use Lemma 1 in studying what can happen in a stickbreaking

strategy between time n and time 2n. Define an n-slice to be a

finite sequence of m-states (S,> for n < m < 2n , where S is a- - m
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legal predecessor of srntl for n 5 m < 2n * The behavior of any

stickbreaking strategy over the interval by 24 constitutes an n-slice,

and any n-slice can be extended in many ways to a full stickbreaking

strategy.

We can draw an n-slice as an oriented forest containing n trees

and a total of 3n nodes. Each tree will depict the history over the

slice of one of the n sticks which existed at time n , and each node

will represent a stick. The nodes will be labelled [a,m] , where I

gives the stick's length, and m denotes the last time at which it

remains unbroken. For each stick that-is still unbroken at time 2n we

will write m = * , and the node will have no offspring. If mf*,

then n 5 m < 2n and the node has exactly two offspring representing

its fragments when broken. For example, each n-slice of the log

strategy defines the forest in Figure 2.

If an n-slice contains states with several sticks of the same size,

that is, with elements of multiplicity greater than one, it may be

possible to draw several different forests which represent that same

n-slice. A simple example is the 2-slice

([2/3,1/3}, {l/3,1/3,1/3] Y (1/3~1/3,1/6,1/63)  . Each portrayal  of an

n-slice as a forest will be called an interpretation. Of course, every

legal n-slice must have at least one interpretation.

Note that each of the trees in the above unique interpretation of

a slice of the log strategy contains exactly three nodes. A tree

with only a single node represents a stick which survives unbroken from

time n to time 2n ; call such sticks atoms. Call an n-slice atomless

if it has at least one atomless interpretation. The following lemma shows

that all the best slices are atamless.
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Lemma 2. If (Sm)n<m<2n is any n-slice, there exists an atomless

'n-slice (Tm)n<m<2n -
such that Sm majorizes Tm for all 'm . That

- -
is, any n-slice can be uniformly improved upon by an n-slice with an

atomless interpretation.

Proof. Let {S,} be an n-slice, and fix a particular interpretation

Of Csm, which has at least one atom. By induction, it suffices to show

that there exists an n-slice (T )m which uniformly improves upon (Sm) ,

and an interpretation of (T,) with one less atom,

Choose any atom of (Sm) , and let its length be a . Since the

atom is represented by a tree with a single node, there must be some

other tree in the interpretation of (S,) with at least five nodes.

That tree must include a leaf node at level p where p > 2 . Thus,

( srn) must have the form shown in Figure 3, where the triangles indicate

arbitrary trees whose roots have the lengths shown. Note that, if p = 2 ,

the nodes labelled pl and ppml are actually identical.

[n-2 other trees]

Figure3
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The construction ofthe desired n-slice (T,) divides into two cases,

depending upon the size of a . Since lo 2 ll > . . . > & > P , at least one- p-l- p

of the inequalities a > &- p-l and a<ll must hold. Suppose first that a $ R
p-l'

In this case, we can improve upon the slice (Sm) by breaking a and

leaving Pp-l alone, as shown in Figure 4. Let (Tm) be the n-slice

defined by this interpretation; clearly <Tm) '6 interpretation has one

less atam than the given interpretation of (S,> . Now, for m < mp-l

the state Tm is identical to Sm l For m >
mp

-1 , we can go from Sm

IJo Tm ,by replacing the pair {ayIp] with (1 .
P-l

, a+Pp-Ppml . Sxnce3

a>1 >k!- p-l- p , this replacement constitutes-a Robin Hood act. Hence,

'rn
majorizes Tm for all m , and the first case is complete.

CTm> if a>!- p-l

?I3I *p-l'

Figure4

[n-2 other trees]
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On the other hand, suppose that a 5 Pl . In this case, we can

improve upon (Sm) by adjusting what happens early in the slice, instead

of late. In particular, we can change the lengths of the initial

intervals and get a as the result of a break, as shown in Figure 5.

