
Stanf’ord Artificial intelligence Laboratory
Memo MU-309

Computer Science Department
Report No. STAN-CS-77-646

FAST DXXSION ALGORITHMS
BASED ON CONGRUENCE CLOSURE

bY

Greg Nelson
and

Derek C. Oppen
Stanford Verification Group

Research sponsored by

National  Science  Foundation
and

Hertz Foundation

February 1978

COMPUTER  SCIENCE DEPARTMENT
Stanford University



.

Stanford Artificial lntelli&mce  Laboratory February 1978

Computer Science Department
Report No. STAN-CS-77-646

I FAST DIZCISION ALGORITHMS
BASED ON CONGRUENCE CLOSURlE

bY

Greg Nelson
and

Derek C. Oppen
Stanford Verif ication Group

We clefine  the t-tot~on  of the congr24ence closure of a relation on a graph and give a simple
algorithm for computing it. We then give  decision procedures for the quantifier-free theory of
equahty and the quantifier-free theory of LISP list structure, both based on this algorithm.  The
procedures are fast enough to be practical in mechanical theorem proving: each procedure
determines the satisfiabillty  of a conjunction of length n of literals  in time O(I?).  We also show
that if the axlomatlzatlon  of the theory of list structure is changed slightly, the problem of
determining the satisfiabky of a conjunction of literals becomes NP-complete. We have
implemented the decision procedures in our simplifier for the Stanford Pascal Verifier.

An ea?rlier  version of this paper appeared in the Proceedings of the 1Sth Annual Symposium on
Founhions  of Computer Science, Providence, October 1977. This research was supported by tire
National Science Foundation under contract MCS 76000327 and by the Fannie and John Hertz
Foundation.



1. Introduction

Let G = (V, E) be a directed graph with labelled  vertices and R a relation on V. The congruence

clos ure N of R on G is the unique mmimal extension of R such that N is an equivalence relation

and any two vertices of G are equrvalent under N if they have the same label and the same

outdegree, and all their correspondmg  successors are equivalent under N.

In section 2, we give a simple algorithm for computing the congruence closure of R on G

whJch requires O(mn + k) time, where n is the number of vertices in G, m is the number of edges in

G, and k is the nur.lber of pairs in R.

In section 3, we describe a decision procedure for the quantifier-free theory of equahty with
uninterpreted function symbols based on the congruence closure algorithm. The algorithm

determInes  the satisfiability of a conjunction of equalities and disequalitles  of length n In time

O(n *).

In sectlon  4, we describe a declsidn  procedure for the theory of LISP list structure with the
usual functions CAR, CONS, and CDR and the predicate LISTP,  which asserts that its argument is

non-atomic. The axioms for the theory are:

CAR(CONS(X,  Y)) = X

CDR(CONS(X,  Y)) = Y

LISTP(X)  2 CONS(CAR(X), CDR(X)) = X

LISTP(CONS(X,  Y))

The decision procedure determines the satisfiability of a conjunction of length n of literals in

time O(n*). The terms in the literals may contain uninterpreted function signs.

We also show in section 4 that the satisfiability problem for conjunctions of literals is

NP-complete if the following axioms are used instead of the above axioms:e

CAR(CONS(X,  Y)) = X

CDR(CONS(X, Y)) = Y
X e NIL =) CONS(CAR(X), CDR(X)) = X

CONS(X, Y) z NIL

CAR(NIL)  = NIL

CDR(NIL)  = NIL

In section 5, we give some notes on the implementation of our algorithms.

2



.

2. The Congruence Closure Aigorithm

Let G = (V, E) be a dlrected,graph with labelled  vertices, possibly with multiple edges. For a

vertex v, let X(v) denote Its label and 6(v) its  outdegree, that is, the number of edges leavrng v. The

edges leaving a vertex are ordered. For 1 I i I 6(v), let vii] denote the ith succcsso7  of v, that I S, the

vertex to which the ith edge of v points. A vertex u is a predecessor of v if v = u[il for some I. Since

multiple edges are allowed, possibly v[il = v[jl for i e j. Let IV] = n, /El = m. We assume that there

are no isolated vertices and therefore that n = O(m).

