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Abstract.

The problem of finding a minimum spaYlning tree connecting n points

in a k-dimensional space is discussed under three comon distance metrics

-- Euclidean, rectilinear, and L .co By employing a subroutine that
-=.

solves the post office problem, we show that, for fixed k 2 3 , such

a minimum spanning tree can be found in time O(n2’&Ck)(log  n)l-a(k)) 9

where a(k) = 2 -(k+l) 1.8. The bound can be improved to O((n log n) )

for points in the 3-dimensional Euclidean space. We also obtain o(n2)

algorithms for finding a farthest pair in a set of n points and for

other related problems.

This research was supported in part by National Science Foundation
grant MCS 72-03752 A03.
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1. Introduction.

Given an undirected graph with a weight assigned to each edge, a

minimum spanning tree (MST) is a spanning tree whose edges have a minimum

total weight among all spanning trees. The classical algorithms for
. .

finding MST were given by Dijkstra [7], Eruskal 1131, Prim [14], and

Sollin [4, p. 1791. It is well known (e.g., see Aho, Hopcroft and

UUman [1]) that, for a graph with n vertices, an MST can be found

in O(n2) time. (All time bounds discussed in this paper are for the

worst-case behavior of algorithms.) For a sparse graph with e edges

and n vertices, it was shown by Yao [16] that an MST can be found in

time O(e log log n) . More studies of MST algorithms can also be found
--..

in Cheriton and Tarjan [6], Kerschenbaum and Van Slyke CU.].

An interesting application of MST occurs in connection with

hierarchical clustering analysis in pattern recognition (see, for

example, Dude and Hart [y, Chapter 61, Zahn [21]). In this application,

n vertices V = {Gl,V2, . . .,v-n) are given, each a k-tuple of numbers.

The graph is understood to be a complete graph G(V) on these n vertices,

with the weight on each edge {ii,;jj being d($Gj) where d is a

c_ertain metric function computable from the components of ?. and ;
1 j l

A simple way to find an MST in this case is to compute all the weights

d('i,"j) ) and then use an 2O(n ) MST algorithm for general graphs.

However, as there are only kn input parameters, it is interesting to

find out if there are algorithms which take only o(n2) time. Several

empirically good algorithms were proposed in Bentley and Friedman [2],

where a list of references to other applications of finding MST in

k-dimensional spaces can also be found. Shamos and Hoey [16] gave an
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O(n log n) algorithm for n points in the plane (k = 2) with

Euclidean metric. No algorithm, however, is known to have a guaranteed

bound of o(n2) when k 13 .

In this paper, we consider three common metrics in k-dimensional

spaces, namely, the rectilinear (Ll) I the Euclidean (L2) , and the

Lco metric. We use Ek
P

(p = 1,2,a~) to denote the space of all k-tuples

of real numbers with the L -metric,
P

i.e., the distance between two points

x and G is given by dp(%JT) = (i~l,xi-yi,p r" . (It is agreed

that dm(z,y) = map Ixi-yil .) We give new algorithms which construct,
i

for a given set V of n points in E
k
P

, an MST for the associated
--.

complete graph G(V) . The algorithms work in time O(n2ma(k)(log  n)lwaCk) > f

where a(k) = 2
-(k+l) for any fixed k 23 . Fast algorithms for

related geometric problems are &so given using similar techniques,

The main results of this paper are summarized in the following

theorem. Sections 2 -5 are devoted to a proof of it.

Theorem 1. Let k >3

points to be considered

be a fixed integer, a(k) = 2-(k+l) t andall

arein E
k
P

with ps {1,2,=) . Then each of the

time O(n2-a(k)(log  n)l-a(k)) . Forfollowing problems can be solved in

the case when k = 3 and p E 2 , the bound can be improved to

oun lot3 n>

1.8
> l

MST-problem Let V be a set of n points, find a minimum spanning

tree on V .

NFN-problem (Nearest Foreign Neighbor): Let Vl,V2, . . ., V1 be disjoint

sets of points, V = u Vi , and IV\ = n . For each Vi
. i
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and every &Vi , find a &V-Vi such that

dpG) = min{dp("x,z) 1 &-Vij .

GN-problem (Geographic Neighbor): Let V be a set of n points.

For any &V , let N(s) 5: (G \ vi 2 xi for all 15 i 5 k,

G# 2, TEV] . For each f;sV , find a &N(G) such

that dp(G,f) = min{dp(z,v) I GE N(x) ] if N(G) # jd .

AFP-problem [3] (All Farthest Points): Let V be a set of n points.

For each &V , find a REV such that

dp(% 71 = max{dp(z,v) \ &VJ .

F&problem [3] (Farthest Pair): Let V be a set of n points, find

2,&V such that dp(s;'y) = max{dp(&G) I&&V) .
-i.

In Section 6, we briefly describe, for the L2 and the Lo3 metric,

how to obtain o(kn2) algorithms when k is allowed to vary with n .

A remark on the model of computation: We assume a random access

machine with arithmetic on real numbers, and charge uniform cost for

all access and arithmetic operations [l]. In this paper, we often carry

out computations of dp(%Y, 9 which involves an apparent square root

operation when p = 2 . However, since our construction of MST only

depends on the linear ordering among the edge weights, we can replace

d&i) throughout by scJme monotone function of d ($y) . In particular,
P

d2(&$) may be replaced by (d2(G,y))2 = c (x~-Y~)~ everywhere to

produce a valid algorithm without square root operations. We shall,

however, retain the original form of the algorithm for clarity and for

consistency with the cases p = 1, 03 .
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2. The Post Office Problem and Its Applications.

In this section we review solutions to the post office problem, and

show how it can be used to prove Theorem 1 for the AFP, FP and NFN

problems. . .

