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Abstract .

J. A Ceorge has discovered a nethod, called nested dissection,
for solving a system of |inear equations defined on an n = kyxk square
grid in Q'n log n) space and CXn.B/e) tinme. W generalize this
method without degrading the time and space bounds so that it applies
to any systemof equations defined on a planar or alnost-planar graph.
Such systens arise in the solution of two-dinensional finite elenment
problems. Qur nethod uses the fact that planar graphs have good separators.

Mre generally, we show that sparse CGaussian elimnation is efficient
for any class of graphs which have good separators, and conversely that
graphs without good separators (including alnmost all sparse graphs) are

not amenable to sparse Gaussian elimnation.
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1. [ ntroduction.

Suppose we wish to solve by Gaussian elimnation the system of
l'i near equations
(1) AX = b
where A is an nxn symetric positive definite matrix, X is an
nxl vector of variables, and b is an nyxl vector of constants.
The sol ution process consists of two steps. First, we factor A by

means of row operations into
(2) A = 11t

where L is lower triangular and D is diagonal. Next, we solve the
sinplified systems L.z =b, Dy =z , and LTx =Yy .

If Ais dense (i.e., A contains nostly non-zero elenents) then
the time required for factoring A is O(nz’) and the tinme required for
solving the sinplified systens is o(ne). If Ais sparse (i.e.,

A contains nostly zero elenents), we may be able to save tine and
storage space by avoiding explicit manipulation of zeros. One difficulty
with obtaining such a savings is that the factoring process may create

non-zeros in L (and LT) in positions where A contains zeros.

These new non-zeros are called fill-in.

One way to reduce the fill-in is to pernute the rows and col ums
of A, i.e., to transformA into
(3) N = pAP

where P is a pernutation matrix, and to solve the reordered system

Since Ais positive definite, the reordered system is numerically

T

stable with respect to the L.~ factorization [9].



In order to characterize the fill-in associated with a given pernutation
matrix P, we represent the class of matrices PAPT by an undirected
gﬂmf/ G=(V,E . The graph G contains one vertex ieVv for
each row (and colum) in A, and one- edge {i,j}e E for each pair ‘
of non-zero, off-diagonal elenents &y = #0in A. Each
permutation matrix P corresponds to a numbering of the vertices of G ;
i.e., to a one-to-one mapping =: V - {1,2,...,n} . Corresponding to
the factorization PAPT =101 is a graph G: = (V,E:Z) such that
{1,3} e B iff i>J and the element of L in row =(i) and col um
n(j) is non-zero. See [17, 18,19, 23 1 ror a discussion of the properties of

this graph-theoretic nodel of sparse Gaussian elimnation. The follow ng

lemma characterizes the fill-in E: associated with an ordering g .

Lemma 1 [19]s  Assuning no cancellation of non-zeros in the
factoring of PAPT | {v, W}GEZ iff v #wand there is a path

V = Vy5Vps. .03V =Wsuch that n(vi) < min{n(v),n(w)} for 2 <i < k.

The running time and storage space required by sparse Gaussian
elimnation are functions of m, the nunber of non-zeros in L , and
of d(i) , the number of edges {i,3} in G, with n(i) < n(j)

Note that d(i) is the nunber of non-zeros in colum i of L (and
n-1

rowi of L"), and that m= I d(i) .  For purposes of analysis
i=1

and inplenentation, we can divide sparse elimnation into the follow ng

four steps.

Y The appendi x contains the graph-theoretic definitions used in this
paper. It also defines the "o" and " q " notations.




Step . Find a good ordering =« .
The time and space required by this step depend upon the nethod
used.
Step 2. (Symbolic factorization.) Conpute the non-zero positions
in L, assumng no lucky cancellation of non-zeros.
Ti ne: Q'm using the algorithmof [19].
Space :  o(m) .

Step 3. (Nuneric factorization.) Conpute L .

n-|
Ti ne: o( 2 d(i)(d(i)+3)) using an al gorithm such as

i=1

described in [6,12,20,23], The number of nultiplications

-~

performed during this step is

o=

n- |
Eld(i)(d(i)+5) [18].

1
Space:  O(m) ,

Step 4. (Backsol ving.) Solve Lz = b, Dy = z and Lx = y .
Ti ne: o(m) [18] .

Space . O(m) ,

The reason for separating the factorization into two steps (symbolic
and nuneric) is that all known met hods which conpute the numeric factorization
;Nithout first finding the fill-in positions have a time bound for overhead
which is nore than a constant factor greater than the number of multiplications.
If the systemof equations is to be solved for only one right-hand side b ,
it is possible to conbine at |east partof Stepl(solvingLz=b and
Dy = z ) with Step 3.

