
SOFTWARE RESTYLING IN GRAPHICS
AND PROGRAMMING IANGUAGES

by

Eric Grosse

STAN-CS-78-663
SEPTEMBER 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

SOFTWARE RESTYLING IN GRAPHICS AND PROGRAMMING LANGUAGES

bY

Eric Grosse*

Department of Computer Science, Stanford University, Stanford, CA 94305

This paper was presented at the 1978 Army Numerical Analysis and Computers
Conference in Huntsville, Alabama, March 1, 1978.

Research supported in part under Army Research Grant DAHCOb-75-G-0195
and in part under National Science Foundation Grant MCS75-13497-AOl.

SOPTUARE BESTYLING II0 GRAPHICS ABD PFDCRALIURG LANGUAGES

Eric Grasse
Computer Science Department

Stanford University
Stanford CA 94 305

ABSi"EELCT. The value of lar
increased by adding restyle x

e software products can be cheaply
interfaces that attract nev users.

As examples of this approach, a set of graphics primitives and a
language preconpiler for scientific computation are described.
These tvo system include a general user-defined coordinate
system instead of numerous system settings, indention to specify
block structure, a modified indexing convention for array
pwaweters, a syntax for n-and-a-half-times-*round laops, and
engineering format for real constants: aost of all, they strive
to be as small as possible,

9.3 PBIL3S3PHY. Rernighan and Plauger [I9761 describe
explicitly and by example three precepts cf the Softvare Tools
philosophy:

- trim out the inessentials
- build it adaptively
- let someone else do the hard part

Two more examples, driven by the same philosophy, are given
belw. The basic idea is to obtain high leverage by taking an
existing, powerful piece of software and make it useful to more
people by designing a new interface. Webster's calls this
process facelift ing: '@a restyling intended to increase comfort
or sa lability.m

1.0 JUSTIFICATICN FOR STILL ANOTHER PRCGRAMING LANGUAGE.
Portran will no doubt remain for many years the most important
programing language for scientific computation. When used
carefully and with discipline, it yields remarkably portable
codes; this is its greatest virtue. But, as programem have
complained fx years, it also has many faults:

- awkward syntax for statements, strings, names
- primitive control structures
- DO loop restrictions
- no macros

Fwtran preprocessors, such as HORTRAN [Caak+Shustek 19751, have
eliminated many of.these disadvantages and therefore have become
very popular. Unfortunately, they reduce portability somewhat,
sinze either the preprocessor must be installed at the new site

1

or illegible 'object' Fortran sent there. Hate importantly, such
preprocessors have only a minor effect on inherent problems of
Fortran:

- dynamic allocation is either unavai1aM.e or requires the use
of rather confusing tricks

- no PBXEDUEE VARIABLE type
- no STRUCTUPE type

(Labelled common blocks, since they do not use the
ccnbinatorial possibilities of procedure paraneterization,
are less flexible.)

- no O-origin indexing
- array bound informaticn is not automatically passed
- DC vector operations
- no recursion

The PCRT library makes dynamic allocation one of its most
advertised features: We have found that use of dynamic storage
allocation in PORT leads to more clearly structured programs,
cleaner calling sequences, improved memory utilization, and
better error detectFon.n [Pox+Hall+Schrpet 19771 Adding a stack
tc Fortran is a messy affair, however, as shown in figure I,
which contains two alternate methods in PCFT for allocating an

SUBROUTINE LBB(A,N)

COMMON /CSTAK/DSTAK(SOO)
SUBROUTINE LBB(A,N)

DOUBLE PRECISION DSTAK
INTEGER ISTAK(1000)
REAL A(f)
REAL RSTAK(1000)

COMMON /CSTAK/DSTAK(SOO)

DOUBLE PRECISION DSTAK
INTEGER ISTACK(1000)

EQUIVALENCE (DSTAK(I),ISTAK(I)) REAL A(1)

EQUIVALENCE (DSTAK(l),RSTAK(l)) REAL RSTAK(1000)

I
i’ II = ISTKGT(Z*N,2) EQUIVALENCE (DSTAK(l),ISTAKtl))

IR = ISTKGT(N,3) EQUIVALENCE (DSTAK(l),RSTAK(I))

II = ISTKGT(2*N,2)

I { code referring to RSTAK(IR+n) and ISTAK(II+m) IR = ISTKGT(N,3)
i

I

probably ending with code to store the stuff
from the real scratch storage into array A) CALL LlBB(A,ISTAK(II),RSTAK(IR),N)

1 : CALL ISTKRL(2)

F CALL ISTKRL(2) RETURN
END

RETURN
END

figure 1

INTEGER and REAL array.

