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Abstract .

The probl em of finding a m ni mum spanning tree connecting n points
in a k-dinensional space is discussed under three common di stance metrics
-- Euclidean, rectilinear, and L . By enpl oying a subroutine that
solves the post office problem we show that, for fixed k > 3, such
a mnimm spanning tree can be found in tine o(ne'a(k)(log n)l'a(k)) ,
where a(k) = 2'(k+l) . The bound can be inproved to Q((n log n) 1'8)
for points in the 3-dimensional Euclidean space. W also obtain o(ne)

algorithms for finding a farthest pair in a set of n points and for

other related problens.
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1. Introduction.

Gven an undirected graph with a weight assigned to each edge, a
m ni mum spanning tree (MST) is a spanning tree whose edges have a m ni num
total weight anong all spanning trees. The classical algorithns for
finding MST were given by Dijkstra [7], Kruskel [13], Prim [1L4], and
Sollin [4 p. 179]. It is well known (e.g., see aho, Hopcroft and
Uldmen [1]) that, for a graph with n vertices, an MST can be found
in o(ng) time. (Al time bounds discussed in this paper are for the
wor st - case behavior of algorithms.) For a sparse graph with e edges
and n vertices, it was shown by Yao [16] that an MST can be found in
tine Qe log log n) . More studies of MST algorithms can al so be found
in Cheriton and Tarjan [6], Kerschenbaum and Van Sl yke [11].

An interesting application of MST occurs in connection with
hierarchical clustering analysis in pattern recognition (see, for
exanpl e, Dude and Hart [9, Chapter 6], zahn [21]). In this application,
n vertices v = {Trl,x"rg,, . .,x"rn} are given, each a k-tuple of nunbers.
The graph is understood to be a conplete graph V) on these n vertices,
with the weight on each edge {:ri,?rj} bei ng d(:ri,:rj) where d is a
certain metric function conputable from the conponents of %71 and \7j )
A sinple way to find an MST in this case is to conpute all the weights
d(:ri,;rj) » and then use an O(n2) MST al gorithm for general graphs.
However, as there are only kn input parameters, it iS interesting to
find out if there are algorithms which take only o(ng) time. Several
enpirically good algorithnms were proposed in Bentley and Friedman [2],
where a list of references to other applications of finding MST in

k- di mensi onal spaces can also be found. Shanps and Hoey [16] gave an



Qnlog n) algorithm for n points in the plane (k = 2) with
Euclidean netric. No algorithm however, is known to have a guaranteed
bound of o(n®) when k >3 .

In this paper, we consider three comon netrics in k-dinensional
spaces, nanely, the rectilinear (Ll) , the Euclidean (Le) , and the
L, metric. W use EX (p = 1,2,=) to denote the space of all k-tuples

P
of real numbers with the LP-metric, i.e., the distance between two points

. oL k 1/p
x and y is given by d (%y)=| T lxi-yilp . (It is agreed
i=1

t hat dm(§,§) = max |xi-yi| .) W give new al gorithns which construct,

for a given set V of n points in Ek an MST for the associated

P’
conplete graph V) . The algorithms work in time o(ne'a(k) (log n)l'a(k)) ’
where a(k) = 2'(k+l) forany fixed k >3 . Fast algorithns for

rel ated geonetric problens are also given using simlar techniques,
The main results of this paper are summarized in the following

theorem  Sections 2 -5 are devoted to a proof of it.

_ o= (k1)

Theorem 1. Let k >3 be a fixed integer, a(k) , and all

points to be considered are in Ek with pe {1,2,o} . Then each of the

P
following problems can be solved in tine o(ne"a(k)(log n)l'a(k)) . For

the case when k = 3 and p = 2, the bound can be inproved to

0((n log n)1'8) .

MST-problem Let V be a set of n points, find a m ni num spanni ng
tree on Vv .
NFN-probl em  (Nearest Foreign Neighbor): Let VsV ¥, be di sj oi nt

sets of points, V=yv,, and |[v] = n . For each A
i



and every xeV, , find a yev-v, such that
aP(SE,;) - min{dp(;c,;) | zev-v,} .
G\ probl em ( Geographi ¢ Nei ghbor): Let V be a set of n points.
For any xeV, let Nx) =(V|v, >x for all 1<i <K
V4% vev). For each eV, find a yeN(x) such
t hat dp(§,§) = min{ap(sz,?r) |ve N(x) }if N(x) 49 .
AFP-probl em [3] (AIl Farthest Points): Let V be a set of n points.
For each xeV , find a yeV such that
ap(Si, ¥) = max{dp(i,i}) | vevy .
F&pr obl em [3] (Farthest Pair): Let V be a set of n points, find

X,y eV such that dP(z"c,§r) = max{dp(ﬁ,?r) | %, vevy .

In Section 6, we briefly describe, for the L, and the L_ netric,

2
how to obtain o(k112) algorithms when k is allowed to vary with n .

A remark on the nodel of conputation: W assune a random access
machine with arithmetic on real nunbers, and charge uniform cost for
all access and arithnetic operations [1]. In this paper, we often carry
out conputations of dp(?c,i}) , Which invol ves an apparent square root
operation when p = 2 . However, since our construction of MST only
depends on the linear ordering among the edge weights, we can replace
dp('fc,gr) t hr oughout by some rmonotone function of dp(i,:}) . In particul ar,
dg(gcéi}) may be repl aced by (d2(§,§))2 = (Xi'yi)2 everywhere to
produce a valid algorithmw thout square root operations. W shall,
however, retain the original formof the algorithmfor clarity and for

consistency with the cases p =1, « .



2. The Post Ofice Problem and Its Applications

In this section we review solutions to the post office problem and
show how it can be used to prove Theorem 1 for the AFP, FP and NFN
probl ens.