The efficiency of sparse Gaussian elimnation depends upon Step 1,

that is, upon finding an ordering = which reduces the size of the

n
fill-in mand the multiplication count %‘- 2 a(i)(a(i)+3) . Finding
1=



such a good ordering for an arbitrary graph seenms to be a very hard,
perhaps even NP-conplete problem However, for sone special cases
good ordering schenes are known. (One such schenme is the nested dissection
met hod of J. A George [11], which allows the solution of systens whose
graph is an n = kyxk square grid graph in o(n5/2) time
and Q(n log n) space. GCeorge's schene usesthe fact that renoval of
Q(k) vertices froma kyxk square grid leaves four square grids, each
roughtly k/2 xk/2 .

In this paper we generalize George's idea. Let S be a class
of graphs cl osed under the subgraph relation (i.e., if Gy € S and G
is a subgraph of G, then G, e S ). The class S satisfies an

2 1
f(n) -separator theoremif there are constants ¢ <1, B> 0 for

which any n-vertex graph Gin S has the follow ng property: the
vertices of G can be partitioned into three sets A B, C such that
no vertex in Ais adjacent to any vertex in B, |a], |B] < an,
and |c| < Bf(n) . Cur main result is that all systems of equations
whose graphs satisfy avn -separator theorem can be solved in o(n5/2)
tine and Q(n |og n) space using a "divide and conquer" [1] nethod to
generate the ordering. From separator theorens proved in [15], we obtain
a method for solving any system of equations whose graph is planar or
.almost-planar in o(n3/2) time and 0(n log n) space. Such systens
arise in the solution of two-dinensional finite elenent problens [2L],
Section 2 presents these results.

Mre generally, divide and conquer gives a good ordering schene for

any class of graphs satisfying an f(n) -separator theorem the fill-in

and nmultiplication count produced by the ordering depend upon f(n) .,




At the end of Section 2 we list fill-in and multiplication bounds for
various values of f(n) other than f(n) = J; .

Section 3 presents sone relationships between Gaussian elimnation,
good separators, sparsity, and random graphs. V& give a |ower bound on
the cost of Gaussian elinination in terms of the size of separators in
the problem graph. W prove that graphs with good separators are sparse
Finally, we show that alnost all sparse graphs have no good ordering for
Gaussian elimnation. Section 4 discusses the significance of the results

in Sections 2 and 3.



2. Ceneralized Nested Dissection.

Let S be a class of graphs closed under subgraph on which
a «/;; -separator theorem holds, let a, 8 be the constants associ ated
with the separator theorem and let G= (V,E) be an n-vertex graph
in S. The follow ng recursive algorithm nunbers the vertices of G
so that sparse Gaussian elimnation is efficient. The algorithm assunes
that ¢ of the vertices of G are already assigned nunmbers, each of
which is greater than b, and that the remaining vertices of G are

to be nunmbered consecutively froma to b .

Nunbering Al gorithm

If G contains no nore than n, = (5/(1-a)2) vertices, nunber
the unnunbered vertices arbitrarily froma to b . Qherwise, find
sets A, B, C satisfying the \/H -separator theorem Let A contain
i unnunbered vertices, B contain j unnunbered vertices, and C
contain k unnumbered vertices.

Nunber the unnunbered vertices in C arbitrarily from b-k+l
to b . Delete all edges with both endpoints in C. Apply the
algorithmrecursively to the subgraph i nduced by BUC to nunber the
unnunbered vertices in B from b-k-j+1 to b-k . Apply the algorithm
recursively to the subgraph i nduced by AUC to nunber the unnunbered

vertices in A from a = b-k-j-i+1l to a+i-1 = b-k-|

If Ginitially has no nunbered vertices, then applying this
algorithmto Gwith a=1, b=n, and ¢ = 0 will nunber the
vertices of Gfrom1l ton . W are interested in three properties
of this algorithm its running tine, the size of the fill-in produced
by the ordering it generates, and the multiplication count of the generated

or deri ng.



Theorem 1. Suppose that a vertex partition satisfying the «fﬁ - separ at or
theorem can be found in Q(mtn) time on an n-vertex, medge graph.

Then the nunbering al gorithmrequires o((mtn) log n) tine.

Proof . Let t(myn) be the maxinumtime required by the nunbering

algorithmon any graph in S with n vertices and m edges. Then

f/ .
(&) t(myn) < ¢y i f n<ng,

t(m,n) ch(mn) + ma.x{t(ml,nl) + t(me’ng)} ot her wi se,

wher e n, = (B/(l—oc))2 and the maxinmum is taken over values of m o, o0y

m, 5 D satisfying

) m+m <m ,

n < ny+n, < n+gyn , and

(1-)n < n,n, < om+pn .

A proof by induction simlar to the one below for the fill-in

bound shows that t(m,n)is Q(mtn) log n) . O

Theorem 2. Let G be any n-vertex graph numbered by the al gorithm

The total size of the fill-in associated with the nunbering is at nost

c5niog2 n + Q(n) , where

6) oy = 8°(1/2 + 24a/ @ -v))/ 208, (1/0)

Y Throughout this paper, c,c denote suitable positive constants.

