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1. Introduction.

Suppose we wish to solve by Gaussian elimination the system of

linear equations

(1) Ax=b I.

where A is an nxn symmetric positive definite matrix, x is an

nX1 vector of variables, and b is an nxl vector of constants.

The solution process consists of two steps. First, we factor A by

means of row operations into

(2) A = LDLT

where L is lower triangular and D is diagonal. Next, we solve the

simplified systems Lz = b , Dy = z , and TL x = y .

If A is dense (i.e., A contains mostly non-zero elements) then

the time required for factoring A is 3O(n ) and the time required for

solving the simplified systems is O(n2) . If A is sparse (i.e.,

A contains mostly zero elements), we may be able to save time and

storage space by avoiding explicit manipulation of zeros. One difficulty

with obtaining such a savings is that the factoring process may create

non-zeros in L (and LT ) in positions where A contains zeros.a

These new non-zeros are called fill-in.

One way to reduce the fill-in is to permute the rows and columns

of A , i.e., to transform A into

(3 > A' = PAPT

where P is a permutation matrix, and to solve the reordered system.

Since A is positive definite, the reordered system is numerically

stable with respect to the LDLT factorization [g].
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In order to characterize the fill-in associated with a given permutation

matrix P , we represent the class of matrices PAPT by an undirected

J*graph G = (V,E) . The graph G contains one vertex ieV for

each row (and column) in A , and one- edge [i,j]e E for each pair
i

of non-zero, off-diagonal elements a.. = a.. # 0 in A .
13 31

Each

permutation matrix P corresponds to a numbering of the vertices of G ;

i.e., to a one-to-one mapping r[: V 3 (1,2,...,n] . Corresponding to

the factorization PAPT =LDLT is a graph Gz = (V,Ez) such that

[id) E Ez iff i>j and the element of L in row n(i) and column

n(j) is non-zero. see I% 161% 23 1 for a discussion of the properties of

this graph-theoretic model of sparse Gaussian elimination. The following

lema characterizes the fill-in Ez associated with an ordering x .

Lemma 1 1191. Assuming no cancellation of non-zeros in the

factoring of PAPT , {v, w) E E"n iff v # w and there is a path

v = 3+’ l . dk+l = w such that a(vi) < min(~(v),fl(w)) for 2 <, i 5 k .

The running time and storage space required by sparse Gaussian

elimination are functions of m ,. the number of non-zeros in L , and
e

of d(i) , the number of edges E&j') in Gz with n(i) < n(j) .

Note that d(i) is the number of non-zeros in column i of L (and

T
n-l

row i of L ), and that m = c d(i) . For purposes of analysis.l=l

and implementation, we can divide sparse elimination into the following

four steps.

The appendix contains the graph-theoretic definitions used in this
paper. It also defines the " 0" and It 0 *' notations.
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1 .Step

Step 2.
t

Step 3.

Step 4.

Find a good ordering fi .

The time and space required by this step depend upon the method

used.

(Symbolic factorization.) Compute the non-zero positions

in L, assuming no 1ucQ cancellation of non-zeros.

Time: O(m) using the algorithm of [lg].

Space : o(m) l

(Numeric factorization.) Compute L .

n-l
Time: 0 c d(i)(d(i)+3)

>
using an algorithm such as

i=l

described in [6,12,20,23]. The nwnber of multiplications
=.

n-l
performed during this step is $ c d(i)(d(i)+3) D-81.

i=l

Space: o(m) l

(Backsolving.) Solve Lz = b , I@ = z and LTx = y .

Time: o(m) WI l

Space : o(m) l

The reason for separating the factorization into two steps (symbolic

and numeric) is that all known methods which compute the numeric factorization
-
without first finding the fill-in positions have a time bound for overhead

which is more than a constant factor greater than the number of multiplications.

If the system of equations is to be solved for only one right-hand side b ,

it is possible to combine at least part of Step 4 (solving LZ = b and

D3r= z ) with Step 3.

The efficiency of sparse Gaussian elimination depends upon Step 1;

that is, upon finding an ordering 7~ which reduces the size of the

fill-in m and the multiplication count $ $, d(i)(d(i)+3) . Finding.I= 1
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such a good ordering for an arbitrary graph seems to be a very hard,

perhaps even NP-complete problem. However, for some special cases

good ordering schemes are known. One such scheme is the nested dissection
a.

method of J. A. George [l-l], which allows the solution of systems whose

graph is an n = kxk square grid graph in O(n312) time

and O(n log n) space. George's scheme uses the fact that removal of

O(k) vertices from a kxk square grid leaves four square grids, each

roughtly k/2 xk/2 .

In this paper we generalize George's idea. Let S be a class

of graphs closed under the subgraph relation (i.e., if G2 E S and G
1

--.
is a subgraph of G2 then Gle S ). The class S satisfies an

f(n) -separator theorem if there are constants a < 1 , f3 > 0 for

which any n-vertex graph G in S has the following property: the

vertices of G can be partitioned into three sets A, B, C such that

no vertex in A is adjacent to any vertex in B , IAl> IBI 5 an,

and ICI < Bf(n) .- Cur main result is that all systems of equations

whose graphs satisfy a n9r -separator theorem can be solved in O(n3/2)

time and O(n log n) space using a "divide and conquer" [l] method to.

generate the ordering. From separator theorems proved in [15], we obtain

a method for solving any system of equations whose graph is planar or

ialmost-planar in O(n312 ) time and O(n log n) space. Such systems

arise in the solution of two-dimensional finite element problems 1241.

