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Abstract.

In the bin-packing -problema list L of n nunbers are to be packed
into unit-capacity bins. For any algorithmS , let r(S) be the maximum
ratio S(L)/L* for large 1", where S(L) denotes the nunber of bins
used by S and 1" denotes the minimum number needed. In this paper
we give an on-line Qn log n) -tine algorithm RFF with r(RFF) =5/3,
and an of f-1ine -polynonial-tine algorithmRFFD with r(RFFD) = (11/9)-¢
for some fixed ¢ > 0 . These are strictly better respectively than two
promnent algorithms -- the First-Fit (FF) which is on-line with
r(FF) = 17/10, and the First-Fit-Decreasing (FFD) with r(FFD) = 11/9 .
Furthernore, it is shown that any on-line algorithm S nust have
r(s) >3/2. W also discuss the question "how well can an Q(n) -tine
al gorithm perforn?", showing that, in the generalized d-dinensional

bi n-packing, any Q(n) -time algorithmS nust have r(S) > d .

Keywords:  bin-packing, First-Fit, First-Fit-Decreasing, heuristic algorithm
NP-conpl ete, on-line.
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1. I nt roducti on.

Let L = <X1’X2" : .,xn) be a given list of real numbers in (0,1] ,

and BIN.,BIN an infinite sequence of bhins each of unit capacity.
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The bin packing problemis to assign each X into a unique bin, with

the sum of nunbers in each bin not exceeding 1, such that the total
nunber of used bins is a mnimum (denoted by L* ). As this problemis
NP-complete [8], efficient algorithms that always generate packings

usi ng L* bins are unlikely to exist. In the literature, heuristic
algorithns with guaranteed bounds on performance have been studied
extensively [5],(6],[7]. For any (heuristic) bin packing algorithmsS
let S(L) denote the nunber of bins used for the input list L, and

*
Rs(k) the maximumratio s(L)/L for any list L with -k . The

performance ratio of S, denoted by «r(s), is defined as [im R_(k) .
k = =
Infornally, (r(s)-1) x 1004 is the percentage of excess bins used over

the optimal packing in the worst case, for large lists. Two prom nent

algorithns are the First-Fit A gorithm (FF) and the First-Fit-Decreasing

Al gorithm (FFD) ( see Section 2 for definitions). It is known {7] that
r(FF) = 17/10 and r(FFD) = 11/9 .

A natural question is, how good can any pol ynonial algorithm be?
In this regard, two specific questions were raised by Johnson [6]:

Is there a polynomal on-line algorithm S better than First-Fit
(i.e., with r(S) < 17/10 )2

Is there any polynomial algorithm S better than First-Fit-Decreasing
(i.e., with r(S) < 11/9)?

W caan algorithmon-line if the nunbers in list L are available

one at a tine, and the algorithm has to assign each nunber before the next



one becones available [5],[6]. In this paper, we resolve both questions
inthe affirmative. It will also be shown that no on-line algorithm can
have a performance ratio |ess than 5/2 .

Section 3 gives an Qn log n) -time on-line algorithmS with
r(s) = 5/3. Section L explores the linmtation to on-line algorithns,
showing that no such algorithm S (polynomal-tinme or not) can have
r(s) < 3/2 . In Section 5 a general approach for seeking inprovenents
over known heuristic algorithns is suggested and illustrated with an
exanple. Based on this idea, a heuristic polynomal-time algorithm
better than FFD is constructed in Section 6. W discuss in Section 7
the question "How well can an Q(n) -tine algorithm perforn®". It is
shown that in a generalized version of bin packing, namely the d-dimensional

bin packing [2], any Q(n) -tine algorithm S nust have r(S) > d .



2. Ter mi nol ogi es.

For standard definitions with regard to the bin packing problem
the reader is referred to [7]. W wll nention below only a few
termnol ogies for use in the present paper.

Alist is a finite sequence of real nunbers. Sone nunbers nay have

identical values, but are regarded as distinct item. A set of real
nunbers in this paper is often in fact a nultiset, in which some nunbers
may appear nore than once (see [9]).

If L, = (xl,xg,...,xn) and L, = (yl’yz"“’y’) are two lists,

their concatenation IL.I., is the list L = (Xl’XE"”’Xn’yl’yg””L'—“iyﬁ .

172
Let X be a bin used in a packing, the content of X, cont(X) , is
the sum of the numbers that are assigned to X . W shall say that a

bin packing algorithm S has running time Q(p(n)) if, when inplenented

on a random access machine [1], S takes at mpst Q(p(n)) steps to

produce the packing for a list with n nunbers. W describe the two

algorithne FF and FFD for easy reference:

First-Fit (FF). Gven a list L = (Xl’xe""’xn> , the algorithm

assigns x.J sequentially, for j =21,2,...,n, to BI N.1 with the

snmal | est i whose current content does not exceed I-x(j

First-Fit-Decreasing (FFD). Gven a list L = (xl,xg,...,xn) . the
algorithm first sorts the x.J 's into decreasing order, and then perforns
First-Fit.

Both FF and FFD can be inplenmented to have a running tinme

Qnlog n) ; for details, see [6].



%2, A New On-line Algorithm

W will present an on-line algorithmthat processes a list of n
nunbers in Qn log n) tine, and show that its performance ratio is
5/3 = 1,666¢¢¢

Any el enent x.J inalist L will be called an A-piece, Bl—piece,
B,-piece, oOf X-piece if X, isin the interval (1/2,1], (2/5,1/2],
(1/3,2/51, or (0,1/3]1, respectively.

Al gorithm RFF (Refined First Fit).

Before packing, we divide the set of all bins into four infinite
classes. The algorithm then proceeds as foll ows. Let ne {6,7,8,9} be
a fixed integer. Suppose the first j-I nunbers in [ist L have been
assigned, we process the next nunber x.J according to the follow ng
rul es.

(a) W put ey by first-fit into a bin in:

( class 1, if x.J is an A-piece,

class 2, if x.J is a Bl-pi ece,
< class 3, if X, is a B, piece, but not the (mi)-th B, -piece

seen so far for any integer 1 >1,

Lclass by if X, is an X-piece,

(b) If X, is the (mi)-th B,-piece seen so far for some integer i >1,
we put x.J into the first fitting bin containing an A-piece in

class 1 if -possible, and put x.J in a new bin of class 1 otherw se.

Anal ysis of RFF. This algorithmcan be inplenented to run in Q(n log n)

. tine, as it essentially perforns a first-fit within each class of bins,

which takes 0(log n) tine for each X, (see [6]).



We shall now analyze the performance ratio of RFF. In general

the resulting packing of a list L has the following structure (Figure 1).

There are three types of bins in class 1. Let Z“_Ll be the set of
class I-bins containing a single A-piece, 212 the set of class |-bins
containing a single B,-piece, and Zl5 the set of class |-bins containing

both an A-piece and a B,-piece. |n class 2, every non-enpty bins

2

contain exactly 2 B -pieces, except possibly for the last one.

1
Let Z, denote the set of all (non-enpty) class 2-bins, |gt ZB

be the set of class T-bins, each clearly containing 2 B,-picces,

except possibly for the last one. The set of class L-bins, denoted

by Z) is sinply the FF-packing of the sublist of L consisting of
the X-pieces. W shall wite [zlll ,\z121 ,|zl5| ’\Zgl’ . . as
217721072159 Zp) > etc.  The nunbers of A-pieces, B, -pieces, B, -pieces,

X-pieces are denoted by a , bl , b2 , and x , respectively.

Ve shall first prove an upper bound on r(RFF) .

Lemma 1. For any list L, RFF(L) <% L*+ 5.

Proof . Clearly,

RFF(L) = a + z.., + z, +z tz) . (1)

Fact 1. Every bin BIN, in ZL , With the possible exception of two

bins, has cont(BIN,) >3/k.