The post office problem can be stated as follows. Given a set of

n points C,,V,, ..ejV'4n in E
k
P'

we wish to preprocess them so that

any subsequent query of the following form can be answered quickly:

nearest-point query: Given a point x , find a nearest vi to z

(i.e., dp(;;';Ji) 5 dp($vj) for all j )*

This problem was mentioned in Knuth [12] for the case of points in the

Euclidean plane (k = p = 2) . For this special case, several solutions

were given by Dobkin and Lipton [ 83 and Shames [15]. For example, it

is known that with an O(n2 ) -time preprocessing, any nearest-point query

can be answered in O(log n) time [15]. A solution for the k-dimensional

Euclidean space was given in Dobkin and Lipton [ 81, where it was shown

that, it is possible to preprocess n points such that any subsequent

nearest-point query can be answered in 0(2
k
log n) time. Their

technique is quite general, and applies equally well if we wish to

answer "farthest-point" queries -- Given z , find a farthest G, to f; --

instead of nearest-point queries. The preprocessing procedure was not

discussed in great details in [8]. A straightforward, but tedious

implementation [ly] gives the following result.

Definition. We shall use b(k) = 2k+1 , and a(k) = b(k)-' = 2-(k+1) .



Lemma 2.1. Let k 2 3 be a fixed integer, and p E {1,2/J . There

is an algorithm which preprocesses n points in E
k
P

in time O(nb(k))

such that each subsequent nearest-point query can be answered in

O(log n) time. In the special case k = 3 , p = 2 , the preprocessing

time can be improved to 5O(n log n) with a query response-time

O((log nj2) l
The preceding statements remain true if the farthest-

point query is used in place of the nearest-point query.

We shall now demonstrate the use of Lemma 2.1 by applying it to

solve the MST problem in a special case. It also gives us some insight

into the connection between MST and some typical nearest neighbor

problem [3],[16]. =.

Consider the case when

and B . For definiteness,

In this case any MST on V

V consists of two widely separated clusters A

assume that dp(A,B) > na(diam(A)+diam(B)) .Y

consists of the union of an MST for A and an

MST for B , plus a shortest edge between A and B . Thus, to be able to

solve the MST problem efficiently, we have to be able to solve the following

problem efficiently:

Problem RMST:

[AI = \B\ = n

Given two well-separated sets A and B in Ei > with

, find a shortest edge between A and B .

This problem looks very similar to the problem of finding the closest

pair-in a set, which has an O(n log n) -time algorithm. However, there

does not seem to be any simple divide-and-conquer o(n2) solution. We

shall presently give a o(n2) -time algorithm employing the post-office

problem as a subroutine.

*
y We use the notations dp(A,B) = min{dp(G,?) \&A, ?eB) t

min[dp(&v) I Gc S) , and diam(S) = max{dp(&c) L$?E S} .

dp(c;'S) =
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Consider the following algorithm.

w

w

(s3)

cw

@5)

Divide B into r = [n/q1 sets Bl,B2,...>Br  each with at most

q points (q to be determined).

For each 1 < i < r , preprocess Bi- - for nearest-point queries as

-
in Lemma 2.1.

For each xcA , and each 1 < i < r ,- - find a point &i)eBi

that is nearest to E among all points in Bi .

For each &A , find a DEB nearest to x by camparing

:(5&i) for all 1 < i < r .- -

Find a shortest such edge &(i)] .

The time taken is daminated by (S2) and (S3), i.e.,-v.

O(r . qb(k) +nrlogq)  l

Choosing q = (n log n) (b(W1 t the time is O(n(n log n)l- (b(k) 1-l) .

Thus, we have found an algorithm that solves RMST in time

O(n2-a(k)(log n)lgaCk)) . For the case k E 3 and p = 2 , one can

choose q E (n log n) 115 to obtain an O((n log n) le8) algorithm.

We wish to make two observations concerning the above procedure.

Firstly, the AFP and FP problems can be solved with the same time

bounds by very similar procedures (eqloying  farthest-point queries

and preprocessing, of course). We will thus consider that Theorem 1

.
has been proved for these problems. Secondly, the RMST problem is

a type of nearest neighbor problem with some restrictions on the

"legal" neighbors. It is reasonable to expect more such problems

can be solved with similar techniques. The NFN and GN-problems are

problems of this type, and we will see that their efficient solutions

enable the MST problem to be solved efficiently. We shall give a fast
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tigorithm for NFN-problems presently, leaving the more involved proof

of Theorem 1 for MST and GN to the later sections.

We are given disjoint sets Vl,V2,...,Vp with a total of n points

in V=U'i'2
For a point &Vi , every point &V-Vi is a foreign

1
neighbor of 2 . Let q = r(n log n)a(k)l ; call a set Vi small if

Ivi\ < q , and large if lvil 2 q . We partition V into r = O(n/q)

parts Bl,B2, . . ..Br Y where each part (call it a block) either is the

union of several small Vi or is totally contained in some large Vi ,

Furthermore, each part contains at most 2q points, and except possibly

for B, , at least q points. The above partition can be accomplished

in O(n) time by breaking each large Vi into several blocks and

grouping small Vi into blocks of appropriate sizes. We now preprocess

each block Bi so that, for any query point z , a point nearest to 2

in Bi can be found in O(log q) time, According to Lemma 2.1, this

preprocessing can be accomplished in time O(r qb(k)) for all blocks Bi'

We are now ready to find, for each point &V , a nearest foreign

neighbor f , i.e., a,(%?) = min[dp(g,z) 1 z~v-vi3 , when "Vi l

Assume that &Vi and k-Bt . Let us find, for each block Bj that is
- c1

disjoint from Vi , a point z(x,j) nearest to z among all points in B. .
J

Then we find a nearest foreign neighbor G from the points E&j)

and Ipoints in Bt-Vi by coquting and comparing their distances to G .

