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Abstract.

Gven an undirected graph G = (V,E) and vertices s,l,’cl;se,t2 :

the problemis to determne whether or not G admts two vertex disjoint
paths P; and P, 5 connecti ng S| with ty and S, with t, respectively.
This problemis solved by an O(n.m) algorithm (n =|v|, m=|g]), An

i nportant by-product of the paper is a theoremthat states that if G

i S L-comnected and non-planar, then such paths 12 and P, exist for

any choice of S 98,1 %, and ty (as was conjectured by Watkins

in [wW]).

Keywor ds and Phr ases: Algorithm, Connectivity, Disjoint paths, Planarity,
Two Paths Problem
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1. Basi cs,

1. A graph in this paper is undirected, wthout nultiple edges or

self loops (which are irrelevant to the problen.

2. It is assumed that basic graph theory concepts, such as paths,

k-connectivity, planar/conplete/bipartite graphs, etc., are famliar to

t he reader.

3. Disjoint paths neans vertex-disjoint paths (excluding their

end-points), and k-connectivity means vertex Kk-connectivity,

4, G has the P2 property if for any sl,tl;sg,tg t here exi st

two disjoint paths connectiving sq wi t h ty and S, wi t h t,

A conprehensive treatment of the conbinatorial part of the problem
(i.e., what conditions inply the P2 prperty) and also nore general
problens was done by M. Watkins in [W]. Agorithnic partial results were
recently obtained by A [Itai [11] and by Y. Perl and the author [pS].

Another closely related work is that of A 8., LaPaugh, [L].



2. Reductions of the Problem

R: W may assune that G is 3-connected.

This reduction relies on a detailed analysis of the problem concerning
graphs which are not 3-connected, which was done in [11]. Itai shows that
the problem can be solved in Qn+m+ T) time, where T is the tine

required to solve the problem for a 3-connected graph ¢' = (V',E")

such that |v'| < n and |E'| < m. Abrief outline of this work is

given in the appendix.

R2: W may assune that Gis not planar.

This reduction is a result of the work which was done in [pg].
This work solves the problemfor 3-connected planar graphs in o(n+m)

tine.

By Kuratowski's theorem G contains a honeomorph to either K5
(the conplete graph on 5 vertices) or to K 5 (the conplete bipartite

graph with 3 vertices on each side).
R3: W may assune that there are four disjoint paths connecting S0 b

s, and t, to any other set of four vertices or |ess,

2

Proof . Let S = {sl’tl’sz’tE} and let s' be a set of vertices such

that there are no four disjoint paths connecting the vertices of S
and S , Then, by Menger's theorem S can be separated froms' by

a cut-set C of three vertices. sSnc and s' nC are not necessarily

enpty, but ¢' = GC contains at |east one connected conponent Gy = (Vl,El)

such that v;N S = p and V;NS' £ p . Let C = {Vl’VE’VB} and | et



G = (V-V,, E-E; U {(vl,ve),(vl,v5),(v2,v5)}) . The following lema is

very easy to prove.

Lemma 2. 1. The TPP with Gssprbyrsyty is equivalent to that with
E;;sl,tl,se and t, . Moreover, a solution to the first can be easily

obtained froma solution to the second.

Since lV—Vl] <n, Lentma 2.1 inplies that we can reduce the size
of the problem by using only a polynomal time conputation (required
to determine C). |If such a reduction is not possible then R3 holds,

QQEOD.
R4: G does not contain a homeomorph to X5 .

This reduction is due to Watkins' work. Watkins shows that if G
contains a homeonorph to K5 and R3 holds, then G has the P2 property.
Moreover, his proof is completely constructive and can be inplenented,
step by step, in polynomial tine. The exact conplexity of his proof
will be evaluated in Section 5 where the complexity of the whole

algorithm will be determ ned.



3., Further Reducti ons.

So far Gis a %-connected graph, containing a subgraph G 3
J
homeomorphic t 0 1{5,5 . The nine paths G5,3 which consist of the

edges of Kz 3 2 will be called p-edges (a short form of pseudo edges)

s p-SU9CS
and the six vertices of Gi,B whi ch represent the vertices of 1{5’5 s
will be called p-vertices. In the figures to cone, three p-vertices will
always be drawn as circles while the other three as squares, indicating
the two "sides" of KB;B . Q her vertices of (}5,5 wi Il be drawn as
cooe.. (see Figure 3.1). The circled p-vertices will be X X and X

The squared ones -- vy 0 Y, and Y3

Xl x2 )% Xl yl
%,3 M = Y, /Y\ ~ x,

1 Y2 I3 % Vs

Figure 3. 1.