Once again, let (Tm> be defined by this interpretation, and note that

we have reduced the nwnber of atoms by one. Now, for m >mo ' we have

Tm = Sm . For m 5 m. , we can get fram Sm -to Tm by replacing the

pair [a,~o] with {Lly a+mo-llj ; since a0 2 Rl--> a, this is again

a Robin Hood act, and the proof is complete. 0

(Tm) if a < 11

Figure5

[n-2 other trees]



We can now show that a rather wide class of stickbreaking slices

has a weak form of optimality. In particular, we will define an n-slice

(S,> to be perfect if each break in the slice breaks the currently

largest stick exactly in half, and if the slice is at&Less. Let

@m)n<m<2n be a perfect n-slice, and let q = IS~,S~,...~~~~ be
- -

the n-vector whose components are the sizes of its sticks at time n in

nonincreasing order. Note that, since (S,> is atomless, we must have

sn 2 sl/2 . Hence, the (n+k) -vectors Sri+++ for O<k<n mustbea -

given by

sn+k = 'k 'k
l **� 2 2 .

Conversely, if s1 2 s2 > l . . 1 sn are any nonnegative numbers whose

sum is one, and if sn 2 sl/2 , there is a unique associated perfect

n-slice whose states are specified as above. Our next theorem shows

that all these n-slices have a certain optimality.

,Theorem 1.
Let @m)n<m<2n be a perfect n-slice, and let

(Tm)n<m<2n be an arbitrary n-slice. Then, for some k in the range
a -

O<k<n, the state Tn+k will majorize S
n+k ; that is, at some time

the slice (T,) must do at least as poorly as 6 >m l

Proof. First, if-every interpretation -of (T,) contains atoms, we

can use Lemma 2 to construct a uniformly superior atomless slice.

Hence, we may assume without loss of generality that (Tm) has an

atomless interpretation.

Under this interpretation, every stick represented by an element

of Tn is broken exactly once during the course of the slice (Tm) .
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Number the elements of Tn in the order in which they are broken,

Tn = (tlrt2,...,tn) , and let ti and "; be the lengths of the

frwents of ti , for 15 i 5 n . Furthermore, choose the names

to make ti 2 t'.' .
1

Then, consider the vectors

T n = <t1,t2, . . ..t.>

Note that the components of Tn+k are exactly the elements of Tn+k ,

but not necessarily in sorted order.

Now, recall that the perfect slice (Sm} takes the form

. .+s s1 s1 $2 s2
n+k = (sk+l���sn�~ � F � 2 � z � l �* �-$- �

.

By applying Lemma 1 to the n-vectors tn and q , we deduce that there

must exist some 04k intherange O<k<n, such-that Tn 2%(k) ;

that is, such that

et
k+l�...,tn,tl�..�tk~  > 4SICf~�~~~�Sn,S1,0~~�s~~ l

N

This is almost enough information to conclude that, in fact, ~~~~ zsn+k ;

that is, that
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'1 '1 ' 'k 'k
Sk+~""'Sn'~' 2 *a*' 2' 2 .

The only partial sums that haven't been handled are those which include

a ti but not the corresponding ty . Note, however, that we do know

that

tk+l
+...+tn+tl+***+t i 1 > sk+l+ .a*+ sn+ s

1 + l a.+ s.
l-1 a.nd

tk+l
+-a+tn+tl+ .**+t. +t.

1-l 1 -> 'k+l
+...+sn+s  +..e+s. +s. l

1 l-l 1

We can deal with the remaining partial sums by averaging these two

inequalities, and then using the additional-fact that tb > t'.'
- 1

implies

tl L �i/2 l Thus, Tn+k ~ sn+k .

Finally, note that 7n+k is simply a rearrangement of Tn+k into

a possibly non-sorted order. Thus, we must also have Tn+k > Sri+++ ,N

since the sum of the largest j components of any vector is certainly

at least as large as the sum of the leftmost j components. It follows

that Tn+k majorizes Sri+++ , 0

In light of Theorem 1, it might seem to be rather hopeless to find a sense

in which any particular stickbreaking strategy is uniquely optimal. In

fact, Theorem 1 shows that stickbreaking is a rather zero-sum proposition;

a strategy does well at some times by doing correspondingly poorly at

other times. And different strategies do well at different times. To

progress further in our study of stickbreaking, we must be willing to

compare m-states and n-states where mfn. That is, we must extend

the majorization partial order to deal with multisets of different

sizes.
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One possibility is to generalize majorization by using Lorenz

curves. These curves are used in economics for studying inequity in

distributions of income or wealth [7]. In our context, we will define

the Lorenz curve of an n-state Sn to be the function in: [O,l] 3 [O,l]

with in(r) given by the sum of the rn largest elements of Sn , If

rn is not an integer, we will define the value of ^sn(r) by interpolating

linearly between the nearest two values of r which make rn integral.