Proof . The set of bins Z, can be regarded as the First-Fit packing
of a list of pieces in (0, 1/3]. Therefore, every bin except the |ast
one has at |east 3 pieces. | f BIN.J is the first bin with

cont(BINJ.) < 3/k, then all the bins following it contains only pieces
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Figure 1. The structure of a packing using RFF. The ordering of bins

and the relative positions of pieces within a bin are not

necessarily represented faithfully.
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greater than 1/4 . This neans all bins follow ng BI N.J , except the

| ast one have contents exceeding 3/4 . O

Fact 1 has often been used in bin packing arguments (see [7, proof
of Theorem2.3]). |Its proof is given here for convenience.

2L 1

Fact 2.z + 25 = Lo/m) . B, = [b,/27 |25 2(1 -a)b2| < 2.

Proof. The first two equations are obvious fromthe algorithm The |ast

_ [ “[
one follows from 23 = 5 (b, - Zy5 - le) . O

Fact 3. a <L .,

Proof . No two A-pieces can be in the sane bin in any packing. 0

We shall find upper bounds on z), and hence on RFF(L) via

formula (1). There are several cases to consider.

Case 1. Z.on = 0.

12
The total contents of class-4 bins is at nost

L*-ia_gbjl_S%bZ' Thus, by Fact 1, we have

2
4 * 1 2 1
ZJ—{»—(:2+§(L —Ea—g‘bl-z—b2> ) (2)
Conbi ning (1) and (2), one obtains
Lo oox 1 8 L
RFF(L)_<_§II+§a+(zg—f5—bl)+(z5-§b2)+2, (3]

Maki ng use of Fact 2, Fact 3, and the fact m<9, we have



Fornula (3) then inplies

RFF(L) < % ¥+ 5
Case 2. Zqn >0 .
Fact 4. In this case, cont(BINi) + cont(BINJ.) > 1 for each BIN, e Z;, .
BINj € Zy, . In particular, cont(BINi) > 3/5 for each BIN, € Zy; -
Proof . Qtherwi se, the A-piece in BIN; should have shared the same bin
with sone B2 -piece during the packing. O
Case 2.1. Z9q > Z1p .
The total sum of all A, Bi—pieces is at |east
z é(z - Z..) 3 g(22 -1)+—:E(22 1
12 +5 V117 %127+ B %13 + 5 % 3 (225 -1)
> 2 7 4 2
> = = — = = -
538752 553 5% T 550
where we have used Fact 4 and the equation Zi = a-zZ From Fact 1
13 '
we obtain
Lo* _ 3 2 7 4 2
z, < 2+ = - = - = - L - = - =
L= 5@ ~ga-g25 50 %1375 % "3 % 1), (1)
Conbi ning (1) and (4), and noticing that %3 > 0 and z. > 0 , we obtain
Lo % L 7 1
- + = L =
RFF(L)SBL 5a+152,12+%23+1+ . (5)

We now make use of Fact 2 to derive from (5)

A L 1 271
RFF(L>§5L+5a+(f8+§6£)b2+5- (6)



1 1 37 1 1 _*
Fact 5. 5&+(B+§65)b2 Sg‘L

Pr oof . In an optimal packing of L , each bin with an A-piece can

contain at nost 1 Bg-piece, and any other bin at mst 2 Bg-Pieces.

* *
Thus b, < a+2(L -a) =2L -a . Therefore

] 1,37 1 1 371 * 1 1 37 1
$-a+ (I8+90m)b25(T5+90m)2L+(§'1'"65)&
As the second term on the R.H.S. i s non-negative and a <__L* , We have
1 1,311 23 37 1 \.* 1%
5a+(1?+90m)b2-<- wotoa)t £ 5L
for m >37/7.0

Formula (6) and Fact 5 lead to RFF(L) < % L*+5.

Case 2.2. le < 212 .

Total sumof all A Bi—pieces is at |east

1 5 2 1
21t 5 b -z) s (er, -1+ 5 (75 -1)

2 1 1 L o
T PR S TR 2, T 5 25 - 1
By Fact 1,
Lo, * )
U2+ 3 (L -B:a_iZlE-%zE-‘5—-22_%25+1) .

[t follows that

RFF(L) = a + 215 5 5+ 2

AN

10



Using Fact 2, we have

% 1 51 1/ 1 1
RIF(L) - < '§L.v+§a+§(?nb2) +§(§(l'm)b2+2)”*
L % 1 1 11
S§L+§a+(1‘8+§a)be+5 ‘ (7)
1 1 11 1 _x
Fact 6. §a+(ﬁ+—2—5>b2_<_311 .

Pr oof . L.H.S. <

il
\O|
+
S—
=

*
+
-
1
N
5 =
—
o

x
Formula (7) and Fact 6 lead to RFF(L) < %L +5 for Case 2.2

This conpletes the proof of Lemma 1. O

Lemma 1 inplies that the performance ratio of RFF does not exceed 5/3 .

W shall show that it is in fact exactly 5/3 .

Theorem 1. r(RFF) =5/3 .

*
Proof . W need only exhibit lists L with arbitrary large L  such that

RFF(L) = % - o(1)

Let 6.J =4 (3+2) for j >1, and n an integer of the form 6k+l
. 1 1 1
for some k > 1 . Defi ne pf=§+8j' uj=H+8j’ tJ.:E-E’aJ. for

1<Jj<n. Consider the list L =I1,L,, where



T t

Ll = (ul, tQ’ tB s 113, th’ t5,..,,ugj_l,t23 D+L7 " U—n_z) tl’l-l’ l’l)

and

Ly = <u2’uh"'. @‘.@. )Pl)PE;.M o “’tl’un>

=

fad

* .
Clearly L =n (Figure 2a). Now, using the easily verified fact that
<u23 1t t23’+t23‘+1) + min{tk,ui} > 1 for every k > 2j+1 and any i |,
the packing resulting from RFF is as shown in Figure 2b. Thus

RFF(L) = %—L* + 0(1) . This -proves the lemma.

12
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L in the proof of Theorem 1.
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Figure 2a
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4., A Lower Bound to r(S) for On-line Al gorithns.

In this section we will show that one cannot expect to find on-line
algorithns as good as, say, FFD, even if an arbitrary amunt of

computation is allowed.
Theorem 2. For any on-line bin packing algorithmsS , r(s) > 3/2,

Pr oof . Let 0 < ¢ < 0.01 be a fixed nunber, and x = % - 2e

1 - . .
y=5—+ S z:%—+e . For any n = 12k (k a -positive integer), define

consists of n x 's, L, consists of

a list 1L = L:LLQL3 , where Ll o
n y's, and 4 consists of n z 's,
Cearly,
* 1 * 1 *
Ll Z n , (Lng) 5 n ., an (ng%) = n .

Gven any on-line algorithmS , let r,(n) = S(Ll)/Lie ,
* *
rg(n) = S(Lng)/(Lng) , andrB(n) = S(LlLELB)/(LlLELB) .\ shall

prove that
max{rl(n),rg(n),ra(n)} > 3/2 ., (8)
This imediately inplies that r(S) > 3/2 and hence the theorem

Consi der the packing of L under algorithmsS . \W shall gather
i nformation about rj(n) (1 <j <3) by examning the resulting packing
configurations at points when jn itens have been assigned.

Consi der the -packing of the first nitens (i.e., Ll). 5
(1 <i < 6) be the nunber of bins containing i pieces of x (Figure %),

then

1k



= 2 .
8(1y) 15156051 (
9)
n = Z 1
1<i<6 *
"2 YYD
S H P D
x x _/_/_ ? /
X X X X , %
Oé6 055 OCJ+ 315 Oég Oél

Figure 3. The packing of Ly by § .