R5: W may assune that 51 s a p-vertex,
Proof . If s, is not a p-vertex, we are going to nodify G5 and
— 1 %
make it a p-vertex. W construct three disjoint paths Py Py and P3
froms; to % , %, and % respectively. W are interested only

in that part of each path from s, to the vertex in which it hits

Gs for the first time. These parts of the vaths will be denoted by



P! , By, and P

4 and the vertices in which they hit G 5 for the

3

first time -- will be £, 5, and f5 respectively, Al possible
not-symetric cases are given in Figure 3.2. The cases differ from
each other by the location of the £, 's on G55 The new G5 3 in

each case is heavily Iined.

Case a. The f,'s belong to three different p-edges.

1 51
()
D\
&
51

AN

31

3

Figure 3.2-a.



Case b. Two £, 's are on the sanme p-edge.

by P,
Figure 3.2-h.
Case c. All the f, 's are on the sane p-edge. In this case, the path
in the mddle, say P, , is continued to its second intersection wth

%;5 at fé.

Figure 3.2-c.

QED.



Two inportant remarks:

(1) In Figure 2.3 and in those to cone, the £, 's are drawn as vertices

(2)

of %,3 which are not p-vertices. This is not necessarily true,
of course, and the f, 's mght be p-vertices as well. However, if
one or nore of the £, 's are p-vertices, everything is easier. Since
it would triple the anount of case anal yses involved, we have omtted

this case.

In Case ¢, We have onitted the possibility that £f! is on the sane

2
p-edge as f, . If that happens, we first nodify %:3 as shown in

Figure 3.4 and then conpress the subpath of P, bet ween f_ and 5

2
into one vertex, say f%, (see Figure 3.4). This £} is the new

first intersection of the modified p, with the nodified G 5 -

It is easy to see that all the properties which are relevant to our

di scussion (such as disjointness of P, |, P, end PB) are preserved

by this transformatim. Moreover, f5 is closer to the end of P

2
t hen £, . This inplies that these adjustnents take place at nost
Qn) tinmes. The same nodification is applied, if necessary, to P
and P3 as well. The same assunption (that the P, 's do not hit the

same p-edge twice wthout hitting another one in between) was al so

.made by Watkins and we shall refer to it as the \Massunption.



Figure 3.4.

R6: One of the following two cases occurs:

(1) by is also a p-vertex.

(2) G has a subgraph, G;,B , homeomorphic to that shown in

Figure 3.5.

Figure 3.5.



Proof . RS is now assuned. The three p-edges which are incident with s,

will be call ed black p-edges while the others will be white p-edges. The

technique of proving R6 is very simlar to that of R5., W consider three
di sjoint paths Q,l , Q,,2 , and Q5 connecting tl with three distinct
p-vertices (no matter which). The first intersection of each Q W th
%,3 will be denoted by g I = 1,23 . W now have nore cases to
consi der since we have black and white p-edges. The main three cases
correspond to whether the Q's "l'and" on one, two, or three different
p-edges. The subcases take the color of the p-edges into account.

Figure 3.6 covers all non-symetric cases, subject to the renmarks made

after the proof of RS.

Case 1. The Q 's land on three different p-edges.

|-a. Three black ones.

Figure 3.611-a.

10






[-d. A1l whites.

Figure 3.6/1-d.

Case 2, g and g, areon the same p-edge and &, is on another one.

Using @, and Q, We can transform %,3 , such that t lies on a p-edge

and has a connection (disjoint to Gg 3 ) %0 another  p-edge.

2-a. b lies on a black -p-edge.

connected to a white p-edge. connected to a black one.

Figure 3.6/2-a.

12



2-D. ty lies on a white p-edge,

and connected to a white one.

Figure 3.612-b.

Case 3. Al the g, 's are on the same p-edge. Using the Wassunption,

this case is easily reducible to Case 2.
QED

13



4. Cracking the Nut.

This is the tine to use R3. W construct four disjoint paths,

T , and T, . Connecting s and tg with four

12T 3 10 % s
. + . .
p-vertices on %’3 (or %,3 ) which are different from sy and ty

The main idea is to use G35 (G;B) in order to nmake two disjoint
) )

connections, one between T and L and the other between T and 1w
to yield the desired two disjoint paths. The followi ng case is the easiest,

and left to the reader.

Case 1. s; and t; are p-vertices and they are not connected by a

p- edge.

Case 2. s, and t

1 1 are p-vertices connected by a p-edge.

