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ABSTRACT

A common tool for proving the termination of programs is the well-founded set, a set
ordered in such a way as to admit no infinite descending sequences. The basic approach
is to find a termination function that maps the elements of the program into some well-
founded set, such that the value of the termination function is continually reduced
throughout the computation. All too often, the termination functions required are difficult
to find and are of a complexity out of proportion to the program under consideration.
However, by providing more sophisticated well-founded sets, the corresponding
termination functions can be simplified.

Given a well-founded set S , we consider multisets  over S , “sets”  that admit multiple
occurrences of elements taken from S . We define an ordering on all finite multisets over
S that is induced by the given,ordcring on S . This multiset ordering is shown to be well-

founded.

The value of the multiset ordering is that it permits the use of relatively simple and
intuitive termination functions in otherwise difficult termination proofs. In particular, we
apply the multiset  ordering to provide simple proofs of the termination of product ion
systenzs, programs defined in terms of sets of rewriting rules.

The au.thors are also affiliated with the Department of Applieti  Mathematics of the Weizmann
institute of Science, Rehovot,  Israe!.

This research rc)as  suppotted in part by the IJnited States Air Force Office of Scientific Research
u#ndcr  Grant AFOS R-76-2909 (sponsored by the Rome Air Development Center, Griffiss  AFB,
NY), by the Nationcrl  Science Fotrnhtion  under Grant MCS 7643655,  and by the Advanced
Research Prqjects  Agency of the Department of Defense under Contract MDA 903-76-C-0206.
The views and cowfusions  contained in this document are those of the authors and should  not be
interpreted as necessarily representing the official policies, either expressed or implied, of
Stanf 0t.d  IJniversity  0~ the U . S . Government.

Reproduced in the U I S I A. Available from the National Technical lnf ormation Service,
Springfield, Virginia 22 16 I.





Proving termination with multiset orderings

I. INTRODUCTION

The use of well-founded sets for proving that programs terminate has been suggested

by F loyd [ 19671. A rue/l-founded  set (S, >) consists of a set of  elements S and an

order ing > defined on the elements, such that there can be no infinite decreasing

sequences of elements. The idea is to find a well-founded set and a termination function
that maps the elements of the program into that set, such that the value of the termination
function is continually reduced throughout the computation. Since, by the nature of the
set, that value cannot decrease indef ini tely, the program must terminate. The
well-founded sets most frequently used for this purpose are the natural numbers under the
~tgreater-than~~ ordering and n-tuples of natural numbers under the lexicographic ordering,

In this paper, we define and illustrate a class of orderings on multisets. Multisets ,
sometimes called bags, are like sets, but allow multiple occurrences of identical elements.

For example, (3, 3, 3, 4, 0, 0) is a multiset of natural numbers; it is identical to the

multiset  {0, 3, 3, 0, 4, 3) , but is distinct from (3, 4, 0) .

The ordering > on  any  g iven  we l l - founded se t  S  can  be  ex tended to  fo rm a

well-founded ordering > on the finite multisets over S . In this ordering, M>M’ , for two

finite multisets M and M’ over S , if M ’  may be obtained f rom M by the removal of
at least one element from M and/or by the replacement of one or more elements in M
with any finite number of elements taken from S , each of which is smaller than one of the

replaced elements. Thus, if S is the set of natural numbers 0, 1, 2, . . . with the >

ordering, then under the corresponding multiset  ordering >> over S , t h e  multiset

{ 3, 3, 4, 0) is greater than each of the three multisets (3, 4) 9
(3, 2, 2, 1, 1, 1, 4, 0) , and {3,‘3,  3, 3, 2, 2) l �In. the .frrst case, two elements have ’

been removed; in the second case, an occurrence of 3 has been replaced by two
occurrences of 2 and three occurrences of 1 ; and in the third case, the element 4 has
been replaced by two occurrences each of 3 and 2 , and in addition the element 0 has
been removed.

As an example of the use of a multiset ordering for a proof of termination, consider the
following trivial program to empty a shunting yard of all trains:

.

loop until the shunting yard is emj.Wj
select a train
if the train consists of only a single car

then remove it from the yard
else split it into two shorter trains
fi

repeat .
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This program is nondeterministic, as it does not Indicate which train is to be selected nor
how the train is to be split.

Let Y denote the set of trains in the yard, and train#)  be the number of trains in
the yard. For any train teY , let cars(t) be the number of cars it contains. We present
two proofs of termination.

If we take the set of natural numbers as our well-founded set, then we are led to the
selection of the termination function

7(Y) = 2* ICY cars(t) - trains(Y)

(see Dijkstra [1976]). This solution uses the fact that “splitting” conserves the number

of cars .in the yard, c cars(t) . Thus, splitting a train increases the number of trains in the
yard, trains(Y) , by 1 , thereby decreasing the current value of the termination function

7 by I. Removing a one-car t ra in f rom the yard reduces 2.x cars(t) by 2 and

increases -trains(Y) by 1 , thereby decreasing 7 by 1 .

If we use multisets of natural numbers as our well-founded set, then the function

7(Y) = {cars(t) : tEY}

demonstrates the termination of the shunting program. That is, for any configuration of the

yard Y , 7(Y) denotes the multiset containing the size of each of the trains in Y . Each

iteration of the program loop clearly decreases the value of T(Y)  under the multiset
ordering: removing a train from the yard reduces the multiset by removing one element;
splitting a train replaces one element with ,two smaller ones, corresponding to the two
shorter trains.

Programs are sometimes written in the form of a production system. The following system
of three rewrite rules is an example:

This program solves the “Dutch-flag” problem: Assuming that we have a series of marbles,

colored red , white or blue and placed side by side in no particular order, then the above
program will rearrange the marbles so that all the rect marbles are on the left, &II blue
marbles are on the right, and all white marbles are in the middle. The first rule, for
example, states that if anywhere in the series there is an adjacent pair of marbles, the
left one white and the right one red , then they should be exchanged so that the red

marble is on the left and the white one is on the right.
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The three rules may be applied in any order and to any pair of marbles matching a
left-hand side of a rule. The program terminates when no rule can be applied. Clearly, if
no rule can be applied, the marbles are in the desired order, since nowhere does a red
marble have anything but a red marble to its immediate left (or else one of the first two

rules could be applied), and nowhere does a blue marble have anything but a blue marble
to its right (or else one of the last two rules could be applied). The only thing we need to
ascertain is that the program will not just keep on running, never reaching a situation when
no rule can be applied; in other words, we must prove that the above production system
terminates.,

I l

There
following

are several ways of proving termination. The three we give here all use the
ordering on colors:

blue  is greater than white and white is greater than red .
It follows from the transitivity of orderings that blue is also greater than red .

The first method counts the total number of “inversions” of marbles, i.e. the number of

pairs of marbles a and b (not necessarily adjacent), such that a appears to the left of
b and the color of a is greater than the color of b . For example, if five marbles are

arranged blue,  red, white, red, blue , then there are four inversions: blue-red , blue-white ,
blue-red , and white-red . Thus, the well-founded set is the set of natural numbers under

their standard > ordering, and the termination function counts the number of inversions by
summing, for each marble, the number of marbles with a greater color to its left. Each of
the rules, when applied, eliminates one inversion by exchanging the positions of one
inverted pair, thereby reducing the value of the termination function by one.

