
MULTI-TERMINAL O-l FLOW

bY

Yossi Shiloach

STAN-CS-78-653
APRIL 1978

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

Multi-Terminal O-l Flow

-I*Yossi Shiloach

Computer Science Department
Stanford University

Stanford, California 94305

January, 197 8

Abstract. Given an undirected O-l flow network with n vertices and

m edges, we present an O(n'(m+n)) algorithm which generates all (g)

maximal flows between all the pairs of vertices. Since O(n*(mtn)) is

also the size of the output, this algorithm is optimal up to a constant

factor.

Keywords and phrases: Algorithm, multiterminal flow, O-l integer flow.

f
*

This research was supported by a Chaim Weizma.nn Postdoctoral
Fellowship and by National Science Foundation grant MCS 75-22870.

1

3

1. -Introduction.

A O-l undirected flow network is essentially an undirected graph

G = (V,E) since all the edges have one unit capacity, and the flow

assumes only integer values, namely 0 or 1. G is assumed to have

n vertices and m edges. The edges will be denoted as two element

sets such as (u,v) .

Given s,teV, an s dt O-l integer flow (s 3t flow in short)

is a function f: VxV --) {O,l) such that:

(4 fb, v> = 0 if [u,v]{E .

(b) f(u,v) = 0 or 1 if {u,v]eE .

(c) If f(u,v) = 1 , then f(v,u) = 0 .

(d) IN&J) = OUT(f,v) for all veV-{s,t) , where IN(f,v) = x f
WV

(ut v

is the total amount of flow entering v and OUT (f,v) = c f(v,w
WEV

. is the total amount of flow emanating fram v .

The value of f denoted by IfI is OUT(f,s) - m(f,,s) . An s 3 t flow

f is maximal if PI I P I for any other s +t flow f' .

The O-l integer flow problems are usually associated with finding a

maximal number of edge-disjoint or vertex-disjoint paths between two

vertices in a graph, Such an individual maximal flow problem can be

solved in O(n2j3 (m?-n)) time, as shown in [ET].

In this paper we present an algorithm which generates the maximal

flows between all the pairs of vertices within O(n*(m+n)) time which

seems to be optimal regarding the output size. Finding all (E) maximal

flow values can be done in O(n5/'(m+n)) time, if we use Gomory and Hu's

algorithm, (see [GH]).

2

2. The Multiterminal Flow Algorithm (MULTEF).

MULTEF consists of two routines. The first routine computes a

cut-tree for G . A cut-tree T = (VT,ET) is a weighted tree (i.e.,

) with the. e(> is associated with each ee ETa non-negative weight w

following properties:

(a) VT = V .

(b) For all s,teV , the value of a maximal s -+ t flow equals

min w(e) .

pT(s,t) is the

we will use dT

such a cut-tree

unique -path connecting s and t in T. (In the following

s,t) to denote the length of PT(s,t) .) The existence of

is proved in [GH]. They also provide an algorithm which

computes the tree by solving only n-l individual ma+flDw problems.

The second routine is MIN(u,v,w) . Given a u + v flow fuv and

a v-1w flow fW, MIN(u,v,w) computes a u -+ w flow fuw such that

The existence of a u --) w flow having this value can be easily proved by

using the ma-flow = min-cut theorem. MIN(u,v,w) will be described in

f'ull in the next section.

MULTEF:

1. Initialization. Compute the cut tree T = (VT,ET) of G and n-l

maximal s + t flows for all s, t such that {s,t} eET .

2. For d = 2,...,n-1 do-

Begin

Use MlN to compute maximal s + t flows for all u,v such that

dT(s,t) = d .

End.NN

The validity of MULTEF can be easily derived from the properties. of

the cut-tree (using induction on d). The complexity of MULTEF is

O(n5/3(m+n)) + O(n* l complexity of MIN) . In Section 3 we will describe

a linear time algorithm for MIN which yields an O(n*(m+n)) time bound

for MULTEF.

3. MIN(u,v,w) .

Let u,v,weV . Given a u 3 v flow fuv and a v

MIN(U,V,W) provides a u 3 w flow fuw such that If,,

Henceforth we assume that:

I If =
u v

I I
fvw l

Both fuv and fvw are acyclic flows.

