SOFTWARE RESTYLING IN GRAPHICS
AND PROGRAMMING LANGUAGES

by

Eric Grosse

STAN-CS-78-663
SEPTEMBER 1978

COMPUTER

SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

Ao At






SOFTWARE RESTYLING IN GRAPHI CS AND PROGRAMM NG LANGUAGES

i %
Eri c Grosse

*Departrrent of Computer Science, Stanford University, Stanford, CA 94305

This paper was presented at the 1978 Arny Nunerical Analysis and Conputers
Conference in Huntsville, Al abama, Mirch 1, 1978.

Research supported in part under Army Research G ant DAHCO4-75-G-0l195
and in part under National Science Foundation G ant MCS75-13497-A01.






SOFTWARE RESTYLING IN GRAPHI CS AND PPOGRANMNMING LANGUAGES

Eric Grosse
Comput er Sci ence Depart nent
Stanford Uni versity
Stanford CA 94 305

ABSTEACI, The value of lar ge software products can be cheaply

i ncreased by adding restyleg interfaces thatattract new users.
As 2xamples of this aPproach, a set of graphics primtives and a
lanquage precompiler fOr scientific conputation are descri bed.
These tVvO systems include a general user-defined coordinate
system instead of nunerous system settings, indention tO specify
block structure, a nodified indexing convention for array
parameters, a syntax for n-and-a-half-tines-*round |aops, and
engi neering format for real constants: mest of all, they strive

to be as small as possible,

9.3 PHILDSOPHY. Kernighan and Pl auger (19761 describe
explicitly and by exanple three precepts cf the Softvare Tools
phi | osophy:

- trim out theinessentials

- build it adaptively

- let someone el se do the hard part
Two nore exanples, driven by thesane phil osophy, are given
below. The tasic idea is to obtain high |leverage by taking an
exi sting, powerful piece of software and make it useful to nore
peopl e by designing a newinterface. Wbster's calls this
process facelift ing: "a restyling intended to increase confort
Oor sa lability."

1.0 JusTIPICATICN FOR STILL ANOTHER PRCGRAMMING LANGUAGE.
Fortran will no doubt remain for many years the nost inportant
program ng | anguage for scientific conputation. w#hen used
carefully and with discipline, it yields remarkably portable
codes; this is its greatest virtue. But, as orogrammers have
conpl ai ned for years, it also has many faults:

- awkward syntax for statements, strings, nanes

- primtive control structures

- DO | oop restrictions

- N0 macros

Poctcan preprocessors, such as MORTRAN [Cock+ Shustek 1975], have
el i mnated many of these di sadvantages and therefore have becone

very popular. Unfortunately, they reduce portability sonewhat,
sinze elither the preprocessor must be installed atthe new site



or illegible tobject' Fortran Sent there. more inportantly, such
preprocessors have only a mnor effect on inherent problens of

Fortran: )

- dynamic allocation is either unavailatle or requires the use
of rather confusing tricks

no prROCEDURE VARI ABLE type

NO STRUCTURE type

(Label | ed common bl ocks, since they do not use the

ccnbinatorial_%OSSlbllltIeS of procedure parameterization,

are less flexible.)

no O origin indexing

array bound informaticn is not automatically passed

nc vector operations

no recursion

)

[}

The PCRT library nakes dynamic allocation one of its eost
advertised features: ®We have found that use of dynamic storage

allocation in porT leads to nore clearly structured prograns,

cl eaner calling sequences, inproved memory utilization, and
better error detecticn.® [ Fox+Halls+Schryer 1977) Adding a stack
tc Portran i S a nmessy affair, however, as shown in figure I,
which contains two alternate nethods in ecér for allocating an

SUBROUTINE LBB(A,N)

COMMON /CSTAK/DSTAK(500)
SUBROUTINE LBB(A,N)
DOUBLE PRECISION DSTAK
INTEGER ISTAK (1000)
REAL A(1)

REAL RSTAK(1000)

COMMON /CSTAK/DSTAK(500)

DOUBLE PRECISION DSTAK
INTEGER ISTACK (1000)
REAL A(1)

EQUIVALENCE (DSTAK(1),]
Q CE ( (D.ISTAK (1)) REAL RSTAK(1000)

EQUIVALENCE (DSTAK(1),RSTAK(1))