Let R be a relation on V. 7 wo vertices u and v are congruent  under  R if h(u) = h(v),

6(u) = 6(v), and, for all i such that 1 ,< i 5 6(u), (u[i], v[i]) f R. There is a unique minimal estension
- of R which satisfies 1. N JS an equivalence relation, and 2. if u and v are congruent under H, then

11 N v .  The relatKH~ H JS called the congruence closure of R. In the congruence closure, two vertices

are equtvalent If they have the same label and the same outdegree, and all their corresponding

successors are equivalent.

III this section we describe an algorithm for computing congruence closures which requires

O(nw + k) time and O(m) space in the worst case, where k is the number of pairs in R.

We represent an equivalence relation by its corresponding partition, that is, by the set of its

eq u i v alence classes. An equivalence class is represented by a list of its members. We use two

procedures for operating on the partition: UNION and FIND. UNION(u,  v) combines the

equivalence classes of vertices u and v. FIND(u) returns the equivalence class of vertex u.

In the most straightforward implementation of UNION and FIND, each vertex u contains a

field EQCLASS(u),  pointing to the equivalence class of u, that is, to the head of the list of vertices

representing its equivalence class. If u and v are equivalent, then EQCLASS(u)  and EQCLASS(v)

point to the same list. FIND(v)  simply returns EQCLASS(\).  UNION(u, v) updates the EQCLASS

pointer of ail the vertices in v’s equivalence class to point to u’s equivalence class, and destructively

appends the former equivalence class to the latter. In this simple implementation, FIND takes

cbnstant  time while UNION takes time linear in the sum of the lengths of the two equivalence

classes being merged and thus takes worst case time O(n). [Tarjan  19751  analyzes an implementation

of UNION and FIND which is much faster in theory and in practice, but which affects only the

constant factor of the time bound of our simple congruence closure algorithm.

For each vertex u, define the signature of u to be the tuple CA(U),  vl, . . . , vk>, where k is the

outdegree of u and vi is the first vertex in the equivalence class of u[i]. The signature of a vertex is

thus an encoding of its label together with the list of its successors’ equivalence classes.

Two vertices are congruent if and only if they have identical signatures. When two

equivalence classes are merged, the signatures of some vertices in the graph may be changed. To

find all new congruences, we sort the vertices on the basis of their signatures. Congruent vertices will

be adjacent in the sorted list.

3



Congruence Closure Algorithm

i. For each of the k part-s  (u, v) 11~ R, if FIND(u) z FIND(v) then UNION(u,  v).

2. Sort the vertices ih G on the basis of their signatures. Let L be the resulting sorted list and-.
L[i]  the ith vertex in L.

3. For i c l to n- 1, if L[i] and L[i+ 1 J have the same -.ignature but FINDM~)  * FIND(L[i+  l I),

then UNION(L[il,  L[i+ 11).

4. If any unions were done in step 3, then go to 2. Otherwise, return.

The algorithm is obviously correct. Since there are only n vertices in G, there can be at most

I1 - 1 calls to UNION. Therefore the total cost of calls to UNION in the algorithm is O(n*). Usmg

lexicographic  sortmg,  the cost of each pass through steps 2, 3 and 4 is O(m + n), excludmg  the cost

of any calis to UNION. -There can be at most  n passes through these steps of the algorithm. It

follows that the worst case running time of the algorithm is O(mn  + k). The algorithm requires

linear space.

Faster congruence closure algorithms are possib1.e.  [Johnson and Tarjan  19771 describe an

algorithm which requires, depending on its implementation, O(m (log n)2 ) time and O(m) space in

the worst case, or O(m log n) time’and O(mn) space in the worst case, or O(m log n) time on the

averAge  and O(m) space. [Downey,  Samet and Sethi 19781  have discovered essentially the same

algorithm. [Kozen  19771 also gives a polynomial time algorithm.

There is a directional dual to the problem of constructing the congruence closure of a relation

R: constructing the equivalence relation H containing R such that if u N v, then u[il N v[il for all i

such that I 5 i I 6(u) = 6(v). In this dual problem, if two vertices are equivalent, then so are all their

c&responding successors. This is essentially the problem of determining the equivalence classes of

states of a finite automaton. There is an O(n a(n)) algorithm for solving this problem ([Aho,

Hopcroft and Ulimann i9741), where a(n) is the inverse of a version of Ackermann’s function.