Section 2 presents these results.

More generally, divide and conquer gives a good ordering scheme for

any class of graphs satisfying an f(n) -separator theorem; the fill-in

and multiplication count produced by the ordering depend upon
f(n) l
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At the end of Section 2 we list fill-in and multiplication bounds for

various values of f(n) other than f(n) = c.

Section 3 presents some relationships between Gaussian elimination,

good separators, sparsity, and random graghs. We give a lower bound on

the cost of Gaussian elimination in terms of the size of separators in

the problem graph. We prove that graphs with good separators are sparse.

Finally, we show that almost all sparse graphs have no good ordering for

Gaussian elimination. Section 4 discusses the significance of the results

in Sections 2 and 3.



2. Generalized Nested Dissection.

Let S be a class of graphs closed under subgraph  on which

d-a n -separator theorem holds, let a, /3 be the constants associated

with the separator theorem, and let G = (V,E) be an n-vertex graph. .

in S . The following recursive algorithm numbers the vertices of G

so that sparse Gaussian elimination is efficient. The algorithm assumes

that I of the vertices of G are already assigned numbers, each of

which is greater than b , and that the remaining vertices of G are

to be numbered consecutively from a to b .

Numbering Algorithm.--

If G contains no more than no = (S/(~-CX)~) vertices, number

the unnumbered vertices arbitrarily from a to b . Otherwise, find

sets A, B, C satisfying the Tn -separator theorem. Let A contain

i unnumbered vertices, B contain j unnumbered vertices, and C

contain k unnwribered vertices.

Number the unnumbered vertices in C arbitrarily from b-k+1

to b . Delete all edges with both endpoints in C . Apply the

algorithm recursively to the subgraph  induced by BUC to number the

unnumbered vertices in B from b-k-j+1 to b-k . Apply the algorithm

recursively to the subgraph induced by AUC to number the unnumbered

vertices in A frm a = b-k-j-i+1 to a+i-1 = b-k-j .

If G initially has no numbered vertices, then applying this

algorithm to G with a = 1, b = n , and 1 = 0 will number the

vertices of G from 1 to n . We are interested in three properties

of this algorithm: its running time, the size of the fill-in produced

by the ordering it generates, and the multiplication count of the generated

ordering.
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Theorem 1. Suppose that a vertex partition satisfying the Tn -separator

theorem can be found in O(m+n) time on an n-vertex, m-edge graph.

Then the numbering algorithm requires O((m+n) log n) time.

Proof. Let t(m,n) be the maximum time required by the numbering

algorithm on any graph in S with n vertices and m edges. Then

(4) tbn) 5 Cl -I* if n<n- 0 '

t(m,n> <, c2(mtn) + m={-tb-& + tb24,)) otherwise,

where no = (@/(l-a))2 and the maximum is taken over values of mYnl--.

m2 ' n2 satisfying

(5 > m + m  <m,12-

n 5 nl+n2 < n+/3/G , and

(1-@)n 5 nlJn2 < Qn+B,J;;: .-

A proof by induction similar to the one below for the fill-in

bound shows that t(m,n) is O((m+n) log n) . 0

Theorem 2. Let G be any n-vertex graph nutribered by the algorithm.

The total size of the fill-in associated with the numbering is at most

c3nCog2 n + O(n) , where

(6) c3
= S2(l/2 + &~l-~~,,  / log20/~) l

*
J Throughout this paper,

C☺ co> Cl� l l l denote suitable positive constants.
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Proof. Suppose the recursive numbering algorithm is applied to an n-vertex

graph G with 1 vertices previously numbered. Assume n > no and let

A, B, C be the vertex partition generated by the algorithm. If C

contains k unnumbered vertices, then the maximm number of fill-in

edges whose lower numbered endpoint is in C is

(7) k(k-1)/2 + k1 c p2 n/2 + p 16 .

By Lemma 1, two vertices v and w are joined by a fill-in edge

if and only if there is a path from v to w through vertices numbered

less than both v and w . Thus no fill-in edge joins a vertex in A

with a vertex in B . Let f(a,n) be the maximum nmber of fill-in

edges whose lower numbered endpoint is numbered by the algorithm (and

not previously numbered). Then

(8) f(a,n) 5 n(n-1)/2 if n<n- ojmd

f(W) < P2 n/2 + B a& + ~x~f(ml,nl)+f(a2,n2)J

otherwise, where the maximum is taken over values satisfying

(9) 5+ l2 5. m+wG )
a

n <
-%

+n2<n+p?J;; > and

(1-a)n 5 nl,n2 < an + pll;; .