In particular, if q = -G~,~~,...,s~~, then

for O<k<n ,.

and s(r) for other r is found by piecewise linear interpolation.

(Warning: these Lorenz curves are "upside down" in comparison to the

Lorenz curves of economics.)

The Lorenz curve of a state is a piecewise linear and concave

function, which assumes the values 0 and 1 at 0 and 1 respectively.

Furthermore, the discontinuities in the derivative of the function occur

only at rational points. Conversely, any function with these properties

is the Lorenz cuve of an infinite family of states. For example, the

identity function is the Lorenz curve of the n-state {l/n, l/n, . . . , l/n]

for each n .

Suppose that Sn and Tn are two n-states. Recall that Sn

majorizes Tn if and only if q > q , In terms of their LorenzN

curves, the latter condition states that S,(r) 2 T,(r) for r in

[O, l/n, 2/n, . . . . 1) . But since Lorenz curves are linear in each

region [k/n, &+1)/d , we can conclude that Sn majorizes Tn if

and only if in(r) > !?! (r)- n for all r in [O,l] . This latter condition
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is anatural partial order on Lorenz curves; we will say that

when sn(r) > a(r) for all r . We can now extend majorization to-

relate states of different sizes by defining an m-state Sm to majorize

an n-state Tn exactly when irn 2 Tn . Note that this more general

majorization is not quite a partial order on the set of all states, since

two distinct states with the same Lorenz curve would each majorize the

other.

We could arrive at the same generalization without using Lorenz

curves. In order to compare an m-state Sm and n-state Tn , we could

divide each element of Sm into n equal pieces, and each element of

Tn into m equal pieces. This would generate two (mn) -states, which

we could compare by the old methods. Since this refining process does

not change the associated Lorenz curves, this idea leads to the same

generalization of majorization that we found above.

The Lorenz curves of the log strategy have a particularly simple

form. In fact, let Ln denote the state of the log strategy at time

n , and define the envelope to be the graph of the function Ml+r)

on the unit interval, Then, Ln is exactly the function which piecewise

linearly interpolates the envelope at the points (0, l/n, 2/n, . . . . l] .

This gives a good graphical intuition for the behavior of the Ln ; for

example, we can now see that Lkn majorizes Ln for every k and n ,

According to our definitions, no slice of the log strategy is

perfect. Butwecan  construct for each n a unique perfect n-slice which

begins with the state Ln ; it is only necessary to note that the

biggest element of Ln is less than twice as large as the smallest.

Let the perfect n-slice so defined be written (Pn m)n<m<2n ,
' --

where Pn m is the state at time m . Note
'
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0

Figure 6

Sn+k-1 cannot afford any element larger than lg(&) ; the only

choice Is to combine the smallest two elements of Sri+++ . Hence, we

have 'n+k 1 >- - 'n+k 1 >- - 'n n+k -1 't -

Continuing inductively, we eventually conclude that ;h > "s, 2 p, I, = '> ,- Y .L
and thus Sn = Ln . Pushing the same argument even further, we find that

the history continues to be forced, and that S = L
m for 1 < m < n .m iJ- -

;!I f;X i;
Y we want to use this characterization to show that log ctick-

breaking is actually uniquely optimal in some sense. Define an m-state :ZY,
L

-.
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-

-to be decent if, for every stickbreaking strategy (Tk)k,l ,'there

exists an infinite number of indices k such that Tk majorizes Sm .

Intuitively, a decent state is not too bad, since every strategy must

do at least as poorly infinitely often. The next theorem shows that

the envelope marks the dividing line between decent and indecent states.

Theorem 3. Let "s, be the Lorenz curve of an m-state Sm . If

Sm(r) < lg(l+r) for all r in the open interval (0,l) , then the

state Sm is decent. If there exists an r in (0,l) where

S(r) >lg(l+r) , then Sm is not decent.