EQUIVALENCE (DSTAK(1),ISTAK(1))

IT = ISTKGT(2*N,2
(2°N.2) EQUIVALENCE (DSTAK(1),RSTAK(1))

IR = ISTKGT(N,3)

II = ISTKGT(2*N,2)

{ code referring to RSTAK(IR +n) and ISTAK (I +m) IR = ISTKGT(N,3)

probably ending with code to store the stuff

from the real scratch storage into array A | CALL L1BB(A,ISTAK (1) ,RSTAK(IR),N)

CALL ISTKRL(2)

\ RETURN
CALL ISTKRL(2
@ END
RETURN
END

figure 1



| NTEGER and REAL array.

Qther proposals are even nore conplicated. éAfter a 7 page
description of DYNOSCR, Huybrechte{1977)] States: "This ppa er

gives cnly the basic features of the PYNOSOR system A more
sophi sticated use allows the user, once he is famliarized with
the system to inprove greatly the speed of prograns using it.®

PL/I, Which is now becomng fairly w dely available in sone form,
svercomes al | these difficulties. However, so huge alanguage
tends to overwhel m people, and because of tricky precision rules,
silant type conversions (as in I=J=0;), and the like, |earning
only part of the language is dangerous.

other | anguages, while beautifully designed, have their own
f1 avs. or ‘exanple, algol Wdoes 'not have a robust interface to

Fcrtran; in addition to this [rohilner 1977], Pascal places
pai nful restrictions on arrays.

1.1 T. Thus another apprcach seeas Warranted, which can conbi ne
the needed features of pL/r, the deliberate syntax of ALGOL, and
the low inplenmentation cost of the Portran preprocessors. such
ar approach has produced the |anguage T, intended to assist in
the implementation and documentation of algorithns for scientific
conput ati on. The principal aims have been ease of reading and
witing, low inplenentation cost, and reasonable efficiency.

appandix T gives the formal | anguage progosal ~specifying the
syntax accordirg to Wirt h's proposal [1977]. Si nce T is simlar
to Portran, Al gol 60, and PL/I, a complete Specification of the
semantics nay be omtted uithout confusion, To provide the
heuristics behind the design choices and to give an overview of
tdhe Iangduage, various aspects of the fol owi ng exanple will be

i scussed.

TRIP EAR

¢ exanple of T and G systens:; _
¢ various views of the sumof three Gaussi an peaks:

* Eric Gosse Stanford University

REAL: AZIM, ELEV, ¢ VI EW NG ANGLES ror SURFACE PLOT
BELERR, ABSEFR,# ERROR TOLERANCES FOR ODE

T, ToOUT, ¢ INDEPENTCENT VAR ABLES oF TRAJECTORY
NORMYP ¢ 2 NorM OF THE GRADI ENT
REAL(2) : LL, wur, ¢ CORNERS OP RECTARGULAR DOMAIN OF PUNCTION
ORIG N, # FOCAL PO NT rcr sorPACE PLOT
X0, SCALE, ¢ COORDH NATE TRANSFCRMATION PAR AMETERS
Y, YP ¢ rLocaTIoN AND GRADI ENT FOR TRAJEZTORY

REAL (142) : ODEWOPK
INTEGEER(S) : ODEIWOFK



DEFINE (P, 20) ¢ density of ¢ sanples;
REAL(-P: P,-P: | ?): P TABLE

REAL(3): LEVEL ¢ CONTOUR LEVELS
| NTEGER: 1, J,
IFLAG ¢ DI AGNOSTI CS FLAG ror ODE
STRUCTURE: PAPA?" | ¢ LOCATIONS, HEIGHTS. AND wsrpTHs OF PEAKS

REAL (3,2): X
REAL(3): H, w
STRUCTURE: PP ¢ PLOT PI LE
INTEGEB(500) : WORK
PROCEDURE: GOPEN, GCLOSE, GPICT, GCONT, GSURF, GLTYPE,
GJUMP, GDRAW, GTRAN1
FORTRAN PROCEDURE: CDE, DF, STASH
PROCEDURE () REAL: F