For the second method, suppose that ,there are  n marbles. The well-,founded  set we
use is the &et of n-tuples of colors. This tuple is ordered lexicographical/y: it is reduced if
some component is reduced without changing any component to its left. The termination
function simply yields the tuple containing the colors of the marbles in order, from left to
right. To prove termination, we note that whenever one of the rules is applied to two
marbles, only the values of the two corresponding components of the tuple change. By the
nature of the lexicographic ordering, we need only consider the change in the left
component, and indeed it is reduced in its color: if it was blue , then now it is either white
or retl , and if it was white , then now it is red .

.
I

The third solution illustrates the use of multiset orderings. Each of the n positions in

the series is assigned a number, beginning with n-l at the left, and going down to 0 for

the rightmost position. We take the multisets of pairs of the form (position, color) as the
well-founded set. The position-color pairs are ordered lexicographically: we say that a
pair is greater than another, if it has a higher position number than the other, or if it h a s
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the same position number but a greater color. For each marble, the termination function
yields one pair, giving its position and color. When a rule is applied to the marbles at

pos i t ions i a n d  i-l , it decreases the value of the multiset by decreasing the color of the

marble at position i . The fact that the color at position i-l is increased does not matter,
since any pair with position i is lexicographically greater than any pair with position i-l ,
regardless of the colors.

These two examples have demonstrated how the multiset ordering may be used in
termination proofs. These proofs, however, did not have a clear advantage over the
alternative proofs, using the more common “greater-than” relation on the natural numbers

and lexicographic ordering on n-tuples. In practice using these conventional orderings
often leads to complex termination functions that are difficult to discover. For example,
the termination proofs of programs involving stacks and production systems are often quite
complicated and require much more subtle orderings and termination functions. Finding an
appropriate ordering and termination function for such programs is a well-known challenge
among researchers in the field of program verification. In the remainder of this paper, we
shall demonstrate how the multiset ordering permits the use of relatively simple a n d
intuitive termination functions in otherwise difficult termination proofs.

In the next section, Section II, we rigorously define the multiset ordering and prove that
it is well-founded. In Section III, we apply the multiset  ordering to a number of termination
proofs of programs. Then, in Section IV, we use the multiset ordering to prove the
termination of production systems.
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II. THE MULTISET ORDERING

A partially-otdered  set (S, >) consists of a set S and a transit ive and irref lexive

binary relation > on elements of S . For example, both the set Z of all integers and the

set  M o f  nonnegat ive  in tegers  a re  o rdered  by  the  “greater-than”  relat ion > .  The

ordering may be partial: for two distinct elements a and b of the set, we may have

n e i t h e r  a>b nor b>a  .

A partially-ordered set is said to be well-founded if there can be no infinite decreasing

sequences of elements from the set. Thus, the set (M, >) is wel l - founded, s ince any

descending sequence of natural numbers cannot go beyond 0 . On the other hand, the

partially-ordered set (Z, >) is not well-founded.

For  a given part ia l ly-ordered set (S, >) , we consider the multisets over S , i.e.
unordered collections of elements (“sets”) that may have multiple occurrences of identical

elements. We denote by t!/(S) the set of all finite multisets with elements taken from the

set S , and associate an ordering > on !/I(S) that is induced by the given ordering >

on S .

In the following definition, as well as in the rest of this paper, set operators will denote

their multiset analogues: The equality A=B of two multisets, for example, means that any
element occurring exactly n times in A , also occurs exact ly n times in B , and vice

versa. The union of two multisets AUB is a multiset  containing m+n  occurrences of any

element occurring ftl times in A and n times in B . For example, the union of the

multisets {2, 2, 4) and (2, 0, 0) is (2, 2, 4, 2, 0, 0) .

For a part ia l ly-ordered set (S, >) , the  mu&set  o rder ing  % on N(S)  is defined a s
follows:

if for some multisets X, Y, 2 in N(S) , where X is not empty,

M= XUZ and M’ = YUZ

and

(Vyd’)(3xeX)  x>y .

In words, a multiset  is reduced by the removal of at least one element (those in X ) and

their replacement with any finite number - possibly zero - of elements (those in Y ), each
of which is smaller than one of the elements that have been removed.
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We must first show that # is in fact a partial ordering, i.e. that If > is irreflexive and

transitive, then % also is:

l To show irref lexivi ty,  we must show that there can be no multiset  M such that

MS-M. Suppose that MS-M , then there would be some nonempty  finite multiset X ,

s u c h  t h a t  M=XUZ  and  (VyzX)(3x~X)x>y. In other words, for every element of X there

would be a distinct element of X greater than it, which is impossible for a finite X .

l To show transitivity of > , consider the following irreflexive relation >’ on multisets in

W(S)  : ZU(x}>‘ZUY  i f  (VyEY)x>y  . In other words, a finite multiset is reduced in the

relation >’ by replacing a single element with zero or more smaller elements. Note that

the multiset  ordering % is the transitive closure of the relation B’ , i.e. M>M’ if and
only if M' can be obtained from M by replacing elements in M one by one. It follows

tha t  > is transitive.

We have the

THEOREM: The muttiset  ordering (f]?(S),  >) over (S, >) is well-founded, if and
only if (S, >) is.

Proof:

l “only if” part. If (S, >) is not well-founded, then there exists an infinite decreasing

s e q u e n c e  s,>s,>s,)  . . . of elements in S . The corresponding sequence of singletons

{J,}>{S,}>>{S.)>>  . . . forms an infinite decreasing sequence of elements in V/(S) , and

(V?(S), ,>) is therefore not well-founded.

0 Itif” part. Assume that (S, >) is well-founded. We first extend S by adding to it a n

element  1 , and extend the ordering > on S to make 1 the least element, i.e. for every

e l e m e n t  511 in S , s>l . Clearly S remains well-founded, thereby. Now, suppose that

(?D(S),  >) is not well-founded; therefore, there exists an infinite decreasing sequence

M,>M,>M,> . . . of multisets from 931(S) . We derive a contradiction by constructing

the following tree. Each node in the tree is labelled with some element of S ; at e a c h
stage of the construction, the set of all terminal nodes in the tree forms a multiset  in

I))/(S) .

Begin with a root node with children corresponding to each element of M, .

T h e n  s i n c e  M,>M, , there must exist mult isets X, Y, Z ,  such that

M,=XUZ , M,=YUZ , X is not empty, and (V~eY)(3xeX)x>y.  Then for each

ye,’ , add a son labelled  y to the corresponding x . In addition, grow a child

1 from each of the elements of X . (Since X is nonempty, growing 1

ensures that even if Y is empty, at least one node is added to the tree.
Since Y is finite, the nodes corresponding to X each have a finite number

of sons.) Repeat the process for M,h'l4,,  M&V, , and so on.
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Since at least one node is added to the tree for each multiset M, in the sequence, were

the sequence infinite, the tree corresponding to the sequence would also be. But by
Konig’s Infinity Lemma, an infinite tree (with a finite number of children for each node) must
have an infinite path. On the other hand, by our construction, all paths in the tree are

descending in the well-founded ordering > on S , and must be finite. Thus, we have

derived a contradiction, implying that the sequence M,, Al,, M,, . . . cannot be infinite.

