
NEW ALGORITHMS IN BIN PACKING

bY

Andrew Chi-Chih Yao

STAN-CS-78-662
SEPTEMBER 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

New Algorithms in Bin Packing

Andrew Chi-Chih Yao

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

In the bin-packing -problem a list L of n numbers are to be packed

into unit-capacity bins. For any algorithm S , let r(S) be the maximwn

ratio s (Q/L* for large L* , where S(L) denotes the number of bins

used by S and L* denotes the minimum number needed. In this paper

we give an on-line O(n log n) -time algorithm RFF with r(RFF) = 5/3 ,

and an off-line -polynomial-time algorithm RFFD with r(RFFD) = (11/9)-e

for some fixed E > 0 . These are strictly better respectively than two

prominent algorithms -- the First-Fit (FF) which is on-line with

r(FF) = 17/10 , and the First-Fit-Decreasing (FFD) with r(FFD) = 11/g .

Furthermore, it is shown that any on-line algorithm S must have

4s) 13/p . We also discuss the question "how well can an O(n) -time

algorithm perform?", showing that, in the generalized d-dimensional

bin-packing, any O(n) -time algorithm S must have r(S) > d .-

Keywords: bin-packing, First-Fit, First-Fit-Decreasing, heuristic algorithm,

NP-complete, on-line.

This research was supported in -part by National Science Foundation grants
MCS-72-03752 A03 and MCS-77-05313.

1. Introduction.

Let L = (x1,x2, . . .) xn) be a given list of real numbers in (WI >

and BINl,BIN ,.a. ,
2

an infinite sequence of bins each of unit capacity.

The bin packing problem is to assign each xi into a unique bin, with

the sum of numbers in each bin not exceeding 1 , such that the total

number of used bins is a minimum (denoted by LX). As this problem is

T\SP-complete [8], efficient algorithms that always generate packings

using L
*

bins are unlikely to exist. In the literature, heuristic

algorithms with guaranteed bounds on performance have been studied

extensively [5],[6],[7]. For any (heuristic) bin packing algorithm S ,

let S(L) denote the number of bins used for the input list L , and

Rs(k) the maximum ratio S(L)/L* for any list L with L* =k. The

performance ratio of S , denoted by r(s) J is defined as lim Rs(k) .
k-)a

Informally, (r(S)-1) x 100% is the percentage of excess bins used over

the optimal packing in the worst case, for large lists. Two prominent

algorithms are the First-Fit Algorithm (FF) and the First-Fit-Decreasing

Algorithm (FFD) (see Section 2 for definitions). It is known [7] that

r(FF) = 17/10 and r(FFD) = 11/9 .

A natural question is, how good can any polynomial algorithm be?

In this regard, two specific questions were raised by Johnson [6]:

Is there a polynomial on-line algorithm S better than First-Fit

(i . e . , with r(S) < 17/10)?

Is there any polynomial algorithm S better than First-Fit-Decreasing

(i.e., with r(S) < 11/9)?

We call an algorithm on-line if the numbers in list L are available

one at a time, and the algorithm has to assign each number before the next

one becomes available [5],[6]. In this paper, we resolve both questions

in the affirmative. It will also be shown that no on-line algorithm can

have a performance ratio less than 3/2 .

Section 3 gives an O(n log n) -time on-line algorithm S with

r(s) = 5/3 l Section 4 explores the limitation to on-line algorithms,

showing that no such algorithm S (polynomial-time or not) can have

r(S) < 3/2 . In Section 5, a general approach for seeking improvements

over known heuristic algorithms is suggested and illustrated with an

example. Based on this idea, a heuristic polynomial-time algorithm

better than FFD is constructed in Section 6. We discuss in Section 7

the question "How well can an O(n) -time algorithm perform?". It is

shown that in a generalized version of bin packing, namely the d-dimensional

bin packing [2], any O(n) -time algorithm S must have r(S) > d .-

2. Terminologies.

For standard definitions with regard to the bin packing problem,

the reader is referred to [7]. We will mention below only a few

terminologies for use in the present paper.

A list is a finite sequence of real numbers. Some numbers may have

identical values, but are regarded as distinct item;. A set of real

numbers in this paper is often in fact a multiset, in which some numbers

may appear more than once (see [9]).

If Ll = (x,,x,,...,x,) and L2 = (Y1,Y2,.*., y,) are two lists,

their concatenation
LlL2

is the list L = (x17x29".'xn~Yl'Y2' l e-9 Y$ l

Let X be a bin used in a packing, the content of X , cant(X) , is

the sum of the numbers that are assigned to X . We shall say that a

bin packing

on a random

produce the

algorithms

algorithm S has running time O(p(n)) if, when implemented

access machine [l], S takes at most O(p(n)) steps to

packing for a list with n numbers. We describe the two

FF and FFD for easy reference:

First-Fit (FF). Given a list L = (xl,x2,...,xn) , the algorithm

assigns x.
J

sequentially, for j = 1,2,...,n , to BIN. with the
1

smallest i whose current content does not exceed l-x
3 l

First-Fit-Decreasing (FFD). Given a list L = (xl,x2,...,xn) , the

algorithm first sorts the x. 's into decreasing order, and then performs
J

First-Fit.

Both FF and FFD can be implemented to have a running time

O(n log n) ; for details, see [6].

3* A New On-line Algorithm.

We will present an on-line algorithm that processes a list of n

numbers in O(n log n) time, and show that its performance ratio is

5/3 = 1,666- .

Any element x.
3

in a list L will be called an A-piece, Bl-piece,

B2-piece, or X-piece if x. is in the interval
J

(l/2 f 11 9 @/5 7 l/21 9

(l/3, 2/5] , or (0, l/3] , respectively.

Algorithm RFF (Refined First Fit).

Before packing, we divide the set of all bins into four infinite

classes. The algorithm then proceeds as follows. Let me [6,7,8,9-J be

a fixed integer. Suppose the first j-l numbers in list L have been

assigned, we process the next number x.
J

according to the following

rules.

(a) We put xj by first-fit into a bin in:

i

class 1, if x.
J

is an A-piece,

class 2, if x.
J

is a B -piece,
1

class 3, if x.
J

is a B -piece,
2

but not the (m-i)-th B2-piece

seen so far for any integer i>l,-

class 4, if x.
J

is an X-piece,

(b) If xj is the (mi)-th B2-piece seen so far for some integer i>l,-

we put x.
J

into the first fitting bin containing an A-piece in

class 1 if -possible, and put x. in a new bin of class 1 otherwise.
J

Analysis of RFF. This algorithm can be implemented to run in O(n log n)

tine, as it essentially performs a first-fit within each class of bins,

which takes 00% 4 time for each x.
J

(see WI).

5

We shall now analyze the performance ratio of RFF. In general

the resulting packing of a list L has the following structure (Figure 1).

There are three types of bins in class 1. Let Zll be the set of

class l-bins containing a single A-piece, Z12 the set of class l-bins

containing a single B2-piece, and Z
13

the set of class l-bins containing

both an A-piece and a B2-piece. In class 2, every non-empty bins

contain exactly 2 Bl-pieces, except possibly for the last one.

Let Z2 denote the set of all (non-empty) class 2-bins, Let
5

be the set of class T-bins, each clearly containing 2 B2-pieces,

except possibly for the last one. The set of class b-bins, denoted

bY 24 Y is simply the FF-packing of the sublist of L consisting of

the X-pieces. We shall write IZJ ' B-J ' 1531 ' lZ,l’ l a* as

z~l~z~2~z13~z2J l ** Y etc* The numbers of A-pieces, Bl-pieces, B2-pieces,

X-pieces are denoted by a , b 1 , b2 , and x , respectively.

. We shall first prove an upper bound on r(RFF) .

Lemma 1. For any list L , RFF(L) 5; L*+ 5 .

Proof. Clearly,

~W-J) = a + z12 + z2 + z3 + z4 .
(1)

Fact 1. Every bin BINi in Z4 , with the possible exception of two

bins, has cont(BINi) 2 3/4 .