The post office probl emcan be stated as follows. Gven a set of

n points 51,52,...,§n in EE, we wish to preprocess them so that

any subsequent query of the following form can be answered quickly:
nearest-point query: Gven a point x , find a nearest Qi to x

(i.e., dp(i’;i) < dp(i,Gj) for || J ).

This probl em was nentioned in XKnuth [12] for the case of points in the
Euclidean plane (k = p =2) . For this special case, several solutions
were given by Dobkin and Lipton [ 83 and shamos [15]. For exanple, it

is known that with an (an) -time preprocessing, any nearest-point query
can be answered in 0(log n) time [15]. A solution for the k-dinensiona
Eucl i dean space was given in Dobkin and Lipton [ 8], where it was shown
that, it is possible to preprocess n points such that any subsequent
near est-point query can be answered in 0(2k log n) tine. Their
technique is quite general, and applies equally well if we wsh to

answer "farthest-point" queries -- Gven x, find a farthest Gi to x --
instead of nearest-point queries. The preprocessing procedure was not

di scussed in great details in [8]. A straightforward, but tedious

i npl ementation [19] gives the follow ng result.

Definition. Ve shall use b(k) = 251 and a(k) = b(x)™> = 2~ (1)




Lemma 2. 1. Let k > 3 be a fixed integer, and p e {1,2,o} . There
is an algorithm which preprocesses n points in E:; intime o(nb(k))
such that each subsequent nearest-point query can be answered in

0(log n) time. In the special case k =3, p=2, the preprocessing
time can be inproved to (Xn5 log n) with a query response-tine
0((1og n)2) . The preceding statements remain true if the farthest-

point query is used in place of the nearest-point query.

W shall now denmonstrate the use of Lemma 2.1 by applying it to
solve the MST problemin a special case. It also gives us sone insight
into the connection between MST and some typical nearest neighbor
problem [3],[16]. -

Consi der the case when V consists of two widely separated clusters A
and B . For definiteness, assume that dp(A,B) > n.(diam(A) + diam(B)) .ﬂ
In this case any MST on V consists of the union of an MST for A and an
MST for B, plus a shortest edge between A and B . Thus, to be able to
solve the MST problem efficiently, we have to be able to solve the follow ng

problem efficiently:

Probl em RMST: G ven two wel |l -separated sets A and B in EI; s Wth

|a| =|B| = n, find a shortest edge between A and B .

This problem | ooks very simlar to the problem of finding the closest
pair-in a set, which has an Q(n log n) -time algorithm However, there
does not seemto be any sinple divide-and-conquer o(ne) solution. W
shal | presently give a O(nz) -time al gorithm enploying the post-office

probl em as a subroutine.

%/ W use the notations d (4;B) = min{dp(ﬁ,x"r) |uea, veB}, dp(ﬁ,s) =
min{dp(a,%}) | ve S) , and diam(s) = méx{dp(a,e) | %,V e s} .
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Consi der the follow ng algorithm

(s1) Divide Bintor =Tn/ql sets By»Bys...sB, €ach with at nost
g points (g to be determ ned).

(s2) For each 1 <i <r , preprocess B, for nearest-point queries as
in Lenma 2. 1. )

(s3) For each xeA, and each 1 <i <r , find a point y(%1) e B;
that is nearest to x among all points in B, -

(sb) For each xeA , find a z(X)eB nearest to x by comparing
y(%i) for all 1 <i <r

(s5) Find a shortest such edge {;,;(;c)} .

The tine taken i s dominated by (S2) and (83), i.e.,

qr . qb(k) + nrlog q)

-1 -
Choosing g = (n log n) PN 7 the tine is qn(n log nyl &) l) |

Thus, we have found an al gorithmthat solves RMST in tine
o(ng'a(k> (Log n)l'a(k)) . For the case k =3 and p = 2 , one can
choose g = (n log n) 1/5 to obtain an O (n log n) 1‘8) al gorithm
W wish to make two observations concerning the above procedure.
Firstly, the AFP and FP problems can be solved with the same tine
bounds by very simlar procedures (employing farthest-point queries
and preprocessing, of course). W wll thus consider that Theorem 1
has been proved for these problens. Secondly, the RMST problemis
a type of nearest neighbor problemw th some restrictions on the
"legal " neighbors. It is reasonable to expect nmore such problens
can be solved with simlar techniques. The NFN and GN-problems are
problens of this type, and we will see that their efficient solutions

enabl e the MST problemto be solved efficiently. W shall give a fast




algorithm for NFN-problens presently, |eaving the more involved proof
of Theorem 1 for MST and GN to the later sections.

W are given disjoint sets Vi VreeesV, with a total of n points
in Vv=yV, . For a point ;cevi , every point ::feV-Vi is a foreign

 ghbor of % (k)
nei ghbor of x. Let g = [(n log n) 1

; call a set Visrrall i f
|vi| <q, and_large if |Vi\ >q . W partition Vinto r = 0(n/q)
parts BBy . . By where each part (call it a block) either is the

uni on of several snall v, or is totally contained in sone |arge Vi

Furthernore, each part contains at nost 2q points, and except possibly

for B, , at | east q points. The above partition can be acconplished

in Qn) time by breaking each large A into several blocks and

groupi ng small V. into blocks of appropriate sizes. \% now preprocess
each bl ock B; SO that, for any query point X, a poi nt nearest to x

in B; can be found in 0(log q) tinme, According to Lemma 2.1, this
preprocessing can be acconplished in time Qr qb(k)) for all blocks B, .
W are now ready to find, for each point xeV , a nearest foreign

nei ghbor y , i.e., dp(i,{r) = min{dp(:”c,’i) | Zev-v;}, when XeV,.