cl

Remark: If (S, >) is totally ordered, then for any two multisets M, M’ E f!/(S)  , one m a y

decide whether M>M’ by first sorting the elements of both M and M’ In descending

order (with respect to the relation > ) and then comparing the two sorted sequences

lexicographically. For example, to compare the multisets (3, 3, 4, 0) and

(3, 2, 1, 2, 0, 4 ) , one  may compare the sorted sequences (4, 3, 3, 0) and

(4, 3, 2, 2, 1, 0) * Since (4, 3, 3, 0) is lexicographically greater than

(4, 3, 2, 2, 1, 0) , it f o 11 ows that (3, 3, 4, 0}>{3,  2, 1, 2, 0, 4) . Cl

Remark: If (S , >) is of order type 41 , then the multiset  ordering (W(S),  >>) over (S, >) is

o f  o r d e r  type o* . This follows from the fact that there exists a mapping 9 from W(S)

onto W* that is one-to-one and order-preserving, i.e. if MMi for  M,  M’tz?/l(S)  ,  t h e n

the ordinal $(M) is greater than $(M’)  . That mapping is

where c deno tes  the  na tu ra l  ( i .e .  commuta t i ve )  sum o f  o rd ina ls ,  and  p is the

one-to-one order-preserving map from S onto a . Cl

Remark: Consider the special case where there is a bound k on the number of
replacement elements, i.e. IYl<k  . Any termination proof using this bounded multiset  ordering
over M may be translated into a proof using (M, >) . This may be done using the
order-preserving function

J/(M) = kn

which maps multisets over the natural numbers into the natural numbers by summing the

number k ’ for every natural number n in a multiset M . Two special cases of interest
are: i f  IY IrlX( ( i.e. the size of the multiset is not increased), then the simpler function

$(M) = 34nc n + WI

is order-preserving; if IV I=lXl ( i.e. the size of the multiset is constant), then
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is order-preserving.
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cl

We turn’ now to consider nested multisets, by which we mean that the elements of the
multisets may belong to some base set S , or may be multisets of elements of S , or m a y
be multisets containing both elements of S and multisets of elements of S , and so on,
For example,

is a nested multiset. More formally, given a partially-ordered set (S, >) , a nested multiset
over S is either an element of S , or else it is a finite multiset of nested multisets over

S . We denote by ?/I*(S) the set of nested multisets over S .

We define IIOW  a nested multiset  ordering >* on !#*(S) ; it is a recursive version of the

standard multiset ordering. For two elements M, M’&*(S) , we say that

M>>*M’

if
0 M, I~/I’ES a n d  M>M’
(two elements of the base set are compared using > ),
or- else

0 M$S a n d  M’ES
(any multiset is greater than any element of the base set),
or else

0 M, A!‘@ , and for some X, Y, ,&?/I*(S) , where X is not empty,

M = XUZ and M’ = Y U Z

and

(tryEY )(3xcX) x>*y .

For example, the nested multiset

is greater than

((1, 0, 01, 5, {(o), 1, 21, 01 9

since { 1, 1) is greater than both (1, 0, 0) and 5 . The nested multiset

{{l, l}, {{Oh 1, 21, 0)

is also areater than
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{{{)I 1, 21, (5, 5, 219 5) 9

s ince  { {0 } ,  1, 2 )  I s  g rea te r  than  each  o f  the  th ree  e lements  {{}, 1, 2) , {5, 5, 2) ,
and 5 .

L e t  #I’(S) deno te  the  se t  o f  a l l  nes ted  mu l t i se ts  o f  dep th  i . In other words,

!i/‘(S)=S  and !I!+‘(S)  contains the multisets whose elements are taken from
0

m (S) ,

d(S), ..*, I&(S) , with at least one element taken from d(S) . Thus, the set W*(S)

is  the  in f in i te  un ion o f  the  d is jo in t  se ts  f//‘(S),  #?l(S),  ?/?2(S),  .  .  .  .  The fol lowing
property holds:

For two nested multisets, M and M’ , if the depth of M is greater than the

depth of M’ , then Ml>*M’ .

In other words, the elements of Vi’(S) are all greater than the elements of fl?f(S)  , for a n y
j<i .

Proof: This property may be proved by induction on depth. It holds vacuously for M o f
depth 0 . For the inductive step, assume that nested multisets of depth i are greater

than nested multisets of depth less than i ; we must show that a nested multiset M o f
depth it 1 is greater than any nested multiset M’ of lesser depth. If the clepth of M '

is 0 , then M’ES while M$S , and therefore M>*M’ , as desired, If the depth of M' is
less than i but greater than 0 , then each of the elements in M’ is of depth less than

i-l . The nested multiset  M , on the other hand, is of depth i+l and must therefore

contain some element of depth i . By the inductive hypothesis, that element is greater

than each of the elements in M’ . Again, it follows that M>*M’  . cl

The re la t ion  >* is a partial ordering; it can be shown to be both irreflexive and
transitive. The following theorem gives the condition under which it is well-founded:

THEOREM: The nested multiset ordering (N*(S), %*)  over (S, >) is
well-founded, if and only if (S , >) is well-founded.

Proof:
a “only  if” par t . If (S, >) is not well-founded, then there exists an infinite decreasing

s e q u e n c e  s,>s,>s,)  . . . of elements in S . This sequence is also an infinite decreasing

sequence of elements in ni*(S) u n d e r  >)* , a n d  (W*(S), >*) i s  t h e r e f o r e  n o t
well-founded.
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a “if” part. In order to show that (f/l*(S),  >*) is well-founded, it suffices to show t h a t

e a c h  VI’(S) i s  i t se l f  we l l - founded  under  %* . F o r  a s s u m e  t h a t  I!/*(S) w e r e  n o t
well-founded, then there would exist an infinite decreasing sequence of nested multisets

M,>>“hl,>>”  . . . .L By the above property, the depth of any nested multiset  Mi+,  in the

sequence cannot be greater than the depth of its predecessor M, . Since the sequence

is infinite, it must have an infinite subsequence of nested multisets all of the same depth

i , which contradicts the well-foundedness of #Ii(S) .

We prove that each (9$(S), >>*) is well-founded by induction on i : The ordering >*

0
on 911 (S)=S is simply the ordering > on S , and it follows that

0
(t/i ( S ) ,  %*) i s

well-founded. For  the  induc t ive  s tep ,  assume tha t  each d(S 1, >*) , j<i , is

well-founded, and note that each of the elements of d(S) is a member of the uhion of

?/lo(s),  d(S),  .  .  . , d-1(s)  I By the induction hypothesis, each of these d(S) i s

we l l - f ounded  under  >>*  ; therefore their  union under %* also is.  Furthermore, the

o r d e r i n g  >)* on  two  nes ted  mu l t i se ts  f rom d(S) is exact ly the standard multiset

ordering over that union, and since the union is well-founded, so is f&S) , cl

Remark: We have seen above that for (S, >) of order type a , the multiset o rder ing

(N(S), 3) is  o f  o rder  type  Oa l In a similar manner, it can be shown that the order type

o f  (d(S), >*) i s

oa
* I i times

the limit of which is the ordinal C,, - provided that a is less than CC,  . Thus, if (S, >) is

of order type less than cc, , then (f)/*(S),  >*) is of order type t(, . (Gentzen  [1938] used a n

e” ordering to prove the termination of his normalization procedure for proofs in

arithmetic.) 0

In the following two sections, we shall apply the multiset ordering to problems of
termination, first proving the termination of programs, and then proving the termination of
production systems.
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III. TERMINATION OF PROGRAMS

The following basic theorem is generally used to prove the termination of programs:

THEOREM (Floyd): A program P with variables c ranging over a domain D
termina.tes,  if and only if there exist

a set of labels .C cutting all the loops in P ,
a well-founded  set (W, >) , and
a termination function T mapping JxD into W ,

such tha.t  whenever control traverses a path from one label to another, the value of the
termination function TJX) decreases for the current label L and value of x .