Proof. The second implication is easier. If Sm actually exceeds

the envelope at some point, then no state of the log strategy can

possibly majorize Sm . Hence, Sm cannot be decent.

For the first implication, let Sm be an m-state whose Lorenz

curve liesstrictly under the envelope except at 0 and 1 . Our first

goal is to prove the existence of perfect slices all of whose states

majorize S . Consider the statesm
Pn k for large n and n 5 k 5 2n .

J

Each curve Pn k(r) is a piecewise linear interpolate of lg(l+r) .
9

Furthermore, as n tends to infinity, the lengths of the chords involved

tend to zero, uniformly in k . Hence, the Pn,k(r) converge to the

envelope lg(l+r) uniformly in r and k . Finally, since all Lorenz

curves are concave, we can check that any k-state Tk majorizes Sm

merely by checking that ?k(r) 2 g,(r) for r in the finite set

SO, l/m, 2/m, . . . p 1) . Therefore, by choosing n sufficiently large,

we can guarantee that the states Pn k majorize Sm for all k in
9

therange n<k<2n.- -
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-Fix an n which is sufficiently large by this criterion, and let

(Tk'k>l be any strategy which challenges the decency of Sm . By
-

applying Theorem 1 to the perfect n-slice <'n k)n<k<2n and the n-slice
' --

(Tk)n<k<2n ' we deduce that there exists some k in the range
- -

n < k < 2n such that Tk majorizes Pn k . Since majorization is
'

transitive, Tk will also majorize S
m' Finally, since the above

works for all sufficiently large n , we find that the strategy

(Tk)k>l majorizes Sm infinitely often; hence Sm is decent. 0
-

Unfortunately, the above theorem does-not settle the really

interesting cases! In particular, we would like to know whether or not

the states Ln of the log strategy are decent. The author rather

suspects that they are, but that question seems difficult to resolve.

Instead, let us resort to the following definition, Call an n-state

%l nearly decent if 5 as a vector in IE? is an accumulation point

of the set of !?-n for decent T .
n That is, a state Sn t {s1,s2, . l ., sn)

is nearly decent when arbitrarily small perturbations of the si exist

which make the state decent. The usefulness of this definition lies in

the following theorem.

Theorem 4. An n-state Sn is nearly decent if and only if its Lorenz

curve 'n never exceeds the envelope.

Proof. Once again it is convenient to do the easy half first. Suppose

that -Sn actually exceeds the envelope at some point. Then, it must in

fact exceed the envelope at some point of the form k/n for 0 < k < n ;

that is, we have ^S(k/n) = lg(1 + k/n)+ s for some E > 0 .

20



w
-Now, ^Sn( k/n) equals the sum of the k largest elements of Sn .

A sufficiently small neighborhood of the n-vector q in En will

therefore contain only n-vectors whose k largest components also sum

to something strictly greater than lg(l+ k/n) , Applying Theorem 3,

we conclude that no state in this neighborhood can be decent, thus Sn

is not even nearly decent.

Conversely, suppose that Sn lies everywhere on or under the

envelope. Note that it can actually touch the envelope only at a finite

number of points of the form k/n . Let

v = {k IO < k < n and $(k/n) = lg(l+ k/n)) , To prove that Sn is

nearly decent, we want to find a family of decent n-states whose n-vectors

converge to x
n

in IR . We will construct these n-states by constructing

their Lorenz curves; and we will do the latter by distorting 43 a little

in the neighborhood of the points k/n for k in V. But what is

"a little"?

First, note that for each k in V we must have

in(y) - in(X) < s(x) - qy) ;

that is, the stick corresponding to the interval [k/n, (k+l)/n] must be

strictly smaller than the one corresponding to [(k-1)/n,  k/n] . This

follows since 'n actually touches the curving and concave envelope at

k/n . Let the slack in this inequality be denoted Ak , and let

1
P = Fmin k.

keV

For E in the range 0 < E < p , define the function at the points-

k/n bY

21



Tn &k/n) =’

h

and extend T, E to the unit interval by linear interpolation. The
'

s,ck/n) - E if keV

if Olkln and k{V ,

tricky point now is to show that ^r, E is concave. It suffices to
'

check that the slope does not increase at each corner between linear

segments. Consider the corner k/n ; if k is not in V , the change
h

frcT1 sn to T,E only makes things better. If k is in V , the
'

change to :T, E
can at most affect the difference between the lengths

'

of the sticks corresponding to [k/n, (k+l)/n] and [(k-1)/n, k/n]

by 2~ . Since 2s < Ak , the change frcnn to- %n E does not
'

destroy concavity.