The running time for finding G , for each z , is thus O(r log q + (r+q)) .

In ammary, the total running time of the above procedure for NFN is

O(n + rqb(k) + nrlog q+ nq) , which is O(n2-a(k) (log ,)w4) . As

before, an O((n log n)
1.8 ) algorithm can be obtained for the case

k=3 and p=2.



This proves Theorem 1 for the NFN-problem,  An interesting connection

exists between MST and NFN-problems, In fact, in Sollin's algorithm

[4, p. 1793, an MST can be found essentially by solving NFN-problems

O(log n) times. Thus, we have shown that an MST can be found in

log nxO(n2-a(k)(log n)1-a(k)) -time, The log n factor can be

avoided by reducing MST to a generalized version of the GN-problem,

which can be solved in time O(n20aCk)  (log n)lgaCk)) . The proof

requires additional techniques beyond the simple application of post

office problems to small parts of V . We shsll illustrate the ideas

for two dimensions in the next section, and complete the proof in

Sections 4 snd 5.



3= An Illustration in Two Dimensions.

We illustrate the ideas of our MST algorithms with an informal

description for the 2-dimensional Euclidean space. Let us first consider

a special type of "nearest neighbor" problem.-. Let z be any point in the

plane. We divide the plane into eight regions relative to 5 as shown in

Figure 1. The regions

having angles of O" ,

are formed by four lines passing through 5 and

45" , 90' , and 135' , respectively with the x-axis.

--.
We number the regions counterclockwise as shown in Figure 1, and use RI(p)

to denote the set of points in the l-th region (including its boundary),

for 1<1<8.- a

Figure 1. Regions R&c) for 1<1<8.

Lemma 3.1. If "s and ;' are two points in RI(G) for some I , then

d2(kb < m={~2(ii3  Y d2(fr,i')]  .
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CI--

Proof. Consider the triangle pqq' (see Figure 1). Since

L{F~' 5 45' < n/3 , its opposite side ii1 cannot be the longest

side of the triangle. 0

. .

Let V be a set of n distinct points in the plane. For each point

kv, let N&G) be those points of V , excluding G itself, that are

in the I-th region relative to G. That is,

Np 6) = V"R&&{ij for 1<1<8.

A point ii in Np(G) is said to be a nearest neighbor to G in the l-th

region if d2(&u) = min{d,(&w)  (&N&c)] . Note that such a nearest
--.

neighbor does not exist if Np(G) = p , and may not be unique when it

exists. Now, consider the following computational problem:

The Eight Neighbors Problem (ENP). Given a set V of n points in the

plane, find for each &V and 1 < I < 8 a nearest neighbor to f; in- -

the l-th region if it exists.

We first show that, once the eight neighbors problem is solved for V ,

it takes very little extra effort to find an MST on V . To see this, we
a

form E, the set of edges defined by

E = ([G,u} 1 &V and c is a nearest neighbor to G selected by ENP) .

We assert that the set of edges E contains an MST on V . As E contains

at most 8n edges, we can then construct an MST for the sparse graph (V,E)

in O(n log log n) steps [17], a very small cost.
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Theorem 3.2. The set of edges E contains an MST on V .

Proof. Let T be a set of edges that form an MST on V . We will show

that, for any edge { ,;F;) that is in T but not in E , we can replace

{&w) by an edge in E and still maintain an MST. This would prove the

theorem since we can perform this operation on T repeatedly until all

edges in T are from E .

Let {G,i] be an edge in T-E . Assume &R!(Y) . Then N&v) # $6 ,

and there is a nearest neighbor z to G in N&v) such that {v,u)e E .

Clearly i # G and d2(v';;) 5 g(&) . Let US delete ( ,CW ]

from T. Then T is separated into two disjoint subtrees with G and

G belonging to di?ferent components. Now, ii and G must be in the

same component. For if they were not, { ,ut; ) would be a shorter

. connecting edge for the two subtrees than {v,;) by Lemma 3-1,

contradicting the fact that T is an MST. Therefore z is in the same

subtree as w, and adding the edge C&u) to T- (G,w] results in a

spanning tree with total weight no greater than that of T . 0

We now proceed to solve the eight neighbors problem. We will find

- a nearest neighbor to each point in the first region. The procedure can

be simply adapted to find nearest neighbors in the a-th region for other 1.

As~demonstrated  earlier, the MST problem can be thus solved in a total of

8ef(n)+C(n  log log n) steps, if the first-region nearest neighbors can

be found in f(n) steps.

To study the first regions, it is convenient to tilt the y-axis by

45O clockwise (see Figure 2). That is, transform the coordinates (x1,x2)

of a point v into (X~,X;) , defined by
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(;) = (1 -j(:l)
In the new coordinates, a point G = (I+";) is in the first region

relative to v = (v' v')1, 2 if and only if (Ui 2 Vi)/\(U,$  2 v,$) .

X’

Figure 2. New coordinate system.

For simplicity we assume that all the 2n coordinates Xi, xi of

points &V are distinct numbers. This restriction shall be removed in

the general algorithm in Section 3. Let us first sort the points according to

their first coordinates Xi , and divide them into
s G (n/q)l12 consecutive
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q

groups each with = qs points (Figure 3), q to be determined later. Then

for each of these s groups we sort the points in ascending order of the

coordinates x; , and divide them into s consecutive groups with M q

points each (Figure 4).

.
.

l

4 0

#

0

.

0

9 --.

.

.

.
8

. a .

b
.

0

Figure 3. Division of points into s groups according to values

of x'
1'

.
.

0

e

.

