MULTI-TERMINAL 0-1 FLOW

by

Yossi Shiloach

STAN-CS-78-653
ARIL 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Milti-Termnal O Flow

Yossi Shil oach ¥
Conputer Science Departnent

Stanford University
Stanford, California 94205

January, 197 8

Abstract. G ven an undirected O flow network with n vertices and

m edges, we present an O(ng(m+n)) al gorithm which generates all (2)

maxi mal flows between all the pairs of vertices. Since O(ne(m-!-n)) is

also the size of the output, this algorithmis optimal up to a constant

factor.

Keywords and phrases: Algorithm multitermnal flow, Ol integer flow

W This research was supported by a Chai m Weizmann Post doct oral
Fel l owship and by National Science Foundation grant MCS 75-22870,

1. IA nt roducti on.

A Ol wundirected flow network is essentially an undirected graph
G = (VE) since all the edges have one unit capacity, and the flow
assunes only integer values, nanely Q0 or 1. Gis assumed to have
n vertices and m edges. The edges will be denoted as two el enent
sets such as {u,v} .

Gven s,teV, an s -t Ol integer flow (s -t flowin short)

is a function f: vxV - {0,1} such that:

(a) f(u, v) = 0 if {w,v}£E .
(b) f(u,v) =0 or 1 if {u,vleE .
(¢) If f(uv) =21, then f(v,u) =0 .

(@) IN(f,v) = QUT(f,v) for a1l vevV-{s,t} , where IN(f,v) =2 f (y,v
ueV

is the total anount of flow entering v and AUT(f,v) = 2 f£(v,w
weV

is the total anmpunt of flow emanating from v .

The value of f denoted by |f|is ouT(f,s) - m(f,s) . An's -t flow

fis mximl if |[f] | |£'| for any other s -+t flow f'.

The O integer flow problens are usually associated with finding a
maxi mal nunber of edge-disjoint or vertex-disjoint paths between two
vertices in a graph, Such an individual maxinmal flow problem can be
solved in o(nz/5 (mn)) time, as shown in [ET].

In this paper we present an algorithm which generates the maxinal
flows between a1l the pairs of vertices within o(nz(m+n)) time which
seenms to be optimal regarding the output size. Finding all (g) maxi mal

flow values can be done in o(n5/5(rrr+n)) tinme, if we use Gomory and Hu's

algorithm (see [(H]).

2. The Multiterminal F|l ow Al gorithm (MILTEF).

MULTEF consists of two routines. The first routine conputes a
cut-tree for G. A cut-tree T = (VT,ET) is a weighted tree (i.e.,
a non-negative weight w(e) is associated with each ec Er) with the

foll owing properties:

(a) VT:V.
(b) For all s,tev, the value of a maximal s - t flow equals
mn w(e)
eePT(s,t)

PT(s,t) is the unique -path connecting s and t in T. (In the following
we will use A s,t) to denote the length of PT(s,t) .) The existence of
such a cut-tree is proved in [GH. They also provide an algorithm which
conputes the tree by solving only n-l individual mex-flow probl ens.

The second routine is MiN(w,v,w). Gven a u - v flow £ and

a v-w flow SN MIN(u,v,w) conputes a u - w flow fuw such that

)

. min(lfuvl s \fvw‘

The existence of a u - w flow having this value can be easily proved by
using the max-flow = mn-cut theorem MIN(u,v,w) W || be described in

full in the next section.

MULTEF:

1. Initialization. Conpute the cut tree T=(VT,ET) of G and n-|

maximal s -t flows for all s, t such that {s,t}eET.

2. FOf d = 2,-..,1’1-1 dﬁ{o\l

Begi n
Use MIN to conmpute maximal s -t flows for all u, v such that
dT<S,t) = d .

B

The validity of MLTEF can be easily derived fromthe properties. of
the cut-tree (using induction on d), The conplexity of MULIEF is
o(w?/? (mn)) + o(n? .conplexity of MN) . In Section 3 we will describe
a linear tinme algorithmfor MIN which yields an o(n” (wtn)) time bound

for MITEF.

3, MIN(u,v,w) .
Let uw,v,weV . Gvenau-v flow £ and a v -w flow fvw,

).