Assune t hat ;ceVi and xe¢B Let us find, for each bl ock Bj that is

-
disjoint from V., a poi nt ~Z(;<,j) nearest to x anong all points in B.J .
Then we find a nearest foreign neighbor y fromthe poi nts z(%,J)

and points in B, -V, by computing and conparing their distances to '

The running tinme for finding vy, for each x, is thus Ar log q + (r+q))

In summary, the total running time of the above procedure for NFN isS

l-a(k))

Qn + rqb(k) + nrlog g+ ng) , which is O(ngta(k) (log n) As

1.8)

before, an Q((n log n) al gorithm can be obtained for the case

k=3 and p=2.



This proves Theorem 1 for the NFN-problem., An interesting connection
exists between MST and NFN-problenms, In fact, in Sollin's algorithm
[4, p. 179], an MST can be found essentially by solving NFN-problens
0(log n) times. Thus, we have shown that an MST can be found in
| og nxo(ng'a(k)(log n)l'a(k)) -time, The log n factor can be
avoi ded by reducing MST to a generalized version of the GN-problem,
whi ch can be solved in tine o(ng'a(k) (log n)l'a(k)) . The proof
requires additional techniques beyond the sinple application of post
office problems to small parts of V. V& shall illustrate the ideas
for two dimensions in the next section, and conplete the proof in

Sections L4 and 5.



3. An Illustration in Two D nensions.

W illustrate the ideas of our MST algorithnms with an infornal
description for the 2-dimensional Euclidean space. Let us first consider
a special type of "nearest neighbor" problem Let p be any point in the
plane. W divide the plane into eight regions relative to p as shown in
Figure 1. The regions are formed by four lines passing through p and
having angles of o, L45° 90° | and 135° , respectively with the x-axis.

W nunber the regions counterclockw se as shown in Figure 1, and use Rl(p)

to denote the set of points in the ¢-th region (including its boundary),

Figure 1. Regions R, (p) for 1<s<8.

Lemma 3.1. | f E and a' are two points in RZ(E) for some 1, then
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Proof . Consi der the triangle Tqq (see Figure 1). Since

439" < 5° < nf3, its opposite side qq' cannot be the | ongest

side of the triangle. O

Let V be a set of n distinct points in the plane. For each point
veVv, let Nz(:’) be those points of V , excluding v itself, that are

in the ¢-th region relative to v . That is,

Nl(;) :Van(;)-{;} for 1<£<8.

A poi nt o in Nz(:r) is said to be a nearest neighbor to v in the g-th

region if dg(;,':l) = min{de(:r,'v}) |17reN£('\'r)} . Note that such a nearest
nei ghbor does\not exist if Nl(\Nr) =@, and may not be unique when it

exists. Now, consider the follow ng conputational problem

The Ei ght Nei ghbors Probl em (ENP). Gven a set Vof n points in the

plane, find for each vev and 1 < 1 <_8 a nearest neighbor to vin

the ¢-th region if it exists.

W first show that, once the eight neighbors problemis solved for V,
it takes very little extra effort to find an MST on v . To see this, we

form E, the set of edges defined by

E = {{v,u} | vev and u is a nearest neighbor to v selected by ENP} .

W assert that the set of edges E contains an MST on V. As E contains
at nost 8n edges, we can then construct an MST for the sparse graph (V,E)

in Qn log log n) steps [17], a very small cost.



Theorem 3. 2. The set of edges E contains an MST on V .

Proof . Let T be a set of edges that forman MST on V.. W wll show
that, for any edge {:r,,;r} that is in T but not in E, we can replace
{v,w} by an edge in E and still maintain an MST. This would prove the
theorem since we can performthis operation on T repeatedly until all
edges in T are fromE .

Let {v,w} be an edge in T-E . Assume weR,(v) . Then N,(v) # 8 ,
and there is a nearest neighbor u to v in Nz(\~f) such that {v,u}e E .
Cearly u # w and dy(v,u) < de(??,;r) . Let wdelete {V.w)
from T. Then T is separated into two disjoint subtrees with v and
w belonging to different conponents. MNow, u and w nust be in the
sane conponent. For if they were not, {13,.;:} woul d be a shorter
connecting edge for the two subtrees than {:r,;r} by Lemma 3.1,
contradicting the fact that Tis an MST. Therefore wis in the same
subtree as w , and adding the edge {v,u} to T- {v,w} results in a

spanning tree with total weight no greater than that of T . d

W& now proceed to solve the eight neighbors problem W will find
a nearest neighbor to each point in the first region. The procedure can
be sinply adapted to find nearest neighbors in the ¢-th region for other ¢.
As demonstrated earlier, the MST problem can be thus solved in a total of
8+f(n)+0(n log log n) steps, if the first-region nearest neighbors can
be found in f(n) steps.

To study the first regions, it is convenient to tilt the y-axis by
45° clockwi se (see Figure 2). That is, transformthe coordinates (Xl’xz)

of a point v into (Xi’xé) , defined by

12



In the new coordinates, a point u = (“i’ué) isin the first region

relative to v = (whvyy) if and only if (u>vi)A(wy>vh).

y|
1 - e memanwoe - U
u ’
4
AL
1 P Vd
2 s 7
(/ l|-50 4 /’ ,
/¢ s X
> ra
~"
!
1 J
——
u!
1

Figure 2. New coordinate system

For sinmplicity we assunme that all the 2n coordinates X1 %) of

poi nt s xeV are distinct nunbers. This restriction shall be renoved in

the general algorithmin Section 3, Let us first sort the points according to

L , L , S = (n/q)l/2 consecuti ve
their first coordinates x! and divide them into

l 1
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groups each with = gs points (Figure 3), q to be determned |ater. Then

for each of these s groups we sort the points in ascending order of the

coordinates x} , and divide theminto s consecutive groups with = q

points each (Figure 4).

Figure 3, Divisien of points into s groups according to val ues

ofxl.

Figure 4. Compl eting the division of Vinto s cells.