Proof. The set of bins
z4 can be regarded as the First-Fit packing

of a list of pieces in (0, l/3] . Therefore, every bin except the last

one has at least 3 pieces. If BIN.
J

is the first bin with

cont(BINj) 2 3/b , then all the bins following it contains only pieces

class 1: c9A A . l .

class 2:

class 3:

///
B29 . . .

A

z13

\

class 4:

Figure 1. The structure of a packing using RFF. The ordering of bins

and the relative positions of pieces within a bin are not

necessarily represented faithfully.

7

greater than l/4 . This means all bins following BIN. , except the
J

last one have contents exceeding 3/4 . r]

Fact 1 has often been used in bin packing arguments (see [7, proof

of Theorem 2.31). Its proof is given here for convenience.

Fact 2.
Z12+ z13

= Lb2/m] , z2 = rb1/21 ,)Z3 - $
b21 5 2 '

Proof. The first two equations are obvious from the algorithm. The last

one follows from r 1
z3 = 2 (b2 - zc - z13

)l
. 23

*
Fact 3. a<L.-

Proof. No two A-pieces can be in the same bin in any packing. g

We shall find upper bounds on z4 , and hence on RFF(L) via

formula (1). There are several cases to consider.

Case 1. Z12 = 0 .

The total contents of class-4 bins is at most

LKe5a-!?b 1 5 Lb 2'1 - 3 Thus, by Fact 1, we have

4
z4 2 2+7 (L

"1
-2a- F bl - $ b2) . (2)

Combining (1) and (2), one obtains

4*1
RFF(L) < 7 L + 7 a + (z2 - 815 bl) + (z3 - ; b2) + 2 . (3 >

Making use of Fact 2, Fact 3, and the fact m < 9 , we have-

z2 -
Lb <l,
15 1 -

4
‘3-gb2 5 2 ,

a < Lx.

Formula (3) then implies

RFF(L) 5 5 Ly + 5 .

Case 2. Z12 > 0 .

Fact 4. In this case, cont(BINi) + cont(BINj) > 1 for each BINGE zll ,

BINj E Z12 . In particular, cont(BINi) > 3/5 for each BINie Zll .

Proof. Otherwise, the A-piece in BINi should have shared the same bin

with some B2 -piece during the packing. Q

Case 2.1.
zll 2 z12 l

The total sum of all A, Bi-pieces is at least

z12 + 73 b >
5

ll- z12 + '& z13 + 5
(2z2 -1) + 7' (2z3 -1)

> 3 7 4- a + $ z12 + 3d z13 + 7 z2 +
5 ;z3-1 ,

where we have used Fact 4 and the equation
zll = a-z

13 l

From Fact 1,

we obtain

4
z4- 3

< 2+-(LX--a-=)~3 7 4
5 5 12 - 30 z13 - 5 z2 - Fz3 +1) . (4)

Combining (1) and (4)' and noticing that z13 > 0 and z, > 0 , we obtain
- c-

4* 1
RFF(L)ljL +~a+&z12+~z +4 .

9 3 (5)

We now make use of Fact 2 to derive from (5)

4 *
RFF(L) 5 7 L + 5 a + b2+5 . (6)

Fact 5. $a+

Proof. In an optimal packing of L , each bin with an A-piece can

contain at most 1 B2-piece, and any other bin at most 2 B2-pieces.

Thus b2 < a+2(L*-a) = 2L*-a . Therefore-

$-a+ $+$i)b2z [$+~~)2L*+($-&-~~)a .

AS the second term on the R.H.S, is non-negative and a < Lx , we have-

for m 2 37/7 . cj

Formula (6) and Fact 5 lead to RFF(L) 5 5 Lx+ 5 ,

Case 2.2. zll < z
12 l

. Total sum of all A, Bi-pieces is at least

1
zll + 7 z12 - zll(> + ; y3 + e (2z2 -1) + 5 (2z3 -1)

> 2
1 1 4

3- a + 7 z12 + G z13 + 7 z2 + ;' z3 - i .

By Fact 1,

z4- <
4*2 1

2+-(L --a--z ; 4Z13 23 3 3 - -12 7 z2 - zj- z3 +1) .

It follows that

RFF(L) = a + z12 + z2 -I- z
3

+ z4

4*1 5 2 1 1< ?L +ga+qz12-9z13--z -tgz3+4
15 2

4*1 5
5 3L +ga+gz12+ $zj+4 .

10

Using Fact 2, we have

Fact 6.

Proof.

; b2+2 +4
>)

(7)

The second term is never positive (as m < 9) , thus

L.H.S. 5 ($ + ;)L* 5 $ L*-

as m>6. CI-

Formula (7) and Fact 6 lead to RFF(L) 5 f Lx+ 5 for Case 2.2.

This completes the proof of Lemma 1. 0

Lemma 1 implies that the performance ratio of RFF does not exceed 5/3 .

We shall show that it is in fact exactly 5/3 .

Theorem 1. r(RFF) = 5/3 .

Proof. We need only exhibit lists L with arbitrary large L* such that

RFF(L) = ;' LX + o(1) .

Let 6. = 4- (j+2>
3

for j >l, and n an integer of the form 6k+l-

for some k > 1 . L+t;. , for- Define p. = 2
J J uj

=;+Ej, tj=

l<j<n.- Consider the list L = LlL2 , where

ll

Ll = ("i, t2, t3 f 'u3' t4’ t5) � l f u2j-l� t2 j� t2j+l) l � l) un-2.’ tn-l, tn) $

and

L2 = C”2Ju4> l l l ☺un-l t 131TP;iJ l * l ☺Pn ☺ tl 9 un)
l

Clearly Lx = n (Figure 2a). Now, using the easily verified fact that

(u2j 1+t2j+t2j+l) + min(-tk,ui} > 1 for every k > 2j+l and any i ,

the packing resulting from RFF is as shown in Figure 2b. Thus,

RFF(L) = ; LY + o(1) . This -proves the lemma. fl

12

\
n

Figure 2a. An optimal packing of L in the proof of Theorem 1.

.**

/
/ /

/
/

/
/

/ /I

t
2j+1 tn

..*

t
2j L-

%+l 5-k

n-l
2

//
/
//

u6

u4

u2

v
/
//
U
n-

. . .

U
n-

“11-5
U
n

*1

n

Figure 2b. The RFF packing of L.

13

4. A Lower Bound to r(S) for On-line Algorithms.

In this section we will show that one cannot expect to find on-line

algorithms as good as, say, FFD , even if an arbitrary amount of

computation is allowed.

Theorem 2. For any on-line bin packing algorithm S , r(S) 2 3/2 .

Proof. Let 0 < E < 0.01 be a fixed number, and x = 1
- 2c.

G '

I+\, z=
1

Y=3 -+ E.2
For any n = 12k (k a -positive integer), define

alist L=LL1 25 , where Ll consists of n x 's, L2 consists of

n y's, and
4

consists of n z 's.

Clearly,

*
Ll =

1
jij n , (LlL2)* = 2 n 7 ad- (LlL2L9* =n.

Given any on-line algorithm S , let r,(n) = S(Ll)/LI ,

r2-b 1 = s(LlL2)/(LlL2)* :, ait-ld r,(n) = s(LlL2Lf)/(LlL25j)* l We shall

prove that

max~rl(n),r2(n),rj(n)) 2 3/z l (8)

This immediately implies that r(S) > 312 and hence the theorem,-

Consider the packing of L under algorithm S . We shall gather

information about rj(n) (1 < j < 3) by examining the resulting packing- -

configurations at points when jn items have been assigned.

Consider the -packing of the first n items (i.e., Ll). Let ai

(I< i < 6) be the number of bins containing i pieces of x (Figure 3),- -

then

14

c
<i<- -

c
< i <- -

a. J
6 =

(9)

iCX. .
6 =

ti

X

X

~

X

X

X

Figure 3. The packing of Ll by S .