MIN(u,v,w) provides a u - wflow £ _ such that |£_|. min(|£ |5 |£,.,]

Henceforth we assume that:

Both £ . and £, are acyclic flows. (3.2)
It [t l > |f,,] » we reduce fv o 1Tl = 1Ty | units of flow

so that (3.1) holds. The second assunption is justified by a linear tine
al gorithmwhich elimnates cycles of flow and described in detail in Section 5.
The nost straight-forward way to produce a u - w flow out of v

and f__ is to add them up. So |et £ @ f . be defined by:

¢UW: uv

;é (v 19V5) = mex (0 , fuv(vl’ve) +fvw(vl,v2) - £, (vg, 1) fvw(VE’vl)> . (3.3)

It is easy to see that ¢uw is non-negative and if ;zﬁuw(vl,v2) > 0 then
¢uw(v2,vl) . 0 . Moreover, gbuw satisfies the conservation rule, i.e.,
(g o z) = 0Ur(p, »z) for all z e v-{w,w}. (Equation (3.1) inplies the
conservation of flow at v too.) However, edges may becone overflowed

as shown in Figure 1 where gﬁuw(x,y) =2.

Fi gurel

The basic idea to resolve that problem (speaking in ternms of Figure 1)
is to reduce f fromx to v and reduce £ from x to v by one
uv vw

unit. The pseudoflow of Figure 1 turns out to be the flow of Figure 2

Fi gure2

The process of reducing £ fromx to v propagates in the same
direction as fv itself and will be denoted as "reducing the flow forward."
or "redford" in short. Reducing fvw fromx to v has the opposite
direction to that of f and is called "reducing backward" or "redback".
Thus, in principle, we redford £ __ and redback £ __towards v .

uv VW

Trying to inplenment the redford-redback idea, we mght face a problem

which is denmonstrated in Figure 3. After reducing o forward and £

backwar d fromxl to v , we obtain the pseudo-flow of Figure 3-b. Now,

we can no |onger redford from X, W are going to resolve this difficulty

partially by using the acyclic orientation of f.“

Fi gure3

Definition. Gven a flow f in an undirected flow network ¢ = (V,E) ,
G(f) is defined by:

qf) = (v, E(f)) where E(f) = {(vl,ve):f(vl,vg) > 0} .

Note that ((f) is a directed graph. Let E = {{xi,yi}:i 150005k}

denote the set of overflowed edges, i.e. (x., yi) =2 for i

) ¢uw i l)-uo,k .

i

The x; 's will be centers of the redford-redback process. The acyclity

of G(fuv) can be used to label its vertices such that z(x) = length of
a longest directed path fromx to v in G(fuv) . This well-known
labelling is achieved by labelling all the termnals at a time, deleting
themand |abelling the new termnals with the previous label + 1 . W
start with ¢(v) =0 . This labelling has the property that if there is
a directed path (in G(fuv)) fromxi to X,

J
if we start reducing forward fromx, 's with the highest |abel and then go

t hen z(xi) > /z(xj) . Thus,

down to lower |abels, we should not face the problem which is sketched in
Figure 3. Figure 4 shows what happens if we start to redford-redback

from x

whi ch has a higher label than x, in G(f Note that after

1 uv) '

no redford-redvack i s needed at

2
reducing forward and backward from X5
x; since {xy,¥;} is not overflowed anynore.

(a) (o)
Fi gure4d

This is only a partial solution since the x, 's are not necessarily

1abelled in the sanme order in G(fvw)_ Since we nust redford and redback
fromthe same vertex (otherw se conservation is violated), we mght face
the same problem in reducing backward. The problem occurs when a redback
path enters a vertex X; from which a previous redback took place and now

no f_ flow enters X; (see Figure 5).

—_—— 30— — =0 — — — — — — -\.,‘o'_"'.."“._.io\/ Initial state.

==
Xl yi\ Xj :YJ)
.. 7
O— — 20— — — — — — -3%_ =,J\ After a redford-redback
X . X. Y
1 Vi J Vi at X,
I f another redford-redback takes place at Xx. t he

J)
redback path will be stuck at Xoq -

Fi gureb

The solution to this problem can be outlined as follows:

Step 1. \\é redford along the u - v flow until no overflowed edges are

left.
Ve now have to rebal ance the vertices in which the redford paths start.

Step 2. V¢ redback starting from the unbal anced vertices. |f we get
stuck we go to Step 3.
Xiep W& nodify the appropriate redford path by increasing the flow

along a certain prefix of it.

The algorithmis designed so that Step 3 does not yield to further

modi fications of the redvack paths.

Detailed |nplenentation.