We claim that for all n > 1 ,

(10) f(a,n) 5 c3n log2 n + c4!?/;; + c5m log2 n + c6n-c
7
& log2 n ,

where
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w c3 =
p2[l/2 + 2G/(1-6)1 /log2(l/Cx) >

c4 = B/(1-G) t

c5 = c2d L2G 10g2(l/a)] , and

‘6 and c
7

are suitably large positive constants, to be

chosen later.

We have attempted to minimize c3 Y c4 9 ana c5 in this bound, but

have chosen c6 and c
7

to make the proof easy, The theorem's bound on

fill-in size follows from the claim.
--.

Proof of claim. Let

(W d&n> = ?n 10% n+cen+cIlog2n4 d- 5
and

h(n) = c6n-c7& log2 n .

We prove the claim by induction on n . Assume h(n) 2 G/2 , where

5 L y) is a value to be chosen later. Then n <
- 5

implies

f&n) < n(n-1)/2 < ~$12 < h(n) 5 g(I,n)+h(n) .-
m

Let n > n
3

and suppose the claim is true for values smaller than n .

Then f(m) < B2n/2 + B I& + f(ll,nl) + f(P2,n2) for suitable values-

of R1 Y n1 Y I2 Y 5 l

Let E = (l-a-&G) . Since ~~ > go 2 S/(1-a) , we have

a+@/ds < 1, and E > 0 . Thus nlJn2 < m+S& 5 (a+S/&)n <

(1-e)n < n , and the claim holds for nl and n2 by the induction

hypothesis.
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HenceJ

a 03)

(14)

f(a~n> 5 p2 n/2+@ & + g(+nl)+g(12,n2)+h(nl)+h(n2)

< p2n/2+pP& . .

+ [C7(n+B^J;;)+c5(l+2p&)I  log2(cm+B”J;;)

+ c4(f+2@&)

+ h(nl) +hbq l

Now

log2(cQl+B&) = log2
-- n + 1x2 a + log2(1+B/(Q&))

< log2 n+ log2 a +b 10652 e)/@&)

since log,(l+x) < x for x < 0 .

Also

05) d=x ,< &+8/(2&)  .

Substituting into the bound on f(m,n) , we find that

+ (c3n+c51)[log2 n+log2 a+ (@ lo+ e)/(a&)l+  (3 +2C5)p&T log2 n

+ C40+ 2S&>tG + P/(2&)1

+ h(nl) + h(ng)

+ p2n/2 + y log2 a+ 2c4&Gn

+B1&+c49/h/z
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+ c
5
110~ n

+ c5 I log2 a + c4B a/(2&)

+ $a log2 e>IJ;;/a:  + b5B lot32 4 m/b& >

+ (C;,+2c5)B  & 10% n + 2c4B2&/(2&)

+ h(n1) + h(n2)

<-5 n lo52 n+ c4 t n +d- c5 t log2 n+ c86 log2 n+h(nl)  + h(n2)

by the choice of 3 9 ~4 , and c5 , where

07) ‘8 = (~+c5)WOg2  .>/a+ (5+2C5)B+2c4  P2/(2&
-...

All that remains is to show

08) a-4 2 51
22 for l<n , and

h(n) 1 c86 log2 n + h(nl) + h(n2) for n >
5

and. my np-9 satisfying

09) n<n+n < n+p*J;; and- 1  2 -

- (l-a)n 5 nl, n

Choose
5

such that

(20 >.
n3

2 no and

28 log2 e < (y-l

I- I
where y =9/a + q1-a . Let c

9 = Y - 1 - (Y log2(1/1-a) )/log2 ns,

Choose c6 such that

( 1)2 c6 2 m=+;/2 Y c&g/ (2 log;! e> - @/lo% %j > 1 ’

> .
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I: ’

( 2)2

Finally, choose

c7 =
(c8 + c6@og2 5 )/cg  l

Then h(1) = ‘6 2 <I2 l
Furthermore-

(23)
d
dn

h(n) = & (c61/;; - 7 log2 n)

By the choice of c6 and c
7

, c6/2 2 7 log2 e , which implies

for n > 1 . Hence for n > 1 .

We also ha-@

c8Tn log2 n + h(nl)+h(n2)

For fixed nl+n2 , the function Gl+$ is minimized when one

of nl Y n2 is as large as possible and the other is as small as possible.

Thus

Hence

*$~8 n lo632 n + h(y) + h(5)

5 10% n + c6n + c6f3dn - c7B dn (log2 n - log2 (11 (la))

n+c&36 + c7Yzl;; 1+1/(1-a))  l

By selection of c
7 ’
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(27) c7 = $3 + c6@/log2 5 > / (Y -1-Y log2(1/(W)/log2 5,

,> kg+ c6@-og2 n) / (y - 1- y log,@l-a))/log2  n)

ifn> .
5

Thus
. .

cm c7 (Y - 1 - Y log2(1/(l-a)  )/log:! n, 2 73 + c6@og2 n and

-c
7
6 log2 n 2 c8& log2 n+ c6pc -c y”J;;7

log2 n+ C7Y & log2 (1/(1-a> > 0

Thismeans

(29) c8"$" log2 n+h(nl)+h(n2) < c6n-c & log2 n .
7

This completes the proof of the claim. a

Theorem 2. Let G be any n-vertex graph nwnbered by the algorithm.