Next we examine the configuration after 2n items are packed (i.e,,

L, L9 has been assigned), A bin is called type (i.,j) if there are i x's

and & y's

5 > y 9 q+

OYl) 9 (12

respectively

, a”4 be the number of bins of type (OA 3 (w) Y Lo) t

) 9 (2,o) Y G31) 9 t&2) I (3,0> Y (3J) Y (4,o) 9 (4,l) f

(see Figure 4). Clearly,

15

a-
6 4

a;; “1;

\\\\I\\\X

X

Figure It. The packing of LlL2 by S .

It is easy to see that the only other possible types are 60) and (5,o)

and there are respectively ix6 and a
5

such bins. The malogue of (9) is

{

S(LlL2) = (“;+“;1+~;1.‘)+ (,;+~~+,~‘)+ (“j+~~)+ ((xl;+ai;)+a5+al;+pl+B2)

n= (";1+25')+ (a;+zYy)+ cYJj+q+~l+2~2)
01)

16

where the second equation counts the number of y's.

A lower bound to S(LlL2LJ) can be obtained by observing that no

z-piece can go into a bin of type CL2 > Y (24 Y (22) J (3,1) Y (4,o) J

(4J) I (5,0> Y (6,o) Y or u&2) Y and that no two z-pieces can occupy

the same bin. Thus

We now define a new set of variables:

f a
1

=
a" 1

-
a2 = a"' 1 + ,111 2

?3
= a' + a' + '

1 2 "s

a4 = “G + ,” + arr3 4

L 66 = a’+a4 5 +a6’

Making use of (10) and the positivity of all quantities involved, we

obtain from (p), (Ill) and (12) the following constraints.

s(Ll) = til + a2 + 4 + 64 + 66

n<C
- 1

+ ti4 + 6%6

s (LlL2) = El + a, + 4 + 64 + (r;6 + @, + @,

1
+ 2a

2
+ + B, + a32

and

a2
+ & +4 cx‘6 + p2+n.

(13 >

(9) 1

w 1

(12)
1

17

5. The Technique of e-Improvement.

Given several simple heuristic algorithms in an optimization problem,

a practical method to obtain a good solution is to run each algorithm and

then select the best solution produced. For example, in the traveling

salesman problem, one may produce tours using several heuristic algorithms

(see, e.g. [lo]) and select the shortest tour. It is hoped that the

quality of solution obtained will be much better than using a single

fixed algorithm. Implicitly, the success of this idea depends on the

hypothesis that different algorithms "favor" different regions in the

input space. An interesting research area, so far not much explored,

is to analyze the performance (worst case or average case) of such

"compound-algorithms". Trying to obtain a better heuristic algorithm

than FFD, one possibility is to try such compound algorithms.

There are two difficulties in a direct approach, however. Firstly,

there are many algorithms sharing the same worst-case input (e.g. the

almost-any-fit algorithms in [5][6]). This eliminates some natural

compound algorithms (running FFD and BFD will not improve the worst-case

bound). Secondly, the ratio 11/9 = 1.22**. is very close to 1 , and

the analysis has to be rather -precise to beat this bound. As the analysis

for a relatively simple FFD is already complicated, it is likely to be

hard to analyze more sophisticated algorithms. We will circumvent these

difficulties by focusing on a specific goal -- to find an algorithm with

bound y- E for any -positive E l

The idea is to locate the part of input space for which FFD may

realize its worst-case performance. If the characterization is simple

enough, we may be able to design a heuristic algorithm S that has a

better -performance in this bad region. The compound-algorithm of FFD

19

and S then has a bound better than 11
-YE'

It turns out that, for

many bin-packing algorithms, one can give simple descriptions of small

regions covering all the "bad" inputs, as a result of the weight-function

type argument used. Thus the bin-packing problem provides an ideal

opportunity to try out this idea of "e-improvement".

In this section, we shall illustrate the idea by proving a simpler

result about FFD. Consider the restricted problem of bin packing, in

which each number in list L is in the range (0, l/4 ' It is known [7]

that FFD has a -performance ratio 71/60 for this restricted -problem. We

shall show that there is a better heuristic algorithm.

We first state a useful lemma.

Lemma 2. Let b 7~' 7 pJ v be constants such that 0 < h < h' < 1,-

b 2 (1-q-l ,and v>l. Suppose there is a bin-packing algorithm S

with running time wPb-4 > such that, for any list L consisting of

numbers in (v4 3 S(L) 5 pL*+ v . If -p(n) is a non-decreasing

function of n , then there is an algorithm S' with running time

Obb) + n log 4 such that S'(L) < ,,,L*+ v for any list L consisting

of numbers in @,W l

Proof. Given an arbitrary list L , the algorithm 5" works as follows.

In O(n) time, one divides the items into two lists
Ll and L2 , consisting

of numbers in (h,h'] and (O,h] , respectively, The algorithm S is

applied to Ll to produce a packing using, say Nl bins. One finishes

the packing by -performing a first-fit algorithm on list L2 , The algorithm

clearly works in time O(p(n) + n log n) . We now show that

S'(L) 5 b l L*+ v . By assumption, Nl < k l LF + v .- If S'(L) 5 N1 ,

20

then the result follows immediately since Ll < Lx ,- If S'(L) > Nl ,

then in the final packing, all except possibly the last bin must have

content greater than 1-h . This implies that L* > (1-h)(,Y-

and hence pL*+v . 0

The above line of argument appears often in bin-packing an:

(e.g. 17, Lemma 3*31)*

lysis

The rest of this section is devoted to proving the following result,

based on the general idea outlined earlier.

Theorem 3. Let E = 10 -6 . There is an O(n log n) -time algorithm S

for bin-packing such that, if a list L has all numbers in (0, l/21 t

then S(L) <-(&E).Li+j.

Let h=1/7, h'=1/2, b=71/60-e, and v=5. ByLemma2,

. we need only prove the theorem assuming that the lists L have all numbers

in (1-17 I l/21 . For the rest of this section, we restrict ourselves to

such lists, although some statements also apply to general lists. The first

step is to locate the "bad" input lists.

A Review of the Proof for FFD(L) 5 g L* + 5 .

The proof [5][7] proceeds by defining a function W(S) > 0 for any-

finite set S of numbers in (0, l/21 Y such that the following properties

are satisfied.

Property Al. W is subadditive -- W I C '('i) '
i

Property A-2. If all elements in L are in (l/N, l/2] , N > 4 , then-

W(L) 2 FFD(L)-N+2 .

21

Property A3. If s = {x1,x2,...,x)m with Xi E (1/7 y l/2] and

c xi < 1 , then
i -

w(s) 5 71/60 .

Let Xi be the i-th bin in an optimal packing of L . Properti_es

Al- A3 imply the desired result

FFDOJ) - 5 2 W(L) 5 CW(Xi) < g LX .
i

A Strengthened Analysis,

We have seen from (16) that,

FFD(L) 5 g Lx + 5 . (17

Notice that we would obtain a bound better than (17), except in the case

when almost all X; have W(X) = 71/60 . Actually, W(X.) = 71/60
1I

only under very special conditions.

Definition. A number

F-piece if x. is in
J

X.
3

in L is called an A, B, C, D, E, or

l/2,11 9 (l/S, l/21 , o/4,1/31 9 (1/5 9 1/41 >

(l/6,1/51 1 or (1/7 1 1/61 . We shall use notations such as S = {CCDE)

to express the situation S = {x1.'x2,3Jx4) lKith xl Y x2 7 3 Y x4

being a C , C , D , and E-piece, respectively. In a packing, a bin

containing a set {CCIX) will be called a CCDE-bin. The notation

generalizes obviously to other configurations.

22

Property A3'. 151 E71.

and xxi < 1 , then
i -

w(s) 1. 71/60

If S = (x1,x2,...,xm] with xie (l/7, l/2] ,

Y if S = {BBEF] 0~ [CDEEE] ,

and

w(s) _< 716 Y otherwise.