Figure 4.1 shows the unique way (ignoring symetry) in which T and

can block one vertex of the first pair (in this case, s. ), However,

T

s

1

1 is "saved" by T connecting it to a p-vertex different fromitself.

Usi ng the Wassunption, 7, cannot now bl ock 5 O M since it hits

G3 3 at a vertex which is not on one of the three p-edges incident with sp -
2
The two non-symetric cases are illustrated in Figure 4.2. The connections

bet ween =, and T and bet ween T and M, are heavily Iined.

14



Figure L.1.

Figure 4.2.

Case 3. %’5 is a subgraph of G .

W proceed in the sane way. Four disjoint paths, T Ty, T

and M, oare drawn from 81 tl , Sy

di stinct p-vertices, different fromwv, .

and t respectively, to four

21
(See. Figure 3.5.) Here, we

have to consider additions3 cases. However, we have a series of "inevitable

moves" which limt the cases analysis.

15

The moves are illustrated in



Figure 4.3. Symetric cases are ignored.

Figure 4. 3.

g (or ), ) must land on the
(sl, tl) segnent, otherw se we

The starting point. are done.

Vi tl N Vy tl

TN\
3\
\

S

s 1

{

(a) (b)

- The only way for %, and = to bl ock s, (t; is symmetric)

is shown in Figure 4.3(e).

For bi dden!

(c) (a)

The Wassunption does not allow n to bl ock 5 in his turn.
(See Figure 4.3(d).) However it can still block ), - (Figure 4.3(e).)

This is its only choice, otherwi se we are done.

16



), is still alive, since it has to reach a p-vertex different fromwv, .
The only way to continue the ganme one step further, is to block t,, as
shown in Figure 4.3(f). Note that we are not allowed to use the
W-assumption, here, since if applied, if would throw t; out, and we
woul d be left with a graph which is not homeomorphic to that we started
with, nanel 3

’ Y G,3

-« t; has not yet reached a p-vertex. Thus, =, can be used to

get it out of the trap. However, it can no longer trap :%or m, -

The nut is finally cracked.

Renar k. The words "otherwise we are done" nean that otherwi se we can
find two disjoint connections between T and n, and bet ween o and

T, as was done in Figure 4.2.

7



5. -Conplexity.

W haven't witten the solution as an explicit, long and tedious
algorithm However, its conplexity can be easily evaluated if we follow
the reductions.

Let linear nean Q(n+m .
Rl is linear. (It involves the linear algorithm[HTl] for deconposing

a graph into 3-connected components.)

R2 involves (linear) planarity testing [TH2] and the |inear solution for
the planar case, [PS].
R5 requires O(nem) time in worst case. W do not attenpt to find four

di sjoint paths between s 5, s, Ty and any other four vertices

1
of G5 (a haneonorph to KS , see [W) in case G5 I S a subgraph
of G, or to four p-vertices of Gs s in the other case. If we
find such paths -- fine. If not, the size of the graph can be reduced
by one vertex at least. Finding these four disjoint paths is |inear
since at nost four augmenting paths are required. (see [ET].)

Fol Il owi ng the (constructive) proof of Xuratowski's theorem we can find
a G; or a GB,3 in Gin linear time, provided that Gis
non- pl anar.

R4: If a Gg has been discovered, we follow the lines of [W. Though
qui te complicated, Watkins' analysis can be easily inplemented in

linear tine. Assune that four disjoint paths between s, , %y, Sy

t, and four p-vertices of G5 are given. Adjustments of s each

time the Wassunption is violated have the property of propagating

along these paths. This property makes the overall anount of work

which is involved in these adjustnents to be linear. This is true for

G5,5 t 00.

R5and R6 are obviously linear, and so is the work involved in cracking the nut.

18




6. Sunmary.

(a) Not long ago, many people believed that the two paths problemis
not polynonmial. The two commdity O flow problemfor undirected graphs,
which is a close relative of it, is NP-complete, ([ I2],[EIS]). V& have
shown that it is not only polynomal, but "almost" |inear. "Almost" means,
of course, that there is only one step in the whole algorithm which is not
linear. It might be that even this step will be made |inear by sone

sophi sticated techniques.

(b) It should be pointed out that this work relies heavily on previous

results of Itai, Perl, Shiloach and Watkins.

(c) Generalization of this solution to the case of k (> 2) disjoint
paths connecting s,,...,s, with t,,...,t, respectively, seenms to be
| npossi bl e.

The directed two paths problem also seems to be much nore difficult.
However, significant results were recently obtained by S. Even, M Garey,

and R. E. Tarjan,[EGT].