3. The Quantifier-free Theory of Equality

The language of the quantifier-free theory of equality consists of variables, uninterpreted function

symbols, the usual boolean connectives and the predicate = . Every term is either an atomic symbol

(which represents an individual variable) or an expression of the form f(t,, . . . , tk) where f is an

atomic symbol and each ti is a term. An example of a formula in the theory is x - y 3 f(x) = f(y).

The theory was first proved decidable by [Ackermann  19541.

4



In this section we give a decision procedure which determines the satisfiability of a

cotqunction  F  o f  litcrals i n  time O(JFj2), where JFI is the length of F. The decision procedure

represents the terms of the con junction by vertices in a directed graph and uses the congruence

closure aigorrthm to make all possible inferences following from the substitutivity of equahty.

WC I-f?fJix?sf?lit  a term t by the root of a tree T(t) in the obvious way: if t is atom& 7(t) contains

a single vertex labelled t with no successors; if t is of the form f(tl, . . . , t,), 7(t) has a root labelled f,

whose successors are the roots of 7(tl), . . . , 7(tk).  We la11 the root of 7(t)  the representative of t; we

use 7(t) to denote this root as well as the tree itself when the context makes the meaning clear.

The decision  algorithm first constructs the disjoint union of the trees representing the terms In

the conJunction. It then merges  (makes equivalent) each pair of vertices which represents a pair of

terms asserted equal in the formula and closes this initial relation under congruences. We will show
that two vertices are equivalent In the congruence closure if and only if the terms they  represent are

entailed  equal by the formula. It therefore suffices for the decision algorithm to check if the

representatives of any two terms asseried  unequal are equivalent in the congruence closure. If so, the

algorithm returns UNSATISFIABLE; if not, it returns SATISFIABLE.

Figures 1 and 2 iihi~trate  how our decision procedure determines that the formula F E f(a) = a

A gV(fW,  a) # gt a, a) is unsatisfiable. The algorithm first constructs the disjoint union G of the

trees representing the four terms a, f(a), g(f(f(a)), a), and g(a, a). (In the figure, vertices have been

rtumbercd for the purpose of this description.) The algori&hm then merges vertices i and 2, whrch

r&J!-escnt the terms a and f(a) asserted equ;Il in F. The result is illustrated in figure 1; we use z~

dotted Irne to represent the fact that vertices I and 2 are equivalent. The decision algorithm next

computes the congruence closure on G of the initial equivalence relation in which vertices I and 2

are equivalent. Figure 2 illustrates the resulting equivalence relation: vertices 1, 2, 3, 5, 6, 7, 8, 10 and

1 1 are all equivalent to each other, as are vertices 4 and 9. In the final step, the decision algorithm

checks whether the representatives of any terms asserted unequal by F are equivalent in the

congruence closure. In our example, the terms represented by vertices 4 and 9 were asserted unequal,

but have been merged. The decision algorithm therefore terminates with UNSATISFIABLE.

Decision Algorithm

L e t  F:z tl = u 1 A ,.. A t =u Ar #s A. . .1 A r # s be a conjunction of equalities and

disequalities. This algorithmPdeter%nes  whether  F is satis(riablz

1. Construct a graph G, the disjoint union of 7(tl), 7(u$, . g . 7(tp), 7(up), T(r$, 7(sl), . . . ,
7(l.q)’ 7(sq).  Let R be ((7(ti), 7(ui))  1 1 5 i I p]. Construct w, the congruence closure of R on G.

2. For i from 1 to q, if 7(ri) H 7(si)  return UNSATISFIABLE. Otherwise, return

SA TISFIA BLE.

5



Figure 1

\

9
A

f- f 8

1'
/w

1 /‘3

0 KS -

7

a- a- a -me-
w

Figure 2



I,

It IS straightforward to verify that the algorithm is correct if It returns UNSATISFIABLE. To

show that it is correct if it returns SATISFIABLE, we construct an interpretation $J satisfying F.

Let S be the partition of the vertices of C corresponding to the equivalence relation N. $ maps

individual variables into elements of S (that is, equivalence classes of vertices) and k-ary function
ksymbols into functions from S to S.