Next we exam ne the configuration after 2n itens are packed (i.e.,
L, L, has been assigned), A bin is called type (i,2) if there are i x's

L

and £ y's in the bin. TLet Bl s 52 5 oci 5 oci 5 oci" R océ 5 ocg R océ” B
g ocg » & . o be the nunber of bins of type (0,1) , (0,2) , (1,0) ,
(L,1) , (L,2), (2,0) , (2,1) , (&2) , (3,0), (3,1), (4,0), (%1),

respectively (see Figure 4). Cearly,

15



rocl = rap
052=Oéé+og'2'+o¢5',
(10)
-y
Oéu= (Xh'f‘aﬂ

“}\{\ \\\\ S \\\ \\\\ \\: NN Q 's \\\ §\ \\ ~ \
TN TN ENNDNNNR
N N RN N
dEHEEHE NIRESENEERN
X X X X X X v d & \ \\
X X X X X X X X -; Y y §
— ¥ y
%g oc5 O‘ﬂ oy o%' o% ol o O‘_é oy ol o By By
R e U ) U b
- o, Uy o, Oty

Figure L.  The packing of L L, by S .

1

It is easy to see that the only other possible types are (6,0) and (5,0)

and there are respectively % and a5 such bins. The analogue of (9)is

S(L:LL2> - (a]‘_+a§_+a']‘_‘>+ (aé+ag+q5'>+ (O%*‘O%)“‘ (aa+oah)+oc5+oc6+gl+52 >

" 1 " A " " ‘
n = (ocl+2al )+ <062+2062 >+o¢5+au+ 3l+252 s 1)

16



where the second equation counts the nunber of y's.

A lower bound to S(L1L2L5) can be obtained by observing that no
z-piece can go into a bin of type (1,2 ) , (2,1) , (2,2) , (3,1) , (4,0) ,
(4,1) ,(5,0) , (6,0) , or (0,2) , and that no two z-pieces can occupy

the same bin. Thus

1"y 1" m 1" 1 "
S(LlLe%)2a1+a2+a2+O‘5+O‘h+au+a5+a6+32+n‘ (12)

We now define a new set of variables:
ol

2 =l o+ gn2

< A o=ag A,y (13)

- at o+ ot + ol
&), D 3 L

Maki ng use of (10) and the positivity of all quantities involved, we

obtain from (9), (11) and (12) the follow ng constraints.

( S(L) = G + & + &+ +3 |
{ (9)
. n_<ocl+2042+3045+hoch +6o¢6
_

S(LlLe)zO‘l+a2+o%+(xh+a6+51+52

(1)
C no= oy + 2 * O, t Byt 2B
and
S(LlLELZ.) > o, + &h+ 546 * Bytn o (12)!

17



In terms of ri(n) > the above systems can be rewritten as follows.

%n'rl(n) = &l+ &2 + 555 + &u + &6

%n-rg(n) = 0y + 552+ &3+ &h+ &6+Bl+ By
'< n-rB(n) > &2 + &h + &6 + By +n (1)
L -n = - dl - 2&2 - &h - By - 28, .

We are now ready to prove (8). 1If (8) is not true, then we have

-

1 1
rn > gn-rl(n) s
1
< %n > —§n-r2(n) , (15)
% n > n - r; (n) .
.
Now adding up all the equations in (14) and (15), we obtain
0o > %5&1 + 22“-663 » a contradiction. This completes the proof of (8),

and hence Theorem 2. ]

18



5. The Technique of e-Inprovement.

G ven several sinple heuristic algorithnms in an optimzation problem
a practical nmethod to obtain a good solution is to run each algorithm and
then select the best solution produced. For exanple, in the traveling
sal esman problem one may produce tours using several heuristic algorithms
(see, e.g. [10]) and select the shortest tour. It is hoped that the
quality of solution obtained will be nuch better than using a single
fixed algorithm Inplicitly, the success of this idea depends on the
hypothesis that different algorithns "favor"™ different regions in the
input space. An interesting research area, so far not nuch explored
Is to analyze the performance (worst case or average case) of such
"conpound-al gorithms".  Trying to obtain a better heuristic algorithm
than FFD, one possibility is to try such conpound al gorithms.

There are two difficulties in a direct approach, however. Firstly
there are many algorithnms sharing the sane worst-case input (e.g. the
al nost-any-fit algorithnms in [5][6]). This elimnates sonme natura
conpound al gorithms (running FFD and BFD will not inprove the worst-case
bound). Secondly, the ratio 11/9 = 1.22... is very close to 1, and
the analysis has to be rather -precise to beat this bound. As the analysis
for a relatively sinple FFD is already conplicated, it is likely to be

hard to analyze nore sophisticated algorithns. W will circunvent these

difficulties by focusing on a specific goal -- to find an algorithmwith
bound %% - ¢ for any -positive c.

The idea is to locate the part of input space for which FFD may
realize its worst-case performance. |f the characterization is sinple
enough, we may be able to design a heuristic algorithm S that has a

better -performance in this bad region. The conpound-al gorithm of FFD

19



and S then has a bound better than i1 e . It turns out that, for

9
many bin-packing algorithms, one can give sinple descriptions of snall
regions covering all the "bad" inputs, as a result of the weight-function
type argunment used. Thus the bin-packing problem provides an ideal
opportunity to try out this idea of "e-inprovement".

In this section, we shall illustrate the idea by proving a sinpler
result about FFD.  Consider the restricted problem of bin packing, in
which each nunber in list L is in the range (0, 1/2]1. It is known [7]
that FFD has a -performance ratio 71/60 for this restricted -problem W

shal | show that there is a better heuristic algorithm

We first state a useful |emm.

Lemma 2. Let ~, N, u, v be constants such that 0 < A < < 1,
w o> (1_>\)"l , and v >1, Suppose there is a bin-packing algorithmsS
with running time O(p(n)) such that, for any list L consisting of
nunbers in (MA'], S(L) < ML*+ vy . If -p(n) is a non-decreasing
function of n, then there is an algorithmg' with running tine
O(p(n) + n log n) such that s'(1) < ML*+ vy for any list L consisting

of numbers in (o,N'] .

Proof. ~ Gven an arbitrary list L, the algorithms' works as follows.

In Q(n) time, one divides the itens into two lists L, and L, consi sting
of nunbers in (nA'] and (0,A] , respectively, The algorithmS is
applied to L, to produce a packing using, say Ny bins.  One finishes

the packing by -performing a first-fit algorithmon |ist L, » The algorithm

clearly works in time o(p(n) + nlog n) . W now show that
S (L) < M.L*+ v . By assunption, m < M.L; fv. 1ES(L <np

20



*

then the result follows inmediately since L <L, If S(L) >

l 1
then in the final packing, all except possibly the last bin nust have

content greater than 1-~ . This inplies that L*_> (1-M)(s' (L)-1) ,

L

* *
l_}\.L'*‘lSpJL“F\). O

and hence s'(L) <

The above line of argunent appears often in bin-packing ana]ysis
(e.g. [7, Lemma 3.3]).
The rest of this section is devoted to proving the followng result,

based on the general idea outlined earlier.

Theorem3. Let ¢ = 1070 There is an Qn log n) -tine algorithm$S
for bin-packing such that, if a list L has all numbers in (o, 1/2],

then S(L) < (% e) AT

Let »=1/7, A =1/, 4 =71/60 -¢, and v =5 . BylLenm2,
we need only prove the theorem assuming that the lists | have all nunbers
in (1/7 , 1/2] . For the rest of this section, we restrict ourselves to

such lists, although sone statenents also apply to general lists. The first

step is to locate the "bad" input lists.

A Review of the Proof for FFD(L) < 76% L* + 5.

The proof [5][7] proceeds by defining a function WS) > 0 for any
finite set S of nunbers in (0, 1/2] , such that the follow ng properties

are satisfied.

1

Property Al. Wis subadditive -- \/\(L_J si) < ‘IZ w(si) .

Property A2. If all elements in L arein (I/N 1/21, N>4, then

WL) > FFD(L) -N+2 .