# SET 0P PARAMETERS
BLANK SEPARATI ON ( 2)
REAL DIGITS(3)
GET DATA (AZIM,ELEV)
PUT DATA(AZIM,ELEV)
X(1,1 :
X(1,2)
X(2,1)
X(2,2)
X (3,1 -X(2,1)
X (3,2) := X(2,2)
PUT DATA ARRAY( X)
CET ARRAY(H)
PUT DATA ARRAY(H)
GET ARRAY (W)
PUT DATA ARRAY(U)
STASH(X,H, ¥
FOR( - <=1 <= P
Y(1) := FLOAT(Il) s P
FR( ~P <= J <= P )
Y(2) := FLOAT(J) / P
F TABLE(I,J) := P(Y,PARAMN)

U]

3)
-0.43' 301 2702
-0.25

8 45 0 e
o ow

¢+ SURFACE PLCT

SCPEN(' VEP12FF*' ,PF)

GPICT(EF)

LL ==

grR :=1

ORRAN:=0.5

GSURF(LL,UK,FTABLE, AZIM,ELEV,ORIGIN,0.25,PF)



¢ CONTOUR PLOT
G PICT(PP)

SCALE := 0.3333

X0 := -0,5/SCALR (1)
GTRAN1(X0,SCALE,PF)

CGET ArRAY (LEVEL)

PUT DATA ARRAY (LEVEL)

3CONT (LL,UR,PTABLE,LEVEL, PP)
GLTYPE('DOT' ,PF)

CET AFEAY (LEVEL)

PUT DATA ARRAY (LEVEL)
3CONT(LL,UR,FTABLE,LEVEL, PF)

¢ CCHMPUTE AND PLOT TRAJECTORY
RELERR := 10(-6)
GLTYPE('SOLID', PF)
ABSERR := 10 (-6)
WHILE( ~ ENp OF | NPUT )
GET ARRAY ( Y )
?UT D@TA ARRAY( Y )
GJUMP (Y, PP)
IFLAG := 1
WHILE( NORMYP > 1(-3) & 1<=IFLAG & IFLAGC=3 )
TOUT 2= T + 10(-3) /NORNYP
CDE (oF, 2,Y, T, TOUT,RELERR ,ABSERR,IFLAG,ODEWORK, ODEIWO RK)

CASE
2 = IFLAG
GDRAW (Y, PPF)
3 = IPLAG

puT (*cDE DECI DED e fROR TOLERANCES were TOO SHALL.')
PUT('NER VALUES: ')
PUT DATA (RELERR,ABSERR)
ELSE
puT('oPE RETURNED THE errRCR FLAG ')
PUT DATA(IFLAG)
FI RST
DF(T, Y, YP)
NORMYP = NORMN2 (YP)
GC LOSE (PF)

F (Y, PARAM ) 2

REAL(): Y

REAL: Z, NCEBMSQ

STRUCTURE: PARAM
REAL (3,2): X
REAL(3): H ¥

| NTEGER 1

Z2 :=0

FOR( 1 <=I<= 3 )
NORMSQ := (Y(N)-X(I,1))**2 ¢ (Y (2)=X (I,2)) **2
Z :=2 ¢« H(@T)*EXP (-0.5*W () *NOR MSQ)



1.2 coNTRIL AND ¢THEFR SYNTAX, Perhaps themost Stri king feature
the algol veteran sees in this exanple 1S the conplete absence of
BEGINs and ENDs. Not only is the text indented, but the
indention actually specifies the block structure of the program
Such a scheme was apparently first proposed by Landin [ 1966].
Except for an endorsenent by Keuth [1574], the idea seems to have
been | argely ignored.,

|deally, the text editor weculd reco nize tree-structured programs
[Hansen 1971). In practice, text e i&tors tend to be line

oriented so that moving |ines about in an indented program
requires cunbersome mani pul ation of |eading blanks, Therefore
the current inplementation of T uses BEGIK and Ewmp |ines,
traaslating to I ndention on output. Thus the input
STRUCTURE: PARAM
((
FEAL(3,2) : X
REAL(3): H w
))
produces the out put
STFEUCTURE: PARAM
REAL (3,2): X
REAL(3): H, W
What ever the inplenmentation, the key i dea is to force the block
structure and the indention to be automatically the same, and to
reduce clutter from redundant keywords.

Blanks are insignificant outside of strings. Mathematical tables
have | ong used bl anks inside nuneric constants, as in

PI := 3. 14159 26535 89793
for readability. Blanks In identifiers alsc can inprove
readability, while reducing the chance of nisspellin? and easi ng
the pain of name length restrictions imposed by the Tocal
operati ng systen.