Proof:

0 l’only if” part . If the program does terminate, then the set (,fxD, >p) is well-founded,

where the relat ion >p is defined so that (L, a)>,(L’,  3’) if the program reaches the

l a b e l  L w i t h  t h e  v a l u e  3 b e f o r e  i t  r e a c h e s  L’ w i t h  t h e  v a l u e  2’ . Thus, if 7Jx)

returns the pair (L, x) , then with each traversal of a path, the current value of 7,Jx)

decreases.
a N’if” part. If the program does not terminate, then there exists an infinite sequence of

label-value pairs (L,, z,), (L,,,  z,), . . . , corresponding to the sequence of labelsL .
through which control passes during a nonterminating computation and the values of the

variables at those points. Since the function 7 decreases with each traversal of a path,

it follows that the sequence 7,,,@,), 7, (z,), . . . forms an infinite decreasing sequence0L
in the set IV , contradicting its well-foundedness.

In the following examples, we shall prove the termination of programs using multiset
orderings as the well-founded set.

EXAMPLE 1 : Counting tips of binary trees.

Consider a simple program to count the number of tips - terminal nodes (without

descendents)  - in a full binary tree. Each tree J that is not a tip has two subtrees,
left(y) and right(y) . The program is
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S := (t)
c := 0
l o o p  u n t i l  S=( )

Y I:= 5

if tip(y)  then S := (Q,, . . . , J*)
c := c+l

else S := (sp,, . . . , 5,, lefr(y),  right(y))

fi
repeat .

I t  employs a stack S with the ISI e lemen ts  Q,, . . . , ‘t:, J, ,  and terminates when S is

empty. At that point, the variable c is to contain the total number of tip nodes in the

given tree t .

Initially the given tree is placed in the stack. With each iteration the subtree at the top
of the stack is tested to determine whether it is a tip: if it is, then it is removed from the

stack and the count is incremented by 1 ; if it is not a tip, then it Is replaced in the stack
with its two subtrees, so that the number of tips in each subtree may be counted.

The termination of this program may be proved using the well-founded set (M, >) . The
appropriate termination function is

7(S) = ss nodes(s) (

where no&s(s) is the total number of nodes in the subtree s - not just the tip nodes. To

show that the value of 7 decreases with each loop iteration, we must consider two
cases: If the subtree 5, is a tip node, then that node is removed from the stack, and the

sum is decreased by 1 . If 5, is not a tip, then it is replaced by its two subtrees, left&)

a n d  rlghl(s,)  . But 5, contains one node more than left(s,)  and right(s,)  combined, a n d

again the sum is reduced.

Using the multiset  ordering over trees, we can prove termination with the simple
termination function

7(S) = (5 : KS} ,

where the trees themselves are ordered by the natural well-founded subtree ordering, i.e.
any tree is greater than its subtrees. Thus, removal of a tree from the stack decreases

7 in the multiset ordering by removing an element, and the replacement of a tree with t w o

smaller subtrees  decreases 7 .
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This solution uses multisets over trees. One could just as well have used multisets over
natural numbers, taking as the termination function {nodes(J):K?}  or {~L+(J):JES} . The

first solution, using the conventional well-founded set (M, >) , does not provide such

flexibil ity. cl

EXAMPLE 2: McCarthy’s 9 1 -function.

The following is a contrived program to compute the simple function

f(x) = if x>lOO  then x-10 else 91

over the set of integers Z , in a round-about manner. Though this program is short, the
proof of its correctness and termination are nontrivial, and for this reason it is often used
to illustrate proof methods.

The program is:

*
n := 1
z := x

l o o p  L: a s s e r t  f(x)=fn(z),  nil
if ~>I00  then n := n - l

% := z-10
else n := 74

% := x+11

1
fi

until n=O a
repeat

assert z=f(x) .

n
The predicates f (x)=f’*(z)  and n2 1 , in the assert clause at the head of the loop, are

invariant assertions; they hold whenever control is at label L .  When the program
terminates, the variable z contains the value of f(x) , since the loop is exited when the

0
condition 7z=O of the until clause is satisfied; at that point, f(x)=f (x)=x .

Using the conventional well-founded set (M, >) , Katz and Manna [1976] prove the
termination of this program with the termination function

7(n, z) = -2*z+Zl*n+2*max(  111, x)

at L .
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For an alternative proof of termination, we consider the following well-founded

partial-ordering > on the integers:

n>b if and only if a<b<lll  .

(This is the same ordering on integers as in the usual structural-induction proof, due to Rod
Burstall, of the recursive version of this program.) As the well-founded set, we use the set

(?/l(Z),  >) of all multisets of integers, under the corresponding multiset  ordering. The

appropriate termination function 7 at L yields a multiset  in v?(Z)  , and is defined as

7(n, 2) = {z, f(z), . . . , f
n-l

(z)) .

We must show that for each loop iteration this function decreases.
cases to consider:

There are three

1) z>lOO  at L : In this case, the then branch of the conditional is executed and both
n and x are decremented. When control returns to L (assuming that the loop has not

been exited), we have, in terms of the old values of n and z ,

7(n-1, z-10) = (z-10, f&IO),  . . .

Since z>lOO  , we have f (z)=z- 10 , and therefore

7(n- 1, z-10) = (f(r),
2

f Cd, . . . ,

, fn-2(Pio)}  *

fn-l(z))  *

Thus, the value of the termination function 7 has been, decreased by removing the

e l e m e n t  z from the original multiset (2, f(z), . . . , fn-l(z)}  .
‘.

2) 9O<z<lOO  at L : In this case, the else branch  i s  taken  and  bo th  n a n d  z a r e

incremented, yielding

T(n+l, r+il) = btll, fWU,  f2W, .  .  .  ,  fn(ztll)}  .

Since 2+11>100,
2

we have f (z+ 1 l)=z+ 1 and f (z+  11’>=f  (z+  1) . Furthermore, either

2+1=101 or  e l se 2+1<100  ) and in  bo th  cases  f(z+ 1)=9l=f(z)  a n d  c o n s e q u e n t l y

f
2

(x+ 1 l)=f (2) . Thus, we get

7(n+l, r+li) = {z+ll, X+1,  f(Z),  . . . , fn-l(z,) *

S i n c e  z<z+l<z+ll<lll,  we h a v e  z>ztll  a n d  z>ztl, Accordingly, the multiset  has been

reduced by replacing the element r with the two smaller elements, zt 11 and xt 1 ,
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3) x189  at L : The else branch Is taken and we h a v e

7(n+l,  ztll) = {z+ll, f(z+ll),  f*w, .  .  .  ,  f”(z+11)}  *

Since z+111100, we h a v e  f(ztll)=91  and f 2
(z+ll)=f(91)=9i=f(r),  and thus

7(ntl, x+11)  = {ztli,  91, f(x), . . . , fn-l(z)} .

Again z has been replaced by two smaller elements (under the > relation), zt 11 and

91 . cl

EXAMPLE 3: Ackermann’s function.

Ackermann’s  function a(m, n) over pairs of natural numbers is defined recursively a s

a(m, n) c- if m = O  t h e n  n + l
else if n = O  then a(m-1, 1)

else a(m-1, a(m, n-l))
fi fi .