21



Property A3. I[f s = {xpp%5 e0usx Jwith x; € (1/7 , 1/2] and

2 x. <1, then
T

w(s) < 71/60

Let X, be the i-th binin an optiml packing of L . properties
Al- A3 inply the desired result

*

FFD(L) - 5 < WL) < ZW(X.) < & 1 16
- i. 1 — 86 ( )
A Strengthened Analysis,
V¢ have seen from (16) that,
*
FFD(L) < % L + 5, (17

Notice that we would obtain a bound better than (17), except in the case
when alnost all X, have W(x,) = 71/60 . Actually, WX ) = 71/60
1

.

only under very special conditions.

Definition. A nunber X.J in Lis called an A, B, C, D, E, or
F-piece if x, isin 1/2,1], (1/3, 1/2) , (1/%,1/3], (1/5, /4],
(1/6,1/51 , or (1/7 » 1/6] . W& shall use notations such as S = {cCDE)
to express the situation S = {xl,xg,)%,xh} with x5 %, , X5 0 X))
beinga C, C, D, and E-piece, respectively. |, 3 packing, a bin
containing a set {ccpE} will be called a CCDE-bin. The notation

general i zes obviously to other configurations.
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Property #5'. [5] [7]. If S = {x,x,..0ox } With x, e (1/7,1/2],

and in< 1, then
.i -

w(s) < 7T1/60 , if S = {BBEF} or {CDEEE} |,
and

w(s) < 7/6 ,  otherwise.

A strengthened form of (17) can now be derived as follows. |Let

*

be an optimal packing of L , and xi the i-th binin P (1 <i <1).

Assume that there are « bins in P* of the form {BBEFlor (cpEEg} .

Lemma 3. If a < (1- 60e)L* , then FFD(L) < %- E)L* 5.
Proof . From Properties Al, A2, and A3', we have
71 7 *
FFD(L) -5 < W(L) < Ziw(xi) S etg (L -a)
Therefore,

FFD(L)S% L* +31505+5
_7_]___ *
5(60 E)L +5 . O

Ve shall call alist L severe, if in every optimal packing P* or 1.,
there are nore than (1-6OG)L* bins of the form {BBEF} or ({CDEEE]} .
Lenma 3 states that, if a list L is not severe, then the packing produced
by FFD has a bound at nost % - e, strictly less than 71/60 , This
concl udes the step of identifying "vad" lists, W can finish the pr oof

of Theorem3, if we can design a heuristic algorithm$S such that

s(L) < %— e)L* + 5 for all severe lists L . W shall presently

25



give an algorithm Mwith running time Q'n log n) , and prove that

S = Mhas the desired property.

Al gorithm M
Step 1. Sort the input list L ; |et (bl§b2< ® e , (cl§c2< ® ¢o) ,
(@ ca,<_® 00) , (e <ey <. ) and (f,<fg.. ) be

the sublists of B-pieces, G pieces, D pieces, E-pieces, gpqg
F-pieces, respectively.
Step 2. For j =1,2,..., put {c., d. i
_L J 2 p { —wJ’ J’GBJ_E’eBJ—l,e5J-3 IntO BIN.J,
as long as such a set can fit into one bin and enough pieces are
available. [We shall abbreviate the latter clause bel ow as
"as long as it is feasible",] Assume that msuch bins are forned.
Step 3. ] = 1L,2,... i
Step . For ] = L2 PUL Lo oo s Caini 1 2 Samny ) intO
BI Nij , as long as there are enough pieces available. Assune
that k such bins are fornmed. [Note that a set {CDEE} has
11,1 .1 S .
sum < STt 5tE < 1, and thus can always fit into a bin.
Step 4.  Suppose there are h F-pieces. For i = 1,2,..., put
o1 Poy0 F55 By 53 into Bl Nka+j as long as it is feasible.
Assune that g such bins are forned.
Step 5. | = '
p> For | = 1,2 , put {b2q+2tj—l’ b2q+gj, Smiokijd N0

BI'N , as long as it is feasible. Assume that 4 such

mk +0+j
bins are forned.

Step 6. Pack the remaining E-pieces and F-pieces, respectively, by thenselves
into new bins using first-fit. et p be the nunber of bins
formed this way.

Step 7. Pack all the renaining pieces by themselves into new bins using

first-fit. Suppose t new bins are used.

End of Algorithm M
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Figure 5 shows a packing produced by Al gorithm M

/S 7 _/z 7 Z s // .
- Y7
17 |12 E | B OZ
E E F E E F
— — F
E E_. B B = F
D D E F
C C B B B 13
——— S —
m k q i P t

Figure 5.  The packing produced by A gorithm M

Anal ysis of Algorithm M

It is easy to inplement M so that it runs in Qn log n) tine.
To conplete the proof of Theorem3, it remains to prove the follow ng

result.

lemma L, If L is severe, then ML) < (%—e L 45,

Proof . Let P be an optimal packing of L . Assune that there are

in P B bins of the type {BBEF} and y bins of the type {CDEEE} .

As L is severe, we have
B o+ y > (1-606)L . (18)
We wish to find bounds on the various terns in

M(L) = m+k+ g+ fg+p+t . (19)
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In Step 2, for 1<j <|7/5],

c., +d

. . te, . . . < the (55-4%)-th smal | est nt ent
3 5 T332 + %55.1 + 855 S (53-4)-th s est conte

in all CDEEE-bins in P* .
Thus, at least |»/5) bins are formed in this step, i.e.,

moo > /50 . (20)

Bounds on mtk can be obtained by considering the total available

CD-pairs. This gives
*
y + 60elL x3 > mtk >y . (21)

In the last formula, the term 60€L*x5 is an upper bound on the nunber

of Cpieces not contained in CDEEE-bins. In Step 4, for 1 < < |B/3],

b23‘—l + sz +Jf + fh-j < the (3j-2)-nd smal | est content

in all BBEF-bins in P* .

Therefore,

a > LB/3] . (22)

By considering the nunber of all F-pieces, we find the follow ng upper
bound on q ,

g- + 60eL x3 > a . (23)

To derive bounds on s, we first observe that each B-piece in a BBEF-bin
. . 1 1 1 5 b

(in P*)is less than 1 -5-7-7 =15 - For any two such B-pieces,
one can add any E-piece to forma BBE-bin. Thus, a |lower bound to ¢is
the mninum of (#B)/2 and #& , where #B and #: are the nunbers of
such B-pieces and any E-pieces, respectively, at the start of Step 5. As

#B > 28-2q , and #E > (B+3y) -3(mtk) > B-BhOeL* usi ng (21), we

obt ai n
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IS B-q-BMOeL*- (21)
The total nunber of B-pieces available gives an upper bound,

*
B - q+ 60eL > 0. (25)

Ve will now estimate p and t by calculating the number of various
-pieces not contained in the first mtktgt¢ bins.  The total nunber of
B-pieces in L is at nost 2g+ (60eL*x2) ; by (2k4), at least 2(p - BLOEL*)
of themare in the first mtk+tqt¢ bins. Thus, denoting by N[Y] the

nunber of Y-pieces in the last p+t bins, we have

N[B] < 1200eL’ . (26)
Simlarly, one can show that

N C < 180eL” | on

N[D] < o2Loel” (28)
Al so one has, using (22),

N[F] <zp8 + 360l + 2 . (29)

\N| -

The nunber N[E] satisfies
N[E] < (B+37+300cL’) - (3m+2k+ 1) . (30)

Now, using(20),(21),(23), and (2%), one has

1]

3m+ 2k+ 7 mt 2(mtk) + ¢

*
LZJ + 2y + 5 - 720eL
1
5

From (30) and (31), we have

1 4 *
N[E] < 5B+ =7t 1020eL + 1 . (%32)
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W can now estimate p and t . Using (29) and (32)
pg%N[EM%N[F]+2§%5+%y+e6heL*+5. (33)
From (26) - (28),
t <W[B] + NNC] + N[D] < 1620eL” . (34)

Making use of (21), (25), (33), (34)in (19), we obtain

M(L) < %—a+%y + 21kel” + 3.