O)cl)...



Proof . Suppose the recursive nunbering algorithmis applied to an n-vertex

graph G with ¢ vertices previously nunbered. Assune n > n, and | et

A, B, C be the vertex partition generated by the algorithm If ¢
contains k unnunbered vertices, then the maximm nunber of fill-in

edges whose |ower nunbered endpoint is in Cis
(1) k(k-1)/2 + ki < B° n/2 + 8 2n

By Lemma 1, two vertices v and w are joined by a fill-in edge
if and only if there is a path fromv to w through vertices nunbered
l ess than both v and w. Thus no fill-in edge joins a vertex in A
with a vertex in B. Let f(£,n) be the maxi mum number of fill-in
edges whose |ower nunbered endpoint is nunbered by the algorithm (and

not previously numbered). Then
(8) £(4,n) < n(n-1)/2 if n<n,, and
f(2,n) < 52 n/2 + B l«[r-l + max{f(4,,n.)+ £(L,n,
on) 2 178 2%) ]}
otherwi se, where the maxinum is taken over values satisfying
9) e, < a+epdn
n < n,+n, < n+gyn , and
(1-a)n < n,n, < an + BN/;I. .
W claimthat for all n>1,
(10) f(4,n) < c5n log2 n + chl'\/-ﬂ + c5/z log2 n + c6n-c7\[r? log2 n,

wher e



(11) cs = p2[1/2 + 2o/ (1-var )] / Log,(1/a) ,
¢y = B/(l"\[OT) )
cg = CEB/ [2\13 loge(l/og)] . and

Cg and c, are suitably large positive constants, to be

chosen later.

Ve have attenpted to mnimze c, , ¢, » and ¢ in this bound, but

3 p)

have chosen cg and c7 to make the proof easy, The theorenis bound on

fill-in size follows fromthe claim

-

Proof of claim Let

(12) g(i,n) = csn log, n + cnlz«/z * cgt log, n and
h(n) = c6n-c7«fr-1 log, n .

Ve prove the claimby induction on n . Assunme h(n) > ng/e, wher e

ng > 0, i's a value to be chosen later. Then n < 5 inplies

£(4,n) < n(n-1)/2 <_n_§/2 < h(n) < g(#mn)+h(n) .

Let n > N, and suppose the claimis true for values smaller than n .

Then  £(¢,n) <_52n/2 + B z«/; + f(/zl,nl) + f(ze,ne) for suitable values
of ;el,nl,!!g,nz

Let € = (l—oc—B/«/no+1) . Since '\/n0+l > '\/;1; > g/(1-a) , we have
O‘+B/V'no+l <1, and € > 0 . Thus nyn, < Om+ 5,\/; < (oz+5/»\/-r-1)n <
(l~e)n < n, and the claimholds for ny and n, by the induction

hypot hesi s.
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Hence
(13) £(t,n) < Bnf2+p 1an + g(2y,n,) + g(2ym,) +h(n, ) + h(n,)

< p2n/2+pevn

+ [eg(n+pan) + o (2+2p4m )] Logy(om+pwn)
+ ch(z+23«/r_1) Jm+5ﬁ

+ hn) +hiny) .

(14) lo§2(0m+ BVn ) = log2 n + log, O + 1og2(1+5/(a«/3))
< log2 n+ l0g2 « +(Blog2 e)/(a'\/;)

since loge(l+x) <x for x <0 .

Al so
(15) Nonm+pyn < Nom+p/ (243 )

Substituting into the bound on f£(fn), we find that

(16) £(1,m) < B n/2 + pan
+ (03n+c52)[log2 n+log, a+ (B 1og2e)/(oc'\/3)]+(c3+2c5)5«/5 log2 n
+ ¢y (£+284n) [Wom + B/ (24a)]
+ h(nl) + h(n2)
< cBn log2 n
+ p2n/2 + en 1092 a + 2chsx/5n

+ paan + e, Vo 1n

11



+

C5!Z log2 n

C5 £ log, & + c) B l/(E«/a)

+

+

(csp log, e)Wn/a + (csp Log, e) £/ (v )
+ (c3+205)B ‘\/—I; log, n + ech62'\/;/(2\/a)
+ h(nl) +h(n2)
S egn log, n+ C4£\/;1‘ + 0t log, n+c8«f;1- log, n+h(nl) + h(n,)

by the choice of 3 € andc5 , Where

(17) cg = (c3+c5)s(log2 e)/a+(c5+2c5)5+2ch 52/(2'\/&.)