Other proposals are even more complicated.
description of DYNOSCP,

(After a 7 page
Uuybrechte[1977] states: mThis paper

gives cnly the basic features of the I?P#OSOR system. A more
sophisticated use allows the user, once he is familiarized with
the system, to improve greatly the speed of programs using it.")

PL/I, which is now becoming fairly widely available in some for@,
Qvercomes all these difficulties. However, so huge a lanquaqe
tends to overwhelm people, and because of tricky precision rules,
silent type conversions (as in L=J=O;I, and the like, learning
only part of the language is dangerous.

i9ther languages,
fl aus.

while beautifully designed, have their own
For example, Algol W does not have a robust interface to

Fcrtran; in addition to this [Kohilner 19771, Pascal places
painful restrictions on arrays.

1.1 T. Thus another apprcach seeas warranted, which can combine
the needed features of PL,& the deliberate syntax of ALGOL, and
the low implementation cost of the Portran preprocessors. such
m approach has produced the language T, intended to assist in
the iraplenentation and docusaentatior! of algorithms for scientific
computation. The principal aias have been ease of reading and
writing, low implementation cost, and reasonable efficiency.

Appsndir T gives the formal language proposal, specifying the
syntax accordicg to Wfrt h's proposal [19771, Since T is similar
to Portran, Algol 60, and PL/I, a cwnplete specification of the
semantics nay be omitted uithout confusion, To provide the
heuristics behind the design choices and to give an overview of
the language,
discussed.

various aspects of the folowing example will be

TRIP EAR
Ic example of T and G systems:
Y various views of the sum of three Gaussian peaks:
Eric Grosse Stanford University

REAL: AZIP!, ELEV, #
RELERR, AE?SEFR,t
T, TGUT, #
N0RHYP t

REAL(2): LL, up., #
ORIGIN, x
x0, SC&L& *
Y, YP #

REAL(142): ODEUUPK
INTEGEh(5): ODEIWOFK

VIEWING ANGLES FOR SURFACE PLOT
ERROR TOLERAIICES F(lrR ODE
fNDDEPRJCENT VARIABLES OF TRAJECTORY
2 NOPH OF THE GRADIENT
CORNERS OP RECTAKGULAR DOHAAN OF PUJTION
FOCAL POINT FCR SUPPACE PLOT
COORDINATE TPANSFGRMATION PAR AC?ETKRS
LOCATXOI AND GRADIENT FOR TRAJKTORY

3

DEFINE(P,20) I density of F samples;
REAL(-P: P,-P: I?): P TABLE
REAL(3): LEVEL 1c COlJTOUR LEVELS
INTEGER: I, J,

IPL AG # DIAGNOSTICS FLAG FOR ODE
STRUCTURE: PAPA?'! # LOCATIOBS, HEIGHTS. AND RIDTliS OF PEAKS

REAL (3,2): X
REAL(3): H, W

STRUCTURE: PP I PLOT PILE
INTEGEB(500): WORK

9ROCEDURE: GOPEN, GCLOSE, GPICT, WONT, GSURP, GLTYPE,
GJUW, GDRAY, GTRA#l

FORTRAN PROCEDURE: CDE, DF, STASH
PROZEDURE () REAJ,: P

1c SET UP E'ARAHETERS
BLANK SEPARATION (2)
REAL DIXTS(3)
GET DATA(AZII,ELEV)
PUT DATA(AZIE,ELEV)
X(1,1) := 0
x ma := 0.5
X(2,1) := -0.43'301 2702
X(2,2) := -0.25
X(3,1) := -X(2.1)
x t3,21 := X(2,2)
PUT DATA ARRAY(X)
GET ARRAY(H)
PUT DATA ARRAY(H)
GET ARRAY (W)
PUT DATA ARRAY(U)
3TASH(X,H,W)
FOR(-F <= I <= P)

Y(1) := FLOAT(I) / P
FOR (-P <= 3 <= P)

Y (2) := PLDAT(J) / P
F ThBLE(f,J) := P(Y,PARAC!)

Y SURFACE PLCT
XPEN('VEP12FF',PF)
sPICT(w)
LL := -1
UR := 1
ORIGIN := 0.5
GSURP(LL,UR,FTABLE,AZX!?,ELEV,ORfGIN,O.25,PP)

l

t CO1ToUR PLOT
GPICT(PF)
SCALE := 0.3333
x0 := -O.S/SCALR(l)
GTRANl(XO,SCALE,PP)
GET AFRAY (LEVEL)
PUT DATA ARRAY(LEVEL)
GCONT(LL,UR,PTABL.E,LEVEL,PP)
GLTYPE('DOT',PP)
GET AF&AY(LEVEL)
PUT DATA ARRAY (LEVEL)
SCONT(Lt,UR,FTABIE,LRVEL,PF)

