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Abstract.

Given an undirected graph G = (V,E) and vertices slytl;s2,t2 ,

the problem is to determine whether or not G admits two vertex disjoint

paths Pl and P2 ) connecting sl with tl and s2 with t2 respectively.

This problem is solved by an O(n.m) algorithm (n = IV1 , m = IEI) , An

important by-product of the paper is a theorem that states that if G

is )+-connected and non-planar, then such paths pl and P2 exist for

any choice of s1 t s2 j tl , and t2 , (as was conjectured by Watkins

in [WI).
\
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1. Basics,

1. A graph in this paper is undirected, without multiple edges or

self loops (which are irrelevant to the problem).

2. It is assumed that basic graph theory concepts, such as paths,

k-connectivity, planar/complete/bipartite graphs, etc., are familiar to

the reader.

3. Disjoint paths means vertex-disjoint paths (excluding their

end-points), and k-connectivity means vertex k-connectivity,

4. G has the P2 property if for any sl,tl;s2,t2 there exist

two disjoint paths connectiving sl with tl and s2 with t2 ,

A comprehensive treatment of the combinatorial part of the problem

( i.e., what conditions imply the P2 prperty) and also more general

problems was done by M, Watkins in [W]. Algorithmic partial results were

recently obtained by A. Itai [11] and by Y. Per1 and the author [PSI,

Another closely related work is that of A. S, LaPaugh, [L],
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2. Reductions of the Problem.

Rl: We may assume that G is 3-connected.

This reduction relies on a detailed analysis of the problem concerning

graphs which are not 3-connected, which was done in [Tl], Itai shows that

the problem can be solved in O(n+m+ T) time, where T is the time

required to solve the problem for a 3-connected graph G' = (Vl,E')

such that IV'\ 5 n and IE'\ 5 m . A brief outline of this work is

given in the appendix.

R2: We may assume that G is not planar.

This reduction is a result of the work which was done in [PSI.

This work solves the problem for 3-connected planar graphs in O(n+m)

time.

By Kuratowski's theorem, G contains a homeomorph to either E4

(the complete graph on 5 vertices) or to
3 Y3

(the complete bipartite

graph with 3 vertices on each side).

R3: We may assume that there are four disjoint paths connecting s1 , tl ,

s2
and t2 to any other set of four vertices or less,

Proof. Let S = [slytl,s2,t2) and let S' be a set of vertices such

that there are no four disjoint paths connecting the vertices of S

and S' , Then,

a cut-set C of

empty, but G' =

such that Vln S

by Menger's  theorem, S can be separated from S' by

three vertices. SnC! and ST DC are not necessarily

GC contains at least one connected component Gl= (V1,E1)

= p and VlnS' f fl . Let C = {vl,v2,v3~ and let
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G = (V-V,, E-EIU {( v1,v2),(v1,v3),(v2,v3))) . The following lemma is

very easy to prove.

Lemma 2.1. The TPP with G;sl,tl,s2,t2  is equivalent to that with

~;sl,tl,s2 and t2, Moreover, a solution to the first can be easily

obtained from a solution to the second.

Since Iv-vl\ < n Y Lemma 2.1 implies that we can reduce the size

of the problem by using only a polynomial time computation (required

to determine C ). If such a reduction is not possible then R3 holds,

Q.E.D.

R4: G does not contain a homeomorph to Ic5
.

This reduction is due to Watkins' work. Watkins shows that if G

contains a homeomorph to '4
and R3 holds, then G has the P2 property.

Moreover, his proof is campletely constructive and can be implemented,

step by step, in polyncxnial time. The exact complexity of his proof

will be evaluated in Section 5 where the complexity of' the whole

algorithm will be determined.
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3. Further Reductions.

So far G is a +connected graph,

homeomorphic  to
3 Y3 l

The nine paths

edges of
Es 13 y

wi11 be called p-edges

containing a subgraph
G3Y3

of
G3Y3

which consist of the

(a short form of pseudo edges)

and the six vertices of G
3Y3

which represent the vertices of
3 Y3 y

will be called p-vertices. In the figures to come, three p-vertices will

always be drawn as circles while the other three as squares, indicating

the two "sides" of
3 r3 l

Other vertices of G3 3 will be drawn as
Y

� d o t s , (see Figure 3.1). The circled p-vertices will be x1 , x2 and
3

.

The squared ones -- yl , y2 and y
3

.

%3
.. =

Y

yl y2 y3 "s y3

Figure 3.1.