Step 1. The redford paths, say PyyeeesP are a set of edge-disjoint

£
paths in G(f_) which cover all the overflowed edges. Each of the P, 's
begins at an overflowed edge and we may assume that P, begi ns at (Xi,yi) ,
i =1,...5t . The P, 's can be easily constructed by using the acyclity of
G(fuv) . As soon as the P, 's are produced, we redford the flow by one
unit along each of them

In the same way we produce a set {Ql,...,QS} of edge-di sjoint redback
paths in G(fW) . Each of them starts in an overflowed edge and proceeds
"backward" towards v and their union contains £, The only difference
is that we use the Q.J 's to redback only if necessary as specified in the
impl enentation of Step 2. The edges at which the current redford paths start,
are stored in a stack which contains initially (Xl,yl),...,(xt,yt) .

Following Steps 2 and 3, one can easily verify that the stack always

contains only overflowed edges which are the first in their redford paths.

Step 2. Let (x,,y;) be the first edge in the stack. W start to

redback at x; , following two rul es.

Ry: If (Xi,yi) er then the redback starts at the edge which foIIovvsf/
(Xi,yi) on Qj , (see Figure 6).

R.: If we start to redvack at an edge which belongs to Q;J, we continue
to redback al ong QJ. until we reach v or get stuck. I|f we get
stuck we go to Step 3. If we reach v , we delete (xi,yi) fromthe

stack. If the stack is not enpty, we go back to Step 2, otherwise the

al gorithm term nates.

yReca.ll that Qj proceeds backwar d.

10

By Rl’ redback

starts at (z,xi) .

Figure 6

Lenma 3.1. A redback trail can get stuck at a vertex z only if i
such that: z = X, (xi,yi) is an overflowed edge, the first on its

redford path and (xi,yi) belong to this trail or a previous one.

Pr oof . Let us consider two cases.

Case 1. The trail starts at z (i.e., the trail consists of a single
vertex). Since redvack trails start only at unbal anced verti ces,

9i such that z = X, and an overflowed edge (Xi,yi> which is the first
inits redford path. (In fact, (xi,yi) is the top edge in the stack.)
Thus (Xi’yi) bel ongs to a redback path, say Q 5 and the first edge

in our redvack trail should have been that which follows (xi,yi) on QJ.)

(R Since this edge has already been used in a previous redback trail

nE
(otherw se we were not stuck), (xi,yi) has also been used in the sane

trail, (Rg).

Case 2. The trail did not start at z . The only reason that R, cannot
be used to continue the trail is that a previous trail started at z before.

This again neans that =i such that z = X and (xi, yi) is an overflowed

edge, first on its redford path. It also inplies that our redback trail

enters x; through 3(5 ,)l . O

Both cases are illustrated in Figure 7.

Case 1.
Second redback é redford pf.t h
trail = {x,} >
% L %
O=-=30. . « oo Om = 30— = I0T=3, e’ Om= I o
e o - First redback trail -
Case 2.
T ...
% Xy 2
Qe -1 C}---}C‘——-)O:—»_-i:y. s S e
|
First trail started at x, ~ | « Second redback trail «
Figure 7

Step 3. Assune that our redback trail got stuck at X; and (Xi,yi) is
the overflowed edge discussed in Lemma 3.1, Since we cannot redback
anynore, we shall balance X, by increasing the u - v flow forward
("inford") alongthe old redford path which starts at (xi,yi) . The

idea is that since the flow on (Xi,yi) has been reduced before

(Lenmma 3.1), we no |onger have to include this edge in our redford program

Thus, we inford along the redford path containing (x;,y;) until we reach

12

v or encounter another overflowed edge (xj,yj) in which no redback has
taken place so far. In both cases, (xi, y;) Is deleted from the stack
and in the latter, (xj,yj) is inserted. |If the stack is not enpty we

go back to Step 2, otherwise, the algorithm term nates.

Remar k. Si nce (xi,yi) is the first edge on its redford path (Lemma 3.1),
the net effect of the inford is to shorten the redford path to the m nimm

necessary.

4. Validity, Conplexity and a Detailed Exanple of wmin(u,v,w) .

Validity.

& have to show that:
(1) MIN(u,v,w) term nates.
(2) The output, fuy , of MIN(wv,w) 1S alegal u -w flow and

Fud = 100 (=2 D

(1) The termnation is quite clear.

Step 1 obviously terminates. Step 2 termnates since reducing back
is done only on the V - wflowand this flowis never increased. Ster 3

is finite since the u -v flow along an edge can be increased at nost

once.