The following iterative program computes this function:

S :=  (m)
x := n
low L: assert,  a h ,  n) = a$,, a(slsC-,,  . . . , a(!,; a(s,, 2 ) ) .  .  ..)).

if s,=O then S := (Jo,, . . . , s,)‘
2 := ztl

else
if z=O then S := (sp,, . . . , J,, 3,-l)L

% := 1

else S := (sIs,, . . . , 5,, s,-1, 5,)

2 := z-l
fi  fi

u n t i l  S=( )
r e p e a t

assert z = a(m, n) .

The three branches of the conditional statement correspond to the three cases in the
recursive program.

The termination of this program was proved by Manna and Waldinger [1978) using the
intermittent-assertion technique. We give here two proofs using multisets.
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0 Solution 1 :  Consider the set MxM o f  lex icograph ica l l y -o rdered  pairs of natural

numbers, and use the corresponding multiset  ordering over MxM . The termination function
at L i s

7(S, 2) = {(sp,+ I, 01, (spi-,+l, 01, * ’ * , (5,+1, a, b,, 2)) -

Thus, 7(S) x) yields a multiset containing one pair per element in the stack S . Note that
at L , the stack S is nonempty, and all the elements in S as well as z are nonnegative.

The proof considers three cases, corresponding to the three branches of the conditional
in the loop:

1) J,=O . If the loop is not exited, then the new value of 7 at L i s

msp,, . . . , J,), ‘z+ 1) = {q$,+  1, 01, * * 6 , $+i, 01,  (J*, 24) *

This represents a decrease in 7 under the multiset  ordering, since the element (J,, z)

has been removed and the element (J?+ 1, 0) has been replaced by the smaller (J,, zt 1) .

2) 5,~ 0 and z=O . In this case we obtain

7((5.,’  * * * , J,, s,-11,  1) = {(sp,+l,  01, * * * , b,+i, (3, (5,-l, 1)) .

Thus, the element (s,, z) has been replaced by the smaller element (5,-l, 1) .

3) J,# 0 and zz 0 . Here we have

7((SLT,’  . . . , s,,, 5,-l, 5,), z-l) =.

(CSil;,’  1, 01, * - * , (5,+1,  m, (5,, 01, (5,, z-1 )) :

The element (J,, z) has been replaced by the two smaller elements (J,, 0) and (J,, z-l) .

0 Solution 2 : As our well-founded set, we take !/i(M)xN , that is, the set of pairs where
the first component is a multiset over the natural numbers and the second component is a
natural number. For example, the pair ((3, 3, 0, 1, 1, Z}, 2) is an element of this s e t .
The appropriate termination function at L is

7(S) z) = ((sjd : (Vj<i>  sj2sj},  z) ;

thus, the first component of the pair is a multiset containing those elements si in the

stack S for which none of sj-,, . . . , s,, 5, are larger than si . Note that 5, alwaysL

b e l o n g s  t o  t h e  m u l t i s e t . For  example ,  i f S=(3, 1, 0, 0, 1) and z=O  , then

7(S, 2)=({3, 1, 1}, 0) . The same case analysis as in the previous solution applies. Cl
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EXAMPLE 4: Program schema for double recursion.

.

Consider the following program schema that utilizes muitisets:

% := e
S := (x)
l o o p  L: a s s e r t  fW=h(fb,),  h( . . . , Mf(@ 2). . + 11

until S={ }
y :E s
S := S-0)
if p(y)  then x := h(g(y),  z)

else S := SU{k(y),  I(y)}
f i

repeat
a s s e r t  z=f(x) .

Here S is the multiset  (s,, s,, . . . , s6,} ,L { } is the empty multiset, the statement

Y:ES is the nondeterministic assignment of an arbitrary element of S to JI , and S+} is

S with one occurrence of y removed. By instantiating the predicate variable p and the

func t ion  var iab les  h , g , k , I , and e , one obtains an instance of the schema that
computes some particular function f(x)  .

This iterative program computes the same function f(x) as the recursive p r o g r a m
schema

F(x) e= i f  p(x.) t h e n  g ( x )  e l s e  rll(F(k(x)),  F(l(x))) f i  ,

provided that the funct ion h i s  assoc ia t i ve  and commuta t ive  and e is its identity

element - i.e. for all u , v , and zu , h(u, h(u,  w))=h(h(u,  v), w) , h(u, v)l-h(v, u) , and

h(u.,  e)=u.  .

We wish to show that the loop of the iterative program terminates  for  ever9

instantiation, over some domain D , for which there exists a well-founded ordering (II, >)
such that

y(x) > x>k(x) A x>/(x)  s

(It is under this condition that the recursive program terminates.) To prove termination,

consider the multiset  o rder ing (?/1(D),  >) o v e r  t h e  g i v e n  d o m a i n  (L), >) a n d  t h e

te rmina t ion  func t ion  7(S)=S at L . With each iteration an element y is either removed

from S or replaced by the two smaller elements k(y)  and I(y) , thereby decreasing 7 .

Cl
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Remark: The previous examples suggest the following heuristic for proving termination:

given a program over a domain (D, >) that computes some function f(x) , if the program
has a loop invariant of the form

f(x) = h(f(g,(yN,  f(g,(y)), - * ' 9 f(s,,W) '

try the multiset ordering (W(D), >) , and use the termination function

7(y) = {g,(y), gJy), * ’ * ’ g,(Y))  *

The idea underlying this heuristic is that 7 represents the set of unevaluated arguments

of some recursive definition of the function f . El
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IV. TERMINATION OF PRODUCTION SYSTEMS

A production system II over  a  se t  o f  express ions E is a (finite or infinite) set of

rewriting rules, called productions, each of the form

where a , 6, . . . are variables ranging over E . (The variables appearing in A’ must be

a subset of those in ?r .) Such a rule is appl ied in the fol lowing manner:  given an

expression eeE that contains a subexpression

Ha, b, . . . 1 ,

(i.e. the variables a, 8, . . . are ins tant ia ted wi th  the  express ions a ,  6, . . . ,

respectively) replace that subexpression with the corresponding expression

+(a, b, . . . ) .

W e  w r i t e  e-)4’ , if the expression e’ can be derived from e by a single application of

some rule in n to one of the subexpressions of e .

For example, the

conta in ing  + and l ,

following is a production

with respect to x :

Dx =+ 1
Dy =+ 0
n(a+O) 3 (Da + DB >

I WwV =+ ( WDa)  + (a*W 1 , 1

system that differentiates an expression,

where y can be any constant or any variable other than x . Consider the expression

D(D(xax)+y)  .

We could either apply the third production to the outer D , or else we could apply the
fourth production to the inner D . In the latter case, we obtain

D( ((x*Dx)+(x*Dx))+y)  ,

.

which now contains three occurrences of D . At this point, we can still apply the third

production to the outer D , or we could apply the first production to either one of the inner
D’s . Applying the third production yields

.
Thus,

(n((x*Dx)+(x*D~))+D,y)  .

D(D(x*x )+y) + D(((x*Dx)+(x*Dx))+y)  + (D((x*Dx)+(x*Dx))tDy)  .
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In general, at each stage in the computation there are many ways to proceed, and the
choice is made nondeterministically. In our case, all choices eventually lead to the
expression

(((( 1~l)+(x*o))+~~l*l~+~~*~~~~+~~ ,

for which no further application of a production is possible.