The total multiplication count associated with the numbering is at most

3/2+ O(n(log n)2)
Yin

, where

(30) ELI. = p2(1/6 + B& @+A/ @+A) + J-q&a)) / (1-A >> / O-6)

with 6 = c?12+ (l-a)3i2 .

Proof, Consider the number of multiplications associated with the

orderZ.ng. The nuriber of multiplications associated with a given vertex

V is d(v)(d(v)+3)/2  Y where d(v) is the nuraber of fill-in edges

whose lower-nurribered vertex is v . Thus a bound on the number of

multiplications associated with a separator C generated by one call

of the recursive numbering algorithm is
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BG-1
(31) C (i+l)(i+I+3)/2

i=O

B&-l
< C (i+O)2/2 + 3fS2 n/4 + 3 i3 4?2

i=O

Let q(&n) be the maximum number of &ltiplications  associated

with vertices not previously numbered when the recursive numbering algorithm

is applied to a graph in C having n vertices, of which 1 are

previously numbered. Then

-=.
(32) q(m)

< n(n-1)(2n-1)/U + 3n(n-Q/4 = n(n-l)(n+4)/6 if n<n- o'*d

q(a n) < p3n3i2/6 + p2+ + gr2^JE;/2 + 3p2n/4 + 3pe&/2' -

otherwise, where the maximum is taken over values satisfying

(33) 5+ I2

a
n < n+n- 1 2

(l-a)n < nl) n2

We claim that for all

(3fv 40)

Illn312+c121n+ c13i2& + c14n(lo N2+ Cl5 l2 log2 n+ cl6
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where

(35) 5l = P2{1/6 + B~[2+~/(1+~)+401/(1-a)l/(l-~))/(1-6)  ,

c12 = B2D/2 + 2G/(l-4/31/(1-a) )

-.cl3 = P/P&6)1 , and

‘14 ' '15 ' ‘16 are suitably large positive constants.

The theorem's bound on multiplications follows from the claim.

Proof of claim. Let

(36) r(m) 312
= clln + c12 In + c13e2& and

s(I,n) = cl&a(10g2 n)2 + c1512 log2 n + cl&& .

We prove the claim by induction on n . For n 5 n4 , where n4 2 no

is a value to be selected later, q(l,n) 5 n(n-l)(n+4)/6 5 n4(n4-l)(nqf4)/6

< s&n) if cl4 is sufficiently large.

Let n > n4 and suppose the claim is true for values smaller than n .

Then

(37) sb--4 < B- 3n3/2/6+ p2!n/2 + p12&/2 + 3p2n/4 + 3@16/2

+ s(fpJ + qkp2)

< p3n3/2/6+ p2en/2 + fsa2&Y/2 + 3p2n/4 + 3BPJQ2

for suitable values of Rl , nl , d2 , n2 .

3/2 + n3/2For fixed nl+n2 , the function nl 2 is mEwdmized when one of

nl' n2 is as small as possible and the other is as large as possible. Thus
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(38) 312+n312
nl 2 < [(l-cx)n]3/2+ [an+ &J3/2

< n3/2[(l-Cx)3/2+c?/2(l+f3/(c&))3/2]

< n3/2[(l-cx)3/2+c2/2(l+ p/(& ))2]

_ 3/2[(lxx)3/2+cx3/2(1+3~/(cx&))]< n

< [A2+ (l-@3/2]n3/2+3pJS n

and

< (o+2P4/n)2(d~+P/(2&))

2 6 P211L;+ 4f3&an+4p2&n3/2 + (m+2f3&)2 p/(2&Z) .

Letting 6 r ca2+ (14x)3/2 and combining the above inequalities tith

the bound on s(W gives

a
(41) s(M4 5 82n3/2/6 + c,-p312 + 2c12a pn312 + 4c,3B2& n312

+ p21n/2 + c=Wn + 4c13p& an

+ pa2.J;;/2 + c,G a26

+ jB2n/4 + 3cUPGn+ 2cz2p2n + 2c13p3n/9/T

+ 3B&/2 + cuBe& + 2C13B2111;;/fi

+ c,Ba2/(29E >

+ s(m,,nl)  + s(P2,n2)

17



312
< "lln- + c12 In + c1312&

+ cl7n ' c18~~ + clg12 + s(ll,nl)+ S(12,n2)

where

(42) cl7 = 3p2/4 + 3Cll&- + 2C12D2 + 2c,p3/& ,

'18 = 38/2 + Cl2 B + 2c13P2/& 9 and

cl9 = cl3B/(e&) l

All that remains is to show that

(43) s(R,n) < c
- 17n + c-&JF + ClvJ2 + 411ynl) + s(12,n2)

--.
if cl4 Y cl5 1 c16 Y ad n4 are chosen sufficiently large. This

derivation is similar to that for the fill-in bound snd we shall not

-go through it here. The claim follows by induction on n . 0

Theorem 3. Let G be

ordering which produces

multiplication count of

Such
e and cU < 4002 .