If x IS an individual  variable, let $(x) be the equrvalence class of any vertex labelled  x with

outdegree zero. (Since all such vertices are equivalent, this definition IS unambiguous.) If f IS a

function  variable, let ti(f)(Q,,  . . . , Q+) be the equivalence class of any vertex v in V such chat

X(v) = f, 6(v) = k, and for all i between i and k, v[ij < Qi. (G(f)  is well-defined because, rf two

vertices u and v both satisfy these conditions, they are congruent and therefore in the same

equivaience class.) If no such vertex v exists, then $(f)(Ql,  . . . , Q& is arbitrary.

It IS stralghtforward  to verify that for all terms t in F, $(t) is the equivalence class of T(t).

Thus, IL satlsfles F, since T(ti)  is in the same equivalence class as 7(ui), for each i, and T(ri) is in a

different equivalence class than 7(si), for each i.

[Shostak 19771 prd;es a similar result.

Let m be the number of edges and n the number of vertices in C. Since n-t 5 IFI, n I IFi, and

q i IFI. step 1 requires time O(]F12),  step 2 time O(lFI), and the whole algorithm time O(lF12).

As presented, the algorithm is not incremental in the sense of [Nelson and Oppen  t 5781;  that

IS, it does not accept iiterals one by one and determine unsatisfiability as soon as the conjunction

becomes inconsistent. It IS easy to modify the procedure so that it is incremental. We keep a hst of all

pairs of vertices which have been asserted unequal, adding a new pair to the list every time a

disequality is presented. The list never contains more than q pairs, so checking if a merge violates

some disequality requires O(q) time. Since there can be at most n-l merges, whether or not they are

done incrementally, this incremental version of the algorithm spends O(nm) time in the congruence

c’losure algorithm and O(nq) time checking if merges violate disequalities, or O(IF[‘) lime in all.

4. Extension to Theories of List Structure

In this section we show how the decision procedure given in the previous section can be modified to

handle the function symbols CAR, CDR and CONS and the predicate LISTP  in addition to

uninterpreted function symbols. An example of a formula in this theory is CAR(x) - CA R(y) A

CDR(x) = CDR(y)  A LISTP(x)  A LISTP(y)  3 f ( x ) - f(y). The decision procedure determines the

satisfiabili’ty of a conjunction of length n of literals in time O(n2).

7



We assume the LISP functions satisfy the following axioms.

CAR(CONS(x,  y)) = x

CDR(CONS(x,  y)) = y ’

LISTP(x)  3 CONS(CAR(x),  CDR(x))  = x

LISTP(CONS(x,  y))

(0

Notice that we do not restrict the domain of the LISP functions to non-circular lists, so that a

formula like CAR(x) = x is satisfiable. If we include axioms enforcing acyclicity  of list structure, and

exclude uninterpreted function symbols, a linear algorithm is possible. (Oppen 19781 describes a

decision algorithm which determines the satisfiability of a conjunction of length n in time O(n).

The algorithm represents terms by vertices in a directed graph as in section 3. The basic idea .

of our decision algorithm is to add ail reievant instances of (I) to this graph. For each term

CONS(x,  y) represented in the graph, we will add the equalities x = CAR(CONS(x,  y)) and

y = CDR(CONS(x,  y)) to the graph.

It is convenient i&he statement and proof of correctness of the algorithm to assume that each

positive literal LISTP(t)  has been eliminated from the conjunction and replaced by an equality

t = CONS(u,  v), where u and v are variables appearing nowhere else in the formula. We can

.therefore assume that the oniy literals invdvihg  LISTP are negative.

Decision Algorithm

This algorithm determines the satisfiability of a conjunction F of the form:

7 LISTP(u1)  A 1 LISTP(u$  A . . . A 1 LISTP$)  A

v1 1=W A...AV =WrA
r

X1 “yl A...AXs*y,

whe.re the terms in the literals may contain uninterpreted function symbols as well as the functions

CAR, CDR, and CONS.

I. Construct G, the disjoint union of 7(ul), . . . 7(uq), 7(vl), . s . 7(v,), 7(wl), . . . 7(wr), 7(x1),
. . . 7(x5), 7(y $9 * - * 7(ys).  Let R be ( @(vi), 7(wi)) I I I i 5 r ).