R5: We may assume that s1 is a p-vertex,

Proof. If s1
is not a p-vertex, we are going to modify G

313 and
make it a p-vertex. We construct three disjoint paths Pl , P2 and P

3

from sl to x1 , x2 and
"j

respectively. We are interested only

in that part of each path from s1 to the vertex in which it hits

cs 13
for the first time. These parts of the Tkhs will be denoted by
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pi f p$ Y and P'
3

and the vertices in which they hit 5 13
for the

first time -- will be fl , f2 , and f3 respectively, All possible

not-symmetric cases are given in Figure 3.2. The cases differ from

each other by the location of the firs on cs Y3 l

The new
3 13 in

each case is heavily lined.

Case a. The fi 's belong to three different p-edges.

Figure 3.2-a.
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Case b. Two fi 's are on the same p-edge.

Figure 3.2-b.

Case c. AU the fi 's are on the same p-edge. In this case, the path

in the middle, say P2 , is continued to its second intersection with

cs r3 at f; .

cl c2

Figure 3.2-c.
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Two important remarks:

(1) In Figure 2.3 and in those to come, the fils are drawn as vertices

of
G's Y3

which are not p-vertices. This is not necessarily true,
-

of course, and the fi 's might be p-vertices as well. However, if

one or more of the fi's are p-vertices, everything is easier. Since

it would triple the amount of case analyses involved, we have omitted

this case.

(2) In ,Case c, we have omitted the possibility that f,$ is on the same

p-edge as f2 . If that happens, we first modify G
3r3

as shown in

Figure 3.4 and then compress the subpath of P2 between f2 and f;

into one vertex, say f" , (see Figure 3.4).2
This fg is the new

first intersection of the modified P2 with the modified G3 3 .
Y

It is easy to see that all the properties which are relevant to our

discussion (such as disjointness of Pl , P2 end P3 ) are preserved

by this transformation. Moreover, f; is closer to the end of P2

then f2 . This implies that these adjustments take place at most

O(n) times. The ssme modification is applied, if necessary, to Pl

and P
3

as well. The same assumption (that the P./s do not hit the

same p-edge twice without hitting another one in between) was also

made by Watkins and we shall refer to it as the W-assumption.
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Figure 3.4.

R6: One of the following two cases occurs:

(1) t1 is also a p-vertex.

(2) G has a subgraph,
G;,3 ’ homeomorphic to that shown in

Figure 3.5.

Figure 3.5.



Proof. R5 is now assumed.

will be called black p-edges while the

The three p-edges which are incident with s1

others wiU. be white p-edges. The

technique of proving R6 is very similar to that of @. We consider three

disjoint paths &I , &2 , and
%

connecting tl with three distinct

p-vertices (no matter which). The first intersection of each &i with

cs Y3
will be denoted by gi , i = l&3 . We now have more cases to

consider since we have black and white p-edges. The main three cases

correspond to whether the &i's "land" on one, two, or three different

p-edges. The subcases  take the color of the p-edges into account.

Figure 3.6 covers aU non-symmetric cases, subject to the remarks made

after the proof of R!X

Case 1. The %'s land on three different p-edges.

l-a. Three black ones.

Figure 3.611-a.
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l-b. Two blacks and one white.

Figure 3.6/l-b.

l-c. Two whites and one black.

Figure 3.611-c.
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l-d. ALL whites.

Figure 3.6/1-d.

Case 2, gl and g2 are on the same p-edge and %
is on another one.

Using Q1 and &2 we can transform %,3 , such that tl lies on a p-edge

and has a connection (disjoint to %,3 ) t
o another p-edge.

2-a. tl lies on a black -p-edge.

connected to a white p-edge. connected to a black one.

Figure 3.6/2-a.
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2-b. tl lies on a white p-edge,

and connected to a black one,

and connected to a white one.

Figure 3.612-b.

Case 3. All the gi 's are on the same p-edge. Using the W-assumption,

this case is easily reducible to Case 2.
Q.E.D.
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4. Cracking the Nut.

This is the time to use R3. We construct four disjoint paths,

fi1 Y 75 Y f13 Y and x4 l Connecting s1 , tl , s2 , and t2 with four

p-vertices on
cs Y3

which are different fram s and tl- 1'

The main idea is to use
csY3 (c;YS)

in order to make two disjoint

connections, one between fil and a2 and the other between 5 and fl4 Y

to yield the desired two disjoint paths. The following case is the easiest,

and left to the reader.

Case 1. s1 and tl are p-vertices and they are not connected by a

p-edge.