(d) The follow ng combinatorially interesting theoremfollows from

Watkins' work and the results of this paper.

Theorem If Gis an undirected b-connected non-planar graph, then it

has the P2 property.

Corol lary. Every 6-connected graph has the P2 property.
Proof . A 6-connected graph cannot be planar.

There are 5-connected (planar) graphs that do not have the P2 property,

see [W] and [EGT].

19



Appendi x.

V¥ present here a general scheme of the proof of the follow ng theorem

Theorem A Let G be an undirected graph with n vertices and m edges.
If the TPP (Two Paths Problem) can be solved for any 3-comnnected graph g
"having n' < n vertices and m' < medges, in time of T, then it can

be solved for Gin O(n+tmt+T) ti ne.

Proof (a general schene). Ve present a sequence of polynom al reductions,
reducing the TPP from general into 3-commected graphs. Thus, we prove that
Theorem A is true if O(n+tm+T) is replaced by O(p(n,m)+ T) where p(n,m)
is a polynomial in n and m The proof that p(n,m) is actually n+m
is not given in full. Mst of the reductions have an obvious |inear
behavior. Wen linearity is not clear, we support it by nore detailed

ar gument s.

The Reducti ons.

Each of the follow ng reductions assunes that all its predecessors
hold. Mst of them cannot be proved without this assunption. W& nay

assume that:
A: G is '&connected.

If not, the problemis reduced (in the worst case) to one of G's

2-connect ed components. Deconposition of a graph into 2-connected conponents

is linear. Let ST = {sy, t}55,1,]} be the set of the four vertices of the

probl em

20



A2: If {u,v}is a separating set of G, then sTn{uv} =29 .
QG herwi se the problem can be reduced to a proper subgraph of G.
Some case analysis is involved corresponding to what STN {u,v}
really is. It is relatively sinple (and makes use of Al) and left

for the reader. The linearity of this step is not trivial.

Definition. Let S = {u,v} be a separating set of G. G' = (V',E")

is a weak conponent nod S if it is a connected conponent of GS .

ol = (v' US, E' UE") is a strong conponent nod S . Here E"is the

set of edges connecting wor v wth vertices of v'.

A3: If G =(v',E") is a weak conponent nod {u,v} then V' n ST # ¢ .
Q herwi se we could chop ¢ off and add the edge (u,v) and obtain

an equi val ent probl em

Corol lary. If {uv}is a separating set of G then G has at nost

four weak (strong) conponents nod f{u,v} .

A4: There is no separating set {u,v} which separates s, and ty from

1

S, and t2. otherwi se (assumng Al) we have two disjoint paths

connecting s; with t; and s with t, .

1 2

A5: Noset {u,v} separates s, and s, fromt, and t, . Assume to

1 2 1
the contrary that such u and v exist. Let GS and Gy be the
strong components nod {u,v} containing s 58, and ty ,t,
respectively. W first construct two disjoint paths Pl By

connecting s, and s, with t, and t (using an Q(mtn)

1 2 1 2’

flow al gorithm such as [EeT]). If P, connects s, with ) and

P connects s, wWith t2 , We are done. So let us assume that

2 2

21



Pl connects s1 with t 5 and P2 connect s s, W th t 1 v

Since {u,v} separates s, and s, fromt; and t,, we may

al so assune t hat P, goes t hrough u and F, goes t hrough v .
It is now easy to see that the original TPP has an affirmative
solution iff at least one of the follow ng has.

TPP(S): G’

n
o
-
w0
|...I..
]
0
l_’
e
n
1
(%]
\e
c+
1
<
-
ot
]
o

. "= "o "o "o _ "o
TPP(T): G G si=U, sf=V, t ty . t5 =ty

171

Not e t hat Py and P, induce two pairs of disjoint paths, one in
Gg and' one in G between the sources and sinks in both reduced problens.

Thus they are constructed only once and can be used in further reductions

of the sane type. Theorem A follows now by induction.

If Al throaugh A5hold and Gis not 3-connected, we nay assune that
1 Is separated from Sy By and t 5 by a separating set {u,v}.
If the strong conponent nod {u,v} which contains 55, by, and t,
is 3-connected, then we are done. The original problemis reduced into
two snaller problens, restricted to this 3-connected conponent, by
substituting s, = u and s, = v, one at a time. If this conmponent is
not 3-connected, a further deconposition of this conponent takes place
and the worst case is illustrated in Figure A-l. It involves 16subproblens

restricted to the central 3-connected conponent.

3-connected
component

Figure A-l.

22
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