(2) In order to show that £ is a legal flow and has the right

value, we will show that:

(&) OUI‘(fuw:Z) - IN(fuw,z) = ClJT(¢uw;Z) - IN(;’DW,Z (3.4)

for all z #v .

13

() m(f V) = OUT (£, 5V) «

(C No edge is overflowed.

(A and B): Equation (3.4) is violated during the execution in two cases.
The first occurs when a redford path starts at an edge incident with z ,
say (z,y) . In this case (z, y) is in the stack and when it reaches
its top, z wll be rebalanced by the redvack routine. The second
case occurs when a redback trail gets stuck at z . In this case

t he inford routine rebal ances z .

asfar as u and w are concerned, "balanced" means that (3.4) holds.

Since oUT(p, »>u) - W(P, V) = [fuvl , Equation (3.4) inplies that
£l = [fuvl as required. Mreover, since every vertex # u, w

is balanced in QSUW Equation (3.4) inplies that every vertex

#U, wand v is balanced in f (The proof of Equation (3.4)

-

does not hold for v .) Equation (3 .1) inplies that

1]

OUT(gzﬁuw,u) - IN(;éuW,u) IN(yjuw,w) - OUT(¢uw,w)
and (3.4) then inplies that
OUT(fuw,u) - IN(fuw,u) = IN(qu,W) - OUT(fuw,w)

This conbined with the fact that all the other vertices are

bal anced -- inplies the balance of v .

(O W have taken care of all the overflowed edges at Step 1. W increase
the flow again only in Step 3. However, as explained there, this

increase does not overflow any edge again.

14

Conpl exi ty.

Pr oduci ng ¢uw is obviously linear. An edge of G(fuv) is treated
at nost twice (steps 1 and 3) and an edge of G(fvw) is treated at nost

once (step 2). Thus, MIN(u,v,w) isS linear.

A Detailed Exanple.

In Figure 8 we illustrate the conposition of a u - Vv flowfuv

and a v - w flow S Both are acyclic and have the sane value, 3.

Figure ¢

The overflowed edges are (1,2) , (2,3) , (5,6) and (8,9) .
Let the redford paths be:

Pl = (112)V>) P2 = (2:5;V) , P5 = (5:6)8:91V) .
The redback paths are:

Ql: (B;Z:l)v>) Q,g = (6:5:’4)V) p) Q; = (9,8,7,V)

The stack contains ((1,2) ,(2,3) ,(5,6)) .

1o

Figure 9 illustrates the situation after redford has been conpl et ed.

Figur= 9

Redback trails should start, at 1, 2 and 5 (one at each).
First redvack trail = (1,v); stack = ((2,3),(5,6)) .
Second redback trail =(2,1), got stuck at 1 .

Figure 10 illustrates the situation at this noment.

16

Figure 10

Now inford takes place, starting at (1,2) .
Inford trail = (1,2,v); stack = ((5,6)) .

Third redback trail = (5,4,v) ; stack = ¢ .

The final u -~ w flowis illustrated in Figure 11.

~—~ 8 9 /

-0

‘%o/

Figure 11

17

5. AcYC(f) . (R E. Tarjan)

Gvenau-v flowf , ACYC(f) produces an acyclic u - v flow

£+ of the sane value. W -performa depth-first-search on Gf) , starting
fromu . Each vertex z is labelled when we enter it and the label is
renoved when we backtrack through it. The label consists of the nanme of
the (unique) vertex through which we entered z (the "father" of z).

Ve step forward until one of the two cases occur;

(a) W reach a termnal vertex t .
In this case we backtrack to the father of t removing t and its
incident edges from G(f) ., (Since no cycle can pass through t).
Note that the first terminal vertex which we wll encounter is v ,

however, when v is renoved, other termnal vertices mght be created.
(b) W reach a labelled vertex z .

This neans that we discovered a flow cycle C through z . W backtrack
through C and renove its edges from G(f) . The labels of the

vertices of c-{z} are renoved and the search is continued fromz .

G(f') consists of the vertices of G f) and of the edges of G f) which
were not removed during cycles elinination, (Case b). If (f) is not
connected we delete first those edges which are not on the (weakly) connected

conponent which contains u and v. The validity and linearity of ACYC(f)

can be easily proved.

Ref er ences

[ET] S. Even and R E. Tarjan, "Network flow and testing graph connectivity,"
slAM J. on Conputing 4, (1975), 507-518.

[GH] R E. Gonory and T. C Hu, "Milti-ternminal network flows," SIAM J. of
Applied Math. 9, (1961), 551-570.

18