Case 2. s1 and tl are p-vertices connected by a p-edge.

Figure 4.1 shows the unique way (ignoring symmetry) in which
5

and

% can block one vertex of the first pair (in this case, s1 ). However,

s1 is "saved" by II~ connecting it to a p-vertex different from itself.

Using the W-assumption, fll cannot now block
5

or
fi4

since it hits

G3Y3
at a vertex which is not on one of the three p-edges incident with s1 .

The two non-symmetric cases are illustrated in Figure 4.2. The connections

between fll and x2 and between
5

and
fi4 are heavily lined.
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s2

Q

Figure 4.1.

s2

Q

Figure 4.2.

Case 3. +
3 13

is a subgraph of G .

We proceed in the same way. Four disjoint paths, fll , n2 , 3 ,

and fi4 are drawn from s1 , tl , s2 , and t2 , respectively, to four

distinct p-vertices, different from vjc . (See. Fime 3.5.) Here, we

have to consider additions3 cases. However, we have a series of "inevitable

moves" which limit the cases analysis. The moves are illustrated in
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Figure 4.3. Symmetric cases are ignored.

Figure 4.3.

The starting point.

v* 5

_ The only way for 5 and

is shown in Figure 4.3(c).

5 (or f14
) must land on the

by tl) segment, otherwise we

are done.

17~ to block s1 (tl is symmetric)

Forbidden!

The W-assumption does not allow 5 to block 5 in his turn.

(See figure 4.3(d).) However it can still block fi4 . (Figure 4.3(e).)

This is its only choice, otherwise we are done.

16



( >e

n4 is still alive, since it has to reach a p-vertex different from vJt .

The only way to continue the game one step further, is to block tl , as

shown in Figure 4.3(f). Note that we are not allowed to use the
I c

W-assumption,here, since if applied, if would throw

would be left with a graph which is not homeomorphic

+
with, namely

cs r3 l

B u t  t1 has not yet reached a p-vertex. Thus,

5 out, and we

to that we started

fi2
can be used to

get it out of the trap. However, it can no longer trap 5 or 17~ .

The nut is finally cracked.

Remark. The words "otherwise we are done" mean that otherwise we can

find two disjoint connections between fll and fi2 and between 5 and

17~ as was done in Figure 4.2.
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5 . -Complexity.

We haven't written the solution as an

algorithm. However, its complexity can be

the reductions.

Let linear mean O(n+m) .

explicit, long and tedious

easily evaluated if we follow

Rl is linear. (It involves the linear algorithm [HT%] for decomposing

a graph into 3-connected ccanponents.)

R2 involves (linear) planarity testing [THY] and the linear solution for

the planar case, [PSI.

R3 requires O(nem) time in worst case. We do not attempt to find four

disjoint paths between s1 , tl , s2 , t2 and any other four vertices

of G5 (a hameomorph to $ , see [W]) in case G5 is a subgraph

of G, or to four p-vertices of G;lr3
in the other case. If we

Y

find such paths -- fine. If not, the size of the graph can be reduced

by one vertex at least. Finding these four disjoint paths is linear

since at most four augmenting paths are required. (see [ET].)

Following the (constructive) proof of Icuratowski's  theorem, we can find

a G5 or a
3 Y3

in G in linear time, provided that G is

non-planar.

R4: Ifa G5 has been discovered, we follow the lines of [W]. Though

quite complicated,  Watkins' analysis can be easily implemented in

linear time. Assume that four disjoint paths between sl , tl , s2 ,

t2
and four p-vertices of G5

are given. Adjustments of G5
each

time the W-assumption is violated have the property of propagating

along these paths. This property makes the overall amount of work

which is involved in these adjustments to be linear. This is true for

3 13
too.

R5 and~6 are obviously linear, and so is the work involved in cracking the nut.
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6 . Summary.

(a) Not long ago, many people believed that the two paths problem is

not polynomial. The two commodity O-l flow problem for undirected graphs,

which is a close relative of it, is NT-complete, ([ 12],[EIS]). We have

shown that it is not only polynomial, but "almost" linear. "AJmost" means,

of course, that there is only one step in the whole algorithm which is not

linear. It might be that even this step will be made linear by some

sophisticated techniques.

(b) It should be pointed out that this work relies heavily on previous

results of Itai, Perl, Shiloach and Watkins.

(c) Generalization of this solution to the case of k (> 2) disjoint

paths connecting s,,...,sk with t,,...,tk respectively, seems to be

impossible.

