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(1)

Consider a real second order differential system

Y" = f&Y) l

We assume that all solutions of (1) are bounded. In the particular case

of a diagonalizable linear autonomous system, y" = Ay , this means that

the eigenvalues must all be real and negative. We shall therefore con-

sider the test equation,

(2) y" = -rn2Y > w positive .

Consider a linear multistep method, (tn = to+ nh , h = step size)

(3)
a$n+k  + � � + alYn+1 + a,y,  = h2 (@kf  (tn+k,yn+k)  + � l  +  Bof $,y,))

with the generating polynomials

(4 1

We say that the method (3) is unconditionally stable, if all solutions

of the difference equation, when it is applied to the test equation (2) with

any step size h ) are bounded. A necessary condition for this is that the

characteristic equation,

(5) P(O = -(0h)2,(1;)  ,

has no root outside the unit circle for any real UJh .m- e- - - This condition is

equivalent to :



W/P(~) must not be real and non-positive for )[I > 1 .'

Then that branch of (O([)/P([))"~ which takes positive values for c > 1

exists and satisfies the condition,

(6) Re (di)/dc)) li2 > 0 for kl >l.

We shall now investigate the accuracy of the method (3). Its order

of accuracy is p , if for any function YECpf2 7

c$Yhn+k
>+... +aly it,,,) + a,y (tn > -

- h2(pky"(tn+k)+..'  +~oy"(tn))~ch
p-t2

y
(p+2)(t ) .

n

C and p are independent of y . In particular, by choosing y(t) = et

we obtain,

p(eh) - h2u(eh) - chP+2, (h30) >

i.e., if we set eh = 5 7

P(5) - (log 1)2o(r;) N c (Fl)p+2 J (G+l)  l

Note that P(c) N $ p'V(1)(c-l)2 and put c' = 2c/'P"(l). Then,

a(I;)/p([> - (log [)-2 ' (1 - c'([-l)p + o((r;-l)p))

(7) (a W/P cgY2 - (log c)-l (1 - i c'(l;-1P + 0(&l)")) >

where log [ is the branch of the logarithmic function which is real when

1: is positive (and therefore ,positive when C>l).

It is convenient to perform the transformations,
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Note that

(8)

The conditions (6 > and (7) then become,

(6’ > Re g(z) > 0 for Re z > 0 ,

and, for z + 00,

45

z+l
i - 1

l/2

f;=z> U(g+)/P(g$) = g(z)
,

C+1 a(S) C+l 2
z=m, m= g$-☺) l1 1

(z) =  ( l og gy(l - $ c’(g’-”  + o(z+)) ,

and since (log $+)-' = $ z - ; z-1 t . . . , we obtain,

(7’ > g(z) =; z(1 - $ z-2 i- o(z-4 - ; cqy + o(z-p)) .

The following lexmna is often useful.

Lemma. Let f(z) be analytic and have positive real part for Re z > 0.

Assume that f(z) - (az+b) -) 0 uniformly when Z-+ca in the right half

plane, _a > 0, Re b > 0.- Then either Re(f(z)-az) > 0 when Re z > 0,

or f(z) - az is an imaginary constant, which is equal to zero, if

f(z) - az is real for at least one z.

Proof. Let -a < y<m Then, for Re z > 0



inf lim Re(f(z)-az) = inf lim Re f(z) > 0 a
y zTiy

-
y z+iy

At infinity,

lim Re(f(z)-az) = Re b > 0 .-
Z-+W

Then, by the minimum principle for harmonic functions, in the form given
e.g., in [3, p. 2031, either Re(f(z)-az) > 0 for Re z > 0 or

Re(f(z)-az) is identically zero. In the latter case it follows from

the Cauchy-Riemann equations that Im(f(z)-az) = const., and the

lemma is proved.

Remark. The assumptions, a > 0, Re b > 0 can be deduced from the- -

other assumptions of the lemma.

By (6') and (7*), the lemma can be applied to the function g(z).

Hence Re(g(z) - k z) > 0, but if p > 2 this is incompatible with the

relation,

(7” > g(z) _ ; z = - ; z-1 - ; c' (;I- + o(zmax(-2,1-p))

since the dominant term for large I Iz , i.e., has a negative

real part when Re z > 0. Hence ~52. If p=2, then (7") can be true

only if -l/6 - c' 2 0, i.e., only if c' 5 -l/6. If p = 2 and

c’ = -1/6, then by (?I),

g(z) - $ z = ocz-l) Y (z + 4



/ .

If g(z) - $ z were not identically zero, it would behave like

-q
az Y say, for large z, where q > 1, a # 0, but then the real

part could not be positive everywhere in the right half plane. Hence,

if p = 2, c' = -l/6, then

g(z) = ; z .

Then by (N,

a(c)/d5 ) = $+lj2/ (I;-1Y .

The simplest pair (@,a> which satisfies this equation is,

P(S) = (5-lJ2 , a(0 = +({+l)2.

We would also multiply o(c) and a(c) by a common factor q(C), but

this would only make the method b,d more complicated without improving

its accuracy.

So far we have only considered consequences of a necessary condition for

unconditional stability. We therefore have to verify that the method generated

by this particular pair (f&d is unconditionally stable. This follows from

the fact that in this case the characteristic equation (5) has the solutions.

cl = (1 + $ icah)/(l - $ ?Jh) , c2 = El .

Since for ti > 0, It11 = I[,1 = 1, 5, f c,, the solutions of the difference

equations are bounded. Hence, among the unconditinally  stable formulas of

the form (31, the local error is minimized, when

(9) Yn+2 - 2Yn+1 + Yn = r;'h2 (f(yn+2) + 2f(yn+l) + f(y )) +n



This formula and its unconditional stability are mentioned by Richtmyer

and Morton [7, p. 2631 in connection with the solution of second order hyper-

bolic equations. Since o and 0 are perfect squares, the method is equivalent

to the linear multistep method for the first order system,

(10)
y' =z
Z ’ = fh,y) ,

defined by

64s) = 5-l , a(lS ) = $ Cc+1

i.e. the trapezoidal method. Note that the system (10) is equivalent to

the second order differential system (1). It is interesting to compare this

with the well-known fact [l] that the trapezoidal has the smallest error

constant of all A-stable linear multistep methods for first order systems.

We summarize our results:

THEOREM. The order of accuracy cannot exceed 2 for a linear multistep method

of the form (2) which is unconditionally stable (in the sense defined on

page 1). Among second order accurate methods the smallest error constant is

obtained for the method defined by (9). This method is equivalent to the

trapezoidal method for the first order system (10).

When this work was finished, R. Jeltsch made the writer aware of the

article by Lambert and Watson [6] where a similar result is stated. The topic

of their study is, however, not unconditional stability but periodicity, i.e.

they require that all roots of (5) should have unit modulus which implies a

restriction to even polynomials r(z) and s(z) . Moreover,  they omit the

proof because it is lengthy.
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Our theorem is similar to the old results, Dahlquist [l], that p 5 2

for A-stable linear multistep methods for first order differential systems,

but the proof is different. In fact, proofs along similar lines were given by

Genin [4], Dahlquist [2] and Grigorieff [5, p 2181 .
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