A production system n terminates over E , if there exist no infinite sequences of

e x p r e s s i o n s  C,, c,, e,, . . . such that e,+c,+e,+  . . . and  e, is an expression in E .L L .
In other words, given any initial expression, execution always reaches a state for which
there is no way to continue applying productions. The difficulty in proving termination of a
production system such as the one for differentiation above, stems from the fact that
while some productions (the first two) may decrease the size of an expression, other
productions (the last two) may increase its size. Also, a production (the fourth) may
actually duplicate occurrences of subexpressions. Furthermore, applying a production to a
subexpression, not only affects the structure of that subexpression, but also changes the
structure of its superexpressions, including the top-level expression. And a proof of
termination must take into consideration the many different possible sequences, generated
by the nondeterministic choice of productions and subexpressions.

The
proving

following theorem
the termination of

has provided the basis for
production systems:

most of the techniques used for

THEOREM: A production system over E terminates, if and only if there exists a
we//-found&  set (W, >) and a termination function T:E+W , such that for any
e, e’cE

e+e’  implies  ?(e)PT(e’)  .

Proof:
e “only  i f ”  par t . Assume that the system does always terminate, then the set E i s

well-founded under the -4 ordering, where 4 is the transitive closure of the relation + .

Le t  (W,  >) be (E, 4) and let 7 be  the  iden t i t y  func t ion .  Then c lear ly  e+e’  i m p l i e s

7(e)=e 4 e’=7(e’) .
e 4’if1’  pa r t .  Assume tha t  e+e’ impl ies 7(e)U(e’)  i n  some we l l - founded  se t  (IV, >) .
Suppose that the system does not terminate. Then by definition, for some expression

eEE , there exists an infinite sequence of expressions e=e,+e,+e,+  . . . . In that case,L . .

there exists an inf ini te decreasing sequence 7(e,)>7(e,)>7(e3)> . . . in W , which

contradicts the assumption that > is a well-founded ordering. Thus, it follows that the

system must terminate. cl



Proving termination with multiset orderings 2 1

.

Several works have considered the problem of proving the termination of production
systems. Among them: Gorn [1965)  is an early work that addresses this issue; lturriaga
[ 19671 gives sufficient conditions under which a class of production systems terminates;
Knuth and Bendix [ 19691  define a well-founded ordering based on a weighted size for
expressions; M a n n a  a n d  N e s s  [  1 9 7 0 )  a n d  Lankford [1975] u s e  a  “ m o n o t o n i c
interpretation” that decreases with each application of a production; Lipton and Snyder
[ 1977 J make use of a “value-preserving” property as the basis for a method of proving

. termination.

ln the following examples, we illustrate the use of multisets In proving termination
alongside sbme previous methods.

EXAMPLE 1 : Associativity.

Consider the set of arithmetic expressions E constructed from some set of atoms
(symbols) and the single operator + . The production system

over  E , contains just one production which reparenthesizes a sum by associating to the
right, For  example ,  the  express ion  (a+b)+((c+&e)  becomes ei ther a+(b+((c+d)+e))  or
‘(a+b)+(c+(d+e)) , both of which become a+(b+(c+(d+e)))  . Since the size of the expression
remains constant when the production is applied, some other measure is needed to prove
termination.

0 Solution 1 (Manna and Ness): Let the well-founded set be (M, >) . The termination

function 7:E-d  maps expressions into the well-founded set, and is defined recursjvely  as
follows:

7(a+B)  = 2*7b)+wu

for expressions of the form a+8 , and

7(u)  = I

for any atom u . For example,  the value of  7 for the expression (a+b)+((c+d)+e)  is

2*(2*1+1)+(2*(2*1+1)+1)  = 13 I

. The key point in the proof is that this function possesses the following two important
properties:

1) The value of the termination function 7 decreases for the subexpression that the

production is applied to, i.e. for any possible value of a , fi , and Y ,

I T((a+fl)+Y)  > 7(ar+(8+W)  *
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This is so since

7((ar+&Y>  = 2*7(a+&7(Y)  = 4*7(a)+2*7(8)+7(‘Y)  ,

while

7(a+(B+Y))  = 2e7(a)+7(fl+Y)  = 2*7(a)+2*7(B)+7(Y)  ,

and 7(a) is at least 1 .

2) The function 7 is monotonic in each operand in the sense that If

7(5)  > W,) ,

for some expressions e, and e,, , then for any expression e, ,L

and

7(e,+e,)  > W+e.) ,

7(ec+5) > 7k,+e,)  ._ L

Thus, if e-Q’ , for the outermost expression e , then some subexpression (a+fi)+Y  of

e has been replaced by a+(&Y) to obtain e’ . We have  7((a+&Y)>7(a+(8+Y))  , by
the-first property. Therefore, by the monotonicity property, we get that

e+e’ i m p l i e s  7(4)>7(e’)  ,

and by the theorem, it follows that the production system must terminate.

0 Solution 2 (Knuth and Bendix): For this solution, the termination function 7(e) yields a

sequence of natural numbers, listing the sizes of the subexpressions of e in preorder: the

sequence begins with the size of e , I4 ’ and is followed by the sequence of sizes

corresponding to the left operand of e , and then by the sequence of sizes corresponding

to the r ight  operand of  e . These sequences of sizes are compared lexicographically.
However, in order for a set of lexicographically-ordered sequences to be well-founded,

the sequences must be of bounded length. In fact, the length of 7 is constant for e a c h
computation, since the number of subexpressions is unchanged by the production.

To prove termination by this method, we need to show that any application of the
production has the following two properties:

1 ) The value of the termination function 7 decreases with each application of a production.
Since
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we proceed to compare the left operand a+fl with a . But

Ia41 > Ial P

and therefore 7(w) is lexicographically greater than 7(w’) .

2) Since the production does not change the size of the expression it is applied to, i.e.

prl = IT’1 ,

the sizes of all the expressions preceding r in the preorder are also unchanged.

Thus, e+e’ implies that 7(e) is lexicographically greater than 7(e’)  .

0 Solution 3 (multisets): For this solution, we use the multiset ordering over the natural

numbers, (W(N),  >) , and let T:E-M(M)  re tu rn  the  multiset of  the sizes Ial o f  a l l  the
subexpressions of the form a+8 in e , i.e.

7(e)  = (Ia) : a+@  in e} .

For example,

7((a+b)+((c+d)+e))  = (1, 3 ,  1, 3 )  ,

since the left operands of the operator + are a , a+b , c , and c+n .

Again there are two crucial properties:

1 ) The value of the termination function 7 decreases with each application of a production,
i.e.

7((a+b)+Y)  >> 7(a+(B+Y))  .

Before an application of the production, the multiset 7((a+8)+Y)  includes one occurrence
of Ia+fJl and one of Ial , along with elements corresponding to the subexpressions of Q( ,

8’ a n d  7’. After application of the production, the new multiset 7(a+(b+Y)) includes

one  occu r rence  o f  Ial and one of ISI ,  leaving the subexpressions of a , 0 , and Y
unchanged. Thus, the element la+61 has been replaced by the smaller element ISI , and
the multiset has accordingly been decreased.

2) Since the production does not change the size of the expression it is applied to, i.e.

pq = pfl 9

the size of superexpressions containing (a+&? is also unchanged.
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T h e  multiset 7(e) consists of all the elements in 7((a+b)+Y) plus the sizes of the

superexpressions and the sizes of their other subexpressions. The only elements in 7(e)

that are changed by the production are those in 7(r) , and they have been decreased b y

the production. Thus, e+e’ implies that 7(e)>7(e’)  . 0

EXAMPLE 2: Distributivity.