I n accordance with the recommendati ons of Scowen+Wichmann [ 1973],
comrents start with a special character, ¢, and run to the end of
t he physical |ine.

The small reserved word list elimnates the need for a stro _ping
convention. The psychol ogi cal advantages of this approach Rave
been el aborated by Hansen {1973).

The form of the assignnent and procedure call statenents follows
the clean, clear style of Algol 6C. To nmake macros nore

under standabl e, their syntax and semantics match those of
procedures as closely as pcssible.

In addition to normal statenent sequencing and procednre calls,
three control structures are provided. The CASE and WH LE

statenents are illustrated in this typical program segnent:



WHILE( NORMYP > 1(-3) & 1<=IFLAG & IFIAG<=3 )
TOUT := T + 10 (-3)/NORMYP

ODE(DP, 2,Y,T,.TOUT ,RELERR,ABSERR, IPLAG,ODEWORK,ODEIWOR K)

CASE
2 = IFLAG
GDRAW (Y,PFP)
3 = IFLAG

poT (*0DE DECI DED ERROR TOLERANCES VEERE TOO SMALL, ')
PUT (' NEW VALUES:')
PUT DATA (RELERR,ABSERR)
ELSE
PUT (*CcDE RETURNED tHE ERROR FLAG ')
PUT DATA (IFLAG)
FIRST
DF (T,Y,YP)
NORMYP := NORM2(YP)

The CASE statenment is modelled after the conditional expression
of LISP: the bool ean expressions are evaluated in sequence until
one evaluates to YES, or until ELSE is encountered. The use of
indention makesit easy to visually find the rel evant bool ean
expression and the end of the statenent.

One unusual feature of thewHILE | oops is the optional FIRST
marker, which specifies vhere the loop is to be entered. In the
exanmpl e above, the normof the gradient, Normyp, is conputed
before the loop test is evaluated. Thus the loop condition,

whi ch often provides a val uabl e hintatout the | oop invariant,
appears pronmnently at thetop of the | oop, and yet the comon n-
and-a-hal f-times-* rourd | oop can still be easily expressed.

The FoE statement adheres as closely as practical to common
mat hemat | cal practi ce.

FOR(1<=1I<= 3 )
NORMSQ := (Y (1) -X(I,1))*%x2 + (Y (2)=-X(I,2))**2
Z 3= Z ¢+ H(I)*E¥YP(~0.5%W(I) WORMSQ)

Sevaral yearsS experierce With these control constructs has
denonstrated them to be adequately efficient andmuch easier to

maintain than the alternatives.

Procedure nesting is not used for two reasons. First, textua 1
nesting that extends over manypagesisdifficult for a human to

keep track of. 3second, programs typically contain several high
| ove2 procedures calling a single prinmtive, so a tree
representation IS I nappropriate anyway.

By renoving the nesting of procedures, hovever, ve worsen the
problem Of “entry point hiding that arises vhencombining programs
from many sources into asingle library. A solution tothis
problem is to have an Oofficial name for each procedure, coded
along the lines of 1xsL, and also a nore mmenonic nick name
(which users can pick for thenselves if they like). The msacro



processor which is buitinto T can then be used to change all
occurences Of the nick nanmes into the corresponding of fi Ci al

names.

1.3 DECLARATIONS. The fundanmental scalar types are INTEGER,
REAL, and ccmeLex, fromwhich arrays and structures may be bnflt
up. As the exarrpfe

REAL (-p:P ,-P:P)
illustrates, general upper and | ower bounds are allowed.

The upper bound expression is omtted for a fornal ar ag
,oararreter, so that an appropriate value car be taken fromthe

engt h of the correspondi ng actual array argunent. The origin of
an actual array argunment need not match the origin of the
corresponding formal array parameter., For exanmple, if the actual
argument A was declared REAL(O:7): & and the formal paraneter s
was declared REAL(): B, then B(8) will correspond te A(7). Host
| anguages, when theyal | ow | over 'bounds at all, do not perait
this flexibility, which is used in the exarple program Wnen a
matrix with |over bourd -P iS passed to a general purpose library
routine which assumes a | over bound of O.