0

l

.

l
,

l .

l .
a

l

. , l

A

.
0

l

* .
.

l

.

6

I

.

0

Figure 4. Completing the division of V into sL cells.
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The set V is thus divided into S2 "cells". For any &V , the cells can

be classified into three classes by their position relative to G :

class 1, cells all of whose points are in N16) ; class 2, cells with

no points in N1(;T) ; and class 3, the remaining cells. A useful

observation is that the number of cells in class 3 is at most 2xs.

This can be understood as follows: if we draw a horizontal and a vertical

line through v , only those cells that are "hit" can be in class 3, and

there are at most 2 xs of them. We can now try to find a nearest

neighbor for G in Nl(G) using the following strategy: We examine

each cell in turn for cells in class 3, and compute d,(?,c) for all

in the cell; for a cell in class 2, we ignore it; for a cell C in
--.

class 1, we compute u and d2(;,$ defined by d2(&$ z= min{d2(&"x
OI

ii

I&c].

A nearest point can now be found by selecting the point u with minimum

a,(;,<) from the preceeding calculations. The cost is

O(2s.q + # of class 1 cells x a) = O(2sq + s2a) = O(: + g a) , where a

is the cost of computing d2(vi,C) for a cell C of q points. If we

have to compute d,("v,;;) for each &C , then a = O(q) , and the total

cost would be O(n) , and we have not made any progress. However, we

know from the post office problem that we can lower a to log q if we
e

are willing to preprocess the set C (in O(q2) time). So let us do

the following: (i) preprocess every cell C to facilitate the

: computing of a,(G) ; (cost O(E 0 q2) = O(nq) ) (ii) for

each G , compute the nearest neighbor in the above manner in time

. The total cost is then 0

Take q=nl/3 and we obtain an algorithm that runs in time

O(n513 log n) . This gives an o(n2) algorithm for finding an MST in

2-dimensions. We shall generalize the ideas to general k .
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4. Reduction of MST to a General GN Problem.

We shall prove Theorem 1 for the MST and GN problems in this and the

next sections. Without loss of generality, we shall assume that the n

given points in V are all distinct.

In this section we reduce the finding of MST in Ek to a version
P

of the geographic neighbor problem. We ass-e that p E {1,2,c0] throughout

the rest of the paper.

We

and c;

are the

make Et a vector space by defining ;+ ; = (xl+yl, x2+y2, . . . , xk+yk)

= ( cx1' 5” . . ..cxk > , where c is any real number and xi Y Yi

components of ii and ;. We shall refer to any element of I$

as a point or a vector. The j-th component of a vector z will be

denoted as zi without further explanation. The inner product of two

--. k
vectors E and G is ii.;= c xiyi , and the norm of ii is

i=l

\\.;I\ = (G*x)1/2 . A unit vector g is a vector with I\;\\ = 1 .

Notice that all these definitions are independent of p .

.
#WI N

GVectors bl,b2,..., j are linearly independent if

k
implies all hi = 0 . A set of k linearly independent vectors in Ep

k
is called a basis (of Ep ). be a basis of EE .

I hi > 0-The convex cone of B is for all i

)

For any GE Ekp , the region B of z is defined as

R(B;"x) = [i \ ,-GE Conv(B)] l

Let V be a set of n distinct vectors in Epk . Denote by N(B,G)

the set Vn (G I &R(B;V) - {G 1) , for each &V . We shall say that w

is a geographic neighbor to G in region B if &N(B;v) and

dp(&v) 5 dp(<,v) for all &N(B;G) .
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The GGN-Problem  (General Geographic Neighbor). Given a basis B and a

set V of n distinct vectors in E
k
P'

find, for each &V , a geographic

neighbor to G in region B if one exists.

Notice that this reduces to the GN-problem when B = (il,b2, l -,�k)
with b.

1J
= sij . The rest of this section is devoted to showing the

following theorem, which states that, if there is a fast algorithm to

solve the GGN-problem, then one can solve the MST-problem efficiently.

Theorem 4.1. Let k 2 2 be a fixed integer. Suppose there is an

algorithm that solves the GGN-problem for n given points in Ekp in at

most f(n) steps. Then a minimum spanning tree for n points in Ek
P

can be found in O(f(n) + n log log n) steps.

Define the angle between two non-zero vectors 2 and 7 as

Q(%ih -1= cos

,
0 5 0(x,;;> 5 l-c . For any basis B

of
k

!I? Y the angular diameter of

Ang(B) = sop 1 &b Conv(B

MdB) = max(e(iii,ij) 1 ii,bj E B)

e

B is defined by

I . It csn be shown that

Y although we shall not use that fact.

Let B be a finite family of basis of 8
P.

We call B a frame

if U Conv(B) = Ek . The angular diameter of a frame B is given
BE8

.
bY Aw3(n) = max{Ang(B) 1 Ben) . For example, let il = (1,O) , g2 = (-1,l) ,

ii3 = (0,-l) , b4 = (- $ y-1) as shown in Figure 5, then Bl = ( lyg2) ,b"

B2 = (;2>b?3  , 3 = (b4,bl] are bases of EE , and /3 = (Bl,B2,~]

a frame; O(Bl) = 8(B2) = 3fl/4 , Q(&.) = =/3 Y and Q(B) = 3n/4 .

17



N

b
2

Figure 5. Illustration of "basis" and "frame".

Intuitively, the convex cone of a basis I3
-a..

has a "narrow" angular

coverage if Ang(B) is small. The following result asserts that a

frame exists in which every basis is narrow, and such a frame can be

constructed.

Lemma 4.2. For any 0 <q < fi, one can construct in finite steps a

frame B of Epk such that Ang(@ < $ .