The following system has two productions to apply the distributive law to an arithmetic

expression composed of atoms and the operators + and * :

j,i”;,“:.i,:.“::il::i

Both productions increase the size of the expression.

0 Solution 1 ( M a n n a  a n d  N e s s ) :  T a k e  (M, >) a s  t h e  w e l l - f o u n d e d  s e t .  L e t  t h e

termination function 7:Ejtt-J  be defined by

7(a+B) = 7(a)+  WV+ 1

and

7WJ) = 7WWU ,

for expressions of the form a+8 or a*8 , respectively, and let

7(u) = 2 ,

for any atom u .

1 ) The value of the termination function 7 decreases with each application of a

production. In fact, both productions decrease 7 from

7(a)*(7(8)+7(Y)+l)  = 7(a)*7(8)  + 7(a)*7(Y) + 7(a)

to

7(a)*7(8)  + 7(a)*7(Y)  + I .

Since T(a)22  , this is a decrease of at least 1 .

2) The function 7 is monotonic in each operand of + and l .

It follows that e+e’ implies 7(e)>7(e’)  .
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l Solution 2 (Lipton and Snyder): For this method to be applicable, each production

w=37r’ must satisfy

i.e. the size of the expression must be increased by the production, as is indeed the case
in this example.

Now, consider the function zk112:E+M  , which maps expressions into the set of natural
numbers, and returns the arithmetic value of the expression when the value 2 is assigned

to each atom. For example,  valZ((a+  l)*(c+O))=(2+2)*(2+2)=  16 . This function h a s  t h e
following two properties, which ensure termination:

1) va12 is monolonic  in the sense that for any subexpression e’ of an expression e ,

m/2(e)  > val2(e’)  .

2) The productions are value-preserving for va12 , i.e.

for each production n=+?r’  .

Suppose that the system does not terminate. Then there exists an infinite sequence of

expressions of the form e,+e.,-b+  . . . . B y  t h e, value-preserving property,

va12(e,)=va12(e,,)=va.l2(e,)=  . . . . Furthermore, for any given value c , the monotonicity

property clearly ‘imposes a maximum depth c - and consequently a maximum size - dn
a n y  e x p r e s s i o n  4 s u c h  t h a t  val2(e)=c  . In particular, since the expressions in the
sequence have a constant value, they have a maximum size, say m , i.e, If,l<rn  for a n y

e i in the sequence. On the other hand, since each production increases the size of the

subexpression it is applied to, it follows that le,l<le#le,l<  . . . , and, consequently, there

m u s t  b e  s o m e  n such  tha t  le,J>m  .  But this is a contradict ion. The system m u s t

therefore terminate.

* Solution 3 (multisets): For this solution, we use multisets over natural numbers,

(N(M),  >) . The termination function 7:E+~~/(ftJ)  is defined by

7(e) = {val 1 (a $3) : a*8 in e} ,

where vall(@>  gives the arithmetic value of cr*/? when all the atoms are assigned the

value 1 .
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1 ) The value of the termination function 7 decreases with each appl icat ion of a

production. Applying the f i rst  product ion replaces the element vall(w(flt’Y))  in the

multiset  ‘r(r)  wi th the two smal ler  e lements vall(a$) and vall(wY) . The product ion
also duplicates the products in QI , but the value of each subexpression of u must also

be less than the value of ar*(8+7)  . Thus,

7(7r)  > 7(w’) .

The same is true for the second production.

2) Since

zJall(7r)  = zJall(?r’)  ,

the value of superexpressions of 7r in the multiset  7(e) is preserved by the productions,

Therefore, e+e’ implies 7(e)>7(e’)  , and the system must terminate.

0 Solution 4 (nested multisets): Note that the products are reduced in size by each
production. One would therefore like to prove termination using the well-founded set

(‘W(M), >) , and a termination function that yields the multiset containing la*81  for each

occurrence of a product a*0 :

7(e) = (I~fll : a4 in f} I

The value of this function is decreased by the application of a production, i.e. 7(lr)Z97(7r’)

for each of the two productions ?r=+~‘. The problem is that the size of superexpressions

increases, since I?r’l>l7rl  ; applying a production to a subexpression of e , will therefore

increase 7(e) .

To overcome this problem, we need a termination function that takes the nested
structure of the expression into consideration, and gives more significance to more deeply
nested products. Fortunately, this is exactly what nested multisets can do for us. Since
this is the first time we illustrate the use of nested multisets, we shall discuss this solution
in greater detail.

Le t  the  we l l - founded  se t  be  the  nes ted  mu l t i se ts  over  the  na tu ra l  numbers ,

(r/l*(N),  >*‘) ( and let the termination function ‘T:&+?//*(M)  y i e l d  Ia*/.Jl  f o r  e a c h

occurrence of a product ar.6  , while preserving the nested structure of the expression.

For example, the expression (a*((b*c)~(n+(e~~))))+(g*~)  contains five subexpressions of

form a4 . Their sizes are:



7((b*c)*(n+(q)))  = (((31,  9, (3)))  I

and applying the first production yields

7(((b*c>*n)+((b*c>*(e*~))),  = wan 51, w% 7, We *

is a decrease in the nested multiset ordering, since {{3}, 9, (3))  is greater than

{ {3}, 5) and (0, 7, (3)) . A similar argument applies to the other production.

This

both
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la*((b*c)*(d+(etf)))I  = 1 1  ,

I(bd+Me+f))l = 9 ,
Ic)*cl = 3 ,
lefl = 3 , and

Ig*hl = 3 .

Considering the nested depths of the products, the structure of the expression is

l~i9’“‘~~~.

b
T~LJS,  for

e = ( (a l
I

( (b;c) i (n+(e;f)) ) ) + (g:n) ) )

we obtain I I 1 1 I
I I I

7(e) = { (111, {&9, {$>>9

I

<b 1 *

1) For each production ?TJA’ , we have

7(r) >* 7(7r’)  ,

under the nested multiset ordering. We have

7(ar*(&Y)) = ( (I<r*(8Wl,  70, m, To} }

while

7((aq3)+(a*Y))  = { {la*81,  m, 7(8)), {I~*yll 70, 7(y)} } ,

where  -m, ‘m) , and 7(Y) stand for the elements of the multisets 7(a) , 7(b) , and

7(Y) ,  respect ively. This is a decrease in !II*(M)  , since {Ia*(fitY)l,  ‘-1, ?f -m)}

i s  g r e a t e r  t h a n  b o t h  {la*81, *7(0, -m)  a n d  {IQ*YI,  m, ‘v>) ,  r e g a r d l e s s  o f  t h e

exact form of a , 6 and Y .

For example,
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2) It remains to ascertain what happens to the value of 7 for superexpressions. The
crucial point here is that the termination function gives greater weight to the more deeply
nested products by placing their size at a greater depth in the nested multiset. The
effect of the productions on lower-level expressions is therefore more significant t h a n

their effect on higher-level expressions, and the decrease in 7 for the subexpression to
Which t h e  p r o d u c t i o n  i s  a p p l i e d ,  o v e r s h a d o w s  a n y  i n c r e a s e  i n  t h e  s i z e  o f  a
superexpression.

Consider, for example, a*(b*(c+d))  + a*((b*c)+(b*&) . The value of 7 for the expression

on the  le f t  i s  {{7, (5)))) while for the right-hand side expression it is ((9, (31, {S}}}  .