Structures of arbitrary depth may be decl ared. As the exanples
STRUCTURE: PARAN

REAL(3,2): X
REAL(3): H «
STRUCTURE: PF

INTEGER (500) : VWORK _ _
suggest, structures are useful passing collections of related
data, Without the need for long paraneter lists. This makes
feasible the prohibition of global variables in a drastic attenpt
t0 narrow and make more explicit the interface betveen
procedures.  Eucl I_d_ﬁ?opekbothers 1977] has enphasi zed t he
I nportance of visibility of nanes.

The graphi cs procedures Which use the wcrrk vector of the exanple
are” able to divide up the space Into convenient units. This

capability, which woul d bepossible in PL,/1 only through the use
of pointers, encourages information hiding and abstraction.

PROCEDURE varIaBLEs al | on the names ci<f procedures to besaved, an
essential feature for applications Iike the user-specified

coordinate transformation described in the graphics systea bel ow.

The inportance of existing Fortran software is recogniFed by
providing for FORTRAN PROCEDUREs as an Integral part of the

language. The current implementation of 1 performs this |inkage
inamore efficient uay than the naive user of PL/I would be
likaly to discover,



A novel syntax is introduced forfunction returns. ~ Since
rocedureS ray be recursive, Portran's convention of using the
unction rame as variable cannot be followed. Tnstead, the

procedure header declares a return variable just |ike any other
par amet er :

F (Y, PARAE ) 2
REAL(): Y
REAL: 2

1.4 1NpUT/sOUTPUT. Beginners often find rortrants input/out put
the nost difficult part of the |anguage, and even seasoned
programmers are tenpted to just print unlatelled nunbers, often
tc more digits than justif fed by the problem because formatting
is so tedious. ©PL/I's list and data directed 1,0 is so nuch
easier to use that it was vholeheartedly adopted in T. By
providing procedures for mcdifying the number of decimal places
and the nunber of separating blanksto be output, no edit-drected
I/Ois needed. Special statements are previded for array 1/0 SO
that, unlike FL/I, arrays can be printed in orderly fashion

wi thout explicit formatting.

Since almost as nuch tine is spent in sciectfffc conputation
staring at pages cf numbers as at pages of program text, nuch

t hought was given to the best format for displaying numbers.

Tn accordance with the "engineering format" used ONn Hewlett-
Packard cal culators and with standard netric practice reu Service
Section 1977}, exponents are forced to te multiples of 3. As
figure 2, an excerpt fromthe exasple program s output, shows,
thi's convention has a histogranm ng effect that concentrates the
information in the leading digit, as opposrd to splitting it
between the |eading digit and the exponent, which are often
sepnrated by 14 colums. The use of parentheses to surround the
exponent, like the legality of imtedded bl anks, was suggested by
mat henatical tables. This notation separates the exponent from
the mantissa nore distinctly than the usual & format.

1.5 DISCUSSION.

Fol | owi ng Kernighan¢Plauger [ 1976, the initial inplenentation is
unsophi sticated [Conmer 1978]. Nevertheless, the preprocessing is

| ess costly than thefL/I conpile, so the cverall results are
quite satisfactory. (The evaluation looks even better if one
ccepares PL/I + T agalnst PL/T ¢ PL/I's NMacro preprocessor.)

wost of the processor cost lies in basic 1,0: ﬁ I ntegrating the
macro processor withthe | anguage translator, this cost has been
minimi 2ed. [Kantorowitz 1976] Much Of the two-man-months spent
iP imglementation were spent in understandi ng nooks and crannies
of pL/I.



53.5100
51.3109
4o,7211
40.6514
33.7630
2b.,4900
16,9000
11.3401

- 55,6841 (-03)
-bo,4483i-03)
- 74.1973 (-03)
- 01,9297 (-03)
- 09.bkb43 (-03)
- 97,3401 (=03)
-105,010  (=03)
-112.670 (=03)
-120,302 (-03)
-135.493 (-03)
-143,050 (-03)

Tis not intended to replace any existing |anguages.
distributing sathematical softuarc,

prac tical nedium; for character processing,
or sN080L shoul d be used.
computation, Tought to be the easiest to use,
it coexists comfortably with Portran and PL/I.
cne can imagine ways that T right beimproved, as well.

ha ni,

(-03)
(=03)
(-03)
(=03)
(=03)
(=03)
(-03)
(-03)