Proof. See Appendix. 0

We consider the following MST algorithm. Let us construct a frame

B of E; such that Ang(@ < sin-'(i k-"' ',> . Next, for each

BEB, we solve the GGN-problem -- for each &V , find a geographic

neighbor ii to G in region B if it exists -- and form the set E(B) ,

the collection of all such edges (i,;] . Clearly,

1 U E(B)1 5 n*lBl = O(n) . We now claim that u E(B) contains
BE@ BE@

18



anMSTon V. If this is true, then we can find an MST in an additional

O(n log log n) steps. The total time taken by the MST algorithm is then

O(f(n) + n log log n) . It remains to prove the following result.

Lemma 4.3. u E(B) contains an MST on V .
BU3

Proof. The proof is almost identical to the proof of Theorem 3.1,

except that we need to establish the next lemma. 0

Lemma 4.4. Let

then dp(&) <

- H r4

x,y,z in

=cdp(Y, 3 Y

Ek
P

satisfy

dp(x’“z))  .

@(“x-z, y-z, < s in-1
(

Proof. Use C; By y to denote angles as shown in Figure 6. By assumption,

sina < gk-G+$) . (1)

Without loss of generality, assume that a+ @ > rr/2 . Let i be the

projection of i on the segment from z to z. By the triangle

inequality satisfied by metric d , we have
P

dp(& + dp(k;) 2 dp(;,% Y

dp(%i) + dp(W’Y) > dp6,ib .

.Thus,

dp(;,w) + dp(;,;) > d,cx,;) + (dp(3T,"z) - 2dp(w,;)) . (2)

But, since L is on the segment ; to ii , we have

dp(;;'z) = dp(g,;) + dp(;;'w)  . Therefore, if we can further show that

dpG) - 2dp(;';) > 0 (3 >
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q̂ . .

then (2) implies , proving the lemma.

To prove formula (T), we notice that for any positive I , and G, c

in E
k
R ,

k’/” ,> dp(C;'C) L ~ I;;i-~il .
1

This leads to

In particular,

dp(;,;) x.2 k-1/2 y-; .II- II

Now, clearly by (l),

11; - iI\ = (sin a) \\&"zll < $ k
-e + 31,;-;ll . (7)

Formula (3) follows from (6) and (7). U

N

ii W X

(4)

(5)

(6)

Figure 6. Illustration for the proof of Lemma 4.4.
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5. An Algorithm for the General Geographic Neighbor Problem.

5.1 An Outline.

As shown in the preceeding section, the MST-problem can be reduced. .

to the GGN-problem, and the GN-problem is a special case of the (Xl&problem.

In this section, we shall give an asymptotically fast algorithm for the

GGN-problem, which completes the proof of Theorem 1.

Given a basis B and a set V of n points in Ek
P

, the algorithm

works in two phases.

Preprocessing Phase.

(A). Partition V in O(kn log n) steps into r = rn/ql subsets

V~Yvp **Jr  Y each with at most q points (q to be determined later).

The division will be such that, for any GE Epk , all but a fraction

r
-l/k of the subsets V.

J
have the property that the entire set V. is

J

either in region B of z or outside of region B .

(B). Preprocess each V.
3

in O(qb(k) ) steps such that, for any

new point
k

&E , a nearest point Z in Vj can be found in O(log q)

steps.

Finishing Phase.

(C). For each &V , we find a geographic neighbor in region B as

follows. We examine the r sets Vl,V2,...,Vr in turn. For each V. Y
3

we perform a test which puts V.
J

into one of the three categories.

A category-l Vj has all its points in region B of G , a category-2 V.
3

has all its points outside of region B . The nature of a category-3 Vj
-,

is unimportant, except that there are at most r
1-k-l v

j
in this
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q��

category; we consider the V. that contains G itself to be of
3

category 3 independent of the above division. As we shall see later,

the test will be easy to carry out, in fact in O(k) time per test.

For a category-l Vj , we find a nearest G in V
3

in O(log q) time.

For a category-2 Vj , nothing need be done. For a category-3 Vj , we

find a nearest G(# ;)eVj in region B , if it exists, by finding all

the &Vj that are in region B and camputing and comparing dp(&v)

for all such i . Call G a candidate from V. . After all the Vj
J

have been so processed, we compare dp(&c, for all the candidates G

obtained (at most r of them), and find a nearest one ii to G. This

G is the geographic neighbor we seek for G. Return "non-existent" if

no candidate i exists from any V. .
3

In the above description, three points need further elaboration:

*how step (A) is accomplished, how we check a subset Vi for its category,

and how q is chosen. We shall deal with the first two points in

Section 5.2, and the last point in Section 5.3.

5.2 A Set Partition Theorem.

We shall show that step (A) of the preprocessing phase in Section 5.1
-
can be accomplished. The key is the following result in Yao and Yao [20].

For completeness, a proof is included.

: For any finite set F of points in Ek Y let high&F) = max(xp I&F]

and lowI = minC;Ce l&F} , for l<l<k.- -
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Lemma 5.1 [20].*_/ Let q and k be positive

of n points in Ek . Then, in O(kn log n)

be done.

integers, and F a set

steps, the following can

( >i

( >ii

(iii)

Proof.

F is partitioned into r = [n/q1 sets FlJF2,...,Fr , each with

at most q points,

the 2kr numbers highI , lowi , 1 5 i <, r , and

l<d<k, are computed,

the partition satisfies the condition that, for any ye Ek , there

exist at most krrl/k,k-1 sets Fi such that 31 with

lOWl(Fi)  < Yl 5 hitip l

We shall prove it for the case k = 3 ; the extension to general

z
k is obvious. For the moment, let us assume further that n = qm' for

sme integer m . We use the following procedure to partition F .