Al that remains is to show

(18) h(n) > n§/2 for 1<n , and

h(n) 3c8«/-n- log, n + h(nl) + h(ng) for n > ns
and. anyn;, n, satisfying

(19) n < g.o+n, < n+gyn  and

(1-a)n < ng, n, <on+ ﬁ\/;

Choose n3 such that

(20 )- n, >n

3 and

0
28 log, e < (y-1) log, n, -7 log,(1/(1<))

where vy = o+ N1 . Let Cg=v- 1-(y 1og2(l/l-oz) )/log2 g

Choose ¢4 such that

(21)  cy > max{n3/2, cg/(eg/ (2 log, e) - B/log, ny ) }

12



Finally, choose
(22) c; = (cg . cgp/log, ng)/cq .
Then h(1) = e > n§/2 . Furthermore -

(3) = *ﬂfﬁ
n

& (egn - o log, n)

c6/(2'\/;1') - (c7 log, e)/log, n .

By the choice of c, and ¢, 06/22‘"7 log, e , which inplies

% Bn) 5 o for n>1. Hence h(n)zng/z for n>1.

«,/; 2

W also have
(2k) cgvﬁ log, n + h(n))+h(n,)
< c8«[n_ log, n+ c6(n+;3'\/;1 ) -07(*\/1;;_ + \[II;) logz((l-oc)n)

the function \/n_l+'\/n2 is mnimzed when one

of n; , 1, is as large as possible and the other is as small as possible.

For fixed nl+n2 ,

Thus
(25)  An, +4n, > Nom +J(@am > y¥n .
Hence

(26) cgVm 10g, n + h(n;) + h(ny)
< 08‘/-1’; log, n + cn * c6Bx/’; 'CYB \/rfl_-(log2 n - log, (1/ (1a))

> c6n-c77'\/_n- log, n+c8«/rT log, n+c65\/; + c77«/;1-10g2(l/(1-a)).

By selection of c7 ,

13



(27) c, — (cg + cgp/log, ;) / (r -1-Y 1og,(1/(1~2))/1og, n;)
>(cg* cgB/log, n) / (r - 1- 7 log,(1/(1-a))/1log, n)
i fn> n . Thus
(28) c, (r - 1 -7 log,(1/(1-0) }/log, n) >cg + cgp/log, n  and
-c7’\/?1 log, N >cgyn log, N+ cpan ~cy\n log, N+ ey /o log, (1/(1-a) ) .
This means
(29) cgVn log, n+h(n))+h(n,) < c6n—07\];1- log, N

This conpletes the proof of the claim a

Theorem 2. Let G be any n-vertex graph numbered by the al gorithm
The total multiplication count associated with the nunbering is at nost

clln5/2+ 0(n(log n)g) , Where

(30) ey = 8°(1/6 + plaleva/ (+a) + ba/(1-) / (1-4k)) / (1)
with s = /24 (1-0)3/2 .

Proof , Consider the nunber of nultiplications associated with the
ordering. The number of nultiplications associated with a given vertex
V is d(v)(d(v)+3)/2 , where d(v) is the number of fill-in edges
whose | ower-nurribered vertex is v. Thus a bound on the number of
nul tiplications associated with a separator C generated by one call

of the recursive nunbering algorithmis

14



Bn -1
(31) Z () (E+er3)/2
i=0
B/n -1
>
i =0

< (1+1)2/2+ 36%n/b+ 3 B tAn/2

< ©17/2/6 « 21 n/2 + piPan J2 + 362 n/h + 3p1an /2 .

Let q(4,n) be the maxi mum nunber of multiplications associ ated
with vertices not previously nunbered when the recursive nunbering algorithm
is applied to a graph in C having n vertices, of which ¢ are

previously nunmbered. Then

(32) Q(l:n)‘m
< n(n-1)(2n-1)/12 + 3n(n-1)/4% = n(n-1)(n+k)/6 if n<ng, end

a(t,n) < 8/%6 + g2mj2 + pPin /e + 3670/ + 3pa4n /2

+ max{q(sy,my) + a(Lyny)}
otherwi se, where the maxinum is taken over values satisfying

(33) A 1+2gn

IN

n < pn, < n+p¥n , end

(1-<a)n < ny, o, < cm+3«/-r; .

W claimthat for all n>1,
(34) a(2,n)

3/2 2 2 2 +
< e/ THegpmt et WD + cy)n(log, n)"+ ¢)o4" log, n cl6£& ’

15



wher e
(35) ey - B1L/6 + plale+Na /(L +4E) + b/ (1-0) 1/ (14 ) I/ (1-8)
¢y = 82[1/2 + 2\/—07/(1-\/&-)]/(1—04) s

ez = B/[2(1-va)] , and

Cq), » G5 s Cqg ArE suitably large positive constants.

The theorem's bound on nultiplications follows from the claim

Proof of claim Let

(36) r(Lm) _ clln3/2 4 Cipin + clBEE\/-r.l and

. 2 2
s(4,n) = clhn(logg n)~ + clsz 1og2 n + 0161«/;1-

W prove the claimby induction on n . For n <, wher e n, >ng
is a value to be selected later, q(£n) < n(n-1)(n+h)/6 < nh(nh‘l)(nh+h)/6
< s(4n) if cyy, is sufficiently large.