I

2. For each vertex u in G labelled CONS, add vertices v, labelled CAR, and w, labelled CDR,

both with outdegree I, such that ~113  = wE1 I = u. Add the pairs (v, u[ 13) and (w, u[ZJ)  to R. (That is,

given a term CONS(x,y),  add vertices representing CAR(CONS(x,  y)) and CDR(CONS(x,  y) and

merge them with the vertices for x and y.)

3. Construct N, the congruence closure of R on G.

8



4. For I from 1 to s, if 7(xi)  = 7(yi),  return UNSATISFiABLE.  For i from 1 to q, If the

tqlllvalcnce class of ~(11~)  contains a vertex Jabelied CONS, return UNSATISFIABLE. OtherwIse,

return SATISFIA  BLE.

It is stralghtforward  to verrfy that the algorithm is correct if it returns UNSATJSFIA BLE.

Suppose tha.t it returns SATJSFJABLE; we will construct an interpretation satisfying F.

Let S0 be the partition of the vertices of G corresponding to the final equivalence reiatron N.
We define tua functions CAR0 and CDRO from S0 to SO, and a function CONS0 from a subset of

So x S0 to SO. If the equivalence class Q contains a vertex v with a predecessor u Jabelied CAR,

then CAR&Q)  is the equivalence class of u; otherwise CAR&q)  is arbitrary. If Qcontains a vertex

v with a predecessor u labeiied CDR, then CDR&@  is the equivalence class of u; otherwise

CDR&OJ  is arbitrary. The pair (Ql, Q& is in the domain of CONS only if there exists a vertex v

labelled CONS such that v[J] f Ql and vi21  E Qz; in this case CO&&Ql, q2) ’IS the equivalence

class of v. Note that CAR*, CDRO, and CONS0 are well-defined because the graph is closed under

congruences.

CA RO, CDRO  and CONS0 have the following two properties:

i .  If <c&, O+} i s  i n  t h e  d o m a i n  o f  CONSO,  t h e n  CARO(CONSO(QJ, (I&$)  = Q1 a n d

~DRO(~(++Qlv  O?>) = Q2.

2. If Q is in the range of CONSO,  then (CAR&Q), CDRO(Q))  is in the domain of CONSO,

a n d  CONS&CA  R&C?, CDR&Q))  = Q

Proof of property 1: If (Ql, Qz) is in the domain of CONSO,  then there is a vertex u with

X(u) = CONS, u[ 1 J E Ql, and u[2J c Qz. Since u is a CONS, two vertices v and w labelled  CAR and

CDR respectively were added as predecessors of u. These vertices satisfy the requirements of the

def ini t ions  of  CAR0 and CDRO, so CARO(CONSO(Q1,  Q,$ is the equivalence class of v and

CDRO(CONSO(Ql,  Q,$> is the equivalence class of w. Furthermore the pairs (v, u[J]) and (w, ~121)

were added to R in step 2, so v and w are in the equivalence classes Ql and 92 respectively.

- The proof that the functions have the second property is similar.

To construct an interpretation, we must extend CONS0 so that it is defined on all of S0 x So.

We will first extend it to a function CONS1 which agrees with CONS0 where CONS0  is defined,

and otherwise just returns the ordered pair of its arguments. Since CONSI returns elements of

S0 x SO, the domain S0 of the interpretation must be extended to a domain S1 which includes both

S0 and part of S0 x SO. Now CONS1 must be extended so that it is defined on all of S1 x S 1. To

construct an interpretation we repeat, this extension step infinitely many times.



M o r e  preciseiy, suppose that we have defined the first i + 1 quadruples In the Inflnltc

sequence (SO, CONSO. CARO,  CDRO), (S1’ CONSI,  CARI,  CDR+. . . , (Si, CONS,, CARi, CDRi),

. . . . We define the next quadruple (Si+l, CONSi+l, CARi+l,  CDRi+l) by the followmg  ruies.

Let Di be the domain of CONSi.

‘. ‘i+l = si u Si x Si - D..I -.

2. The domain of CONSi+l is Si x Si’ CONSi+r(x,  y) p CONSi(x, y) if (X, y> is in the domain

of CONS,; CONSi+l(x,  y) = (x, y: otherwise.