3.63500(=03)
- 4.12944(=-03)
- 11,9123 (-03)
- 19,7092 (=-03)
- 35,3243 (-03)
- 43,1176 (=-03)
- 50,9005 (-03)

figure 2

still, for

5.
5¢13109L-02
4,67211k=-02
4,06514E-02
3.37636E-02
2,6U49006L=-02
10
1.13461=-02
3.,03508E-03
-q‘
-1.191238=02
-1.970928=-02
-2.75248L=02
-3.53243E=-02
~4,31176=02
-5.,090bok=-02
-5.bbb41z=-02
-0.04403E-02
=7.419732-02
-8.19297w=-02
~83.,90443E-02
-9,73401E=-0¢
-1,05010k=01
-1.12070L=-01
-1.,20302k=-01
-1.¢7910L=-01
-1.35493k-01
-1.43050£-01

t he bul k of

35106E-02

EYOUEE~02

12944E-03

For

Fortran resalins the only

sonething |ike pL/I

scientific

particularly since
On the other

Features omtted for ease of implementaticn include:

- trimred arrays,
- procedure results of general

- condi tional

like X{2:N)

type
bool ean operators

that dCc not evaluate t hei r

argunents when it i S possible to avoid doing so

- a swa
Fcr ot her
- strings
- nore general

- a means Of constructing arrays directly from conponents,

operator ] _ _ _
e atures, no entirely satisfying design was apparent:

procedure calls (such as indefinite number and
type of arquments)

as

10



a string constant constructs a string fromin aividwal characters
- a nmeans Of specifying the invocation graph of who calls wham

Perhaps the mpst fundamental thou h unavoidable flaw is that,
unl'ikKe LISP, the largquage is not 4 rivial, and therefore prograns

cannot be trivially manipul ated.

2.0 JUSTI FI CATI ON FOF STILL aworser SET CF GRAPH CS PRIMITIVES,
The next exanple of restyling is a sinple hut reasonably conplete
interface for noninteractive device-independent graphics. In
addition to the basic line drawing primtives, higher [evel
procedures are provided for displaying functions of one or two
variables. This interface has been inplemented as a library of
PL/I procedures which call the SLAC unified G aphics package
witten by Robert Reach [ 197871,

onified Graphics, with its enphasis on the ability to drive
di splays like the 1Bm 2250, is troublesome to usedirectly for
function plots and the like. 1In contrast, Top Drawer, another
graphics systesm at SLAC, allows for function plots but little
elsa. The collection described in detail in Appendix G 1S neant
to strike a useful bal ance between these twc extrenes, and
contains most of the features of DISSPIA inportant for scientific

conput ati on.

2.1 ESTABLISHING THE ENVIRONMENT. The fcllowing excerpt from

t he exanple programgiven in section 1.1 atove illustrates
typical preparation for plotting:
STRUCTORE: P F ¢ PLOT P1L®
INTEGER(500) : WORK
REAL(2): LL, UB, ¢ CORNERS OF RECTAKGULAR DOMAIN
RIGN ¢ FOCAL PO NT ror SURFACE PLOT

X0, SCALE  # COORDINATE TRANSPORMATION PARAMETERS
GOPEN('VEP12FF',PF)
GPICT (PP)
SCALE := 0. 3333
X0 := -0.5/SCALE (1)
GTRAN1(X0,SCALE,PF)

The plot area PF is used tc rememter various options and to
buffer low level plotter instructions. This work area is

initialized by the copen call, which specifies the output device.
(In the current inplenmentation, no corresponding JCL changes are
recessary.) The ease with which devices ray be changed is very

useful in tuning a plot for publication.

Por conpatibility with nunerical procedures, REAL variables are
in full precision, not short. Atthe start of each nev picture,
which mght te a screenful on a CRT or an 8.5 by 11" page on an
el ectrostatic plotter, epIcT is call ed.