Proof. By Corollary 2

any planar graph. Then G has an elimination

a fill-in of size cnlogn+O(n) anda
3

3/2+O(n(log n)2)clln , where c3 5 128.5

an ordering can be found in O(n log n) time.

of[l5], planar graphs satisfy a Tn -separator

theorem with a = 213 and @ = 2~/2 . F'urthermore the appropriate.

vertex partition can be found in O(n) time. Plugging into the bounds

of Theorems l-3 gives the result. 0

A finite element graph is any graph formed from a planar embedding

of a planar graph by adding all possible diagonals to each face. (The

finite element graph has a clique corresponding to each face of the

18



embedded planar graph.) The embedded planar graph is called the

skeleton of the finite element graph and each of its faces is an

element of the finite element graph.

Theorem 4. Let G be any n-vertex finite element graph with no element

having more than k boundary vertices. Then G has an elimination

ordering which produces a fill-in of size O(k2 n log n) and multiplication

count 0(dn3/2)  . Such an ordering can be found in O(n log n) time.

Proof. By Corollary 4 of [15], any n-vertex finite element graph with

no element having more than k boundary vertices satisfies a n -separatord-

theorem with B = 213 and p = 4Lk/2J . Furthermore the appropriate

vertex partition can be found in O(n) time. Plugging into the

bounds of Theorems l-3 gives the result. 0

Although planar and almost-planar graphs seem to be the most

interesting case, analogues to Theorems 2- 4 hold for other classes of

graphs. For instance, the following theorems can be proved using the

same methods as in the proofs of Theorems 2 -4.

a

Theorem 2. Let S be any class of graphs closed under subgraph on

which an nc separator theorem holds for (J >1/2 . Then for any n-vertex

I graph G in S , there is an elimination ordering with O(n
20

) fill-in

size and 30O(n ) multiplication count.

The class of k-dimensional hypercubic grid graphs satisfies Theorem 6

for c = k-l/k .

19



Theorem 6. Let S be any class of graphs closed under subgraph on

which an nc separator theorem holds for 0 < l/3 < l/2 . Then for

any n-vertex graph G in S there is an elimination ordering with

O(n) fill-in size and 30O(n ) multiplication count.

Theorem 7. Let S be any class of graphs closed under subgraph  on which

a 3& separator theorem holds. Then for any n-vertex graph G in S ,

there is an elimination ordering with O(n) fill-in size and O(n log2 n)

multiplication count.

Theorem 8. Let S be any class of graphs closed under subgraph on which

0 --.
a n n separator theorem holds for 0 < l/3 l Then for any n-vertex

graph G in S , there is an elimination ordering with O(n) fill-in

. size and multiplication count.

20
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3. Gaussian Elimination, Separators, and Sparsity,

In this section we explore additional relationships between sparse

Gaussian elimination, good separators, and sparse graphs. We have shown

that the existence of good separators in a graph and its subgraphs allows

us to carry out sparse Gaussian elimination efficiently. It is natural

to ask whether the converse is true; that is, whether the existence of

good separators is necessary for efficient sparse elimination. To prove

a result of this kind, we need a strengthened version of a lemma in [5]

Let G = (V,E) be an undirected graph with an ordering J[ . Cur

proof technique makes use of the following algorithm, which adds edges

to G and eventually produces a graph which contains the fill-in

graph G* . Associated with the graph during execution of the algorithm

is a subset of its cliques, called elements. Initially the set of

elements consists of the edges of the graph.

Element Merging Algorithm.

Repeat the following step for each vertex v from x-1 (1) to

7cm1 n( > .

General step. Choose two elements el and e2 containing v . Add to

the graph all edges not already present which join a vertex in el

and a vertex in e2 ; simultaneously delete elements
el and e2 and

add a new element consisting of their union. Repeat until v is

contained in only one element. Mark v eliminated.

Let Gk be the graph existing after k executions of the general

step. We note the following properties of the algorithm, which are easy

to verify.
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( >i At all times during execution of the algorithm, every edge is

contained in at least one element.

(ii) The number of elements containing a vertex never increases.

(iii) At the end of the algorithm, each connected component of the

original graph comprises a single element.

(iv) After a vertex v is eliminated, v is contained in only one

element.

( >V An edge {v,w] is a fill-in edge if and only if {v,w] is added

to the graph before either v or w is eliminated. (In general

Gn properly contains Gz .)

Property (v) follows from the definition of vertex elimination on a

graph, which models Gaussian elimination on the corresponding matrix.

'See [5r17y18y 19,23 1.

Lemma 2. Let G = (V,E) be an n-vertex graph satisfying the following

property for sore I < n/3 and g : every set of vertices A such that

I < IA\ <n-1 is adjacent to at least g vertices in V-A . Then if

'II is any ordering of V , Gz contains a clique of at least g vertices.

m

Proof. G must have a connected component containing at least 1 vertices.

Otherwise there is a set A violating the hypothesis of the lemma, formed

as f&Lows. Let A = fi . Add connected components to A one at a time

until A contains at least & vertices. Then A contains less than

21 < n-1 vertices.