*
As g+y <L , we have

M(L) < (%9 + glghe)L* + 3,

Qbserving that %9 + 212ke < - e, we have finally,

=

M(L) < %—e)L*+5
This proves Lemma k4.

The proof of Theorem 3 is now conplete. |
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6. A Polynomial-time Al gorithm Better Than FFD.

This section is devoted to proving the followng result.

Theorem k. Let e = 1072 . There is a pol ynom al -time heuristic

al gorithm RFFD for bin-packing such that, for any list ¢,

RFFD(L) < (%-e)L*+8

W shall use the notations ¢ = 10'9 , & = 5x10"5 s M= 1o'h,

and ?\:l—(%—e>_l. Cearly, e:%-sn and 0 < A < 2/11 .
Al though nore conplicated, the proof of Theoreml follows the same

pattern as that of Theorem3. By Lemma 2, it suffices to show the

theorem considering only lists L with all elements in (N1] . W will

first prove that, for all such lists, except those of a special type,

FFD produces a packing within the desired 91—1 - ¢ bound. W then construct
a heuristic algorithm EPSI that performs well (bel 0W9-li -¢) for the
exceptional "critical" lists. The conpound-al gorithm S of FFD and £pst
clearly satisfies S(L) < (% - ¢ )L* + 8 for any list with elenents

in (n,1] , conpleting the argunent.

A Review of the 11/9 Bound for FFD.

V¢ review bel ow the proof of [5][7] for FFD(L)_<_—19i L* + L, if L

obeys the follow ng Assunptions 1 and 2. As Assunption 1 can be justified

by Lemma 2, and it can be shown directly [5, p. 277, Reduction 2] that
6 *
5

any list L violating Assunption 2 has rFD(L) < =z L + 1, this would

11 * B

prove FFD(L) < §L + 4 for any list L .

Assunption 1. Let L be a list of numbers in (2/11,1] .
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Let P be any optimal packing, and Py t he packing produced by Frp.
Ve use x, to demote the i-th binin ¥, 1<i<1*. |nany packing,

a bin containing an A-piece is called an A-bin, otherwise it is a non-A bin.

The nunber of A-bins in any packing of | js equal to the nunber of
A-pieces in L, which we shall denote as la| - Let

F = (X | xeL , xisinamnon-Abininezey.

Assunption 2. % contains at |east a G piece or a D-piece.

Let the function Whe defined as in Section 5. The analysis

proceeds to define two functions f and g , based on P, and P

f: L -2% and g: L - rational numbers.

For any subset Tc L, we wite f(T) for 2, f(x:l) , and g(T)
X, € T
for 2 g(x;) . The definitions of f and g are conplicated ([5]),
X, ¢T
1

and were shown to possess the following properties.

Property Bl.7=u f(x) , [a] > T e

xel, xeL

Property B2. w(f(xi)) + g(Xi) < % (y(x,) g(Xi)) A N

1

wher e

o , if X is an A-hin,

1

1, ot her wi se.

Al'so, the following are true from properties of W (see Properties Al and A2).

Property B3. w(u £(x) . < % W(E(x))

XeL XeL

Property Bi.  W(%) > FFD(L) - |AL| -4
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Sunmm ng over X in the fornmula of Property B2, and using

Properties Bl, B3 and Bk, one obtains  FFD(L) < % L+ , for any
l'ist under Assunptions 1 and 2.
The above is an outline of proof for the bound 11/9 . For our

purpose, a strengthened analysis for FFD is needed.

A Strengt hened FFD Anal ysi s.

W shall work under a weaker form of Assunption 1.

Assunption 1'. Let L be a list of nunbers in (»1] .

Let Pr P* X o, and W have the sane neaning as before, W
shall say a bin X, in P* s regular, if X.1 is not of one of the
followng configurations: an A-bin with 3 pieces, BBC, BCC, CCCD,
or CCDD . Oherw se X, is irregular.

For any list L satisfying Assunption 1' and Assunption 2, one can

define f and g such that the follow ng properties are true, in addition

to Properties Bl-BL.

Property B5.  W(f (Xi))+ g(Xi) < (% - 6>(y(Xi)+g(Xi)) , if X; is

regul ar.

Property B6. | f X; is a regular A-bin, then g(:)L(H.)E 1/3 .

The proofs of Properties Bl-B6 under Assunptions 1' and 2 follow
closely the original analysis [5]. A description of the necessary
modi fications is given in the Appendix.

W can now give a characterization of lists L for which FFD nmay

have a bad performance.
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Theorem 5. Let L be a list satisfying Assunption 1', and P* an

* .
optimal packing of L . If there are more than n~ regular bins

in P*, then FFD(L) < (%— e)L*Jru .

Proof . If Assunption 2 is not true for L, it can be shown [5, p. 277,

*
Reduction 3] that FFD(L) < gﬁ_ + 1, and the theoremis true. W can
therefore suppose that Assunption 2 holds.

Take the fornulas in Properties 32, B5, and sumover &l X,

W have

T o))+ e(L) < T DEE) + e))-s I ) +ex))

9
al | X5 al | X5 regul ar

X,
i

Using Properties Bl, B3, and B, we see that the left hand side of

(35) is at |east,
LHS > Fm(n) - |a| -4+ g(L)

Now, to estimate the right hand side of (35), we note that

> (y(X. X)) = L - |a| + L
. Xiy ;) + e(x) lal + g(L)

Al'so, because of Property B6 and the fact that there are at least T/L*

regul ar bins X, o, e have

2 (y((Xi)+g(Xi)>) > (# of regular non-A bins) + % ((# of regular A-bins)
regul ar
X3
> % (# of regular Xi)
1 %
23 M

32
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From (37) and (38), the right hand side of (35) is at nost
11, % 1 *
R H S g—é—(L -lAL|+g(|_))—6—§ﬂL ) (39)
Formul as (35), (36), and (39) lead to
{11 1 \ ¥ 2 .
FFD(L) < k—9— - géﬂ)L - g Uagl -g(b)) L.

Noting that ¢ =

Vi

87 and that |A [ -g(L) > 0 by Property Bl, the

theorem follows. O

The EPSI Al gorithns.

For the rest of Section 6, all lists are assumed to satisfy Assumption 1'.

W shall describe a famly of algorithns EPSI[Oél,ag,aB,ah,Oés,51,52,71,72]

Wi th non-negative integer paraneters Qg,%,s...,7, . Gven alist L with
n items, we perform EPSI[Oél,oag,...,yE] on L for each possible

0 < 00 eeasyy S0, and pick the best packing. W call this procedure
the EPSI algorithm It will be seen that each EPSI[Ozl,Oce,...,yg] wor ks
in Qn log n) tine, thus EPSI works in tine O(nlolog n .

Ve call a list L of type (a,a,,...,7,) if there is an optinal

packing of L with ., 75 bins of type ACD, ADD, ADE, AEE, ACE,

2,.-
BBC, BCC, CCD, CCDD, respectively. Note that a list can be of several

types. A list L is critical, if it is of sone type (al’o‘z”"’72)

With aj+a,+ ® 42 > (0L . The ai mof EPSI[oy,0,,..0,7,] 1S tO
11

produce a packing using less than < - ¢ tinmes the mninum bins needed,

for any critical list of type (Oél,ocg,...,yg) . This ensures that EPSI

has a bound better than %- e for any critical list, Together with

Theorem 5, which ensures a 1—91- - ¢ bound for non-critical lists, it
conpl etes the proof of Theorem L as stated at the beginning of this section.
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Gven a list L, and paraneters « we shall presently

1,062,...,72 )
describe the action of EPSI[Oél,OéE,...,VE] .
cannot be acconplished, it is understood that the packing of list L may
then proceed arbitrarily.

