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ABSTRACT

Linear multistep methods for the solution of the equation

y" = £(t,y) are studied by means of the test equation y" = ugw% ,

with @ real. It is shown that the order of accuracy cannot exceed

2 for an unconditionally stable method.






Consider a real second order differential system
(1) y' o= f(t,y).

W assume that all solutions of (1) are bounded. |n the particular case
of a diagonalizable linear autononous system y" = Ay , this means that

the eigenvalues nust all be real and negative. W shall therefore con-

sider the test equation,

(2) y' o= -Cl)gy , ® positive .
Consider a linear nultistep method, (tn =t * nh , h = step size)

(3)
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W say that the method (3) is unconditionally stable, if all solutions

of the difference equation, when it is applied to the test equation (2) with
any step size h, are bounded. A necessary condition for this is that the

characteristic equation,
(5) o(t) = -(on)20(t) ,

has no root outside the unit circle for any real ®h . This condition is

equivalent to



a(t)/e(t) nust not be real and non-positive for |¢| > 1 .

Then that branch of (cr(g)/p(g))l/2 which takes positive values for &> 1

exists and satisfies the condition,

(6) Re (cf(;)/p(c))l/2 >0 for ¢l >1.

W shall now investigate the accuracy of the nethod (3). Its order

. . p+2
of accuracy is p , if for any function yecPTe

Oéky(tn+k)+... +aly it,,,) +aoy (tn) _
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n
¢ and p are independent of y . In particular, by choosing y(t) = e®
we obtain,
o(e?) - n%a(e?) ~ nP'e, (h30) ,
i.e., if we set =t

o(t) - (log £)2a(t) ~c (£-1)P2, (1) .

1

Note that p(f) ~ 5 o"(l)(c-l)2

and put c' = 2¢/pP"(1)- Then,

a(t)/p(t) ~ (1og €)% (1 - c' (£-1)P + o((¢-1)P))

Loor(e-1)P + o((6-1)P)),

") (0(8) /o ()2 ~ (10g )7 (1 - 3

where log ¢ is the branch of the logarithmc function which is real when
t is positive (and therefore positive when §> 1 ).

It is convenient to perform the transformations,



+1 +1 +1 1/2
(-2, (c g_l)/p(%)!) = g(2)
Not e that
_ 1 o(8) o
(8) z = E:_’ %;(ET._( E(E:i)

The conditions (6) and (7) then becone,
6*) Re g(z) > 0 for Re z >0 ,

and, for z + =,

g(z) = (log %)_l(l-%c'(g)-p t o(z7P))

Z*l)-l -

and since (log —I

1 1 .
Zqg.52-1+. . .,
5%-7 v we obtain,

(77) g(z) = )P+ o(27F)) .
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The followi ng lema i s often useful.

Lemma. Let £(z) be analytic and have positive real part for Re z > 0.
Assume that f(z) - (az+b) » 0 uniformy when =z -+ o in the right half
plane, a >0, Re b >0. Then either Re(f(z)-az) > 0 when Re z > 0,
or f(z) - az s an imaginary constant, which is equal to zero, if

f(z) -az is real for at |east one z.

Proof. Let -=» < y<wo. Then, for Re z >0




f lim Re(f(z)-az) = inf lim Ref(z) >0 .

in
y z iy y z- iy
At infinity,

lim Re(f(z)-az) = Re b > 0 .

7 +
Then, by the mnimumprinciple for harnonic functions, in the form given
e.g., in [3, p. 203], either Re(f(z)-az) > 0 for Re z > 0 or
Re(f(z)-az) is identically zero. In the latter case it follows from
the Cauchy-R emann equations that In{(f(z)-az) = const., and the

| enma i s proved.

Remark.  The assunptions, a >0, Re b > 0 can be deduced fromthe

ot her assunptions of the lemma.

By (6') and (7'), the lemma can be applied to the function g(z).

Hence Re(g(z)-lz) >0, but if p>2thisis inconpatible with the

2
relation,
.11 1- -2,1-
() g) - Te=-Fat o Lo QNP omax(Bsiop))
since the dominant termfor large lzl|, i.e., —%z'l; has a negative

real part when Rez >0. Hence p<2. If p=2, then (7") can be true

only if -1/6-ct>0, i.e., only if c*<-1/6.1f p = 2 and
c' = -1/6, then by ("),

3 (z-bco)



z were not identically zero, it would behave |ike

Moy +—

If g(z) -
az” %, say, for large z, where q > 1, a # 0, but then the real
part could not be positive everywhere in the right half plane. Hence,

if p =2, ¢ =-1/6, then

[N
N

9(z) =

Then by (8),
o(£)/e(6) = F(Er1)?/ (617 .

The sinplest pair (p,0) which satisfies this equation is,
p(t) = (617, o() = F(t+1)2.

Ve would also multiply e(¢) and o(¢) by a comon factor o(¢), but
this woul d only make the method (p,oc) nore conplicated without inproving
its accuracy.

So far we have only considered consequences of a necessary condition for
unconditional stability. W therefore have to verify that the nethod generated
by this particular pair (p,o) is unconditionally stable. This follows from

the fact that in this case the characteristic equation (5) has the sol utions.

Cl=(1+—2]:iwh)/(l—%ia)h), QE:EI.

Since for an > O, IClI = |§2| =1, ¢ #Cg, the solutions of the difference
equations are bounded. Hence, anong the unconditinally stable fornulas of

the form(3), the local error is ninimzed, when

(9) Voo -2y v, = £ 0 (Bl ) + 2£ly,,,) v£l))



This fornula and its unconditional stability are nentioned by Richtnyer
and Morton [7, p. 263] in connection with the solution of second order hyper-

bolic equations. Since p and ¢ are perfect squares, the method is equival ent

to the linear nultistep method for the first order system

v =7
(10) szr = ft,y) |

defined by

p(t) = 51, a(¢) = 3 (tn
i .e. the trapezoidal method. Note that the system (10) is equivalent to

the second order differential system(1). It is interesting to conpare this

with the well-known fact [1] that the trapezoidal has the smallest error

constant of all A-stable linear nmultistep nethods for first order systens.
V& summarize our results:

THEOREM  The order of accuracy cannot exceed 2 for a linear multistep nethod

of the form({2) which is unconditionally stable (in the sense defined on

page 1). Anong second order accurate nethods the smallest error constant is

obtained for the nmethod defined by (9). This nethod is equivalent to the

trapezoi dal nethod for the first order system (10).

Wien this work was finished, R Jeltsch made the witer aware of the
article by Lambert and Watson [6] where a sinilar result is stated. The topic
of their study is, however, not unconditional stability but periodicity, i.e.
they require that all roots of (5) should have unit nodul us which inplies a
restriction to even polynomals r(z) and s(z) . Yoreover, they onit the

proof because it is lengthy.



Qur theoremis simlar to the old results, Dahlquist [1], that p < 2
for A-stable linear multistep methods for first order differential systens,
but the proof is different. In fact, proofs along simlar lines were given by

Genin [4], Dahl quist [2] and Gigorieff [5, p 218] .
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