(a) Sort the points of F in ascending order according to the first

components into a sequence ii f;
hl

1' 2' . . ..X l Divide the sortedn

sequence into m consecutive parts of equal size. That is, let

Gl = {xj 1 1 < j < n/m) ,- - G2 = (xj 1 n/m + 1 < j 5 2n/mj, . . ..G. .

m
(b) For each 1 < i < m , sort the points in Gi according to the 2nd- -

.

components; divide the sorted sequence of Gi into m consecutive

puts Of equal size, Gil,Gi2,  . . ..Gim .

(c) For each 1 < i,j < m , sort the points in G..
1J

according to their

3rd ccmponents; divide the sorted sequence of G.. into m consecutive
1J

parts of equal size, G.. ,G. GiJ1 ij2'**" ijm l

This lemma was proved in [20] with q = nl/k ; it will be absent in a
revised version.
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(d) We rename the 3m sets G. .
1Jl

as Fl,F2,...,Fr where r = n/q= .2

(e) Compute highI , lowI for 15 i 5 r , 15 1 5 3 according

to the definitions.

The above procedure takes O(n log n) steps; and each Fi contains

exactly q points. It remains to show that property (iii) in the lemma

is satisfied.

Let YE .E3 We shall prove that, for each 1 < 1 < 3 , there are- -

at most m2 Fi with lowI < yI <, highI . The proof is based

on the following properties of the partition:

lowl(Gl) 5 highl(Gl) 5-+owl(G2) 5 highl(G2) 5 l 5 lowI <hig%(Gm) (5 J>

lOWz(Gil) 5 high2(Gil) 5 low2(Gi2) 5 high2(Gi2) 5 .a. low2(Gb) < high2(Gim) (5.2)

< . . . < low3 (Gijm) 5 hi@ij(Gijm)

lLi,j Lrn .

For 1~1, according to (5.1), there is at most one j such that

lOW,(Gj) < Yl 5 highl(Gj) .

Thus, only the m2 G
. jts (15 t,S < m> C5Ln have lowl(Gjts) < yl<

h�g%(Gjt-  l>
This proves our assertion for 1 = 1 . We now prove the

case for R = 2 . For each i , by (5.2), there is at most one j such

that low2 (Gij) < y2 5 high2(Gij) . Thus, for each i , only the m Gijt

(1 < t < m) may have low2(Gijt)  < y2 < high2(Gijt) . Therefore, at most- -

(5*3)
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m2 Gijt can have low2(Gijt) < y2 < high2(Gijt) . A similar proof

works for R = 3 , making use of formula (5.3).

3This proves that, when k = 3 , and n = qr = qm for some integer m ,

Lemma 5.1 is true. We now drop the-restriction on n (still k = 3 ).

In this situation, r = rn/ql . Let m = rrl/k, , and use the same

procedure. At most 3m2 Gijt will satisfy (iii) by the same proof.

This completes the proof for k = 3 . 0

We now extend the above result. Let B = ($b2,...,Gk] be a basis

of E
k

; for any 2~ ,& we shall define a k-tuple (x1 x',...,x;Z)  by1' 2

x = ; xiii;. . For any finite set F of points, define for each.
l= 1

l<l<k,- -

high&B;F) = max(Y; 1 g E F)

low&B;F) = min(x; 1 &F)

Theorem 5.2. Let q Y n Y k (q,k 5 n) be positive integers, B a basis

k
a of E , and V a set of n points in Ek . Then, in

O(kn log n + k2n + & steps, we can accomplish the following:

- 0i V is partitioned into r = rn/ql
.

sets Vl,V2,...,Vr , each with

at most q points,

(ii) the 'Z'b nuJnberS highp(ByVi) y 'ow~(B,Vi) , (1 < i 5 r , 11 B 5 k)

are computed,

furthermore, the partition satisfies the condition:
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(iii) for any k-tuple of numbers (Y&' '-,y,> , there exist at most

krr
l/k,k-1 v

i such that, 31 ,

'owp(B;Vi) < yQ 5 highp(B;Vi) .

Before proving this theorem, let us check that this partition fulfills

the requirements of step (i) in the preprocessing phase (see Section 5.1).

Lemma 5.3. A point f is in the region B to G , i.e., &R(B;:) ,

if and only if y; 2 xi forall l<a<k.- -

k
Proof. The lemma follows from the equation f-f; = c (yt, - ~1);~ . 0

Lemma 5.4.

then

either (i)

or ( >ii

or (iii)

If &Ek, B a basis,

xi < low&B;F) for all

in F are in region B

31 , x; > high&~;F) ,

in F are in region B

and F a finite set of points in Ek Y

l<l<k, in which case all points- -

to z,

in which case none of the points

to f;,

none of the above, there exists an a such that

low&A;F) < xi 5 high&B;F) .

Proof. An immediate consequence of Lemma 5.3. 0
.

There are two consequences of Lemma 5.4 of interest to us. Firstly,

it shows that the requirements of step (A) in Section 5.1 are satisfied,

For any x , a V.
3

such that neither all points of V. are in
J

R(B;G)

nor none are in R(B;G) must satisfy the condition that
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r, ;...r.

lOwl(B,Vj) <x; 5 highl(B;Vj) for some 1 , due to Lemma 5.4. By Theorem 5.2,

0--
there are at most about r k

such V. .
3

This proves the claim. Secondly,

Lemma 5.4 gives a simple way to detect most of the V
J

that satisfy

Vj c, R(B;g) or Vj nR(B;;;> e $ . Namely, compare xi with highp(B;Vj)

and lowg(B;Vj) for all 1 , and determine whether case (i), (ii), or

(iii) applies in Lemma 5.4. The test only takes O(k) for each i and j ,

and can be conveniently used in step (C) in the procedure in Section 5.1.