Let n > n) and suppose the claimis true for values snaller than n .

Then

(37) a(Ln) < B3n3/2/6+ Bgzn/z + 522-\/;/2 + 5.52n/u + 351«/;1_/2

< 55n5/2/6+ Bgzn/e + g;ﬁ/ﬂ/g + saen/h + 551«/}?/2

3/2..3/2 2 2
teqy (g T+ mpl ) +eq, (4yny + a50,) + °15(‘1“/n—1 * ”2“/“—2)

+s(4q5m) + s(45n,)
for suitable val ues of £y 0y, 12 S
For fixed ny+n, the function ni/z t+ n;/e i S maximized when one of

njy n, is as small as possible and the other is as large as possible. Thus

16



(8) w/2+2/? < [@wn/2s [an+ g 12
< /21 (1-0)3/2 4 B2+ ) (a7 ))3/2)
/21 (1)>/2+ 2/2(1+ 5/ (a5 )]

N

n,5/2[ (1—a)3/2+ o¢3/2(l+ 38/(avn))]
(/2 + (1-0)>/?107/2 4 3p4a 1

IN

N

since B/(avn) < 8/(avny) < B/((1-a)ny) = 1.
Also

(39)  amq+ 40, < (2+284n) (om+pn)

< am+ 208>/ 2+ pynT + 287

< (1+2p4/m)2 dom + ooz
(2+28vn )2 (am +p/ (24 ))
< W@ 2o+ dpa m+ 482G /2 (14 2vm )2 B/ (243

=
o
~—
o
H o
>
£
+
LY
o o
e
AN

IA

Letting & = o:3/2+ (l-ot)5/2 and combi ning the above inequalities with
the bound on q(4,n) gives
(1) a(en) < p%d/%/6 + cllan3/2 + 2c 0 /2 + hcl552\/-07 /2
+ p2m/2 + e am + tha«/E m
+ piPNm /2 + eygNa £
+ 3p°n/k + 3cn5«/5 n+ 2c1262n + 2cl363n/'\/bt_
+ 31Mn /2 + clza/z«/ﬂ + 2015521'\/3/'\/-(;
+ clBBlz/ (eva )

+
S(zl’nl) +s(£2,n2)

17



3/2 2
< Clln " clefn + cl5£ «/E

2
4+ CpqP +C.'L8“[; + 0192 + s(!l,nl)+ s(fzg,ne)

wher e

2
(42) cpy = 365/% + sep el + 2ey 87 2e87 /0t |

ci1g = 38/2 + cioB + 2c1352/«/(_).’- , and

Cc

19 = Cy58/(240)

Al that remains is to show that

() s(4,n) < cl7n + 018“/; + 01912 + s(lzl,nl) + s(lz,ng)

-

i f C1) 7 5 cigrand m are chosen sufficiently large. This

derivation is simlar to that for the fill-in bound and we shall not

-go through it here. The claimfollows by induction on n . O

Theorem 3. Let G be any planar graph. Then G has an elimination
ordering which produces a fill-in of size canl ogn+0O(n) and a
mul tiplication count of clln5/2+o(n(1og n)2) , Where cs < 128.5
.and cyp < 4002 . Such an ordering can be found in Qn log n) tine.

Proof . By Corollary 2 of[15], planar graphs satisfy a \/H - separ at or
theoremw th a = 2/3 and B = 2\/'5 . Furthermore the appropriate
vertex partition can be found in Qn) tine. Plugging into the bounds

of Theorenms |-3 gives the result. g

A finite el enent graph is any graph forned froma planar enbeddi ng

of a planar graph by adding all possible diagonals to each face. (The

finite element graph has a clique corresponding to each face of the

18




enbedded planar graph.) The enbedded pl anar graph is called the

skel eton of the finite elenent graph and each of its faces is an

element of the finite elenent graph.

Theor em 4. Let G be any n-vertex finite element graph with no el enent
having nore than k boundary vertices. Then G has an elinination
ordering which produces a fill-in of size o(k2 nlog n) and multiplication

count o(kjnB/e) . Such an ordering can be found in Q'n log n) tine.

Proof . By Corollary 4 of [15], any n-vertex finite element graph with

no element having nore than k boundary vertices satisfies a\/E-separat or
theoremwith o = 2/3 and B = 4 k/2| . Furthernmore the appropriate
vertex partition can be found in Q(n) tinme. Plugging into the

bounds of Theorems |-3 gives the result. O

Al'though planar and al nost-planar graphs seem to be the nost
interesting case, analogues to Theorens 2- 4 hold for other classes of
graphs.  For instance, the follow ng theorens can be proved using the

same methods as in the proofs of Theorems 2 -L,

Theorem 5. Let S be any class of graphs closed under subgraph on
which an n° separator theorem holds for ¢ >1/2 . Then for any n-vertex
~graph Gin S, there is an elinination ordering wth O(ngc) fill-in

Size and CXnBc) mul tiplication count.