1L



The set v is thus divided into s® “cells". For any vev , the cells can

be classified into three classes by their position relative to v

class 1, cells all of whose points are in Nl(:r) ;3 class 2, cells with

no points in Nl(:r) ; and class 3, the remaining cells. A useful
observation is that the number of cells in class 3is at most 2xs .
This can be understood as follows: if we draw a horizontal and a vertical
line through v , only those cells that are "hit" can be in class 3, and
there are at nost 2 xs of them Ve can now try to find a nearest

~

nei ghbor for v in Ny

each cell in turn for cells in class 3, and conpute dg(wﬂf,ﬁ) for all u

(;) using the followi ng strategy: W examne

inthe cell; for a cell in class 2, we ignore it; for a cell Ccin
class 1, we conpute u and dg(:r,ﬁ) defined by dg(w7,ﬁ) = min{de(w7,§ |xecy .
A nearest point can now be found by selecting the point “u with minimm

dg(?r,ﬁ) fromthe preceeding cal cul ations. The cost is

O(eseq + # of class 1 cells x a) = 0(2sq + sga) = o(%1 + % a) , where a
is the cost of conputing dQ(Vi’C> for a cell Cof q points. If we
have to conpute de(x”r,ﬁ) for each ueC, then a = Q(q) , and the total
cost would be Q(n) , and we have not nade any progress. However, we
know fromthe post office problemthat we can lower a to log q if we
are willing to preprocess the set C (in o(qz) time). So let us do
the follow ng: (i) preprocess every cell Cto facilitate the
- conputing of dg(:r,c) : (cost o(%.q2)=(an) ) (ii) for
each v , conpute the nearest neighbor in the above manner in time
o(%+%log q) . The total cost is then 0(nq+ §+3q2-10g q) .

Take g = nl/5

and we obtain an algorithmthat runs in tine
o(nS/5 log n) . This gives an O(ne) algorithm for finding an MST in

2-dimensions. W shall generalize the ideas to general k .

15



L, Reduction of MST to a General GN Problem

W shall prove Theorem 1 for the MST and GN problems in this and the
next sections. Wthout loss of generality, we shall assume that the n

given points in V are all distinct.

In this section we reduce the finding of MST in ElFf to a version
of the geographic neighbor problem W assume that p e {1,2,«} throughout
the rest of the paper.

W make E]; a vector space by defining X+ 7y = (475 XVp0 . . L, BT
and cx = (cxy,e%y, . . wox) , where ¢ s any real nunber and x; , ¥,

are the conponents of ¥ and y . W shall refer to any element of EI;

as a point or a vector. The j-th conponent of a vector Z will be

denoted as z; without further explanation. The inner product of two
. T e K .
vectors x and y is x-y = 2 X9 and the normof =x IS
i=1

\]%\]:(;c-;c)l/g. A unit vector x is a vector with || x| =1 .

Notice that all these definitions are independent of p .

~ o~ ~ J ~
Vect ors bl’bg”"’bj are linearly independent if iL:Jl Kibi =0
implies all >\1=0 . A set of k linearly independent vectors in E,
. . ) ~or - . k
is called a_basis (of é(p). Let B = {bysbyreeesy] be a basis of Ep .
k ~ .
The convex cone of B is Conv(B) = xibi | M >_O for all | .
i=1

For any xe X the region B of x is defined as

p 1

R(B;;c) = {'{r | §-§ce Conv(B)} .

Let V be a set of n distinct vectors in EI; . Denote by N(B,v)

the set vn {u|wueR(B;v) - {v}}, for each vev . W shall say that

is a geographic neighbor to v in region B if weN(B;v) and

dp(v”v-,?f) < ap(ﬁ,x”f) for all UeN(B;V) .

16




The GGN-Problem (Ceneral Ceographic Nei ghbor). Gven a basis B and a

set V of n distinct vectors in E:; find, for each vev , a geogr aphi c

neighbor to v in region B if one exists.

Notice that this reduces to the G\ problem when B = {bl;bE@ o)
W th b.ij = 51;} . The rest of this section is devoted to show ng the
following theorem which states that, if there is a fast algorithmto

sol ve the GGN-problem, then one can solve the MST-problem efficiently.

Theorem k.1, Let k > 2 be a fixed integer. Suppose there is an
algorithm that solves the GA\-problem for n given points in Elg in at
most f(n) steps. Then a mninumspanning tree for n points in El;
can be found in Qf(n) + nlog log n) steps.

Define the angle between two non-zero vectors x and y as

0(%,y) = cos'l(—-L> 0 <o(x,y)<x. For any basis B
!

=3

of ElL; , the angular dianmeter of B is defined by
Ang(B) = sup{6(%y) | % ¥e Conv(B)} . It can be shown that
Ang(B) = max{e(gi,gj) | gi’gj e B) , although we shall not use that fact.

Let 5 be a finite famly of basis of E;f . W call g afranme
i f U Conv(B) = E; .
Bepm

The angul ar_dianeter of a franme B is given

ﬂoy Ang(p) = max{Ang(B) | Bes} . For exanple, |et 1~>l = (1,0) , gg = (-1,1) ,

b5=(0,-l),b,+ = (- %— ,-1) as shown in Figure 5, then B, = {bl’b2} ,
2

BQ={b2’b5}'B5:{bl+’bl} are bases of Ep , and g = {Bl’Be’BB}

a fram; 6(py) = o(8y) = 37/4 , O(%) = 2n/3 , and 6(8) = 3n/L

17



Figure 5. [Illustration of "basis" and "frane".

Intuitively, the convex cone of a basis B has a "narrow' angul ar
coverage if Ang(B) is small. The following result asserts that a
frame exists in which every basis is narrow, and such a frame can be

construct ed.

Lemma 4.2,  For any O <y < =, one can construct in finite steps a

frame B of E;f such that Ang(g) < y .