We now turn to the proof of Theorem 5.2.

Proof of Theorem 5.2, Let M be the k by k matrix (bij) , (recall

that bi = (bil,-'i2,  . . ..bik) ), and M
-1

be its inverse. We use the
-.

following procedure to partition V .

(1) Corapute M-' in O(g) steps (see e.g. [l]).

(2) Compute, for each REV , the k-tuple (Xl,X;,...,xk)  by

(x+x;,...,x.$  = (xl,x2,...,x.&M-1  . This takes O(k2n) steps.

(3) Consider the set F = ((x' x~,...,xk)  I&V) .
1' 2

We now use the

procedure in Lemma 5.1 to divide F into r parts Fl,F2, . . a, Fr .

a Let Vi be the subset of V obtained from Fi by replacing

every (Xi, l **,Xk) by the corresponding g .

(4) Set hi@p(B;Vi) c highp(Fi) 9 Wd 10we(B;Vi) + lOWI ..

The procedure clearly takes O&n log n + 2k n + d, steps. The quantities

highl(B;Vi)  and lowp(B;Vi) are correctly computed by their definitions.

Items (i) and (ii) in Theorem 5.2 are obviously true, and (iii) is true

because of the properties of highl(Fi) , lowl(Fi) stated in Lemma 5.1. 0
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5.3 Finishing the Proof.

We now analyze the running time of the algorithm for fixed k and

choose q . The Preprocessing Phase takes time O(n log n + b(k))r.q .

In the Finishing Phase, the running time is dominated by the search
-.

for candidates G , which is of order

n[(# of category-l Vj) l log q + (# of category-3 Vj).q] . The last

expression is bounded by n(r log q + rl-k-l
4 l The total running

b(k)time of the algorithm is thus O(n log n + req + nr log q + nqrl-k-' > .

Remembering that b(k) = 2k+1 and r = O(n/q) , we optimize the

expression by choosing q= (n log n) a(k) . This gives a time

Ob2-a(k)(log n)
l-a(k)--_ ) . The improved time bound for the special case

k =3,P= 2 can be similarly obtained.
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6. Discussions.

We have shown that, for fixed k and pe {1,2,m] , there are

o(n2) -time algorithms for a number of geometric problems in Ek
P'

including the minimum spanning tree problem. We shall now argue that,

den PE [24 ,
2

o(kn ) algorithms exist for all k and n . As
I.

are typical for results under fixed k assumptions, the algorithms

given in the paper have
2

o(n ) time bounds when k is allowed to grow

slowly with n . In fact, a close examination shows that, if

k <
1

_ 5 log log n, the algorithms still run in time o(n2) . For

k> $ log log n , it can be shown [lg] that the computation of the

distances between all points can be done in o(kn2) time when pe (2,a) .

Since all problems considered in this paper have O(n2) -algorithms--.

once all the distances are known, the previous statement provides

algorithms that run in time o(kn2)  l

The efficiency of our algorithms is dependent on the solution to

the post office problem*f (or its farthest-point analogue). For example,

suppose the nearest-point query could be answered in O(log n) time after

an BO(n ) -time preprocessing, I312 l A simple adaptation of the

algorithm would give an O(n2+
-1

(log n)'+
-1

) -time solution to the

-1
NFN-problem, which in turn implies an O((n log n) 2-f3 ) -toime solution

to the MST-problem (see the remark at the end of Section 2). If

l<B<2, the following modification would also give an

-1
O(n2+ (log 4

l-@-l-
> -algorithm for the NFN-problem ( dan hence an

O((n log n)2-B
-1

) -algorithm for finding MST). We first divide V

into r M n/(n log n)'-l blocks Bp,B2,..* as before. Each block

J* Mike Shames claimed (private communication) a solution to the post office
problem for general k that requires less preprocessing time than the
Dobkin-Lipton solution.
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is preprocessed, and for each G , a nearest point in every block not

containing x is found. Now, for every point XeBi , we need to find

for it a nearest "foreign" neighbor in Bi . Instead of using brute

force (computing the distance from each &Bi to every other point

in Bi ) as was done previously, we divide Bi into r subblocks,

preprocess each subblock, and find for G "a nearest point in every

subblock in Bi . To compute a nearest foreign neighbor to z in the

subblock containing z , we shall again break the subblocks. This process

continues until the size of the subblocks are less than n' , where

6 = 1-p-l , at which point we compute all distances between points in

the ssme subblcok. During the above process, we have located, for each f; ,

a set of points containing a nearest foreign neighbor ii to ii. It is then

simple to locate such a C . This is a brief outline of an

O(n2+
-1

(log n)'+
-1

) -algorithm for NFN-problems, 1<$<2.

However, it seems unlikely that a nearest-point query can be answered

in O(log n) time with an 8O(n ) -preprocessing, 8-b when k 2 3 .

We conclude this paper with the following open problems.

(1) Improve the bounds obtained in this paper.

(2) Analyze the performance of new or existing fast heuristic algorithms

M for MST-problems. For example, can one show that the AMST algorithm

in [2] always constructs a spanning tree with length at most 5% over

the true MST?

(3) Prove bounds on average running time of MST algorithms for scme

natural distributions.

(4) Extend results in this paper to Lp -metric for general p l
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Appendix. The EdstenCe and Construction of "Narrow" Frames -- Proof

of Lemma 4.2.

We shall prove Lemma 4.2 in this appendix.

. .

Lemma 4.2. For any 0< JI < fly one can construct in finite steps a

frame R of Epk such that Ang(@ < $ .