Apply the element merging algorithm to G with ordering J-C . Let

e be the first element formed which contains at least I vertices. Then

e contains no more than 21 vertices, since it is composed of two
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previously formed elements. Let A be the set of vertices not in e .

A contains at least n-21 2 1 and at most n-l vertices. Let C be

the set of vertices in e adjacent to at least one vertex in A . By

the hypothesis of the lemma C contains at least g vertices. When e

is formed, each vertex in C is in some element other than e by (i).

Thus by (iv) each vertex in

By (v) the clique formed by

C is uneliminated when e is formed.

C is contained in Gz . 0

A weaker form of Lemma 2 and its proof, in Which the degrees of all

vertices are assumed to be bounded, appears in [5].

Theorem 9. Let G = (V,E) b e a graph satisfying the hypothesis of

Lemma2. Then any ordering of V produces a fill-in of size at least

g(g-1)/2 and a multiplication count of at least g(g-l)(g+4)/6  .

Proof. Immediate from Lemma 2. 0

Theorem 9 and the results in Section 2 imply that generalized

nested dissection is the best method of sparse elimination (to within

a constant factor in running time and storage space) on large classes

- . of graphs.

hypothesis

For instance n = kxk square grid graphs satisfy the

ofLemma2for 1=n/3 and g=&/3 [15]. Thus such

_ graphs have an n(n'12) multiplication count for any ordering [13].

By using more sophisticated techniques, one can derive an n(n log n)

lower bound on the fill-in for such graphs [13]. For d-dimensional

hypercubic grid graphs, Lanma 2 gives an fi(n2 (d-l)/d) 1ower bound on

fill-in and an n(n3(d-1)/d) lower bound on rrmltiplications, agreeing

with the upper bounds in Theorem 5. See [51.
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We turn now to the relationship between good separators and sparsity.

Our first result shows that only sparse graphs have good separators.

Theorem 10, Let S be any class of graphs closed under subgraph and. .

satisfying an n/(log2 n>
2 -separator theorem for fixed a, @ . If G is

a graph in S having n vertices and m edges, then m < c- 21
n .

Proof. Let t(n) be

in S . Let G be an

the maximum number of edges in any n-vertex graph

n-vertex graph in S with t(n) edges. Since S
q

satisfies an n/(log2 n)" -separator theorem, the vertices of G can be

partitioned into three sets A, B, C such that C separates A and B ,

A and B each contain no more than an vertices, and C contains no

more than j3n/(log2 n)2 vertices. Since S is closed under subgraph,

the subgraphs of G induced by the vertex sets AuC and BuC are

both in S . If \A@( = nl and IBuC\ = n2 , it follows that

t(n) < t(n,)+t(n,) . Hence

(44) t(n) 5 n(n-1)/2 if n<n- 0' and

t(n) 2 m=qtb-q + t(n,)j otherwise,

*where the maximum is taken over values nly n2
satisfying

(45) n < nl+n2 < n+ Bn/(log2 n);" , and

(1-O 5 T , n2 5 an+ @/(log, n)2 .

An inductive proof like those in Section 2 shows that

(46) t(n) < (33 - c22n/log2 n Y

where c21 and c22 are suitably large positive constants. 0
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Not all sparsegraphshave good separators. In fact, for fixed a, B

such that @ < la! 5 cz < 1 , there is a constant c such that almost

all*J n-vertex graphs with cn edges have no vertex partition A, B, C

satisfying IA\, IBI <my ICI 5 Bn.., and C separates A and B .

TICS result is im@icit in Theorem 4 of [8]. It foU.ows from Theorem 9

that almost all sparse graphs require Q(n2) fill-in and 3n(n )

multiplication count. By using a more direct argument, we can obtain a

stronger result.

Theorem 11. For all E > 0 there is a constant c(e) such that almost

all n-vertex graphs with at least c(e)n edges have a fill-in clique of
-=.

at least (1-e)n vertices for any ordering.

Proof. We first prove that almost ELL n-vertex graphs with at least cn

edges have the following property:

(P) If A and B are sets of vertices such that \AI,\B\ 2 en/& and

MB*@, then at least one edge joins A and B .

We prove (P) by an argument like that used to prove Theorem 4 of [8].

Consider a randam graph G with n vertices and m edges, where m > cn . The

nwnber of ways to choose two vertex sets A, B satisfying \A~,\B( 2 en/4 y

AnB=fl is less than 3n .

- 22E n 116 potential edges. The

actually occurs in G is less

Between A and B there are at least

probability that none of these edges

than (l-2c/n) c2n2/16 . This, if c is

y By "almost all" we mean that the fraction of n-vertex graphs satisfying
the property tends with increasing n to one. We assume that each
n-vertex graph has vertex set {1,2,...,n)  and that two graphs are
distinct unless their edge sets are identical. See [7] for a thorough
discussion of random graphs.
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chosen so that 3n(l-2c/n) E2n2/16 + 0 as n+c0, then almost all

graphs satisfy (P). Since (l-2c/n) e2n2/16 3 e-cE2n/8
1 choosing

c > (8 log, 3)/c2 gives the result.