I CC?lPUTE AND PLOT TRAJECTORY
RELEBB := lO(-6)
GLTYPE('SOLID',PF)
ABSE3R := lO(-6)
,idHILE(- 3ND OF INPUT)

GET ARRAY(Y)
PUT DATA ARRAY(Y)
T 0
GJi;P(Y.PP)
IFLAG := 1
WHTLE(NOBf!lYP > 71-3) E l<=IFLAG & 'IFtACK=)

TOUT := T + lO(-3)/IOR?!YP
CDE @2?,2,Y,T,TOUT,RELERR ,ABSERR,~F~G,ODEUORK,ODBIYORK)
CASE

2 = IFLAG
GDRAU(Y,PF)

3= IFLAG
PUT('CDE DECIDED EBROR TOLERANCES WERE TOO SHALL.')
PUT('NEU VALUES:')
PUT DATA(RELERR,ABSERR)

ELSE
PU?('OCE RETURNED THE ERRCR FLAG:')
PUT DATA(IFLAG)

FIRST
DF(T,Y,YP)
N!lR!'!YP := NOM'!2 (VP)

GCLOSE(PF)

F (Y, PARA!l) 2
REAL(): Y
REAL: 2, NOE%SQ
STRUCTURE: PARAH

REAL(3,2): X
REAL(3): H, W

INTEGER: I
z 0
,*a=, 1 <= I <= 3)

NORHSQ := (Y~l)-x(I,1))**2 + (Y (2)-x(I,2))+*2
z ;= 2 + H (?)*tEXP(-O.S*W(I)*NORHSQ,

5

1.2 COblTR3L AND CTHEF! SYNTAX, Perhaps the most striking feature
the Algo veteran sees ic this example is the complete absence of
BEGXNs and ENDS. Rot only is the text indented, but the
indention actually specifies the block structure of the program,
Such a scheme was apparently first proposed by Landin [1966].
Except for an endorsement by Knuth [lS74], the idea seems to have
been largely ignored.,

Ideally, the text editor wcnld reco nize tree-structured
[Hsnsen 19731. In practice, text e itors tend to be line8

programs

oriented so that aaoving lines about in an indented program
requires cumbersome manipulation of leading blanks, Therefore
the current implementation of T uses REGTR and E??D lines,
trswlating to indention on output. Tbus the input

STRUCTURE: PARA!'!
t(
REAL(3,2): X
REAL(3): H, U
1)

produces the output
STBUZTUREt PABAP

REAL (3,2): X
PEAL(3): H, W

Whatever the implementation, the key idea is to force the block
structure and the indention to be automatically the same, and to
reduce clutter frota redundant keywords.

Blw~lks are insignificant outside of strings. P!athematical tables
have long used blanks inside numeric constants, as in

PI := 3. 14159 26535 89793
for readability. Blanks in identifiers alsc can improve
readability, vhile reducing the chance of misspelling and easing
the pain of name length restrictions imposed by the local
operating system.

In accordance with the recommendations of Scowen+Uichmann 119731,
comments start with a special character, Q, and run to the end of
the physical line.

The small reserved word list eliminates the need for a stro ping
convention. The psychological advantages of this approach R ave
bee2 elaborated by Hansen [1973].

The form of the assi
p"

ment and procedure call statements follows
the clean, clear sty e of Algo 6C. To make macros more
understandable, their syntax and seaantics match those of
procedures as closely as pcssible.

In addition to normal statement se
8"

encin
1

and
three control structures are provi ed, K

rocednre calls,
T e CAS and WHILE

statements are illustrated in this typical program segment:

6

.

PHI;~UTNOR8YP > l(-3) C l<=IFLAC E IFLAG<=) .
:= T + lO(-3)/1pOR?!YP

ODE(DF,2,Y,T,TOUT,RELERR,ABSERR,fFLAG,ODEYORK,ODBZWOR~
CASE

2 = TPLAG
GDRAY (Y,PP)

3= TF'LAG
POT('ODE DECIDED ERROR TOLERANCES WERE TOO SMAALL.')
PUT ('NEW VALOES:')
PUT DATA(RELERR,bBSERR)

ELSE
PUT('CDE RETURNED THE ERROR FLAG:')
PUT DATA(IFLAG)

PTEST
DF (T,Y,YP)
NORBYP := NoRR2(YP)

The CASE statement is aodelled after the conditional expression
of LISP: the boolean expressions are evaluated in sequence until
one evaluates to YES, or until ELSE is encountered. The use of
indention makes it easy to visually find the relevant boolean
expression and the end :,f the statement.

c

One unusual feature of the WRXLE loops is the optional FIRST
marker, which specifies vhere the loop is to be entered. In the
example above, the norm of the gradient, NORBYP, fs computed
before the loop test is evaluated. Thus the loop condition,
which often provides a valuable hint about the loop invariant,
nppars prominently at the top of the loop, and yet the common n-
and-a-half-times-* rmmd loop can still be easily expressed.