3. CARi+&x)  = CARi if x E Si. Otherwise x c Si x Si - Di and is thus an ordered pair (y, z);

111  this case define CAR,+](x) = y.

4. CDRi+l(x)  = CURi if x E Si. Otherwise  x E Si x Si - Di and is thus an ordered pair (y, t);

in this  case define CDRi+I(x) = t.

It is trivral to verify that if CONSi, CARi and CDRi satisfy properties I and 2, then so do-w.
CONSi+l,  CARi+l a n d  CDRi+l. Since the properties are satisfied for i = 0, they are satisfied for

every i. Let S’ be the union of ail the Si. Let CAR’(x) be CARi( for the first i such that x c Si. Let

CDR’ and CONS’ be defined similarly. It follows that CAR’, CDR’, and CONS’ have propertles  1

and 2 and that CONS’ is defined on all of S’ x S’.

We are finally ready to define an interpretation $ which satisfies F. The range of IL is S’. +!J

ineerprets  CAR, CDR, and CONS as CAR’, CDR’, and CONS’. An element of S’ is interpreted to

be non-atomic if and only if it is in the range of CONS’. If f is an uninterpreted function symbol,

Q1,. . . t Q+ are in S and there exists a vertex v such that X(v) - f, 6(v) - k, and v[i] E ai for each i

from I to k, then +(f)(Q1, . . . , qk) is the equivalence class of v. If this definition does not

determme the value of $(f), then the value is arbitrary.

It follows from properties 1 and 2 and the fact that the set of non-atoms is exactly the range

of CONS’ that this interpretation satisfies the axioms (1). It remains to show that $ satisfies F.

- It is straightforward to show th’at for each term t in the original formula, IL(t)  is the

equivalence class of 7(t). But 7(vi) and and 7(wi) have been merged, for each i from 1 to r, so IL

satisfies the equalities in F. 7(x;)  and 7(yi) are in different equivalence classes {since step 4 returned

SATISFIABLE), so $ satisfies  the disequalities in F. Finally, no equivalence class of any T(ui)

contarns  a. ndde labelled CONS; hence these classes are not in the range of CONS*.  They are

certainly not in the range of any of the other functions CONSi, so they are interpreted as atoms by

+. Hence $J satisfies F.

This completes the proof of correctness of the decision algorithm.



Scbmcwhat  slrrprlsmgly,  when the result of a selector function on an atom IS specrfled  by the

ax 101115, the problem of determinlng the satisfiability of a conjunction of literals  becomes

NP-complete. Consider the following axioms for the theory of CAR, CDR, and CONS with the

single atom NIL:

CAR(CONS(X,  Y)) = X

CDR(CONS(X, Y)) = Y

X + N I L  =;, CONS(CAR(X),  CDR(X)) - x

CONS(X,  Y) z NIL

CAR(NIL)  = CDR(NIL) = NIL

We show that the problem of determining the satisfiability in this theory of a conjunction of

equalities and disequalltres  between terms containing CAR, CDR, CONS, NIL, and uninterpreted

function signs is NP-complete.

It is straightforward to show that the problem is in NP, since a non-deterministic piogram

can guess the equivalence relation on the set of terms in the tonjunction and then check that the

equivalence relation  does__Fot  violate any of the above axioms or the substitutivity of equality.

To show that the problem. is NP-hard, we will reduce the 3-satisfiability  problem for

propositional  calculus to it. (See [A ho, Wopcroft and Ullmann 19741.)

Let PI,. . . , Pn be propositional variables and F a conjunction of 3-element clauses over the

Pi. We will construct a conjunction G of equalities and disequalities between list-structure terms

involving CAR, CDR, CONS, NIL, and the 2n variables X1’ Y 1, . . . , Xn, Yn such that G is

satisfiable if and only if F is and ICI - O(JFI).

The first part of G is:

CAR(X$ = CAR(Y$  A CDR(X$ - CDR(YI)  A XI rr Y1 A
e

CAR(X$ - CAR(Y$  A CDR(X$ = CDR(Y$  A X2 f Y2 A

. . .

CAR(X,) = CAR(Yn)  A CDR(XJ  - CDR(Y,,)  A X,, PC Yn

(2)

:For no i can Xi and Yi both be non-nil, since then Xi and Yi would be equal by the third

axiom and the substitutivity of equality. One of them must be NIL and the other CONS(NIL,  NIL).