Now we use (P) to prove the theorem." Let G = (V,E) be any graph

satisfying (P). Consider any set A of at least 3en/4 vertices in G ,

A contains a subset B of at

subgraph in G is connected.

as follows, Let A,,$ l Y%
components of the subgraph of

least en/& vertices whose induced

Otherwise, we can derive a contradiction

be the vertex sets of the connected

G induced by A . Let j be
i -i

the minimum index such that fil\Ai \ 2 En/4 l

i=
Then 5 \Ail 5 en/2 .

-- i=l
.

By (P) ther? must be an edge joining some vertex in iA
i= li

with some

k
.vertex in U Ai* This is impossible by the definition of the A. 's,

.i=j+l 1

Consider any ordering of the vertices of G . Let A be the first

3en/4 vertices in the ordering. Let B be a subset of A containing

at least en/& vertices whose induced subgraph in G is connected. By

property (P) at least (l- e/2)n vertices in V-B , and hence at least

-(l-E)n vertices in V-A , must be adjacent to at least one vertex in B W

m Lemma 1, any pair of such vertices are joined by a fill-in edge. Thus

the ket
.

fili-in

of vertices in V-B

clique of at least

adjacent to at least one vertex in B isa

(1-E)n vertices. 0

Theorem 12. Almost all n-vertex graphs tith c(e)n edges have a fill-in

of (1-e)2n2/2 - O(n) and a multiplication count of (l-e)3n3/6 - O(n2) ,

for any ordering.

Proof. Immediate from Theorem Il. IJ
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4. Remarks.

We have demonstrated the existence of an O(n'12) -time, O(n log n)

-space method for carrying out sparse Gaussian elimination on systems whose

pattern of non-zeros corresponds to a planar or two-dimensional finite element

graph. Such systems arise often in real problems. The practicality

of the algorithm remains to be tested, and the constants in Theorem 3

are large. However, we believe that the algorithm is potentially useful

for solving large systems, since the worst-case bounds derived here are

probably much too pessimistic. Experiments by George and Liu [lo] with

a similar algorithm suggest that our method is practical.

It is possible to reduce the Mxnning time of our algorithm to-=.

Ob
10432 7

) by using Strassen's algorithm  for matrix multiplication and

factorization [3,21]. If the system of equations is to be solved for

just one right-hand side b , it is possible to reduce the storage

required to O(n) by storing only part of L and recomputing the rest

as necessary. Reference [5] describes how to achieve these savings in

the case of ordinary nested dissection; the generalization to planar and

almost-planar graphs is analogous to the results in Section 2.

Gaussian elimination can be used to solve systems of linear equations

defined over algebras other than the real numbers [2,4,22], and the

slgorithm in Section 2 applies to these other situations. For instance,

the single-source shortest paths problem with negative-weight edges can

be solved in O(n312 ) time on planar graphs. The best general sparse

algorithm [14] requires O(n2 log n) time.
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The results in Section 2 show that the existence

of good separators in a graph and its subgraphs is enough to guarantee

that sparse Gaussian elimination is efficient. Conversely, Theorem 9

in Section 3 shows that a graph for which-Gaussian  elimination is

efficient must have a good separator. The existence of good separators

in a graph and its subgraphs -lies that the graph is sparse, but almost

all sparse graphs do not have good separators. These results suggest

that when studying Gaussian elimination, one should regard a graph as

"sparse" when it has good separators rather than when it has a small

edge/vertex ratio.

A number of questions remain to be explored, Can generalized nested

dissection be implemented efficiently? Is it practical? How does one

find good separators in a graph? What is a useful definition of the

“goodness” of a separator? Informally, a separator is good if it is small

and divides the graph into small pieces. We need a quantitative definition

which embodies this idea. What are the trade-offs between the size of the

separator and the size of the pieces it produces? The property of

having good separators is crucial not only in Gaussian elimination but

in many other problems [16].
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Appendix: Definitions

A graph G = (V,E) consists of a set V of vertices and a set E

of edges. Each edge is an unordered pair {v,w) of distinct vertices.

If {v,w) is an edge, v and w are adjacent, v and w are incident

to (VYW)  Y and v and w are the endpoints of {v,w] . A path of

length k with endpoints v, w is a sequence of vertices

v = vO,vl,v2 ,..., vk = w such that {v~-~,v~]  is an edge for 1~ i

If Gl = (VlyEl) and G2 = (V2,E2) are graphs, Gl is a subgraph

of G2 if VlcV
- 2

and ElczE .
- 2 If G = (V2,E2) is a graph and

v1 5 5 ’ the graph Gl = (Vl,El) where El = E2n [[v,w) 1 V,WE v ]

<k.

is

the subgraph of G2 induced by the vertex set Vl . A clique is a graph

in which an edge joins every pair of distinct vertices. A graph is

connected if every pair of its vertices are joined by a path, The

connected components of a graph are its maximal connected subgraphs,

Let A, B, C be a partition of the vertices of a graph G = (V,E) . We

say C separates A and B if no edge joins a vertex in A with a

vertex in B .