A strengthened form of (17) can now be derived as follows. Let P*

be an optimal packing of L , and Xi the i-th bin in P* (1 < i < Lx) .- -

Assume that there are a bins in P* of the form [BBEF] or

Lemma 3.

Proof.

If a 5 (l- 604~~ , then FFD(L) <

From Properties Al, A2, and A3', we have

71 7FFmJ) -5 5 W(L) 5 CW(Xi) 5 60 a + j$ (LX-a)
i

Therefore,

FFD(L) 5 ; L* + &a+5

5 (&e)Lx+j . i9

(CDEEE] .

5.

We shall call a list L severe, if in every optimal packing P
*

of L,

there are more than (1-60~)~~ bins of the form {BBEF] or {CDEEE] .

Lemma 3 states that, if a list L is not severe, then the packing produced

by FFD has a bound at most 7160-h strictly less than 71/60 , This

concludes the step of identifying "bad" lists, We can finish the proof

of Theorem 3, if we can design a heuristic algorithm S such that

S(L) 5 (2-c) L* + 5 for all severe lists L . We shall presently

23

give an algorithm

S = M has the des

Algorithm M.

Step 1. Sort the

(dlz d2 < l oo) , (el< e2 < . ..) , and- - (f < f < . . .l- 2-

the sublists of B-pieces, C-pieces, D-pieces, E-pieces,

F-pieces, respectively.

Step 2. For j = 1,2,... , put {c., dJ j' e3j-2y e3j-ly e3j 3 into BIN. ,
3

as long as such a set can fit into one bin and enough pieces are

available. [We shall abbreviate the latter clause below as

"as long as it is feasible" .] Assume that m such bins are formed.

Step 3. For j = 1,2,... , put {c dm+j' tij' e3m+2j-1 ' e3w2j 3 into

BIN

Step 4.

m+j ' as long as there are enough pieces available. Assume

that k such bins are formed. [Note that a set {CDEE} has

sum <-3 ;++++<1,1, and thus can always fit into a bin.

Suppose there are h F-pieces. For j = 1,2,... , put

Cl)2j-1' b2jy fj ' fhBjI into BIN
m+k+j as long as it is feasible.

Assume that q such bins are formed.

Step 5. For j = 1,2,... , put Cl-) 2q+2j-1' b2q+2j' e3m+2k+j 3 into

BINm+k+q+j ' as long as it is feasible. Assume that I such

bins are formed.

Step 6. Pack the remaining E-pieces and F-pieces, respectively, by themselves

into new bins using first-fit. Let p be the number of bins

formed this way.

Step 7. Pack all the remaining pieces by themselves into new bins using

ired property.

M with running time O(n log n) , and prove that

input list L ; let (bl<b2 < l ee) , (cl5 c2 < l ee) ,-

> be

and

first-fit. Suppose t new bins are used.

End of Algorithm M.

24

Figure 5 shows a packing produced by Algorithm M.//
E

EIEDC
m k

Figure 5.

vi.2

F

F

/

B

B

q

7///
E

R
w J

P t

The packing produced by Algorithm M.

Analysis of Algorithm M.

It is easy to implement M so that it runs in O(n log n) time.

To complete the proof of Theorem 3, it remains to prove the following

result.

Lemma 4.- -

Proof.

If L is severe, then M(L) <&-e)LX+5.

Let P* be an optimal packing of L . Assume that there are

*
in P B bins of the type (BBEF] and y bins of the type {CDEEE] .

As L is severe, we have

f3 + y > (l-GOE)LX l

We wish to find bounds on the various terms in

(18)

NJ) = m+k+q+B+p+t . (19)

25

In Step 2, for 15 j 5 Ly/5J ,

+d +e
3 j 33-p + e3j-l + e3j -< the (5j-4)-th smallest content

in all CDEEE-bins in P* .

Thus, at least Ly/5~ bins are formed in this step, i.e.,

m L LY/5J l (20)

Bounds on m+k can be obtained by considering the total available

CD-pairs. This gives

y + 60~~~x3 > m+k > y .- - (2U

In the last formula, the term 60~~~~3 is an upper bound on the number

of C-pieces not contained in CDEEE-bins. In Step 4, for 1 < j < Lp/3_1 ,- -

b
2j-1

+ b + f + f2j j < the (jj-2)-nd smallest contenth-j -
in all BBEF-bins in P* .

Therefore,

q 1 bB/3J l (22)

By considering the number of all F-pieces, we find the following upper

bound on q ,

B2 + 60~~~~3 > q .- (23)

To derive bounds on R , we first observe that each B-piece in a BBEF-bin

(in P*) is less than 1 - $ - 5i-t=, . For any two such B-pieces,

one can add any E-piece to form a BBE-bin. Thus, a lower bound to R is

the minimum of (#B)/2 and #E , where #B and #E are the numbers of

such B-pieces and any E-pieces, respectively, at the start of Step 5. As

#B > 28-2q,- at--d #E 2 @+3r)-3(m+k

obtain

26

) _> @-54ofL* using (21), we

1 > p-q+OEL* l

- (4)2

The total number of B-pieces available gives an upper bound,

(25)

We will now estimate p and t by calculating the number of various

-pieces not contained in the first m+k+q+R bins. The total number of

B-pieces in L is at most 28+ (60~~~x2) ; by (24), at least 2(~ - ~~oEL*)

of them are in the first m+k+q+R bins. Thus, denoting by N[Y] the

number of Y-pieces in the last p+t bins, we have

N[B] < 12OOeL* .-

Similarly, one can show that

N[C] < ~~OEL* ,-

N[D] < 24oc~* ,-

Also one has, using (22),

TJ[Fl <_ $ B + 360~~* + 2 .

The number N[E] satisfies

N[El < (f3+3~+300~~*) - (3m+2k+ 1) . (30)

NOW using (PO), (Zl), (23), and (24), one has

From (30) and (31), we have

3m+2k+ a = m+ 2(m+k)+ 1

r
I J

B *>- 5
+ 2~ + F - 720~~

- 720~~~ - 1 .

N[El 5 $ B +
4
FY + 102oEL* + 1 .

(26)

(27)

(28)

(29)

(31)

(32)

We can now estimate p and t . Using (29) and

p 5 $ N[E] + ; N[F]

From (26) - (28),

+ 2 5 -& @ + & y + 264~~* + 3 .

t < N[B] + N[C] + N- [D] < 1620~~* .-

Making use of (21), (25), (33), (34) in (IS), we obtain

(32)

M(L) L 4552 p + g y + 212&L* + 3 .

As @+y < Lx , we have-

M(L) 5
(
29
E

+ 2124~ L* + 3 .
>

Observing that 29
=i5 + 2124~ < g - E , we have finally,

M(L) 5 (gc)L*+5 .

This proves Lemma 4. [7

The proof of Theorem 3 is now complete. 0

(33)

(34)

28

6. A Polynomial-time Algorithm Better Than FFD.

This section is devoted to proving the following result.

Theorem 4. Let E = 10 -9 . There is a polynomial-time heuristic

algorithm RFFD for bin-packing such that, for any list L ,

RFFD(L) 5 (+F)L*+~ .

We shall use the notations E = 10 -4

and h=l - (+$ - E 1-l . Clearly, i9=,$: i 'aZC-1 : ~'<=2~~1 .'

Although more complicated, the proof of Theorem 4 follows the same

pattern as that of Theorem 3. By Lemma 2, it suffices to show the

theorem considering only lists L with all elements in (Ul l We will

first prove that, for all such lists, except those of a special type,

FFD produces a packing within the desired 11 - E
9

bound. We then construct

a heuristic algorithm EPSI that performs well (below 11 - E) for the
9

exceptional "critical" lists. The compound-algorithm S of FFD and EPSI

clearly satisfies S(L) <- (y-c) L* + 8 for any list with elements

in (WI , completing the argument.

A Review of the 11/g Bound for FFD.