Proof . See Appendix. O

W consider the follow ng MST algorithm Let us construct a frame
_(;+;)
B of E; such that Ang(s) < sin™t é—k 2’ . Next, for each
Bef , We solve the Ga¥-problem -- for each vev , find a geographic
nei ghbor w tovin region Bif it exists -- and formthe set E(B) ,

the collection of all such edges {1~1,\~r} . Qearly,

| UE®B)| < n+|Bl = A n) . W now claimthat u E(B) contains
Befp Bel

18




an MST on V. If this is true, then we can find an MST in an additional

Qn log log n) steps. The total tine taken by the MST algorithmis then

Qf(n) +nloglogn) . It remins to prove the followng result.
Lenmma L.3. u E(B) contains an MST on V .

Bep
Proof . The proof is alnost identical to the proof of Theorem 3,1,

except that we need to establish the next |emm. O

(3+3)
- —_t =
Lemma L.k, Let ;c,y,z in E}F{) satisfy 9(x—z,y-z)<sin'1(-21-k 2 P ),

t hen dp(x,y) < max{dp(;}, z) , dp(;"c,E)} .

Proof . Use @, B, y to denote angles as shown in Figure 6. By assunption,

(3+3) o

Wthout |oss of generality, assume that a+ g > /2. Let w be the

. 1.
sin a < é—k

projection of ¥ on the segnent fromz to x . By the triangle
inequal ity satisfied by metric dP we have
a(zw) + 4 (ny) > 4G2)
aGow) + 4 ny) 2 4 (xy)
Thus,
d (z,w) + & (5w) > a (%y) + (4 (F,2) - 2d_(w,y)) . 2
P(Z,W> p( )W) p(X;Y) ( ’_p(y’ ) P( »Y)) (2)

~

But, since w is on the segnent z to x , we have

dp(x,z) = dp(;,;r) + dp(:z,;r) . Therefore, if we can further show that

dp(s?,E) - eap(%,:}) > 0 3)
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then (2) inplies 4 (x2) >d (%) . proving the |ema.

To prove formula (3), we notice that for any positive ¢, and U, v

In Ei;,

e (5] 2 @) 2 e 555 (1)
This leads to

HPR-T > o GY 2 YRR 2

In particular,

3, G < Py -wll

(6)
1,2 -z Mg
Now, clearly by (1),
(1)
v - = (sina) [p-2 <%k = Plg-z (M)

Formula (3) follows from (6) and (7). O

Figure 6. Illustration for the proof of Lenma 4.4.
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5. An Algorithm for the Ceneral Geographic Neighbor Problem

5.1 An_Qutline.

As shown in the preceeding section, the MST-problem can be reduced
to the GGFproblem and the G\Hproblemis a special case of the GGN-problem,
In this section, we shall give an asynptotically fast algorithm for the
GGN\-probl em  which conpletes the proof of Theorem 1.

Gven a basis B and a set V of n points in EII; the algorithm

works in two phases.

Preprocessi ng Phase.

(A). Partition Vin o(kn log n) steps into r = [n/q] subsets
ViV eees Vs each with at nost g points (g to be deternined later).
The division will be such that, for any Xe E}; , all but a fraction
r'”k of the subsets VJ, have the property that the entire set \5 IS
either in region B of X or outside of region B .

(B). Preprocess each V.‘_J in o(qb(k)) steps such that, for any

new poi nt ;ceEk, a nearest point u in VJ. can be found in 0(log Q)

st eps.

Fi ni shing Phase.

(CO). For each veVv , we find a geographic neighbor in region B as

v

follows. We examine ther sets Vl, 2,...,Vr

in turn. For each V.J ’

we performa test which puts V.. into one of the three categories.

J

A category-| Vj has all its points in region B of v, a category-2 VJ

has all its points outside of region B. The nature of a category-3 Vj

is uninportant, except that there are at nost 1ok Vs inthis
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category; we consider the V. that contains vitself to be of
category 3 independent of the above division. As we shall see |ater,
the test will be easy to carry out, in fact in (k) tine per test.
For a category-1 vy, Wwe find a nearest w in vy oin 0(log q) tine.
For a category-?2 Vj , hothing need be d(;ne. For a category-3 VJ. , e
find a nearest w(# w?)evj inregion B, if it exists, by finding all
t he Ze—:vj that are in region B and computing and conpari ng dp(E,?r)
for all such z. Call w a candidate from V. . After all the v,
have been so processed, we conpare dp(;r,\Nr) for all the candidates w
obtained (at most r of them, and find a nearest one w to v . This
u is the geographic neighbor we seek for v . Return "non-existent" if
no candidate w exists from any V)

In the above description, three points need further elaboration:
how step (A) is acconplished, how we check a subset v, for its category,
and how q is chosen. \ shall deal with the first two points in

Section 5.2, and the last point in Section 5.3.

5.2 A Set Partition Theorem

W shall show that step (A) of the preprocessing phase in Section 5.1
can be acconplished. The key is the following result in Yao and Yao [20].
For conpl eteness, a proof is included.
- For any finite set F of points in Ek s let hith(F) = max{xz l;c.eF}

and lowz(F)=min{lexeF}, for 1<s1<k.
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Lemma 5.1 [20].f/ Let g and k be positive integers, and F a set

of n points in ol Then, in o(kn log n) steps, the follow ng can

be done.

(i) Fis partitioned intor =[n/ql sets F1sFps0.5F,, €ach with
at nost g points,

(ii) the 2kr nunbers highz(Fi) , lowz(Fi) , 1< r , and

IN

1< 2<%k, are conputed,
(iii) the partition satisfies the condition that, for any ye B , there

1/k_l k-1

exist at nmost k[r sets F, such that 3z with

lowl(Fi) <y, < hlth(Fi) .