(3 4

(3.2)

If Ifuvl > pm\ 9 we reduce fuv bY If,\ - puw I units of flow

so that (:3.1) holds. The second assumption is justified by a linear time

-,w flow fW,

\ = mQqfuvI.� Ifuw\) l

algorithm which eliminates cycles of flow and described in detail in Section 5.

The most straight-forward way to produce a u 3 w flow out of fuv

and fvw is to add them up. So let fi
uw =

fuv @ fW be defined by:

P (uw vlyv2 > = m=(o), fuv (y*) + fvwb1,v2) - fuv(v2d5) - fw~y5~ > l (3.3)

It is easy to see that $,, is non-negative and if p?,(vl,v2) > 0 then

@ (uw v2,v1) = 0 l
Moreover, fluw satisfies the conservation rule, i.e.,

I"@&~ 4 = OUT(fiw,z) for all z E V-{u,w} . (Equation (3.1) implies the

conservation of flow at v too.) However, edges may become overflowed

as shown in Figure 1 where fluw(x,y) = 2 l

U

Figure1

The basic idea to resolve that problem (speaking in terms of Figure 1)

is to reduce fuv from x to v and reduce fvw from x to v by one

unit. The pseudoflow of Figure 1 turns out to be the flow of Figure 2.

V

0

Figure2

The process of reducing fuv from x to v propagates in the .same

direction as fuv itself and will be denoted as "reducing the flow forward."

or "redford" in short. Reducing fvw from x to v has the opposite

direction to that of fvw and is called "reducing backward" or "redback".

Thus, in principle, we redford fuv and redback fvw towards v .

Trying to implement the redford-redback idea, we might face a problem

which is demonstrated in Figure 3. After reducing fuv forward and fvw

backward from x1 to v) we obtain the pseudo-flow of Figure 3-b. Now,

we can no longer redford from x2 l

We are going to resolve this difficulty

partially by using the acyclic orientation of f
u v l

(>a

Figure3

Definition. Given a flow f in an undirected flow network G = (VIE) ,

G(f) is defined by:

G(f) = OJY E(f) > where E(f) = T(yJ*): f(vp*) b o] '

Note that G(f) is a directed graph. Let E = ({xi,yi]: i = l,...,k)

denote the set of overflowed edges, i.e., puwCxiY Yi > = 2 for i = l,...,k .

The xi 's will be centers of the redford-redback process. The acyclity

of G(fUv) can be used to label its vertices such that a(x) = length of

a longest directed path from x to v in G(fUv) . This well-known

labelling is achieved by labelling all the terminals at a time, deleting

them and labelling the new terminals with the previous label + 1 . We

start with a(v) = 0 . This labelling has the property that if there is

a directed path (in G(fUv)) from xi to xj then l(xi) > a(xj) . Thus,

if we start reducing forward from xi 's with the highest label and then go

down to lower labels, we should not face the problem which is sketched in

Figure 3. Figure 4 shows what happens if we start to redford-redback

from x2 which has a higher label than x1 in G(fuv) . Note that after

reducing forward and backward from x2 , no redford-redback is needed at

x1 since CX1'y13 is not overflowed anymore.

/-
/

L- -
\

n \
\

\ \

U

(1a

Figure4

09

. This is only a partial solution since the xi's are not necessarily

labelled in the same order in G(f& . Since we must redford and redback

from the same vertex (otherwise conservation is violated), we might face

the same problem in reducing backward. The problem occurs when a redback

path enters a vertex xi from which a previous redback took place and now

no fW flow enters xi , (see Figure 5).

Initial state.

. P‘- __
o- -+0- -- --- - -+&--z-I~*d\ After a redford-redback
X.1 'i xj yj '4 at xi l

If another redford-redback takes place at x. , the
J

redback path will be stuck at x. .1

Figure5

The solution to this problem can be outlined as follows:

Step 1. We redford along the u -r) v flow until no overflowed edges are

left.

We now have to rebalance the vertices in which the redford paths start.

Step 2. We redback starting from the unbalanced vertices. If we get

stuck we go to Step 3.

3.Step We modify the appropriate redford path by increasing the flow

along a certain prefix of it.

The algorithm is designed so that Step 3 does not yield to further

modifications of the redback paths.

9

Detailed Implementation.

Step 1. The redford paths, say Pl,...,Pt , are a set of edge-disjoint

paths in G(fUv) which cover all the overflowed edges. Each of the Pi 's
L

begins at an overflowed edge and we may assume that Pi begins at (xi,yi) ,

i = l,...,t . The Pi 's can be easily constructed by using the acyclity of

G(fUV) l
As soon as the Pi's are produced, we redford the flow by one

unit along each of them.