As the discussion is independent of p , we shall use & instead

of E
k

.
P

We begin with the concept of a "simplex" familiar in Topology
- ,I

( see, e.g. [lo]). Let POYP1Y""Pj be j+l _ _(0 < j < k) points in Ek ,
--.

where the vectors pi-p0 , 15 i 5 j , are linearly independent. We

.

shall call the set -. 5 Aipi I hi > 0 for all i,
l=O

and c hi=1
i >

a (geometric) j-simplex in Ek Y denoted by (~oy~l,...,~j)  . Informally,

it is the convex hull formed by vertices &,,p,,...,~~ on the minimal

linear subspace containing

S is diam(s) = suP{Ilz -;I

w I J

them (see Figure A). The diameter of a simplex

I L,yE s) .

Figure A. A 2-simplex in E2 .
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The following two lemmas give the connection between simplices and

bases. Let 2 be a k-tuple (Ed, Ed, .**,Ek > , where y {-1,l) for

all i. Denote by H(Z) the hyperplane  {X \ x Eixi = 1) in Ek l

i

Lermna 7.1. Let s = (poyply...ypk  1) -.be a (k-l) -simplex in Ek ,

where f;l@H(hE) for every i . Then the set B(s) = (~o,~l,.,.,f;k)

is a basis. Furthermore, the angle cp = Ang(B(s)) satisfies

cos cp > 1 -- ; k(diam(s))2 .

k-l
Proof. Suppose .

c hiPi = 0 . We shall show that hi = 0 for all i .
l=O -

k-l k-l k-l
If c Q = 0 , then.l=O

C hi(Pi-io) = X h;Pi = 0 . This implies
i=l .l=O -

--_ k-l

'i
= 0 for all i , by the definition of simplex. If

.
c hi E A # 0 ,
l=O

k-l
then y = ' (h,/A)pi = O ' But it is easy to check that veH(2) ,

.
l=O

a contradiction.

We have thus shown that B(s) is a basis. To prove the rest of the

lemma, let G and g be any two non-zero vectors in Conv(B(s)) Y we

shall prove that cos e(~,y) 2 1 - $ k(diam(s))2 . Without loss of

generality, we can assume that G,& s . Then

(diam(s))2 2 (X-y>  l <⌧-y>
= 11:  /I2 + \I G II2 - q G I\* 1) j; 11 cos Q(G)

It follows that

cos Q(“x,y)
> 1 _ (diam(s))2

211 f; II* II y II l

As can be easily verified, &H(:) , which implies
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II IIii2 = cx;
i

1 ;(T&i⌧i)2  = $ l

Therefore, II IIG > 1 , and similarly /~\I > 1 . Formula (a) then
- qJkr -d-k. .

implies

cos && 2 1 - E (diam(s))2 .

This proves Lemma 7.1. 0

We shall use B(s) to denote the basis corresponding to simplex s .

Lemma 7.2. Let s c H(Z) be a simplex, J a finite collection of

simplices, and-s = U s' . Then Conv(B(s)) = U Cmv(B(s')) .
s' EnI s' ERP

Proof. It is easy to see that Conv(B(s)) 3 u Conv(B(s')) . To prove
s' EJ'

the converse, let s = (~oy~ly...,~k l) , where each @H(i) . If a point

k-l
Ge Conv(B(s))  Y then c = c hiPi , where hi 2 0 . We shall prove

i= 0

that GE Conv(B(s')) for some s' E$ . It is trivial if i = 0 .

e

Otherwise, the point 1 LS = U s’ Y
1- and hence - ii E s'

F hi s' EJ
i

' hi
i

_ for some s' EJ . This implies &Conv(B(s')) . tJ

The above lemmas suggest that we may try to construct a frame with

narrow bases, by first constructing a family of simplices all with small

diameters. We use the following scheme:
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Let "ei denote the unit vector in Ek , whose i-th component is 1

and all others are 0 .

For each of the 2k k-tuples ^E = (&l,&2,eea~ Ek) , where Ei = _+1,

do the following.
-.

(a> Let s = (Qly E2e2, . . . . Ek"ek> . (Clearly s c, H(hE) .)

(b) Construct a finite family 2 of simplices all contained in H(2) such that

S = u s' and diam(s') < (2(1- cosq)/k)112 forall sled.
s' Ed

(c) Form B(s') for all sT E$ .

The collection B of all the B(s') constructed this way is clearly

a frame because of Lemma 7.2. Using Lemma 7.1, it is easy to verify that

Ang(B(s')) < $ for all sT . Thus, such a construction would give a

frame satisfying the conditions in Lemma 4.2. It remains to show that

step (b) above can be carried out.

A procedure in Topology ([lo, p. 209, Theorem 5-2O]), known as

barycentric subdivision, guarantees that step (b) can be accomplished

in a finite number of steps. For completeness, we shall give a brief

description below.

e There is a basic procedure, called first barycentric subdivision (FBS),

which, for a given j-simplex s , constructs in finite steps a family pp

of sim$lices such that s = u s' and
. s' E'$

max (diam(s')) 5 h (diam(s)) .
s' EJ

If we apply this procedure iteratively, at each iteration we apply FBS to

every simplex present, then all the simplices will have a diameter less

than any prescribed positive number after enough number of iterations,

This then constitutes a procedure for step (b).
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Finally, we describe the FBS procedure. For a proof that it

produces stiplices with the desired properties, see [lo]. Let

3
s = (~o,;)l,...,~j) , the point G(S) = -& c Pi is called the

i=O

centroid of simplex s . For any t distinct integers 0 5 il,i2,...,it 5 j ,

let $.ili2...it = G((& yf;.
5 l2

Y For each a = (ioyil,...,ij) E c,

where C is the set of all permutations of (0,1,2,...,j)  , let S'(G)

denote the simplex (G ,i
w

=o 5
r.*.,Pa) with ff

3
t = iOil...it . The FBS

of s is defined by
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