We review below the proof of [5][7] for FFD(L) 5 9'IL L* + 4 , if L

obeys the following Assumptions 1 and 2. As Assumption 1 can be justified

by Lemma 2, and it can be shown directly [5, p. 277, Reduction 31 that
6 *

any list L violating Assumption 2 has FFD(L) 5 5 L + 1 , this would

11 *
prove FFD(L) 5 7 L + 4 for any list L .

Assumption 1. Let L be a list of numbers in G/&11 l

29

Let P* be any optimal packing, and PF the packing produced by FFD.

We use Xi to denote the i-th bin in P* , l<i<L*.- - In any packing,

a bin containing an A-piece is called an A-bin, otherwise it is a non-A bin.

The number of A-bins in any packing of L is equal to the number of

A-pieces in L , which we shall denote as
kJ . Let

3 = (x 1 XL , x is in a non-A bin in PF} .

Assumption 2. 3; contains at least a C-piece or a D-piece.

Let the function W be defined as in Section 5. The analysis

proceeds to define two functions f and g , based on *
pF and P ,

f: L -2' and g: L --) rational nwnbers.

For any subset T c L , we write f(T) for- c f(x. > Y and g(T)
xi E T 1

for Z
xi E T

gC⌧i) l The definitions of f and g are complicated ([5]),

and were shown to possess the following properties.

Property Bl. 3; = U f(x)
XEL

Property B2. 'CfCXi)) + g('i) 5 $) (y(Xi)+g(Xi)) , 15 i < L*-

where

0 J if X.
Y('i) =

1 is an A-bin,

1 Y otherwise.

Also, the following are true from properties of W (see Properties Al and A2).

Property B3.
wpL f(⌧)) 5 ZL W(W) l

Property B4. W(3) 2 ES(L) - \AL\ - 4 .

30

”

Summing over Xi in the formula of Property B2, and using

Properties Bl, B3 and B4, one obtains FFD(L) < 7 JILL I*+4 , for any

list under Assumptions 1 and 2.

The above is an outline of proof for the bound 11/g . For our

purpose, a strengthened amlysis for FFD is needed.

A Strengthened FFD Analysis.

We shall work under a weaker form of Assumption 1.

Assumption 1'. Let L be a list of numbers in (Ul l

Let PF , P* , Xi , 3 and W have the same meaning as before, We

*
shall say a bin Xi in P is regular, if X. is not of one of the1 -

following configurations: an A-bin with 3 pieces, BBC , BCC , CCCD ,

or CCDD l Otherwise Xi is irregular.

For any list L satisfying Assumption 1' and Assumption 2, one can

define f and g such that the following properties are true, in addition

to Properties Bl-B4.

Property B5. 'Cf Cxi, > + g('i) 5 (y - S)(y(Xi)+g(Xi)) , if Xi is

regular.

Property B6. If xi is a regular A-bin, then g(X.) > l/3 .
1 -

The proofs of Properties Bl-B6 under Assumptions 1' and 2 follow

closely the original analysis [5]. A description of the necessary

modifications is given in the Appendix.

We can now give a characterization of lists L for which FFD may

have a bad perfomance.

31

Theorem 5. Let L be a list satisfying Assumption l', and P* an

optimal packing of L . If there are more than IL* regular bins

*
in P , then FFD(L) 5 (F- c)Lx+4.

Proof. If Assumption 2 is not true for L , it can be shown [5, p, 277,
6 *

Reduction 31 that FFD(L) 5 5 L + 1 , and the theorem is true. We can

therefore suppose that Assumption 2 holds.

Take the formulas in Properties B2, B5, and sum over all ,

We have

c W(f(X.
all Xi

1 >> + g(L) L 9ill c (Y(‘i) + g(‘,)) -’ c (Y(Xi)fdXi)) . (35)
all x; regular

I
'i

Using Properties Bl, B3, and

(35) is at least,

L.H.S. L -mJ! - 1%

B4, we see that the left hand side of

- 4 + g(L) .

Now, to estimate the right hand side of (35), we note that

~ (Y(Xi)+ g(Xi)) = Lx - IALl + g(L) .
all xi

Also, because of Property B6 and the fact that there are at least T/L*

c (Y (‘i) + g(‘i)) 2 (# of regular non-A bins) + L
regular

3

'i
1

r,- (# of regular Xi)

regular bins Xi , we have

(36)

(37)

(# of regular A-bins)

(38)

32

From (37) and (38), the right hand side of (35) is at most

R.H.S. <_ 5 CL*- IA-J + g(L)) - 8 0; qL* .

Formulas (35), (36), and (39) lead to

(39)

FFD(L) 2 - g(L)) + 4 .

Noting that E =
1
9 and that

IALl -g(L) 2 0 by Property Bl, the

theorem follows. ~

The EPSI Algorithms.

For the rest of Section 6, all lists are assumed to satisfy Assumption 1'.

We shall describe a family of algorithms EPSI[alYa2Y~Ya4Y~5YB1,B2,YlYY21

with non-negative integer parameters ~l'a2Y**.YY2 l
Given a list L with

n items, we perform EPSI[0+a2, ,..,y2] on L for each possible

0 5 59~2Y*..YY2 5 n Y and pick the best packing. We call this procedure

the EPSI algorithm. It will be seen that each EPSI[ixl,~2,...,y2] works

in O(n log n) time, thus EPSI works in time O(n
10

log n) .

We call a list L of type (al,a2,,..,y2) if there is an optimal

packing of L with CX~,CX~,...,~~ bins of type ACD , ADD , ADE, AEE, ACE,

BBC , BCC , CCD , CCDD , respectively. Note that a list can be of several

types. A list L is critical, if it is of some type (al,~~~,...,y~)

with cx1+a2+ l .+y2 2 (l-Tj)Lic . The aim of EPSI[al,a2,...,y2] is to

produce a packing using less than
11Q - e times the minimum bins needed,

for any critical list of

has a bound better than

Theorem 5, which ensures

/

WPe (5'a2,***YYg) l
This ensures that EPSI

11
-FE

for any critical list, Together with

a bound for non-critical lists, it

completes the proof of Theorem 4 as stated at the beginning of this section.

33

Given a list L , and parameters O+~2,...,y2 , we shall presently

describe the action of EPSI[CX~,~~,...,~~] . If any of the described steps

cannot be accomplished, it is understood that the packing of list L may

then proceed arbitrarily.

Firstly, L is sorted in ascending order, Then we pack various

pieces into four classes of bins according to the following rules.

Let a1 < a- 25yi***, bl 5 b2 2 b3 < . . . , cl 5 c2 5 c3 < . . . , . . .- -

be the lists of A-pieces, B-pieces, C-pieces, . . . , etc.

Step 1.

Step 2.

Step 3.

Step 4.

Class l-bins: First put (b ,b .]2j-1 25 into BIN. ,
J

l< j < B,+ L@,/2J l Then, for j = 1,2,...,~~l/2j , put

the largest available fitting C-piece into BIN, ,

Class 2-bins: Let Ci 5 C$ < .,.- be the remaining C-pieces,

Put {';j_2 Y C~j-l, Cjj] into BINj , 15 j < yl . For

j = 1,2, ~7~/3~ , put the largest fitting D-piece into

BIN..
J

Class 3-bins:

(a) Let d-i 2 d; < . . .- be the remaining D-pieces. Define

m= LCX~/~J + La,/21 . For 1 < j < m , put {dij-l,d,$j3- -

into BIN
3 '

Then, for j = 1,2,...,m, put the largest

fitting ai into BIN. .
J

(b) Define m' =Cdl+CX2+CX +CX +CX -m.
3 4 5 Let

ai 5 a; <- . . . 5 i4;1L . . . be the list of A-pieces remaining.

Put a total of [al/21 +a5 C-pieces, rcx2/21 +CX~ D-pieces,

and cx4 E-pieces into BINm+l to BINm+ml , one piece in

each bin. NOW, put ai into BINm+i , for 1 < i < m' .- -

Class h-bins: For each YE [A, B,C,D,E] , pack all the Y-pieces

first-fit by themselves.