The class of k-dinensional hypercubic grid graphs satisfies Theorem 6

for o=k-1/k .
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Theorem 6. Let S be any class of graphs closed under subgraph on
which an n” separator theorem holds for o < 1/3 < 1/2 . Then for
any n-vertex graph Gin S there is an elinnation ordering with

Qn) fill-in size and O(nBG) mul tiplication count.

Theorem 7. Let S be any class of graphs closed under subgraph on whi ch
a An separator theorem holds. Then for any n-vertex graph Gin S,
there is an elimnation ordering with Q(n) fill-in size and Q'n log, n)

mul tiplication count.

Theorem 8.  Let S be any class of graphs closed under subgraph on which
ann’ separ at or theorem holds for o < 1/3. Then for any n-vertex
graph Gin S, there is an elimnation ordering with Q'n) fill-in

size and nultiplication count.
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3. (Gaussian Elimnation, Separators, and Sparsity,

In this section we explore additional relationships between sparse
CGaussian elimnation, good separators, and sparse graphs. W have shown
that the existence of good separators in a graph and its subgraphs allows
us to carry out sparse CGaussian elimnation efficiently. It is natural
to ask whether the converse is true; that is, whether the existence of
good separators is necessary for efficient sparse elimnation. Toprove
a result of this kind, we need a strengthened version of a lemma in [5]

Let G = (V,E) be an undirected graph with an ordering = . our
proof technique makes use of the follow ng algorithm which adds edges
to G and evéntually produces a graph which contains the fill-in
graph ¢* . Associated with the graph during execution of the algorithm
s a subset of its cliques, called elements. Initially the set of

el ements consists of the edges of the graph.

El ement Merging Al gorithm

1

Repeat the following step for each vertex v from=« ~(1) to
n)
General step. Choose two el enents ey and e, cont aining v . Add to

the graph all edges not already present which join a vertex in e

and a vertex in e, 3 simultaneously delete elenents e and e, and

add a new element consisting of their union. Repeat until v is

contained in only one element. Mark v elim nated.

Let c-k

step. W note the followng properties of the algorithm which are easy

be the graph existing after k executions of the general

to verify.
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(i) At all times during execution of the algorithm every edge is
contained in at |east one elenent.

(i) The nunmber of elements containing a vertex never increases.

(iii) At the end of the algorithm each connected conponent of the
original graph conprises a single element.

(iv) After a vertex v is elimnated, v is contained in only one
el enent .

(V) An edge {v,w} is a fill-in edge if and only if {v,w} is added

to the graph before either v or wis elimnated. (In general

G, properly contains g .)

Property (v) follows from the definition of vertex elimnation on a

graph, which nodels Gaussian elimnation on the corresponding matrix.

' See [5,17)18; 19,23 1.

Lemma_2. Let G = (V,E) be an n-vertex graph satisfying the follow ng
property for some ¢ < n/3 and g : every set of vertices A such that
| <|A] <n-z is adjacent to at least g vertices in V-A . Then if

n is any ordering of V , G: contains a clique of at least g vertices.

Proof. G nust have a connected conponent containing at |east £ vertices.
QG herwise there is a set A violating the hypothesis of the |emm, forned
as follows. Let A =g . Add connected conponents to A one at a tine
until A contains at least ¢ vertices. Then A contains less than
21 < n-4 vertices.

Apply the elenent merging algorithmto G with ordering = . Let
e be the first elenment formed which contains at least ¢ vertices. Then

e contains no nore than 2¢ vertices, since it is conposed of two
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previously forned elenents. Let A be the set of vertices not in e .

A contains at least n-21 >y and at nost n-g vertices. Let C be
the set of vertices in e adjacent to at |east one vertex in A. By

the hypothesis of the lemm C contains at |east g vertices. Wen e
is formed, each vertex in Cis in some elenent other than e by (i).

Thus by (iv) each vertex in C isS uneliminated when e is forned.

By (v) the clique formed by C is contained in G; . Qa

A weaker form of Lemma 2 and its proof, in Wich the degrees of all

vertices are assumed to be bounded, appears in [5].

Theorem9. Let G = (V,E) be a graph satisfying the hypothesis of
Lemma2. Then any ordering of V produces a fill-in of size at |east

g(g-1)/2 and a nultiplication count of at l|east g(g-1)(g+l)/6 .
Proof . | mredi ate from Lenma 2. O

Theorem9 and the results in Section 2 inply that generalized
nested dissection is the best method of sparse elimnation (to within
a constant factor in running time and storage space) on |arge classes
of graphs. For instance n = kxk square grid graphs satisfy the
hypothesis of Lemma 2 for ¢ =n/3 and g = '\/_n/B [15]. Thus such

. graphs have an Q(n3/2) mul tiplication count for any ordering [13].
By using nore sophisticated techniques, one can derive an q(n | og n)
| ower bound on the fill-in for such graphs [13]. For d-di nensional

2 (d'l)/d) lower bound on

hypercubic grid graphs, Lemma 2 gives an Q(n
fill-in and an Q(n5(d-l)/d) | ower bound on multiplications, agreeing

with the upper bounds in Theorem 5. See [5].
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Ve turn now to the relationship between good separators and sparsity.