Note that this represents a decrease in the nested muitiset ordering over M , despite the
fact that the element 7 , corresponding to the size of the top-level expression, has been
increased to 9 . This is the case since the production has replaced the element (5) i n

the multiset by two occurrences of the smaller (3) , and (5) is also greater than 9 - or

any number for that matter - on account of its greater depth.

Thus ,  e+e’ implies 7(e)>*7(e’)  . cl

EXAMPLE 3: Llifferentiation.

The following system symbolically differentiates an expression with respect to x

L)x * 1

p[v ==z- 0
L)(ar+8)  3 ( PtY + LIB )

L)b*8) =3 ( w-w + bW > ,
P(-a) 3 ( -Da )

Pk-8) 3 (Pa-L@)

L)(a/m * ( UW8) - ((aOW(BT2))  1
D(h 0~) * Wdd

*

.*

e Sotution 1 ( M a n n a  a n d  N e s s ) :  T a k e  (M, >) as  the  we l l - founded se t .  Le t  t h e

termination function 7:E-+lrJ  be defined by

where  8 is any of the binary operators + , l , - , and t ,
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7(Dar)  = 7(a)
2

)

7(-a) =  7 ( a ) +  1 )

7072 ar) = 7(a)+l ,

. 29

7(u)  = 4 ,

for  any atom u . (If the last three productions were not included in the system, then

7(u.)=2 would suffice.)

1) For each of the nine productions w-es7 , the value of 7 decreases, i.e. 7(~)>7(~‘) ,
For example,

7(D(CT/8))  = (7(a)+7(8))
2

2 2= 7(a) + ml + 2*7(a)*7(8) ,

while

7(((L)alB)-((at~DB)l(Bt2))))  = 7(d2 + WV2 + 7(a) + 2*7(o) + 4  .

This is a decrease, since 2*7(u)*7(b)  14*7(&)+4*7(fi)  > 7(a)t2*7(4)+4  ,

2) 7 is monotonic in each operand.

It follows that e+e’ implies 7(e)>7(e’)  .

0 Solution 2 (multisets): To prove termination, w e  u s e  t h e  multiset o r d e r i n g  o v e r

sequences of  natural  numbers. The sequences are compared under the s t e p p e d

Lexicographic  order > , i.e. longer sequences are greater than shorter ones (regardless of
the values of the individual elements), and equal length sequences are c o m p a r e d
lexicographically. The termination function is

7(e) = {(rl,(x),  d,(x), . . . 1 : x is an occurrence of an atom in e) ,

where n,(x) is the distance (number of operators) between x and the ith enclosing D ,

For example, consider the expression

e=PD(Py~(y+PPx))  ,

or in tree form (with the D’s enumerated for expository purposes),
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There are three atoms: y ,  y ,  and x .  The  le f t  a tom y  con t r ibu tes  the  e lement

(0, 2, 3) to the multiset, since there are no operators between D, and y , there are two

o p e r a t o r s  ( * and 11, ) between D, and y , and there are three operators ( I), , 4 , and

D ) between D, and y 6.’ Simi lar ly the other two atoms contr ibute (2,  3)  and

(0, 1, 4, 5) . Thus,

7(e) = { (0, 2, 3), (2, 3), (0, 1, 4, 5) } .

Applying the production

D(a$)  =+ ( @*Da)  + (a*Db))  ,

to-  e , yields e’=L)(((y+L)Lh)*DDy)+(L)y*D(ytDDx)))  . In tree form (with the labelling of the
D’s retained), we have

“I

2,

/‘\LJ
/‘\D

D”‘D
l.? I’

Y 4 D,
P

b ;.
Y f\

I6 Y y4

X 4
I
x 9

and accordingly

7(e’) = ( (31, (0, 1, 51, (0, 1, 4), (0, 3), (1, 4), (0, 1, 3, 6) } ,

Thus, T(e)>>T(e’) , since the element (0, 1, 4, 5) has been replaced by five shorter

sequences and by the lexicographically smaller (0, 1, 3, 6) .
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In general, the following two properties hold:

I

.

1 ) Applying any of the produCtiOnS  decreases 7 . Consider, for example, what happens to

the multiset 7(e) when the production

P(wB)  * ( WW + (a*DB) 1

is applied to some subexpression of e . Let x be an atom occurring in 01 . Applying the

production results in replacing the sequence s=(d,(x),  n,(x), . . . ) corresponding to x ,

with two sequences, 5’ and 5” , corresponding to the occurrences of x in Da and cy ,
respectively, But s is greater than both s’ and 5” : the sequence s” is shorter than s ,
since there is one less I) above x ; the sequence s’ is of the same length as s , but is
lexicographically less, since a L) has been pushed closer to x , while the distance to
nearer Dls remains unchanged. Similarly, the sequences corresponding to the atoms in
fi are replaced by two smaller sequences.

2) The productions only affect the sequences in 7(e) corresponding to the atoms of the
subexpression that they are applied to.

Therefore, for any application of a production, e+e’  implies 7(e)>7(e’)  .

0 Solution 3 (nested multisets): Since the arguments to D are reduced in size by e a c h
production, and none of the productions increase the nested depth of D’s , nested

multisets constructed from the sizes of the arguments of D are an appropriate tool.

Le t  the  we l l - founded  se t  be  the  nes ted  mu l t i se ts  over  the  na tu ra l  numbers ,

(?/i*(N), >*) , and let the termination function 7:E+?1i*(M)  yield Ial for each occur rence

of Lh , while preserving the nested structure of the expression. For example, the

arguments of the six occurrences of D i n  t h e  e x p r e s s i o n  D(D(Dx*Dy)tDy)/Dx  a r e

D(Dx+L)y)+Lly , Dx*Dy  , x , y , y , and 3~. They are of sizes 9, 5, 1 , 1 , I , and 1 ,
respectively. Thus, for

8 =
y� D( 9� l Dy ) + Dy 11 y⌧ ) ,

I I I
we have

7(e) =

1)  For  each  p roduc t ion  ?r+?r’ , we have 7(~)>*7(?r’)  .  Consider,  for example, the
production

D(a#)  =+ ( @*Da)  + (a*Dfl)  ) ,
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and let ;r”l;y7  and m stand for the list of elements of the multisets T(ar) and T(8) ,

respectively. Applying 7 to the two sides of the production, yields

and

7( ((bDa)+(a*I@))  = { ?o, {Ial, 70),  70, (IS19 70) ) ’

This clearly is a decrease in ?i/*(M) , regardless of the exact form of a and  6 , since

(la41, 33, ‘rTBT) is  g rea te r  than  { Ial, 7(a)} and {ISI, ‘m} , and is also greater

and ?r(BT.than each of the elements in ‘m

For example,

mvx*Dy)) = C(4, {I)))

while

This is a decrease in the nested multiset  order, since (4, (1)) is greater than both

{Z, (1)) and Cl). A similar argument applies to all of the other productions.

2) As in the previous example, the decrease in 7 for the lower- level expression
overshadows any increase in the size of a higher-level expression.

It follows that E+& implies 7(e)>*‘:(e’)  . Cl

In this section, we have illustrated the use of multiset  and nested multiset  orderings in
proofs of termination of production systems, by means of a number of examples. Along
similar iines, using these orderings, one can give general theorems which express
sufficient conditions for the termination of broad classes of production systems.
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