34

We need some preliminary results before analyzing EPSI.

Definition. Let Y = (yl,y2,...,ym) and Z = (zl,z2,...,zp) be two

lists of real numbers. The Cartesian product of Y and Z is

'Xz= [(YiY zj)~l~i<m,l<j<p]. A partial match between Y

and Z is a subset p, c YxZ such that Ci> Yi+ 'j _< 1 for all

(Yi,~j)~~ , and (ii) any two distinct (yi,zj) and (yil,zj,)

in ip have i f i' and j # jr . Let $(Y,Z) denote the maximum

possible size of IQ\ . A partial match Q is a maximum partial match,

if \9J=$(Y,Z). For any partial match @ between Y and Z , the

range
zm

is the multiset {zj \ (yiyzj)c @ for some yieY7 . OhUS,

lz,l = \@I). Let Z, = Z-Z, .

The following procedure clearly generates a partial match,

Algorithm PM(Y,Z):

Sort Y into yl 5 y2 < . . . 5 ym ; sort Z into z1 5 z2 < . . . 5 zp ,-

keep the elements of Z in an array T (T[i] + zi , 15 i 2 p) ;

a+-$;k-P;

for i := 1 until m do

begin Search T[k] , T[k-1] , . . . to find the largest j < k satisfying-

y.+ zj < 1 ; if j1 - does not exist, halt;

9 t 'I; FIYiY'j)l;

k t j-l;

end

END of Algorithm PM.

35

Lemma 5. Algorithm PM(Y,Z) works in time O(n log n) , where

n = IY\+ lZ\ . Furthermore, the partial match @ generated is a maximwn

partial match between Y and Z .

Proof. The O(n log n) -time bound is obvious. To prove the other

assertion, suppose PM(Y,Z) sorts Y and Z into yl 2 y2 < . . . < y- - m
and z1s~2<... <Z , andproduces a= {(y

- P lyzii)Y (y2Yzi2)Y l �Y (Ys,Zi)} .

S
Clearly il > i2 > . . . > is .

Now assume that there exists a partial match

v = {(Y.☺~�~)Y (Yj2Y �k2), l **Y (YjtY �kt) 1 with t � S l We will Show

that it leads to a contradiction, With no loss of generality, assume

that j, < j2 < . . . < j, . This implies that yl < y. ,
- Jl

Y,<Y. Y 0.4,
J2

etc., and therefore p" = ((y > (YI"% , g'zk2)'"" bt,zkt))

is also a partial match, A moment's thought reveals that

m 1’ 1 = {bl’“k’)’ (Y2,zk’)‘“‘,(y~,z~‘)~ must also be a partial match,
1 2 t

where k-i >kb) .a. >k'
t is the sorted sequence of

(klYk2Ykt) .

Based on the description of PM , a simple induction argument gives

il 1 k;_ , i2 2 ki , . . . , is 2 k's . But this implies that PM should

have found a z. with z
Is+1 i fY

s+l s+l 5 ' ('k' is a candidate).
s+l

This is a contradiction. ci

Definition. Let X and Y be two multisets of real numbers. We say

that X is dominated by Y if the i-th smallest element in X is no

greater than the i-th smallest element in Y , for all 1 < i < 1x1 < \YI .
- - -

A list X' is dominated by a list Y' if the corresponding multisets X

and Y satisfy this relation.

36

Lemma 6. Let X , Y and Z be finite lists with X dominated by Y .

Then

(4 $(x'Z) > fiqpqt JI(Y'Z)) '-

(b) Let @ be a partial match generated by PM(X,Z) , and p' any

partial match between Y and Z tith IV \ = \ml . Then Zm

is dominated by 5
a� l

Proof. Let the sorted lists of X , Y , Z be x1 5 x2 < . . . -=c xm ,- -

Y1 I

(>a

0)

Fact

Y* 5 0.0 _< yn , z1 5 z2 < . . . < z , respectively.- - P

Let {(YlY 'i >, (y,, 'i)Y "'Y (YsY 'i)] be the maximum -partial match
1 2 S

generated by PM(Y,Z) (Lemma 5). Let R = mini 1x1 , s] l Then

C(xl'zil > (
' x2'zi2 "**'

> Cxp"i 1) is a -partial match between X
R

and Z, as
xj <'*- J

by assumption. This -proves

q (X, Z) > min{ \xI y $0, Z>) e-

Let ' = C(xl'zi)Y(x2Yzi)Y .a., ()I with i

and @'=((yj<‘%) (Y

2 xP'zip l>i2>...>i ,
1

z ,
j,' Zk2

> ,***, (Y
jP' R

'k 1) with jl< j, < . . . < j ,
R

As in the proof of Lemma 5, it can be shown that

P" = {(x1,zk,),(x2'zk,), . ..'
1 2

(x,,z,,)} is a partial match between
1

X and Z , when k; > k; > . . . > k;l is the sorted sequence of

(kl�k2, l l dg) . A simple induction argument then shows that

il 2k-i) i2 zk;, ,..' i, zk;7 . This implies that, for each

l(clfF' I tit I it > q)\ ,> I{kC \ k+, > q]) . Hence, we have

7. For each 1 5 q 5 p I \ {it \ i, < q) 1 5 \ & \ k; (q) I .b - -

37

Now the multisets ??
@

and .!?
rn'

are obtained from Z by deleting

(Z. 7'.
5 5-l

7"~Yzil) and (Zk,JZk' ,**.7 'kl > 7 respectively. Write
R L-l

z, = {zu ,zu 7 l **7 Z

1 2 InC
I and 2 @' = c zv17zv27”*7~vc I 7 where

u1 < u2 < l ** <UC and vl < v2 < 0.. < v .
C

Then, for each 1 < s < c ,- -

u =
S

s+ I{?-, 1 it Ius} , and (# of vb su,) = us- I[ki Iki 5 usj[.

Using Fact 7, we have for each 1 < s < c 7- -

(# Of vb <us) 5 'us- I{it Iit 5 usI1 = s 7 and thus vs LU, . We have-

shown that zu < z
V

for each 1 < s < c 7 completing the proof that
s- s

- -

z is dominated by
@

2
m� l

q

We now analyze the algorithm EPSI.

Lemma 1. For a list L of type (C57C?27...7y2) 7 every step of

EPSI[a17a2,..., Y2] can be carried out.

Proof. Let P* be an optimal packing of L with al , a2 7 a
3

7 a4 ,

B, 7 !3, 7 Y1 7 Y2 bins of types ACD 7 ADD 7 ADE 7 AEE 7 BBC 7 BCC 7

CCCD 7 CCDD , respectively.

(i) Step 1 can be done.

As there are enough (2@,+ p,) B-pieces in L , we need only show that

the procedure can put L B,l21 c-pieces into class-l bins. We define the

following multisets: X = {b2j-Ifb2j 11 < j < LP,/2J])- -

Yl = {b'+b" I (b',b",c? is a BBC-bin in P*j 7

Y = {y I y is the (2j-1) -st smallest of Yl for some l< j 5 iBl/2] 1 ,

and Z = fall C-pieces in Lj . As b +b
2j-1 2j is no greater than the

Pj-1) -st element in
yl 7 it follows that X is dominated by Y . Also

4dy7-G = LB,/2☺ l It follows from Lemma 6(a) that $(x, Z) = LP,/~J = 1x1 l

As Step 1 is essentially the execution of PM(X,Z) 7 that it can be accomplished

38

is guaranteed by Lemma 5. Finally we notice an important property

following from Lemma 6(b).

Let Q' be the partial match between Y and Z 7 defined by

f(b'+b", c) I (b'7b",c) has the (2j-1) -st smallest b'+b*' among

BBC-bins in P* for some 1 5 j 5 LBl/2J] . According to Lemma 6(b),

z, 7 the set of remaining C-pieces “; 5 ci < . . . , is dominated by 2-
Q� l

It follows that the set of the first 3yl pieces in Ci 5 c; < . . . is-

dominated by the set of 3yl C-pieces in the CCCD-bins in P* .