If f and g are functions of n , W f(n) is O(g(n)) *' means that

for some positive constant c , f(n) 5 cg(n) for all but finitely many

values of n ; " f(n) is n(g(n)) " mesns g(n) is O(f(n)) .

A graph G = (V,E) is planar if there is a one-to-one map fl from

v into points in the plane and a map f2 frcm E into simple curves in

the plane such that, for each edge {V,W)E E , f,([v,w))  has endpoints

fl(v) and f2(w) , and no two curves f2({vl,wl])  , f,({v,,w,))  share a

point except possibly a c-on endpoint. Such a pair of maps fly f2 is

a planar embedding of G . The connected planar regions formed when the
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ranges of
fl and f2

are deleted from the plane

of the embedding. Each face is bounded by a curve

cycle of G , called the boundary of the face, We

distinguish between a face and its boundary. A diagonal of a face is

an edge (v,w) such that v and w are non-adjacent vertices on the

boundary of the face.

are called the face;:

corresponding to a

shall sometimes not

30



/- References

L
Dl A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

i-21 R. C. Backhouse and B. A, Car& "Regular algebra applied to path-. .
finding problems," J. Inst. Maths. Applies. 15 (1975), 161-186.

[3] J. Bunch and J. E. Hopcroft, "Triangular factorization and inversion

by fast matrix multiplication," Math. Camp. 28 (1974), 23~236.
[4] B. A. Car& "An algebra for network routing problems," J. Inst.

Maths. Applies. 7 (lgl), 273-294.

[51 S. C. Eisenstat, M. H. Schultz, and A. H. Sherman, "Applications of

an element model for Gaussian elimination,' Sparse Matrix Computations,

J. R. Bunch and D. J. Rose, eds., Academic Press, New York, 1.976,

85-96.

WI S. C. Eisenstat, M. H. Schultz, and A. H. Sherman, "Considerations

in the design of software for sparse Gaussian elimination," sparse

Matrix Computations, J. R. Bunch and D. J. Rose, eds., Academic

Press, New York, 1976, 263-273.

[71 P. Erdijs and J. Spencer, Probabilistic Methods in Combinatorics,

Academic Press, New York, 1974.

WI P. Erdijs, R. L. Graham, and E. Szemergdi, "On sparse graphs with

dense long paths," Computers and Mathematics, 1, 314 (1975)r

365-3704

[91 G. E. Forsythe and C. B. Moler, Computer Solution of Linear Algebraic

Equations, Prentice-Hall, Englewood Cliffs, N. J., 1967.-
[lo] A. George and J. W. H. Liu, "An automatic nested dissection algorithm

for irregular  finite element problems," Research report ~~-76-38,

Department of Computer Science, University of Waterloo (1976).

: [U] J. A. George, "Nested dissection of a regular finite element mesh,"

SIAM J. Num. Anal. 10 (1973), 345-367. ,
[l2] F. G. Gustavson, "Some basic techniques for solving sparse systems

of linear eq'uations,"  Sparse Matrices and Their Applications,

D. J. Rose and R. A. Willoughby, eds., Plenum Press, New York, 1972,

41-52.

31



"Complexity bounds for

grids," SIAM J. Numer.

D31

El41

D51

WI

D71

WI

1191

WI

ca

m.1

[;231

[241-

A. J. Hoffman, M. S. Martin, and D. J, Rose,

regular finite difference and finite element

AIMJ-. 10 (w'n), 364-369.

D. B. Johnson, "Efficient algorithms for shortest paths in sparse

networks," Journal ACM 24 (1977),  1~13.
R. J. Lipton and R. E, Tarjan, "A separator theorem for planar

graphs," to appear.

R. J. Lipton and R. E. Tarjan, "Applications of a planar separator

theorem," to appear.

D. J. Rose, "Triangulated graphs and the elimination process,"

J. Math. Anal. Appl. 32 (lgO), 597-609.

D. J. Rose, "A graph-theoretic study of the numerical solution of

sparse positive definite systems of linear equations," Graph Theory

and Computing, R. Read, ed., Academic Press, New York, 1973, 183-217.
-=.

D. J, Ro$e, R. E. Tarjan, .and G. S. Lueker, "Algorithmic aspects of

vertex elimination on graphs," SIAM J. ccanput.  5 (x976), 266-283.

A. H. Sherman, "On the efficient solution of sparse systems of linear

and nonlinear equations," Ph.D. thesis, Computer Science Dept., Yale

University (1975).
V, Strassen, "Gaussian elimination is not optimal/'  Numerische

Mathematik 13 (1969), 354-356.

R. E. Tarjan, "Solving path problems on directed graphs," Technical

Report STAN-CS-75 -528, Computer Science Dept., Stanford University

w75>. .
R. E. Tarjan, "Graph theory and Gaussian elimination," Sparse Matrix

Computations, J. R. Bunch and D. J, Rose, eds., Academic Press,

New York, 1976, 3-22.

0. C. Zienkiewicz,  The Finite Element Method in Engineering Science,

McGraw-Hill, London, 190.

32