Firstly, L is sorted in ascending order, Then we pack various

pieces into four classes of bins according to the follow ng rules.

Let al<_a2§a3§... s bl§b2§b5<._. ca eSS
be the lists of A-pieces, B-pieces, Cpieces, . . . , etc.
Step 1. Gass [-bins:  First put (b 03-1" 23} into Bl N.J,

1< <8+ LBy/2).Then, for § = 1L,2,...,8,/2], put
the largest available fitting Cpiece into BIN

Step 2. Cass 2-bins: Let ¢y ¢l <. be the remaining C pieces,

Put {c] }1ntoBIN,l§j§71.F0r

33-2 7 %53-17 %3
] =l,2,.‘,.L71/3_j, put the largest fitting D-piece into

Bl I\j .
Step 3. Cl ass 3-bins:

(a) Let da! < a4l < be the remaining D pieces. Define

jLay <.
m= /2] +a/2). For 1 <j <m, put {dEJ 17955

into BI NJ, . Then, for j =1,2,...,m, put the |argest

fitting a; Into BIN.J

(b) Define n' = ocl+o¢2+o¢5+och+oz5 -m Let

If any of the described steps

af <ay < ... <ay<... bethe list of A-pieces remaining.

Put a total of [a, /27 * 0 Cpieces, [ /27 +a, D-pieces,

3

and ® E-pieces into BIN .4 1O BIN , .,
each bin. Now, put a! into BINm+i , for 1 <i <m

Step k. Cass k-bins: For each YE {4, B,C,D,E}, pack all the Y-pieces
first-fit by themselves.

3h

one piece in



& need sone prelimnary results before analyzing EPSI.

Definition. Let Y = (yl,yg,...,ym) and Z = (zl,zg,...,zp) be two

lists of real nunbers. The Cartesian product of Y and Z is

YxZ= {(yi,zj) |1<i<m, 1<j<p}. Apartial mtch between Y
and Z is a subset & ¢ Yxz such that (1) vyt zjglfor al |
(yi,zj)e@ , and (ii) any two distinct (yi,zj) and (yi,,zj,)
ing have i #i'and j # j'. Let ¢(¥,2) denote the maxi num

possible size of |g| . A partial match & is a maxinum partial match,

if |e| =y¢(¥,z) . For any partial match s between Y and Z , the
range 7 is the multiset {zj | (yi,zj) ¢ g for some y, e¥}. (Thus,

|2,] = 2] ). Let 2 = Z-Z,

The follow ng procedure clearly generates a partial match,

Al gorithm PM(Y,2):
Sort Yintoy, <y, <... . <y, sort Zintoz <z, <. . . <z

P
keep the elements of Zin an array T (T[i] Z 1<i <p);

for i :=1 until mdo
begin Search T[k] , T(k-1] , . . . to find the largest j < k satisfying
Vet zj <1,; if j does not exist, halt;

8 < 3U {(yi,zj)};
K ej-l;
end

END of Al gorithm PM
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Lenma 5. Al gorithm PM(Y,z) works in time Q(n log n) , where

n=|v|+|z|. Furthernore, the partial match & generated is a maximm

partial match between Y and Z .

Proof . The Q(n log n) -time bound is obvious. To prove the other

assertion, suppose PM(Y,Z) sorts Y and Z into Vi SV, < <_ym

and z, < Zp S eee S o2, andpr oduces 3 = {(yl,zil), (yg,zig), . oo (ys,zis)} @

N S
Clearly1l >0 >

Now assunme that there exists a partial match
o' = (Vs 92 )5 (Vs 5 2 )5 e e (¥. 52y )3Witht>s . ye will show
o R Iy By,
that it leads to a contradiction, Wth no |oss of generality, assume

eeoe

t hat 3y <Jdp <. . . <Jy. This inplies that v, < 331 yging,

etc., and therefore &" = ((yl,zkl), (yg,zkg),.,., (yt,zkt)}

is also a partial match, A nonent's thought reveals that

5" = {(yl, Zkﬁ>, (yg’zké)""’(yt’zk{>} nust also be a partial match,

wher e k] > ki~ ... >Xp is the sorted sequence of (kl,kg,, k)

Based on the description of PM, a sinple induction argument gives

>k, L2k, ..., i >k's . But this inplies that PM should

N

have found a Z., wWth z. is a candidate).

i <1
s+l

+
I

s+l st+1

This is a contradiction. J

Definition. Let X and Y be two multisets of real nunbers. W say

that X is domnated by Y if the i-th smallest element in X is no
greater than the i-th smallest element in Y, for a11 1 <i < x| <|y|.
Alist X is donminated by a list v jf the corresponding nultisets X

and Y satisfy this relation.
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Lemma 6. Let X, v and z be finite lists with X domnated by v .

Then

(2) y(2) >_min{|x|, y(x,2)} ,

(b) Let & be a partial match generated by mM(X,z) , and g' any
partial match between Y and Z with |&' | = |8| . Then Z

¢

is doninated by Z@,

Pr oof . Let the sorted lists of X, Y, Zbex <x2<. .. <x ,

Vi SV, S eee SV, 7 < z2 <. . . < 7 respectively.

(a) ILet {(yl, Z, )s (yg,z )y (y,z )} be the maximum -partial match
1 2 s

generated by PMY, Z) (Lemma 5). Let /¢ = min{ |X|, s}.Then

{(Xl’zil>’(x2’z Vree(x 2725 )} is a-partial match between ¥
1

o
and Z, as xs <y. by assunption. This -proves

J
y (X, 2) > min{ lX] , y (Y5 2) )
(b) Let ¢ = {(Xl’zil>’(x2’zi2>’""<X£’Zi£)} with il >i >0 > iz,
and é‘ = {(le)Z ); (ng,zkg>,...,<yj2,zkf>} \Mth Jl< 32 <. . . X< JE,

As in the proof of Lemma 5, it can be shown that

5" = {(Xl,zki),(xg,zké),. " (xf,zk‘)} is a partial match between
g

X and Z , when go>kl>L > kk Is the sorted sequence of
(kl, 2,,,.,1{2) . A sinple induction argunment then shows that

i > k! i, >k, . This inplies that, for each

l,l 2;---)2

l1<as<ro, [ig|lig>all >[{& | X >aq}|. Hence, we have

Fact 7. Foreach 1 <g <p, |[{i |i,<a}|<|fk |k <a}
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Now the multisets Z@ and Z@, are obtained from Z by deleting

(z. ,z. ,...,zi) and <Zk2;2k' ,...,zki), respectively. Wite

Y4 7-1 1 -1
7. = {7 32 ceenrZ 1 and Z_, = {z_,2_ ,...,z 1, where
] ul ug uC 4] vl V2 vc
< . <...< )
uy < u, <u, and v, <V, vC Then, for each 1 <s<c,

u = s+|{:?_t}it Sus}l, and (# of vbf_us)=us-|{ké|k%§us}i.

Using Fact 7, we have for each 1 <s <c,

(# of v, <u)<u -[{i,|i <ul|l=s,and thus v, >u . W have

b
shown that =z <z~ for each 1 <s <c, conpleting the proof that
S- S
ZQ is dominated by Z@, 0

V¢ now anal yze the algorithm EPSI.

Lenmma 1. For a list L of type (041:052)'-"72> , every step of

EPSI[OCl,Otg,...,yg] can be carried out.

Proof . Let P Dbe an optimal packing of L wth a A 053 > 9

By 2 Po 7 71 5 Y2 bins of types ACD, ADD, ADE , AEE , BBC , BCC,

CCCD , CCDD, respectively.

(i) Step 1 can be done.