The directed two paths problem also seems to be much

However, significant results were recently obtained by S.

and R. E. Tarjan, [EGTI.

more difficult.

Even, M. Garey,

(d) The following combinatorially interesting theorem follows from

Watkins' work and the results of this paper.

Theorem. If G is an undirected b-connected non-planar graph, then it

has the P2 property.

Corollary. Every 6-connected graph has the P2 property.

Proof. A 6-connected graph cannot be planar.

There are F;-connected (planar) graphs that do not have the p2 property,

see [WI and [EGT].
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Appendix.

We present here a general scheme of the proof of the following theorem.

Theorem A. Let G be an undirected graph with n vertices and m edges.

If the TPP (Two Paths Problem) can be solved for any 3-connected graph GT

'having n' _< n vertices and mT < m edges, in time of T , then it can

be solved for G in O(n+m+T) time.

Proof (a general scheme). We present a sequence of polynomial reductions,

reducin,g the TPP from general into 3-connected graphs. Thus, we prove that

Theorem A is true if O(n+tiT) is replaced by O(p(n,m)+ T) where p(n,m)

is a polynomiaJ,

is not given in

behavior. When

arguments.

The Reductions.

in n and m. The proof that p(n,m) is actually n+m

ffill. Most of the reductions have an obvious linear

linearity is not clear, we support it by more detailed

Each of the following reductions assumes that all its predecessors

hold. Most of them cannot be proved without this assumption. We may

assume that:

Al: G is '&connected.

If not, the problem is reduced (in the worst case) to one of G's

2-connected ccanponents. Decomposition of a graph into 2-connected components

is linear. Let ST = csp tl' 9 t2 3 be the set of the four vertices of the

problem.
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A2: If {u,v) is a separating set of G , then STn(u,v) = fl .

Otherwise the problem can be reduced to a proper subgraph of G .

Some case analysis is involved corresponding to what STn {u,v}

really is. It is relatively simple (and makes use of Al) and left

for the reader. The linearity of this step is not trivial.

Definition. Let S = {u,vj be a separating set of G . G' = (V',E')

is a weak component mod S if it is a connected component of G-S .

- 1G = (V' US, E' UE") is a strong component mod S . Here E" is the

set of edges connecting u or v with vertices of V' .

A3 : If G' = (V',E') is a weak component mod [u,v) then VT n ST f fl .

Otherwise we could chop G' off and add the edge (u,v) and obtain

an equivalent problem.

Corollary. If {u,vj is a separating set of G then G has at most

four weak (strong) components mod {u,v] .

A4: There is no separating set (u,vj which separates s1 and tl from

s2
and t

2'
otherwise (assuming Al) we have two disjoint paths

connecting s1 with tl and s2 with t2 .

A5: N o  s e t  {u,v] separates s1 and s2 from tl and t2 . Assume to

the contrary that such u and v exist. Let GS and GT be the

strong components mod (u,v3 containing s1 ,s2 and 5 4

respectively. We first construct two disjoint paths Pl , P2

connecting s1 and s2 with tl EiJ-ii t2 Y (using an O(m+n)

flow algorithm such as [ET]). If Pl connects s1 with tl and

p2 connects s2 with t2 , we are done. So let us assume that
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pl
connects s1 with t

2
and P2 connects s2 with t

1 "

Since [u,v] separates s1 and s2 from tl and t2 , we may

also assume that Pl goes through u and P2 goes through v .

It is now easy to see that the original TPP has an affirmative

solution iff at least one of the following has.

"JJPP(S): G'  = GS > Si = S1 9 "; = S2 9 ti = V > t$ = U l

TPP(T): G" = GT , s; = u , s; = v , t;l = tl , t; = t2 .

Note that Pl and P2 induce two pairs of disjoint paths, one in

GS
and'one in GT between the sources and sinks in both reduced problems.

Thus they are constructed only once and can be used in further reductions

of the same type. Theorem A follows now by induction.

If Al through A5 hold and G is not 3-connected, we may assume that

s1
is separated from s2 Y t1 Y and t2 by a separating set {u,v] .

If the strong component mod (u,v) which contains s2 , tl , and t2

is 3-connected, then we are done. The original problem is reduced into

two smaller problems, restricted to this 3-connected component, by

substituting s1 = u and s1 =v,
one at a time. If this component is

not 3-connected, a further decomposition of this component takes place

and the worst case is illustrated in Figure A-l. It involves 16 subproblems

restricted to the central 3-connected component.

Figure A-l.
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