Thus, for 0 < s 2 p , the function T is a valid Lorenz curve
n, E

for an associated n-state T
n,E '

Note that the stick lengths of T
n, c

each differ by at most E: from the corresponding stick lengths of Sn .

Hence, as E goes to zero, c converges to 5-n in l$ . Since
'

each Tn E lies strictly below the envelope on (0'1) , we deduce from
'

Theorem 3 that each Tn E is decent; therefore, Sn is nearly decent, j-J
'

Corollary. The log stickbreaking strategy is the unique stratea all

of whose states are nearly decent.

Proof'. This follows immediately from Theorems 2 and 4, a

This Corollary is the promised demonstration that log stickbreaking

is uniquely optimal in some sense. To wrap things up, we will use this

general optimality  to show that log stickbreaking is also optimal in a
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fairly wide class of real-valued measures; in particular, this class

will include the three measures studied by ErdBs and DeBruijn.

A real-valued functional v on the set of all states will be called

a monotone measure if it has the following two properties:

( 1i If an m-state Sm majorizes an n-state Tn , then y<s,) > v(T,) ,

( 1ii For each fixed n , v(S,) = ~([s1,s2,...,sn]) is jointly

continuous in the si .

Our earlier discussion of majorization shows that property (i) is

equivalent to the following pair of conditions together:

l I( >1 Performing a Robin Hood act never increases the value of v .

* II
( >1 Two states with the same Lorenz curve must have the same value

of V .

This latter pair of conditions is often easier to verify,

If the author's suspicions are correct and the states Ln of the

log strategy are actually decent as well as nearly decent, then the

continuity requirement, property (ii), could be dropped.

Many intuitively reasonable yardsticks of stickbreaking performance

can be phrased as monotone measures. Here is a list of examples which

begins with the three covered by DeBruijn and ErdBs; let Sn be an

n-state with q = ~s~,s~,...,s~> .

0) v(s,) = n l min(Sn)  = i:(O) .

(2) v&J = -n l min(Sn) = -in(l) .

(3)
=(sn)
mn(sn)
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(51

(np-') c
l<i<n- -

SP
i

h
(6) YCSn) 'n r(

for fixed p > 1 , especid.U  p = 2 l

for fixed r in (0'1) .

)dr = $-* C (2n-2i+l
l<i.<n

(7) Generalizing 5 and 6, we can have

v(s,) = t ^s (r)dF(r) -g-o n

for any nondecreasing F: [O,l] + IR .

Given any particular monotone measure, we can rate the performance

of a stickbreaking strategy (Sn)n>l by lim sup v(S,)  , where small
- n

values of this lim sup are desirable. Our final result is

that log stickbreaking has the optimal lim sup in any monotone

measure.

Theorem 5. If v is any monotone measure and (Sn)n>l is any

stickbreaking strategy, then

lim sup .(s,) > lim sup y(Lk) = sup IJ(IJk) .
n k k

Proof. Fix an arbitrary k 2 1 ; we want to show that

lim sup w(S,) > Y0-k)-
n

Since Lk
is nearly decent, there exists a sequence of decent k-states



lTk p)p>l such that T
k

k,P
converges to T in 33 . By property (ii),

' -

the real numbers v(Tk p) must converge to &k) .
'

Now, each k-state T
k,P

is decent; hence there exists an infinite

number of indices n such that S, majorizes
Tbp '

Therefore,

lim SUP y(s,> 2 v(Tkyp)
n

for every p . Letting p go to infinity, we deduce

lim sup v(S,) 2 Y0-k) for each k , and
n

thus

1i.m sup V(S,) > sup y(Lk) 0
n k

Finally, the above argument with Sn = Ln shows that

lim sup Y(L,, 2 sup Y(Lk) ,
n k

hence these two quantities must in fact be equal. Alternatively, we

could have deduced their equality at once by recalling that &

majorizes Ln for every k and n . [51
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