As there are enough (251+ B,) B pieces in L, we need only show that
the procedure can put | B,/2] C-pieces into class-1 bins. W define the
following nultisets: X = fo,5 7Py |1 <3<ip/21Y,

v, = {o'+b" | (b',b",c} is a BBGbin in p¥y,

Y={y|yis the (2j-1) -st snmallest of Y for sone 1< j < Lfsl/z_; 1,
and Z = fall Cpieces inL}. As bej-1+ij is no greater than the
(2j-1) -st elenment in Y s it follows that X is domnated by Y. A so
y(Y,2) . LBl/EJ . It follows fromLemm 6(a) that y(X,2) = le/z_] = |x].

As Step 1 is essentially the execution of PM(X,Z), that it can be acconplished
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s guaranteed by Lemma 5. Finally we notice an inportant property

follow ng from Lemma 6(b).

Let &' be the partial match between Y and Z , defined by

f(b'+b", c) | fo',b",c} has the (2j-1) -st smallest b'+b" anong

BBG-bins in P for some 1<j<|p/21). According to Lemma 6(b),
Z@ , the set of remaining G pieces O is domnated by 'ZQ,
It follows that the set of the first 571 pi eces in ciScé<; . . s

dom nated by the set of 574 C-pieces in the CCCD-bins in P .

(ii) Step 2 can be carried out.

By the preceding remark, we have for 1 < j_< Lyl/BJ :

t + o + et 1 - -
3 pt 3517 Czy (S MO greater than the (3j-2) -nd snallest elenent

of the multiset {c+c'+c" | {c,e',c",d} is a CCCD-bin in P*} . An

argument simlar to that in (i) shows that Step 2 can be acconplished

as specified, and that the first ay 2062+oa5 in the remaining D pieces

dj <df <.*. are domnated by the set of D-pieces in the ACD, ADD

and ADE-bins in P*.

(iii) Step 3 can be carried out.

Step 3(a): The preceding statement inplies that, for 1 <j <m,

9p5-17 Uy

fe+d|{c,d,a} is an ACD-bin in P*}U {a+ a'| {a,d,d'} is

< the (2j-1) -st smallest in the multiset

an ADD-bin in P*}. As in (i) and (ii), this fact together
with Lenmas 5 and 6 can be used to prove that Step 3(a) can
be done.

Step 3 (b) : As each A-piece in an ACD, ADD, ADE, AEE, or ACE-bin is less
than 1 --é- -% = %-, there are at |east ocl+052+oc5+och+og5
A-pieces in L that are less than 2/3 . At nost m of

these A-pieces are packed in Step 3(a). Therefore,
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81'3% e aI'n'SQ/B' Si nce each a} can fit with any
C-piece (or D-piece, or E-piece) in a bin, Step 3(v) can be
done provided the specified nunber of C, D, E-pieces exist.

This latter fact can be easily verified.

(iv) Step 4 can always be done.

This proves Lemma 7. O

Lemma 8. Let L be a critical list satisfying Assunption 1' and of type
(O‘yo‘gh-ﬂg) , and NL t he nunber of bins used by EPSI[ocl,ocg,...,ye]
on L . Then

p

*X
N < (§+5n)L + 8.

Proof . To begin with, we note that

NL = al+a2+o¢3+ah+a5+ Byt LBE/E_] Yt (# of class k-pins). (40)

V¢ now bound the nunber of class L-bins. The total nunber of GC pieces
inLis at nost ocl+oc5+51+252+5yl+9y2+5m* . As there are

chl/E'HozS + L51/2_| +37, C-picces in class 1-% bins, the nunber of GC pieces
packed in class k-bins is at nost LOCl/Q_{ +py/20+ 252+272+5TWL* .

A simlar counting gives the follow ng upper bounds on the nunbers of

A-pieces, B-pieces, . . . in class L-bins,

N A

#B < oM + 1,

r

SR N
.——-._\‘

. *
#0S3ML v Lo /o) + Tpy /21 + 2p, 2y, (k1)

4

Kon sna

| #D < hﬂL*+ 1 + FO&Q/QT +r §y11+272,
|

o #E<5nL*+o¢3+ah+(x
>
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Cearly,
# of class L-bi <#A+£(B)+l(#0)+l(#D)+£ 5 I
~bins < 5 ¢ 3 T\ 5 (#48) + 2 . (k2)

From (40), (41), and (42), we obtain

N < fo +2a +g(+oc+oc)+7( B +y. + )+5Lk8 en
L S gH TRt KT T g By TBTY Y, i : 3)

As L >0 Gty W obtain from (43),

* *
N. < zL +5ML +8 . a

6
L p)

Lemma 9. The al gorithm EPSI[Oél,Oég,...,yQ] can be inplenented to run

intim Qnlogn) for list L with n nunbers and paraneters

Oﬁl,Oée,...,'fe S n .

Proof . Steps 1, 2, and 3 (a) are executions of algorithmPM, which
runs in tine Qnlogn) . The other steps involve sorting and first-fit,

and all can be done in Q(n log n) tinme. O

Theorem 6. The algorithm EPSI runs in polynomal tine. For any critical
list L satisfying Assunption 1', EPSI(L) < (%— e)L*+8 .

Proof . From Lenma 9 and the definition of EPsI, the algorithmruns in
o(n10 log n) time. The rest of the theorem follows from the definition
of EPSI, Lemma 8, and the fact -56—+ 5n < 1—91- -e. O

Theorem 5 and Theorem 6 inply Theoremk, hence the existence of a

heuristic better than FFD.
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7. How Vell Can An Q'n) -tinme A gorithm Perforn®

V¢ have shown that 11/9 is not the limt on the performance ratio
of polynomal-time bin packing algorithns. A nost interesting open
question is whether there exists such a linit tor(S) . Carey and
Johnson [3] showed that, unless P = NP , no polynonm al heuristic
algorithm for graph coloring can guarantee to use less than twice the
m ni mum nunber of colors needed. A simlar result for bin packing woul d
be especially interesting, since the known achievable bound on the
performance ratio is already close to 1 . A nore nodest question along
this line was raised in [7], namely, how well can an Q(n) -tine algorithm
perforn? A natural conputation model is the decision tree nodel, counting
only branching operations [6][9]. It would be interesting to prove the
existence of an < >0 such that, for any Qn) -time bin packing
algorithm S , one nust have r(S) > 1+e . W have not succeeded in
proving such an assertion. However, a result of this spirit can be shown
for a closely related problem and it may throw some light on the present
bi n packing problem

Consi der the generalized bin packing problem discussed in [2]. Let

L= (:E’l,k’g,...,in) beal i st of d-dinensional vectors (d > 1) , with
each conponent of the vectors in the intervals (0,11 . The problemis
to pack these vectors into a mninmum nunber of bins, such that the sum ¥
of vectors in any bin has v, <1 for a1l 1<i<d. (Wen d=1,
this is just the bin-packing problemwe have discussed,) The problemis
clearly NP-conplete for any fixed 4 >1 . For any heuristic algorithm
let r(S) denote the performance ratio as before. A sinple extension S

of the Q(n) -tinme Next-Fit Algorithm[5][¢] gives r(S) =2d . W are

interested in a universal |ower bound to r(S) for any Q(n) -time algorithm
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VW consider the following decision tree nodel. Let S be an
algorithmfor the generalized d-dinensional bin packing. For each

—

n>0the action of S on lists of nitens L = (;’Zl,xg,. , .,i’n)
can be represented by a ternary tree Tn(s) . Each internal node of
Tn(S) contains a test " h(}?l,fg,oma?n) 20" where his a rational
function. For any input L the algorithm noves down the tree, testing
and branching according to the result (h<O0, h= 0, or h>0),

until a leaf is reached. At the leaf, a packing valid for all lists

that lead to this leaf is produced. The cost of S for input of size n
Cn(s) , 1S defined to be the nunber of tests made in the worst case, i.e.,

the height of T (s).

Theorem7. Let S be an algorithm for the generalized d-dimensional bin
packing. If there exists a constant a > 0 such that c (s) < an for

all n, then r(S >d.