Qur first result shows that only sparse graphs have good separators.

Theorem 10. Let S be any class of graphs closed under subgraph and

satisfying an n/(log2 n)2 -separator theorem for fixed a,p. If Gis

a graph in S having n vertices and m edges, then m < Gy

Proof . Let t(n) be the maxi mum nunber of edges in any n-vertex graph
in S. Let Gbe an n-vertex graph in S with t(n) edges. Since S
satisfies an n/(log2 n) "O-separator theorem the vertices of G can be
partitioned into three sets A, B, C such that C separates A and B ,
A and B each contain no nore than an vertices, and C contains no
more than pn/(log, n)2 vertices. Since Sis closed under subgraph,
the subgraphs of G induced by the vertex sets AyC and BycC are
both in S. If [AUC|=n; and |[BUC|=mn,, it follows that

t(n) < t(nl)+t(n2) . Hence
(4h) t(n) < n(n-1)/2 if  n<ng and
t(n) < ma.x{t(nl) + t(nz)} ot herwi se,

‘where the maximumis taken over values n;, n, satisfying

(45) n < n +n, < n+ Bn/(log2 n)g , and

(1¢)n < my , n, < an+ pn/(log, n)®

An inductive proof like those in Section 2 shows that
(46) t(n) <cyyn - cegn/log;2 n ,

wher e Coy and c are suitably large positive constants. a

22

24



Not all sparsegraphshave good separators. In fact, for fixed a, B
such that p <lal <a <1, thereis a constant ¢ such that al nost
allf/ n-vertex graphs with cn edges have no vertex partition A, B, C
satisfying |A|, |B| <om, |c| < Bn., and C separates A and B .

This result i s implicit in Theorem 4 of [8]. It follows from Theorem 9
that almost all sparse graphs require Q(ne) fill-in and Q(n3)
nul tiplication count. By using a nore direct argunent, we can obtain a

stronger result.

Theorem 11. For all ¢ > 0 there is a constant c¢(e) such that al nost
all n-vertex graphs with at least c(e)n edges have a fill-in clique of

at least (1-e)n vertices for any ordering.

Proof . W first prove that alnmost all n-vertex graphs with at |east cn
edges have the follow ng property:
(P) If Aand B are sets of vertices such that |A|,|B| > en/4 and

ANB =@ , then at least one edge joins A and B .

W& prove (P) by an argunent |ike that used to prove Theorem L4 of [8].

Consi der a random graph ¢ with n vertices and m edges, where m> cn .

number of ways to choose two vertex sets A B satisfying |Al,|B| > en/k,

ANB=¢ is less than 5% . Between A and B there are at |east
€ 32/16 potential edges. The probability that none of these edges

2n®/16
actually occurs in Gis less than (1-2¢/n)€ . This, if cis

¥ By "almost all" we nean that the fraction of n-vertex graphs satisfying
the property tends with increasing n to one. W assume that each
n-vertex graph has vertex set {1,2,...,n} and that two graphs are
distinct unless their edge sets are identical. See [7] for a thorough
di scussi on of random graphs.
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€n/16 0O as n -, then alnost all

e2n2/16 . e—ceen/S

chosen so that 3"(-2c/n)

graphs satisfy (P). Since (1-2c/n) » choosing
c > (8 log, 5)/@.2 gives the result.

Now we use (P) to prove the theorem" Let G = (V,E) be any graph
satisfying (P). Consider any set A of at |east 3en/k vertices in G,
A contains a subset B of at |east en/4 vertices whose induced
subgraph in G is connected. CQherwise, we can derive a contradiction
as follows, et A4, @ L be the vertex sets of the connected
conponents of the subgraph of G induced by A . Let j be

3
the minimmindex such that 3 |A; | > en/k . Then |A;] < en/2 .
: i=1

(&N

oJ

1
A, wth sone

J
By (P) there nust be an edge joining sone vertex in U_Ay
i=1
k
vertex in U 4 . This is inmpossible by the definition of the A1 's,
i=j+1

Consi der any ordering of the vertices of G. Let A be the first
3en/b vertices in the ordering. Let B be a subset of A containing
at |east en/k vertices whose induced subgraph in G is connected. By
property (P) at least (1-¢/2)n vertices in v-B , and hence at |east
-(1-e)n vertices in V-A, nust be adjacent to at |east one vertex in B,
By Lenma 1, any pair of such vertices are joined by a fill-in edge. Thus
the set of vertices in V-B adjacent to at least one vertex in B is a

fili-in clique of at least (l-e)n vertices. O

Theorem 12. Alnost all n-vertex graphs with c(e)n edges have a fill-in
of (l-e)2n2/2 - Qn) and a nultiplication count of (1—e)5n5/6 - o(ne) :

for any ordering.
Pr oof . | medi ate from Theorem 11, O
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4, Remar ks.