In the same way we produce a set {Ql,...,Qs] of edge-disjoint redback

paths in G(fvw) . Each of them starts in an overflowed edge and proceeds

"backward" towards v and their union contains E , The only difference

is that we use the Q.
J

's to redback only if necessary as specified in the

implementation of Step 2. The edges at which the current redford paths start,

are stored in a stack which contains initially (xl,yl),,..,(xt,yt) .

Following Steps 2 and 3, one can easily verify that the stack always

contains only overflowed edges which are the first in their redford paths.

Step 2. Let (xi,yi) be the first edge in the stack. We start to

redback at xi , following two rules.

Rl: If (Xi,Yi) E Qj then the redback starts at the edge which follows*i

(xi,yi) on Qj , (see Figure 6).

R2: If we start to redback at an edge which belongs to Q. , we continue
J

to redback along Qj until we reach v or get stuck. If we get

stuck we go to Step 3. If we reach v , we delete (xi,yi) from the

stack. If the stack is not empty, we go back to Step 2, otherwise the

algorithm terminates.

zhthat Q
.j

proceeds backward.

10

'i

By Rl, redback

starts at ('Yxi) '

Figure 6

Lemma 3.1. A redback trail can get stuck at a vertex z only if 3i-

such that: z = xi , CxiYYi) is an overflowed edge, the first on its

redford path and (x y) belong to this trail or a previous one.i' i

Proof. Let us consider two cases.

Case 1. The trail starts at z (i.e., the trail consists of a single

vertex). Since redback trails start only at unbalanced vertices,

3i such that z = xi and an overflowed edge (xi,yi) which is the first

in its redford path. (In factY (xiYYi) is the top edge in the stack.)

Thus (xi,yi) belongs to a redback path, say Q. , and the first edge
3

in our redback trail should have been that which follows (Xi,Yi) on Qj J

CR >1 '
Since this edge has already been used in a previous redback trail

(otherwise we were not stuck), (x y) has also been used in the samei' i

trail, 2 .CR)

Case 2. The trail did not start at z . The only reason that R2 cannot

be used to continue the trail is that a previous trail started at z before.

This again means that 3i such that z = xi aYld (xi' Yi) is an overflowed

edge, first on its redford path. It also implies that our redback trail

enters xi through yi y 1 . ClCR >

Both cases are illustrated in Figure 7.

Case 1.

Second redback A redford path

trail 3: {xi] -j--y-->2 . . .

X.1
G--+2 l . .

'3 f '3
. . . o- - jP-- - p-w y; . . . rt--jc� . . .

l . . +- First redback trai; +

Case 2.

&j X .
1 /

2- -3,7 ? ‘j
. . . tc‘+ - *-- - +o-=s?y . . . C--q- .*.

i
First trail started at xi +- \ + Second redback trail t

Figure 7

Step 3. Assume that our redback trail got stuck at xi and (xi,yi) is

the overflowed edge discussed in Lema 3*1. Since we cannot redback

anymore, we shall balance xi by increasing the u ---t v flow forward

("inford") alongthe old redford path which starts at (xiyyi) . The

idea is that since the flow on (xi,yi) has been reduced before

(Lemma 3.1), we no longer have to include this edge in our redford program.

Thus, we inford along the redford path containing CxiYYi) until we reach

12

V or encounter another overflowed edge (xj'Yj > in which no redback has

taken place so far. In both cases, Cxiy Yi > is deleted from the stack

and in the latter, Cxj'Yj) is inserted. If the stack is not empty we

go back to Step 2, otherwise, the algorithm terminates.

Remark. Since (xi,yi) is the first edge on its redford path (Lemma 3.1),

the net effect of the inford is to shorten the redford path to the minimum

necessary.

4. Validity, Complexity and a Detailed Example of m~(u,v,w) .

Validity.

We have to show that:

(1) MIN(u,v,w) terminates.

(2) The output, fuw , of MIN(u,v,w) is a legal u 3 w flow and

I IL.w = If,1 (= \f,l) .

(1) The termination is quite clear.

Step 1 obviously terminates. Step 2 terminates since reducing back

is done only on the v + w flow and this flow is never increased. Step 3

is finite since the u -rv flow along an edge can be increased at most

once.