Proof . W shall prove it for the case k = 3 ; the extension to general
k is obvious. For the nonent, let us assunme further that n = qr?i for

some i nteger m. W use the follow ng procedure to partition F .

(a) Sort the points of F in ascending order according to the first

conponents into a sequence ;{1' :?2 C X Di vide the sorted

n .
sequence into m consecutive parts of equal size. That is, let

Gl:{lelg_j <nnm , G2={xj|n/m+1<j <en/m}, . . .56 .

(b) For each 1 <i < m, sort the points in Gi according to the 2nd

conponents; divide the sorted sequence of Gy into m consecutive

parts O0f equal si ze, GiaGipr o o 0sGyp

(c) For each 1 < i,j < m, sort the points in Gl.J according to their
3rd components; divide the sorted sequence of 1% into m consecutive
parts of equal size, Gijl,riije,..., ijm.
1/k

This lemma was proved in [20] with g =n
revised version.

; it will be absent in a
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, 1T eensF where r = n/qg= w .

(d) W renane the m sets Gi;j as ¥
(e) Conpute highz(Fi) low,(F;) for L<i <r, 1<¢<3 according

to the definitions.

The above procedure takes Q(n log n) steps; and each F, cont ai ns
exactly g points. It remains to show that property (iii) in the |emm
Is satisfied.

Let §(E5. W shall prove that, for each 1<¢< 3, there are
at nost n° Fi W th lowl(Fi) <y, < highz(Fi) . The proof is based

on the follow ng properties of the partition:

lowl(Gl) < highl(Gl) 53""’1“2) < highl(Gg) <.< lowl(Gm) Shighl(Gm)
lowe(Gil) < highg(Gil) < 1ow2(Gi2) < highE(GiE) < ees 1ow2(Gim> < highg(Gim)
1ow3(GiJ.l) < highB(GiJ.l) < 1ow5 (Gijg) < highs(GiJ.E)

< see < low

3(G.

1,jm) < hlghE(Gijm)
1<i,j<m .

For ¢ =1, according to (5.1), there is at nost one j such that

lowl(GJ.) <y < hlghl(GJ.)

2
Thus, Only the m Gjts (1< t,s < m) can have lowl(Gjts) <y, <
highl(Gjts) . This proves our assertion for ¢=1 . W now prove the
case for £ =2 . For eachi , by (5.2), there is at nost one j such

that low, (Gij) <y, < highe(Gij) . Thus, for each i , only the m Gijt

(1 <t_<m) my have low,(G,

1,j't) <y, < highE(Gijt) . Therefore, at nost

2L

(5 .1)

(5.2)

(5.3)



can have lowe(GiJ.t) <y, < highz(G..

1J't) . A simlar proof

1t
works for ¢ =3, naking use of formula (5.3).
This proves that, when k =3, and n = qr = qm7’ for sone integer m,

Lemma 5.1 is true. W& now drop the-restriction on n (still k =3),

k

In this situation, r =n/q7 . Let m=rrl/1 , and use the sane

procedure. At nost 5m2 G wll satisfy (iii) by the same proof.

Ijt
This conpletes the proof for k =3, 0O

Ve now extend the above result. Let B = {gl,gg,...,bk} be a basis

of Ek ; for any iEk we shall define a k-tuple (fq Jéé,...,x}’{) by

| .
X = 2 xib, . For any finite set F of points, define for each
1=1
1<t1<k,
highz(B;F) = ma.x{:{;zl;ceF)

lowl(B;F) = min{x} | xer} .

Theorem 5.2. TLet g , n , k (¢ok < n) be positive integers, B a basis
of Ek, and V a set of n points in ol Then, in

O(kn log n + Kn + k3) steps, we can acconplish the follow ng:

0 Vis partitioned into r =[n/q] sets VisVpseessV,, each with
at nost g points,
(ii) the 2kr numbers highf(B,Vi) s lowl(B,Vi) , (1 <i <r, 1<1<Kk)

are conput ed,

furthermore, the partition satisfies the condition:

25




(iii) for any k-tuple of numbers (‘Vl’ye’ ...,yk) . there exist at nost

krrl/k'lk'l v, such that, @,
lowE(B;Vi) <y, < highz(B;Vi)

Before proving this theorem let us check that this partition fulfills

the requirements of step (i) in the preprocessing phase (see Section 5,1).

Lenma 5.3. A point y is in the region Bto;c, i.e., §eR(B;SZ),

if and only if y, >xj forall 1<is<k.

k -
Proof . The lenmma follows fromthe equation y-x = & (y' - x')b, . a
[:l P 4 X
~ k . - . . k
Lemma 5.k4. If x¢eE , B abasis, and F a finite set of points in E ,
t hen

either (i) x‘l<1owl(B;F)for all 1< ¢ <k, in wich case all points
in Fareinregion B to x,

or (ii) al x;z > highz(B;F) , in which case none of the points
in Fareinregion B to x,

or (iii) none of the above, there exists an ¢ such that

lowz(A;F) < x) < highl(B;F) :

Proof . An immedi ate consequence of Lenma 5. 3. 0

There are two consequences of Lemma 5.4 of interest to us. Firstly,
it shows that the requirenents of step (A) in Section 5.1 are satisfied,
For any X , a V.J such that neither all points of V.J are in R(B;;c)

nor none are in R(B;x) nust satisfy the condition that
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low!(B,VJ.) <xk < highl(B;V_i) for sone ¢, due to Lemma 5.4. By Theorem 5. 2,

v v

1=5
there are at nost about r K such V.J. This proves the claim Secondly,
Lenma 5.4 gives a sinple way to detect nost of the VJ. that satisfy

(7= R(B;x) or v, NR(B3;X) = § . Namely, conpare x, with highl(B;Vj)

and lowl(B;VJ.) for all ¢, and determne whether case (i), (ii), or
(iii) applies in Lemma 5.4. The test only takes (k) for each i and j ,
and can be conveniently used in step (C) in the procedure in Section 5,1,

Ve now turn to the proof of Theorem 5. 2.