(ii) Step 2 can be carried out.

By the preceding remark, we have for 1 < j < Lyl/3j ,- -

';j-2+ '$j-l+'jj is no greater than the (33-2) -nd smallest element

of the multiset [c+c'+c" \ {c7c',c",d) is a CCCD-bin in P*) . An

argument similar to that in (i) shows that Step 2 can be accomplished

as specified, and that the first al+ 22 +
2 73

in the remaining D-pieces

di f d$ < l *.- are dominated by the set of D-pieces in the ACD , ADD
*

and ADE-bins in P .

(iii) Step 3 can be carried out.

Step 3(a): The preceding statement implies that, for 1 < j < m ,- -

d;j-l + d' < the (2j-1)2j - -st smallest in the multiset

[c+ d I (c7d7a} is an ACD-bin in P*)U {d+ d' I {a,d,d'] is

an ADD-bin in P*] . As in (i) and (ii>t this fact together

with Lemmas 5 and 6 can be used to prove that Step 3(a) can

be done.

Step 3 (b) : As each A-piece in an ACD 7 ADD 7 ADE , AEE 7 or ACE-bin is less

than l-;-;=$, there are at least al+a2+a3+a +a
4 5

A-pieces in L that are less than 2/3 . At most m of

these A-pieces are packed in Step 3(a). Therefore,

39

�; 5 a$ < l l l < a;, < 213 l
Since each a; can fit with any- -

C-piece (or D-piece, or E-piece) in a bin7 Step 3(b) can be

done provided the specified number of C 7 D 7 E-pieces exist.

This latter fact can be easily verified.

(iv> Step 4 can always be done.

This proves Lemma 7. 0

Lemma 8. Let L be a critical list satisfying Assumption 1' and of type

(ap2, l l �7 Y2) J and NL the number of bins used by EPSI[al,a2,...,y2]

on L . Then

NL 5 ($+7T)L*+ 8.

Proof. To begin with, we note that

NL = al+a2+a
3
+a

4 5
+a +pl+ Lf3,/2] +y,+(# of class &bins) l (40)

We now bound the number of class b-bins. The total number of C-pieces

in L is at most "l+~S+B1+2B2+3~l+2~2+3~~* . As there are

rq21 +a5 + l&/q +:yl C-pieces in class l- 3 bins, the number of C-pieces

packed in class b-bins is at most Lal/2i + rtg21 +%pY2+?fd-pi* .

A similar counting gives the following upper bounds on the numbers of

A-pieces, B-pieces, . . . in class h-bins,

. : #B < 27-jL*+l ,
i

-

(#c 5 3TIL* + Lqq + rq21 -F- 2p2 + 2y2 7t (41)
#
\ #D < 4T/Lx-
i

+ 1 + ra,/2i + r z 71-i + 2y2 ,

i,%#E < 57iL*+a3+a4+a5 .

40

Clearly,

of class b-bins < #A + $ (#B) + $ (#C> + i (#D) + $- (#E) + 5 ’ (42)

From (40), (41)' and (42>1 we obtain

NL L
7 9 6
pl+ p2 + -j- b3+a4+a5) + 2 (Bl+B2+Yl+Y2) + 5$ + 8 l (43)

*
&3 L >a +a +...+y

- 1 2 2' we obtain from (43,

NL
6 *

I 7 L +57~*+8 . a

Lemma 9. The algorithm EPSI[al,a2,...,Y2] can be implemented to run

in time O(n log n) for list L with n numbers and parameters

alJa2Y”‘7Y2 5 n l

Proof. Steps 1, 2, and 3 (a) are executions of algorithm PM 7 which

runs in time O(n log n) . The other steps involve sorting and first-fit,

and all can be done in O(n log n) time. a

Theorem 6. The algorithm EPSI runs in polynomial time. For any critical

list L satisfying Assumption l', EPSI(L) 5 ($-c)L*+~.

Proof. From Lemma 9 and the definition of EPSI, the algorithm runs in

O(n
10 log n> time. The rest of the theorem follows from the definition

of EPsI, Lemma 8, and the fact
6
7+55*ri<

ll
-FE. a

Theorem 5 and Theorem 6 imply Theorem 4, hence the existence of a

heuristic better than FFD.

41

7* How Well Can An O(n) -time Algorithm Perform?

We have shown that 11/9 is not the limit on the performance ratio

of polynomial-time bin packing algorithms. A most interesting open

question is whether there exists such a limit to r(S) . Carey and

Johnson [3] showed that, unless P = NP , no polynomial heuristic

algorithm for graph coloring can guarantee to use less than twice the

minimum number of colors needed. A similar result for bin packing would

be especially interesting, since the known achievable bound on the

performance ratio is already close to 1 . A more modest question along

this line was raised in [7], namely7 how well can an O(n) -time algorithm

perform? A natural computation model is the decision tree model, counting

only branching operations [6][9]. It would be interesting to prove the

existence of an E >o such that, for any O(n) -time bin packing

algorithm S , one must have r(S) 1 l+e . We have not succeeded in-

proving such an assertion. However, a result of this spirit can be shown

for a closely related problem, and it may throw some light on the present

bin packing problem.

Consider the generalized bin packing problem discussed in [2], Let

L (+x2,...,Zn)= bealist of d-dimensional vectors (d > 1) 7 with-

each component of the vectors in the intervals (WI l The problem is

to pack these vectors into a minimum number of bins, such that the sum v"

of vectors in any bin has vi<1 forall l<i<d. (When d=l,- -

this is just the bin-packing problem we have discussed,) The problem is

clearly NP-complete for any fixed d>l.- For any heuristic algorithm,

let r(S) denote the performance ratio as before. A simple extension S

of the O(n) -time Next-Fit Algorithm [5][6] gives r(S) = 2d . We are

interested in a universal lower bound to r(S) for any O(n) -time algorithm.

42

We consider the following decision tree model. Let S be an

algorithm for the generalized d-dimensional bin packing. For each

n > 0 the action of S on lists of n items L = (Zl,Z27 . . .'X-;I)

can be represented by a ternary tree T,(s) l Each internal node of

m(S) contains a test *' h($?2, l ..,⌧-;, : 0 �� where h is a rational

function. For any input L the algorithm moves down the tree, testing

and branching according to the result (h<O, h= 0, or h>0)7

until a leaf is reached. At the leaf, a packing valid for all lists

that lead to this leaf is produced. The cost of S for input of size n

CJS) ' is defined to be the number of tests made in the worst case, i.e.,

the height of T,(S) .

Theorem 7. Let S be an algorithm for the generalized d-dimensional bin

packing. If there exists a constant a > 0 such that Cn(S) < an for-

all n , then r(S) 2 d .

Proof. The case d = 1 is trivial. We therefore assume that d > 1 .

Let n > 0 be any integer. Define a sequence EO' 57 E27 l � l � En such that

E. = l/d2 7

E i > Cdml)'i+l ' _ -0 < i < n-l . (44)

Let ZLiyjl be the vector (ei7ei7...~ei,1- (d-1)ei7 E~,.~.~c~) , for

\ J
j-l d-j

each 1 < i < n , l<j<d.- - - -

Consider the list Ln = (x"
PJI "[1,2]' l " "[l,d]' '[271]7 ""x[n,d])

with dn vectors. Clearly L+n =n, as c
l<j<d

~[i,jl C. (ly1)eeeyl) for
- -

43

each- l<i<n.- - Let rn be the set of permutations of the dn elements

in En= [[i,j]Il<i<n, l<j<d]. Foreach- - - - crey
n' denote by

L,(G) the list (2
w

Y q2) � l l l 7 qqdn) > l
Obviously, Ln(")* = L* = n ,n

We shall prove that, for any fixed 6 > 0 7 if n is large enough, then

there exists a (TE r, such that S(Ln(a)) > (d-&)L,(o)* . This would

imply the theorem.