Given an interpretation IL for G, we construct an interpretation 4 for F by defining 6(Pi)  to

be TRUE if and only if $(X,) = NIL. The remaining conjuncts  in C will guarantee that ti satisfies

G if and only if 4 satisfies F.

11



We demonstrate the construction with an example. If one of the clauses of F is PI v 1 P2 v

f’q. WC’  wAnt to add a cc>nJllnct  to G which IS equivalent to (X1 = NIL v X2 ;i NIL v X3 = NIL). I n

Il)~;llr ol’  (?).  this I S  cc~lllValrnt  t o

+ - w* = NIL  A X2 = NIL A Y3 - NIL)

or to the single literal . .

CONS(Y2,  CONS-(X,,  Y,)) z CONS(NIL, CONS(NIL, NIL)) .

Note that we have shown the problem is NP-hard even without uninterpreted function

symbols. A similar construction can be used whenever the result of a selector function on an atom is

specified. The problem is also NP-complete with the axiomatization (1) if predicates are interpreted

as boolean-valued functions and literals such as F(ATOM(x))  z F(ATOM(y))  are allowed.

5. Notes on Implementation

The decrsron procedures described in this paper have been implemented in our simplifier ([Nelson

and Oppen 1978J).  A detailed description of their implementation is beyond the scope of this paper

since many constrarnts  are Imposed by other components of the simplifier but we will make a few

general remarks.

The simplifier represents all terms of formulas as vertices in an graph, essentially as described

previously. This graph replaces the conventional list structure representation of formulas used by

most theorem provers. It is a global data structure used by all components of the simplifier.

The decision procedures we have implemented are incremental; that is, the graph is kept

closed under congruences at all times. Whenever some component of the simplifier deduces a n

equality, the.equality is added to the graph by merging the equivalence classes representing the two
ter& deduced equal, and the congruence closure algorithm is then run.

Instead of the congruence closure algorithm described in section 2, we use another algorithm

which is slower in the worst case but which may be faster in practice. We plan to implement the fast

algorithm described in [Johnson and Tarjan 19771  and compare it with our currently implemented

version.

Our experience suggests that a fast congruence closure algorithm is the best method available

for handling equalities in mechanical theorem provers. .

12



4

I
.t w

d

iI Acknowledgment

1

e i
I
I

Our or~gmal congruence closure algorithm  required O(I?)  space. We are indebted to Bob Tarjan

for suggesting the improvement incorporated in this paper.

References

i
I
I
I
I

r I
I

[Ackermann 19541 W. Ackermann, “Solvable Cases of the Decision Problem”, North-Holland,
A msterdam.

[A ho, Flopcroft  and Ullmann 19741  A. V. A ho, J. E. Hopcroft and J. D. Ullmann, “The Design and

A naiysis of Computer A Igorithms”, Addison-Wesley, Reading, Massachusetts.

[Downey, Samet and Sethi  19781  P. J. Downey, H. Samet and R. Sethi,  “Off-line and On-line
A igorithms for Deducing Equalities”, Proceedings of the Fifth ACM Symposium on Principles of
Programming Languages.--.
[Johnson and Tarjan 19771  D. S. Johnson and R. E. Tarjan, “Finding Equivalent Expressions”,

L manuscript.

[I(ozen 19771 D. Kozen,  “Complexrty  of Finitely Represented Algebras”, Proceedings of the Ninth
Annual ACM Symposium on Theory of Computing.

[Nelson and Oppen 19781  C. G. Nelson and D. C. Oppen, “A Simplifier Based on Efficient Decision
A lgori t hms”, Proceedings of the Fifth ACM Symposium on Principles of Programming Languages.

[Oppen 19781  D. C. Oppen, “Reasoning about Recursively Defined Data Structures”, Proceedings of
the Fifth ACM Symposium on Principles of Programming Languages.

[Shostak 19771  R. Shostak, “An Algorithm for Reasoning about Equality”, Proceedings of the Fifth
Annual International Conference on Artificial Intelligence, 1977.,

[Tarjan  19751  R. E. Tarjan, “Efficiency of a Good But Not Linear Set Union Algorithm”, Journal
of the: A CM, pp. 2 15-225.

13