Proof of Theorem 5. 2, Let Mbe the k by k matrix (bij) , (recall

-1 o
that b, = (bil’\bia’ . wby) ), and M be its inverse. W use the

following procedure to partition V .

(1) Compute |\/I_:L in 0(}?) steps (see e.g. [1]).

(2) Conpute, for each xev , the k-tuple (x!,x},...,x.) by

(xi,xé,...,xl'{) = (xl’xz"“’xk)'M_l . This takes o(ken) st eps.

(3) Consider the set F = {(xi'xé"“’xl'c) |§ev} . V¥ now use the
procedure in Lemma 5.1 to divide Fintor parts FoFy . wF, .

Let v, be the subset of V obtained from F, by repl acing

every (xi, o ** X) by the corresponding X .
.(LL) Set highz(B;Vi) - highl(Fi) , and lowz(B;Vi) o—lowg(Fi).
The procedure clearly takes o(kn l0g n + k2 + kj) steps. The quantities
highl(B;Vi) and lowl(B;Vi) are correctly conputed by their definitions.

Itens (i) and (ii) in Theoremb5.2 are obviously true, and (iii) is true

because of the properties of high!(Fi) , 1ow£(Fi) stated in Lemma 5.1. O
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5.3 Finishing the Proof.

W now anal yze the running tine of the algorithm for fixed k and
choose q . The Preprocessing Phase takes time Q(n log n + r,qb(k)) |
I'n the Finishing Phase, the running time is dominated by the search
for candidates w , which is of order -‘

n[(# of category-I Vj)..mq + (# of category-3 Vj)-q] . The | ast

expression is bounded by n(r log q + rl'k'I .q) . The total running

. N b (k) 1-x7t
time of the algorithmis thus Qin log n + req +nr log q + ngr )
Renenbering that b(k) = &1 and r = O(n/q) , we optimze the

a(k) |

expression by choosing g~ (n log n) This gives a tine

O(ne-a(k) (log n) -a(k) ) . The inproved time bound for the special case

k=3, p=2 can be sinilarly obtained.
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6.  Discussions.

W have shown that, for fixed k and pe {1,2,=} , there are
o(ng) -time algorithns for a number of geometric problems in El;
including the mninum spanning tree problem W shall now argue that,
when pe {2,o} | o(knz) algorithns exist for all k and n . As
are typical for results under fixe;j k assunptions, the algorithms

given in the paper have o(nz) time bounds when k is allowed to grow

slowy with n . In fact, a close examnation shows that, if
k < 51 log log n, the algorithms still runin time o(ne) . For
k > % log log n, it can be shown [19] that the computation of the

di stances between all points can be done in o(kne) time when pe {2,=} .
Since all problems considered in this paper have O(ne) -al gorithns
once all the distances are known, the previous statenent provides
algorithnms that run in tine o(kng).

The efficiency of our algorithnms is dependent on the solution to
the post office probl en:/ (or its farthest-point analogue). For exanpl e,
suppose the nearest-point query could be answered in 0(log n) tinme after
an O(nB) -time preprocessing, B >2 ., A sinple adaptation of the
)1'5-1) -time solution to the

-1
2-p ) -time sol ution

. . 2-5'1
al gorithm would give an O(n (log n

NFN-problem which in turn inplies an Q' (n log n)
to the MST-problem (see the remark at the end of Section 2). If

. l<p<2, the following modification would also give an

-1 -1
o(m®® (1og n)*® ")
-1
Q(n log n)g'B ) -algorithm for finding MST). W first divide V
-1
intor = n/(nlog n)r3 bl ocks Bj,By ... 85 before. Each bl ock

-al gorithmfor the NFN-problem (and hence an

Y M ke Shamos cl ai med (private comunication) a solution to the post office
probl em for general k that requires |less preprocessing tine than the
Dobki n-Li pton sol uti on.
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I's preprocessed, and for each X, a nearest point in every block not
containing x is found. Now, for every point EeBi , We need to find

for it a nearest "foreign" neighbor in B . Instead of using brute

force (conputing the distance from each SEeBi to every other point

in Bi ) as was done previously, we divide B, into r subblocks,
preprocess each subbl ock, and find for x "a near est point in every
subblock in B; . To conpute a nearest foreign neighbor to x in the
subblock containing x , we shall again break the subblocks. This process
continues until the size of the subblocks are |ess than o , Where

& =1-p ~ , at which point we conpute all distances between points in

t he same subbl cok. During the above process, we have located, for each X,
a set of points containing a nearest foreign neighbor u to x. It is then

sinple to locate such a u . This is a brief outline of an

-1 -1
n® P (log n)l'B ) -algorithm for NFN-problems, 1l<p<2.

o(
However, it seens unlikely that a nearest-point query can be answered
in 0(log n) tine with an (XnB) -preprocessing, B <2, when k > 3.

VW conclude this paper with the follow ng open problens.
(1) Inprove the bounds obtained in this paper.

(2) Analyze the performance of new or existing fast heuristic algorithns
- for MST-problems. For exanple, can one show that the AMST al gorithm

in [2] always constructs a spanning tree with length at nost 5% over

the true MST?

(3) Prove bounds on average running time of MST algorithms for some

natural distributions.

(4) Extend results in this paper to Lp -metric for general p .
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Appendi x.  The Existence and Construction of "Narrow" Franes -- Proof

of Lemm 4. 2.

VW shall prove Lemma 4.2 in this appendix.

Lemma 4.2,  For any O< y < m, one can construct in finite steps a

frame p of EI; such that Ang(p) < y .