(2) In order to show that fuw is a legal flow and has the right

value, we will show that:

) OU-T(fudz! - IN(fudz

for all z fv .

> = OUT@UdZ)
- IN (fiuw’ z

13

(3*4)

(C) No edge is overflowed.

(A and 53): Equation (3.4) is violated during the execution in two cases.

The first occurs when a redford path starts at an edge incident with z ,

say (ZYY> * In this case (ZY Y) is in the stack and when it reaches

its top, z will be rebalanced by the redback routine. The second

case occurs when a redback trail gets stuck at z . In this case

the inford routine rebalances z .

AS far as u and w are concerned, "balanced" means that (3.4) holds.

Since OUT($uw+) - IN($&w,v) = If,1 , Equation (3.4) implies that

If,,1 = lf,,l as required. Moreover, since every vertex # u, w

is balanced in $
uw ,

Equation (3.4) implies that every vertex

u , w and v is balanced in f
u w l

(The proof of Equation (3.4)

does not hold for v .) Equation (3 .l) implies that

and (3.4) then implies that

OUT(fu3u) - IN(futiu) = IN(fuw'w) - OUT(fu,w) .

This combined with the fact that all the other vertices are

balanced -- implies the balance of v .

(C) We have taken care of all the overflowed edges at Step 1. We increase

the flow again only in Step 3. However, as explained there, this

increase does not overflow any edge again.

14

Complexity.

Producing fiuw is obviously linear. An edge of G(fUv) is treated

at most twice (steps 1 and 3) and an edge of G(fW) is treated at most

once (step 2). Thus, MIN(u,v,w) is linear.

A Detailed Example.

In Figure 8 we illustrate the composition of a u 3 v flow f
uv

and a v -+ w flow fvw' Both are acyclic and have the same value, 3 .

Figure e

The overflowed edges are 02) Y k3) Y (5’6) and (8’9) l

Let the redford paths be:

pl = 02,~) , p2 = (*,3>v) , p3 = (5,6,8,9,v) .

The redback paths are:

Q, = (3,*,1,v) Y
L Qr3 = (6,5’4YV) Y % = (9,8,7,v) l

c

The stack contains ((12) Y (*,3 >! l> Y CT,6

1-5

Figure 9 illustrates the situation after redford has been completed.

8---+o-p - a%-

\
4

OW
- 9

/

/

Redback trails should start, at 1 , 2 and 5 (one at each).

First redback trail = (1,~) ; stack = ((2,3), (5,6)> .

Second redback trail = (2,l) , got stuck at 1 .

Figure 10 illustrates the situation at this moment.

16

vO
\

\

\

\
. * o - c - -

/
8

--O--N - 9 A
-4)’

Figure 10

Now inford takes place, starting at
(l/4 l

Inford trail = (1,2,v) ; stack = ((5,W l

Third redback trail = (5,&v) ; stack = $.

The final u -+ w flow is illustrated in Figure 11.

Figure 11

17

5. -ACYC(f) . (R. E. Tarjan)

Given a u 3 v flow f , ACYC(f) produces an acyclic u 4 v flow

f' of the same value. We -perform a depth-first-search on G(f) , starting

from u . Each vertex z is labelled when we enter it and the label is

removed when we backtrack through it. The label consists of the name of

the (unique) vertex through which we entered z (the "father" of z).

We step forward until one of the two cases occur;

(a) We reach a terminal vertex t .

In this case we backtrack to the father of t removing t and its

incident edges from G(f) l
(Since no cycle can pass through t).

Note that the first terminal vertex which we will encounter is v ,

however, when v is removed, other terminal vertices might be created.

(b) We reach a labelled vertex z .

This means that we discovered a flow cycle C

. through C and remove its edges from G(f) l

vertices of C-{zj are removed and the search

through z . We backtrack

The labels of the

is continued from z .

G(f') consists of the vertices of G(f) and of the edges of G(f) which

were not removed during cycles elimination, (Case b). If G(f) is not

connected we delete first those edges which are not

component which contains u and v. The validity

can be easily proved.

References

on the (weakly) connected

and linearity of ACYC(f)

[ET] S. Even and R. E. Tarjan, "Network flow and testing graph connectivity,"

SIAM J. on Computing 4, (l9'75), 507-518.

[GH] R. E. Gomory and T. C. Hu, "Multi-terminal network flows," SIAM J. of

Applied Math. 9, (lp6l), 551-570.

18