If the above assertion is false, then there exists a 6 > 0 such

that S(L,(o)) 2 (d-s)n for all sufficiently large n . We will derive

a contradiction.

Fact 8. In any packing, %,jl and ~[il, jr] cannot be in the same

binif i+i' .

Proof. It follows immediately from the definition of x"
Ljl ' '

Fact 9. Let R be any leaf of T,(S) , and C(R) be the set of lists

L,(a) that will lead to 1 . Then IG(R)\ 5 (dn)! l (cn)-sn/d for

some fixed constant c .

Proof. In the packing produced at R 7 there must be at least p = En/d

bins containing two items or more, because S(L (y)) < (d-e)n ,
n - In other

words, any in-put list (?l Y2' -' ,...,yan) reaching I must satisfy a set of

inequalities of the following form.

I

?+kl + fk 5 07~,...,~) 7

2

$7
3

+ fk
-4

5 (1YL...'1) 7

. (45)
l

.

< L17...,1) 7

44

where " < " means componentwise inequalities, and all k.
J

are.distinct.

An upper bound to IcO> 1 is given by the number of $-p)

satisfying (45). Taking Fact 8 into consideration, we have

\CW \ < bW-l))PX (dn-2P)I

< npd2px(dn-2p)! l- (46)

We now show that pn d2px (dn-2p)! = (dr$ xO((n/(4e2))+) . There are two

cases. If 2p < dn/2 , then-

npd2px (dn-2p)! 5 n dP 2Px M-n)!

(dll-2p+l)2p
5 (d-a!

npd2'

F+)2p
= (dn)! x (n/4)-P ,

If 2p > dn/2 , then

npd2p x (dn-2p)I 5 (dn)! x - npd2'
5 (dn)! x-

@P> f.

= (ct?)! xo((*~p) = (dn)! xO((n/(4e2))-P) .

We have used Stirling's approximation [p] in the last derivation. This

proves Fact 9. a

As there are at most 3m leaves, the total number of lists L,(O)

reaching any leaf of Tn('> is at most (dn)! l (cn)-5n/dX3an < (dn)!

for all sufficiently large n . This contradicts the fact that there are

(dn)! possible lists Ln(a) . This proves Theorem 7. 0

45

8. Concluding Remarks.

We list some problems for further research.

(1) The e-improvement technique may be useful in other NP-complete problems,

for example, in the scheduling of tasks on a multiprocessor system [4].

This technique seems to be particularly suitable for scheduling-type

problems, when the set of possible worst-case input can be identified.

For instance, it can be used to show that r(S) < 2 for the Next-2

fit bin-packing [5] 161. It may be of interest to mention that, although

the algorithm RFF was constructed and analyzed in a more conventional

way as presented, it was first obtained in a fashion very similar to

the process in Sections 5 and 6. Thus, the e-improvement viewpoint

can provide a starting point for substantially improved algorithms.

(2) Let r(on-line) be inf{r(S)} over all on-line algorithms S , We

have shown that 1.5 < r(on-line) < 1.660.. , It is of interest to- -

determine it more precisely.

(3) Find and analyze off-line algorithms S with r(S) "substantially"

better than 11/p .

(4) Is there an E > 0 such that finding a packing of L using less

than (l+e)L* b'ins is NP-complete? Is there an E>O such that

every O(n) -time algorithm S (say, in the decision tree model

described in Section 7) has r(S) > l+e ?-_

46

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis

of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[2] M. R. Garey, R. L. Graham, D. S. Johnson, and A. C. Yao, "Multiprocessor

scheduling as generalized bin-packing," Journal of Combinatorial Theory

21 (1~76)~ 257-298.
[3] M. R. Garey and D. S. Johnson, "The complexity of near-optimal graph

coloring," Journal ACM 23 (1~76)~ 43-49.
[4] R. L. Graham, "Bounds on the performance of scheduling algorithms,"

in Computer and Job/Shop Scheduling Theory, edited by E. G. Coffman, Jr.,

Wiley, New York, 1976.

[5] D. S. Johnson, "Near optimal bin packing algorithm," Ph.D. Dissertation,

Massachusetts Institute of Technology, Cambridge, Mass., June 1973.
[6] D. S. Johnson, "Fast algorithms for bin packing," J. Comput, System Sci,

8 (1974), 272-314.

[7] De S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham,
"Worst-case performance bounds for simple one-dimensional packing

algorithms," SIAM J. on Computing 3 (1974), 299-325.

[8] R. M. Karp, "Reducibility among combinatorial problems," in Complexity

of Computer Computations, edited by R. E. Miller and J. W. Thatcher,

Plenum Press, New York, 1972.

[PI D. E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and

Searching, Addison-Wesley, Reading, Mass., 1973.

[lo] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, "An analysis of

several heuristics for the traveling salesman problem," SIAM J. on

Computing 6 (1~77)~ 563-581.

47

Appendix. The Strengthened FFD Analysis in Section 6.

At the beginning of Section 5, we listed some facts (Properties Al-B6)

which lead to the proof of Theorem 5. In this appendix, we will give more

details on how these facts can be obtained from the original analysis of

FFD in [51[71.

In [5], Properties Bl-B4 are proved under the following assumptions on

the list L . Let P:, be an FFD packing and P' an optimal packing of L ,

Write the items in L as xl 2 x2 > .,. > x- - n l

Let

3;= ⌧ic I xi is not in an A-bin in PF) .

Assumption 1, All x
i are in (W7 11 l

Assumption 2. 3; contains at least a C-piece or a D-piece.

Assumption j. The smallest piece xn goes into a non-A bin in P
Fy

i.e., Xn�3; l

We make the foll owing observations. Let E = 10 -9 , h = 1 1- Ll. 7

-FE

5 = 3 ~10~~ , and 'TJ = 10 -4 , as in Section 6.

Observation 1. One can replace Assumption 1 by a weaker constraint,

Assumption 1': that X~E (A,l] .

Observation 2. 3ne can replace F' by any packing of L .

Observation 3. Property B2 comes from the following facts.

g(Xi) , if X.
1 is an A-bin in P' ,

K(f(Xi)) - 5 g(Xi) 5 $, if Xi is a non-A bin in P' .

48

One can make Stronger statements for reg&Lar bins X
i l

W(f(Xi)) 5 & g(Xi) y if Xi is a regular A-bin in P' ,

W(f(Xi)) - if X
i

is a regular non-A bin in P' .

Observation 4. g(X) 5 50 , for any bin X. in P' .
1

Observation 5. g(X) 1 l/3 , if xi is a regular A-bin in P' .

Observations 3 and 4 lead to Property B5, and Observation 5 is

Property B6. Therefore, if L satisfies Assumptions l', 2 and 3, and

P' is any packing of L , then one can define f and g such that

Properties Bl-B6 are true.

It remains to show that Assumption 3 can be dropped. Let

L = (Xl _> x2 > . . . > xn) be a list satisfying Assumptions 1' and 2,- -

PF the FFD--packing of L , P* an optimal packing of L , and

3; z: (Xi \ xi is in a non-A bin in ‘F3 ’ Suppose

non-A -piece in 3 . We consider the list L' =

let P' be the packing of L' , obtained from

X is the smallestm

(9x2 l **Y ⌧m) 9 ?fl☺-ld

PX by deleting pieces

xm+p xm+21 l l l ,⌧n l Then L' satisfies Assumptions I', 2 and 3.

Applying the -previous results, we can define functions f' , g' satisfying

Bl-B6 for the list L' . Now, we define functions f and g for the

list L by

ff(xi) if xpL J

f(Xi) =

P otherwise,

and

gs’ Cxi) if xpL'

gCxi) =

0 otherwise.

49

Clearly, FFWJ) = FFD(L') ,
19

=
1% 1t Y and the set F is the

same for both L and L' , Also notice that a regular bin in P* must

also be regular in P' , and a bin in P* is an A-bin if and only if it is

an A-bin in P' . With these facts, it is straightforward to verify that

Properties Bl- B6 are satisfied for L with this choice of f and g .

50