11



A1l plotting is done relative to a user cocrdinate system which
is specified by calling
GTRAN( F, PP )
where F IS the name of a procedure which, when called in the fornm
F( X, W, PF )
vith
REAL(N): X N<=10
REAL (2): W ) ) )
will rap the point x I n user coordinates into a point % in the
unit square [0, 1)x(0,1). Normally WI) is thought of as
hecrizental and U(2) as vertical. By extending PP, the user can
pass paranmeters to P. For coanvenience, the default

traosformation NapsS
w:= SCALE * ( x - X0)

2.2 DRAWNG DIMENSIONING, AID FUNCTI ON GFAFHING., The basic
drawi ng commands are cJuMp, GDRAW, and GIEXT for drawi ng |ines
and adding tex*, If a nonlinear coordinate system has been
specified, GLRAW produces a piecevise linear approximation t0 the
inmplied curve.

A procedure GGRAPH i s provided which automatically sanples
functicn val ues, sets up an appropriate scaling, graphs the

function, and dinmensions the grapk using rcand nunbers in a style
consistent with the format used by T« Figure 3, taken from Chan
[1978), is a typical plot.

The scheme for choosing round nunbers is based on the al gorithm
by Dixon+Krormal [1965]. Experience and an informal survey of
vhat peopl e woul d accept as being "round nunbers” led to various
refinenments. As in Unified Gaphics, the choice is optinzed
over a reasonabl e nunmber of major tick marks. The total num ber
of tic marks, major acd minor, is not allowed to be either too
dense or too sparse. For a while, the numter of mi nor tick marks
was chcsen so that each interval had |ength 10*¢kx, but for input
data limts (20,70) the resulting tick marks wvere at
-10,0,100,200), So this rule had to te relaxed to "either

| ength 10%+=k or m dpoint of major interval? |[f the difference
betveen the data limits is small conpared tc the magnitude of the
limts thenselves (as occurs for exanple in plotting a nearly
constant fuaction), then the |abels may tecome unreasonably
large. Special provision is made for this case,

nther routines are available for scatter, surface, and contour
plots. The contour corputation uses piecewise quadratic surface

fitting to ensure snmooth contours and proper representation of
critical points (™arlow+Powell 1976]). Figure 4 presents output
from the exanpl e program, which computes hill-cl isbing

tra jectories for a three-gaussian-peak terrain.

12



(+°0)

°ptimized M

80
I

Scheme LF2DF2, E, = 0. 01

figure 3

13



. ’ ’#'::::. 7-7
W

figure 4

14



CONCLUSION., withalevel of effort conparable to witing a
Portran preprocessor, ve have created, by compiling into PL/I, a
| anguage substantially better than Fortran or its derivatives.
Since pL/I problens cannot be altogether avoided by this
%pproach, further work on a |anguage |ike 1 could be useful.
erhaps the effort would be better spent en making LI SP a
practical language for scientific coapuation by building on the
research in synbolic conputation.

Like PL/I, Unified Graphics is good for a wide range of,
applications. But in practice, many people von't USe either.

For lanquages, they stick to Portran; foOr graphics, they pl ot by
hanl or not atall. In both cases it has proven possible to
cheaply restyle the existing system, via a preprocessing phase or
driver routines, in order to create nore agreeabl e tools.

ACKNOWLEDGEMENTS, Special thanks go to Bill coughran for

di scussions of this report and help with 1*s realization ina
pL/T preconpiler. Helpful comments were made by Petter B-jorstad,
Dan Boley, Tony Chan, Hector Garcia, #sike Heath, Randy Levequa,
and Bob Melville, Supr)ort was previded by a National ScCi ence
Foundation graduate fellowship and grant DRXPO | A-13292-H from
the US Arny Research Ofice; conputing was BéOVi ded at the
Stanford Linear Accelerator Center by the partment of RBnergy.

BIBLICGRAFHY .

Beach, Robert [Jun 1978) _ _
The SLAC Unified G aphics System progranmm ng ranual
Stanford Linear Accelerator "Center CGTM 170

Chan, Tony FC (Apr 1978 o
Comparison Of numerical nethods for initial value problens

Stanford uriv PhD thesis

Comer, Dougl as [1978])
NOUSE4: an inproved implementation Of the RATFOR
preprocessor
Pract + Fxper 8, 35-u(

Cook, A James + L J schustek [Jun 1975]
A user's guide tO MORTRAN2
Stanford Linear Accelerator Center ccT™ 165

Dixon, W J + F AKronmal [ Apr 1965}
The choice of origin and scale for graphs
J AcH 12, 259-261

Fox, P A+ A D Hall + ¥ L Schryer [may 1577}

15