Pr oof . The case d = 1 is trivial. W therefore assune that d > 1 .

Let n > 0 be any integer. Define a sequence €02€12€pr e e 2 € such that

2
€O = l/d 3

€& > (a-1)

» 0<i <n-l . (Lh)

€.
i+l

Let f[i,j} be the vector (ei,éi,...,ei, 1- (d-l)ei, ei,...,e'i) , for
j-1 -l
each 1 <i <n, 1<j<ad.

Consi der the list L, = (X[l,l] s i[l,e] son 2 X[y Xrp,1) e X[n,d])

wth dn vectors. Cdearly LZ:n,as >
1<j<ad

;[i,j] = (l)l’noc’l) fOr

L3



each- 1<i<n. ILet 1  be the set of pernutations of the dn elenents

in E .= {[1,j]|1<i<n, 1<Jj<d} . For each cer, , denote by
. —_ —_ — . *
L (o) the |ist <XU(1) sXg(p)y 7 e XG(dn)) . Qobviously, Ln(c)

V¥ shal | prove that, for any fixed 8 >0, if nis large enough, then

—*——-
_Ln_n,

there exists a oe T, such that S(Ln(c)) > (d—@)Ln(c)* . This woul d
inply the theorem

If the above assertion is false, then there exists a § > 0 such
t hat S(Ln(d)) < (d-=)n for all sufficiently large n. W wll derive

a contradiction.

Fact 8. ki n Ko - S i

act In any packing, SE and Kriv, 50 cannot be in the same
bin if i £ i

Proof . It follows imediately from the definition of X . 0O

[1,d]
Fact 9. Let 1 be any leaf of T,(S) , and w(z) be the set of lists
L,(a) that will lead to ;. Then |z{z)| < (dn)! ,(Cn)“Sn/d for

sone fixed constant c .

Proof . In the packing produced at ¢, there nmust be at |east p = sn/d

bins containing two itenms or nore, because S(Ln(y)) < (a-8)n, In other

words, any in-put |ist (§l,37'2,...,§dn) reaching ¢ nust satisfy a set of

inequalities of the followng form

Ve TV < (LL...,1)

Ve + 7. < (1LL...,1),
(45)

Ve tH < (LL...,1) ,

Ll



where " < " means conponentwi se inequalities, and all k.J are distinct.
An upper bound to |z(z)| is given by the nunber of Ln(c)

satisfying (45). Taking Fact 8 into consideration, we have
(1) | < (nd(a-1))Fx (an-2p):

< nFaPy(an-2p)r - (L6)

Ve now show that nPd“®P x (an-2p)! = (dn): x0((n/(4"))™) . There are two

cases. If 2p < dn/2, then
, P42p
nPa®P x (an-2p)! < nF’dEPx“‘n—%gp < (an)r EE o (an): x (a/w)7F .
(dn-2p+1) (an/2)~F
If 2p > dn/2 , then
5 D._PD 1 P.2
nPa“P  (an-2p)! < (dAn)! x =~ < (dn)! x nd -
\2p)s (gp) - (ep)!

2p .
= (dn)sxo((eé;d) ) = (an)! x0((n/(ke?))™®)

Ve have used Stirling's approximation [9] in the last derivation. This

proves Fact 9. O

As there are at nost 3" |eaves, the total number of |ists L (0)
reaching any leaf of 7 (s) is at most ,Q.,,.(cn)'sn/dwan < (dn)!
for all sufficiently large n . This contradicts the fact that there are

(dn)! possible lists L (o) . This proves Theorem 7. O
n
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8.  Concluding Renarks.

Ve |ist sone problens for further research.

(1) The e-inprovenent technique may be useful in other NP-conplete problens,
for exanple, in the scheduling of tasks on a multiprocessor system [4],
This technique seens to be particularly suitable for scheduling-type
probl ens, when the set of possible worst-case input can be identified.
For instance, it can be used to show that r(S) < 2 for the Next-2
fit bin-packing [5][6]. It may be of interest to nention that, although
the algorithm RFF was constructed and analyzed in a nore conventional
way as presented, it was first obtained in a fashion very sinmlar to
the process in Sections 5 and 6. Thus, the e-inprovement viewpoint
can provide a starting point for substantially inproved algorithms.

(2) Let r(on-line) be inf{r(s)} over all on-line algorithns S, W
have shown that 1.5 <r(on-line) < 1.66..., It is of interest to
determne it nore precisely.

(3) Find and analyze off-line algorithms S with r(S) “"substantially"
better than 11/9 .

(L) I's there an « > 0 such that finding a packing of L using |ess
t han (1+e)L* bins is NP-conplete? |Is there an ¢ > 0 such that
every Q(n) -time algorithm S (say, in the decision tree nodel

described in Section 7) has r(S) > l+c?
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Appendi x. The Strengthened FFD Analysis in Section 6.

At the beginning of Section 5, we listed some facts (Properties Bl - 36)

which lead to the proof of Theorem5. |n this appendix, we will give nore

details on how these facts can be obtained from the original analysis of

FFD in[5][7].

In [5], Properties BL-BL are proved under the follow ng assunptions on

the list L. Let P, be an FFD packing and P' an optimal packing of L |

F
Wite the itens in L as Xlzxgi‘“ixn_ Let

F= {x;]x isnot inan Abinin Po} -

Assunption 1. Al X, arein (2/11, 1].

Assunption 2. % contains at least a C-piece or a D piece.

Assunption 3.  The smallest piece x, goes into a non-A bin in PF ,

i.e., xrle? .

Ve make the foll owing observations. et .- 1079 A -1 . _]_11

5 L

= =3%x10°, and 7=10 as in Section 6.

Cbservation 1.  (ne can replace Assunption 1 by a weaker constraint,

Assunption 1'. that X, € (M1] .

Cbservation 2. One can replace ' by any packing of L .

Cbservation 3.  Property B2 cones fromthe following facts.

W(r()) < el , if X

| is an A-binin P ,

2 11 , . o
w(r(xi)) "3 g(Xi) <S35 if X, is anon-AbininP
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One can nmake stronger Statements for regular bins Xi

3 , , o '
W(E(x,)) < 5 e(x), if X is aregular Abinin p,

w(f(xi)) - %g(xi) < %55 , If Xi is a regular non-A bin in p'.

bservation 4. g(Xi) < 50, for any bin >1< in p'.

(oservation 5. g(Xi) >1/3, if X, is a regular A-bin in P

(oservations 3 and 4 lead to Property B5, and Cbservation 5 1is
Property B6. Therefore, if L satisfies Assunptions 1', 2 and 3, and
P is any packing of L , then one can define f and g such that
Properties BL-B6 are true.

It remains to show that Assunption 3 can be dropped. Let
L = (xl
PF the FFD--packing of L , P* an optinal packing of L , and

>y > L. zxn) be a list satisfying Assunptions 1' and 2,

F e {xilxi isinanon-Abininep Suppose X_ IS the smallest

rl - m

non-A -piece in . W consider the list L'= (xl,xe,.zgaxm) , and

let P be the packing of L', obtained from »* by deleting pieces

S STRPE PPN Then L' satisfies Assunptions 1', 2 and 3,

Applying the -previous results, we can define functions £', g' satisfying

BL-B6 for the list L' . Now we define functions f and g for the
list L by
il (Xi) i f x, el
f‘(xi) =
) ot herwi se,
and
g'(xi) i f x, e L
g(Xi) =
0 ot her wi se.
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Qearly, FFD(L) = FFD(L') , lal = [a.|, and the set z is the

sane for both L and L', Aso notice that a regular bin in P nust

al so be regular in P, and a binin ® g an Abinif and only if it is
an A-bin in P . Wth these facts, it is straightforward to verify that

Properties Bl- 85 are satisfied for L with this choice of f and g .
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