As the discussion is independent of p , we shall use Ek i nst ead

k
of EP‘

VW begin with the concept of a "sinplex" famliar in Topol ogy

(see, e.g. [10]). Let pypys...by  be  3*X0<j < k) points in ol

where the vectors 5i-£o , L<i <j , are linearly independent. Ve

J
shall call the set Zx.p.lx.>0for all i, and 2 ). = 1
i=oll L —_ | 1

a (geonetric) j-sinplex in E°, denoted by (130,51,...,53) . Informally,

it is the convex hull forned by vertices DasDis.-sD. on the mininal
v e d

| i near subspace containing them (see Figure A). The dianeter of a sinplex

S is diam(s) = sup{H; —§H | }N:,;;'ES) .

~

Po

Figure A A 2-sinplex in o
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The followng two |emas give the connection between simplices and
bases. Let & be a k-tuple (el, €pr »+esg)) » Where e; € {-1,1} for
all i. Denote by H(3) the hyperplame {x | J ex, = 1) in E°.

Lemma 7.1, Let S = (ByyDyse-esBy 1) be @ (k-1) -sinplex in EX,
wher e EieH(?:) for every i . Then the set B(s) = {50’51’“"51«:}
is a basis. Furthernore, the angle ¢ = Ang(B(s)) satisfies

cos cp > 1 - % k(aian(s))”

Proof. Suppose _ki)l kiii = 0 . Ve shall show that ), =0 for all i
k-1 e k-1 I k-1_ o _

Al 12—.:)\& = 0, then i?lhi{pi—po) = Ei?:gi = 0 . This inplies

A, = 0 for all | by the definition of sinplex. If ikz-‘_f,loxi.—_[\iéo,

k-1
then v = % (a;/Mp; = 0 . But it is easy to check that veH(t),
1=0 ~

a contradiction.
W have thus shown that B(s) is a basis. To prove the rest of the
lemma, | et x and y be any two non-zero vectors in Conv(B(s)) , we

2

shal | prove that cos 9(§,§) >1 - %— k(diam(s)) Wt hout | oss of

generality, we can assune that ;c,f{re s . Then

(aianm(s))?

> G @D L EETIE -2l 2 ) ) T | cos 0
> 2“;( . Sr“(l - cos 6(X,7))
It follows that
cos e(?;,;”,—) > 1 - M (A1)

el 117

As can be easily verified, ;c,::reH(“g) . Wwhich inplies

3L




wiE

~ 2
2 - 2 1
”lel - T.in 2 X (Zl-‘ SiXi ) =

Formul a (A1) then

~ l ) ) ~
Therefore, x|> — and simlarly ||yl > .
[l Tk | vl =T

implies
cos o(xy) > 1 - -12{— (diem(s))®

This proves Lemma 7.1. O

W shall use B(s) to denote the basis corresponding to sinplex s

Let s ¢ H(:) be a sinplex, »# a finite collection of

Then Conv(B(s)) = U Conv(B(s'))
S' e

Lemma 7.2.

sinmplices, and” s = U s'.
S' e

Proof . It is easy to see that Conv(B(s)) ouU Conv(B(s')) . To prove
s' e
If a point

the converse, let s = (pyPpys--+sP, ;) , Where each p, s H(%)

k-1
We shal |l prove

ue Conv(B(s)) , then @ = T AP, , where a; > O .
i=0

that ue Conv(B(s')) for some s' e . It is trivial if u=20

Q herwi se, the point 1 Les = U s', and hence Ues
Z‘ki S' e Tl-_))\i

|’
for sone s' ey . This inplies uecConv(B(s')) . O

The above |enmas suggest that we may try to construct a frame with
narrow bases, by first constructing a famly of sinplices all with snall

diameters. W use the followi ng schene:
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Let Ei denote the unit vectorin £° , Wwhose i-th conponent is 1
and all others are 0 .
For each of the 25 k-tuples & = (al;sg:..., &) , Were e = 11,

do the fol | ow ng.
(a') Lets:<81gl’ 8252,' e Ekgk>' (Clearly SEH(%) ')

(b) Construct a finite family , of simplices all contained in H(E) such that

S= y s and diam(s') < (2(1- cosq;)/k)l/2 for all s'e .
S' e

(c) FormB(s') for all s'eyn .

The collection g of all the B(s') constructed this way is clearly
a frane because of Lemma 7.2. Using Lemma 7.1, it is easy to verify that
Ang(B(s')) < ¢ for all s'. Thus, such a construction would give a
frame satisfying the conditions in Lemma 4.2. |t remains to show that
step (b) above can be carried out.

A procedure in_Topol ogy ([10, p. 209, Theorem 5-20]), known as

barycentric subdivision, guarantees that step (b) can be acconplished

ina finite number of steps. For conpleteness, we shall give a brief
description bel ow.

. There is a basic procedure, called first barycentric subdivision (FBS),

which, for a given j-sinplex s , constructs in finite steps a famly »

of simplices such that s =y s' and nax (diam(s')) < L (diam(s)) .
‘ s' e/ S' e = gl

If we apply this procedure iteratively, at each iteration we apply FBS to
every sinplex present, then all the sinplices will have a dianmeter |ess
than any prescribed positive number after enough number of iterations,

This then constitutes a procedure for step (b).
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Finally, we describe the FBS procedure. For a proof that it

produces simplices with the desired properties,

see [lo].

Let

S = (50,51,...,5;]) , the point Z(s) = —J];-l-% Ei is called the

J

i=0

centroid of simplex s . For any t distinct integers

seol

0< il’iz”"’it <j .,

let o, . . = E((ﬁl. ’51 ,...,f)i }) . For each ¢ = (io’il"“’i,j) €T »
t

12 t 1 2

where ¢ is the set of all pernutations of (0,1,2,...,3), let s'(0)

denote the sinplex (;BU ,50,...,50) W th o
0 1 3

of s is defined by

# = {s'(0) |oex} .
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