V¢ have dermonstrated the existence of an O(n5/2) -time, Qn log n)
-space nethod for carrying out sparse Gaussian elimnation on systens whose
pattern of non-zeros corresponds to a planar or two-dinensional finite elenent
graph. Such systems arise often in real problems. The practicality
of the algorithmremins to be tested, and the constants in Theorem 3
are large. However, we believe that the algorithmis potentially useful
for solving large systems, since the worst-case bounds derived here are
probably much too pessimstic. Experiments by George and Liu [10] with
a simlar algorithm suggest that our method is practical.

It is possible to reduce the running tine of our algorithmto

log, 7
2 ) by using Strassen's algorithm for matrix multiplication and

o(n
factorization {3,21]. |If the system of equations is to be solved for

just one right-hand side b, it is possible to reduce the storage
required to Q(n) by storing only part of L and reconputing the rest

as necessary. Reference [5] describes how to achieve these savings in
the case of ordinary nested dissection; the generalization to planar and
al nost - pl anar graphs is analogous to the results in Section 2.

Gaussian elimnation can be used to solve systens of |inear equations
defined over algebras other than the real nunbers [2,4,22], and the
-algorithm in Section 2 applies to these other situations. For instance,
the single-source shortest paths problem with negative-weight edges can

be solved in o(n5/2) time on planar graphs. The best general sparse

al gorithmi[1k] requires o(n2 log n) tine.
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The results in Section 2 show that the existence
of good separators in a graph and its subgraphs is enough to guarantee
that sparse Gaussian elimnation is efficient. Conversely, Theorem 9
in Section 3 shows that a graph for which Gaussian elimination i s
efficient nust have a good separator. The existence of good separators
in a graph and its subgraphs implies that the graph is sparse, but al nost
all sparse graphs do not have good separators. These results suggest
that when studying Gaussian elimnation, one should regard a graph as
"sparse" when it has good separators rather than when it has a smal
edge/ vertex ratio.

A nunber of questions remain to be explored, Can generalized nested
di ssection be inplemented efficiently? Is it practical ? How does one
find good separators in a graph? Wat is a useful definition of the
“goodness” of a separator? Informally, a separator is good if it is snall
and divides the graph into small pieces. W need a quantitative definition
which enbodies this idea. Wat are the trade-offs between the size of the
separator and the size of the pieces it produces? The property of
having good separators is crucial not only in Gaussian elimnation but

in many other problens [16].
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Appendi x:  Definitions

A graph G = (V,E) consists of a set V of vertices and a set E
of edges. Each edge is an unordered pair {v,w} of distinct vertices.
If {v,w}is an edge, v and w are“adj acent, wvand w are incident
to {v,w} , and v and w are the endpoints of {v,w} . A path of
length k with endpoints v, wis a sequence of vertices
V= Vg VisVp seess vy = W osuch that {v, j,v.}is an edge for 1<i <k,

If ¢ = (Vl,El) and G, = (V2,E2) are graphs, G; is a subgraph

1
of G, if U= and E, CE. If G = (Vp,Ey) is a graph and
vV, €V, » the graph G, = (V,E) where E; = E N {{v,w]} | vvwe v} s

t he subgraph of G, i nduced by the vertex set i A clique is a graph
in which an edge joins every pair of distinct vertices. A graph is
connected if every pair of its vertices are joined by a path, The

connected conponents of a graph are its maximal connected subgraphs,

Let A, B, Che a partition of the vertices of a graph G = (V,E) . We
say C separates A and B if no edge joins a vertex in Awith a

vertex in B .

If f and g are functions of n, " f(n) is Q' g(n)) " nmeans that
for sone positive constant ¢ , f(n) < cg(n) for all but finitely many
values of n; " f(n) is Q(g(n)) " means g(n) is Qf(n))

A graph G = (V,E) is planar if there is a one-to-one nap £y from
v into points in the plane and a map f, from E into sinple curves in
the plane such that, for each edge {v,w}e E , fg({v,w}) has endpoints
fl(v) and fe(w) , and no two curves fe({vl’wl}) , fe({vz’wz}) share a
point except possibly a common endpoint. Such a pair of maps f;, f;is

a planar enbedding of G. The connected planar regions formed when the

29



ranges of f, and f, are deleted fromthe plane are called the face;:
of the enbedding. Each face is bounded by a curve corresponding to a
cycle of G, called the boundary of the face, W shall sonetines not
di stingui sh between a face and its boundary. A diagonal of a face is
an edge (v,w) such that v and w are non-adjacent vertices on the

boundary of the face.
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