The FOE statement adheres as closdy as practical to common
mathematical practice.

PDR(1 <= I <= 3)
N0RBSQ := (Y(l)-x(I,l))*+2 + (Y(2)-x(I,2))**2
2 := 2 + H(T)*EXPI-O,S*W(T) '@K?RMSQ)

Several years experieme with these control constructs has
demonstrated them to be adequately efficient and rruch easier to
maintain than the alternatives.

Procedure nesting is not used for two reasons. First, textua 1
nesting tbt extends over sanp pages is difficult for a human to
keep track of. Second, programs typically contain several high
love2 procedures calling a single primitive, so a tree
representation is inappropriate anyway.

By removing the nesting of procedures, hovever, ve vorsen the
problem of entry point hiding that arises vhen combining proqrars
from many sources into a single library. A solution to this
problem is to have,an official naaae for each procedure, coded
along the lines of IPISL, and also a more mnemonic nick name
(which users can pick for themselves if they like). The macro

7

processor which is built into T can then be used to change all
occureuces of the nick names into the corrospondfng official
IElMS.

1.3 DECLARATIONS. The fundamental scalar types are INTIWIR,
REAL, and CO!WLEX, from which arrays and structures may be bnflt
uF- As the example

REAL (-P:P ,-P:P)
illustrates, general upper and lower bounds are alloued.

The upper bound expression is omitted far a formal array
parameter, so that an appropriate value cat be taken from the
length of the corresponding actual array argument. The origin of
an actual array argument need not match the origin of the
carresFonding formal array paraxeter. For example, if the actual
argument A was declared REAL(O:7)t B and the formal parameter B
was declared REAL{): E, then B(8) will correspond to A(7). Host
languages, when they allow lover bounds at all, do not permit
this flexibility, which is used in the exasFle Frograr when a
matrix with lover bound -P is passed to a genera1 purpose library
routine which assumes a lover bound of 0.

Structures of arbitrary depth may be declared.
STRUCTURE: PARA?!

As the examples

REAL(3,2): X
RBAL(3): H, Y

STRUCTURE: PF
INTEGER(500): WORK

suggest, structures are useful passing collections of related
dats, without the need for long parameter lists. This makes
feasible the prohibition of global variables in a drastic attempt
to narrou and sake more explicit the interface betueen
procedures. Euclid [Popekwthers 19771 has emphasized the
importance of visibility of names.

The graphics
are able to d vide up the space into convenient units.f

rocedures which use the WCBK vector of the example
This

capbility, which would be possible in PL/I only through the use
of pointers, encourages information hiding and abstraction.

PROCEDURE VARIABLEs allow the names of procedures to be saved, an
essential feature for applications like the user-specified
coordinate transformation described in the graphics systea below.

The importance of existin
prmidlng for FORTRAN PRO2

Portran software is recognized by
EDUREs as an integral part of the

language. The current iopleaentatfon of T performs this linkage
in a more efficient uay than the naive user of PIA uould be
likaly to discover,

A novel syntax is introduced for function returns. ' Since
procedures ray be recursive, Portrants convention of using the
function Eame as variable cannot be followed. Tnstead, the
procedure header declares a return variable just like any other
parameter:

F (Y, PAM?!) 2
REAL(): Y
REAL: 2

1.4 INPUTKWTPUT. Beginners often find Portran% input/output
the most difficult part of the language, and even seasoned
programmers are tempted to just print unlabelled numbers, often
tc more digits than justif fed by the problem, because formatting
is so tedious. PLL/Fs list and data directed I:/0 is so much
easier to use that it was vholeheartedly adopted in T. By
providing procedures for mcdifying the number of decimal places
and the number of separating blanks to be output, no edit-drected
I/O is needed. Special statements are prcvided for array I/O so
that, unlike FL/I, arrays can be printed Pn orderly fashion
without explicit foreaatting.

Since almost as much time is spent in sciectfffc computation
staring at pages cf numbers as at pages of program text, much
thought was qiver! to the best format for displaying numbers.

I:n xccrdance with the "engineering format" used on Hewlett-
Packard calculators and with standard metric practice TGH Service
Section 19771, exponents are forced to te multiples of 3. As
figure 2, an excerpt from the erarple program's output, shows,
this convention has a histogramming effect that concentrates the
infaraatioQ in the leading digit, as opposrd to splitting it
between the leading digit and the exponent, which are often
sepnrated by 14 columns. The use of parentheses to surround the
exponent, like the legality of imtedded blanks, was suggested by
mathematical tables. This notation separates the exponent from
the mantissa more distinctly than the usual E format.

1 . 5 DIscUSSION.

Following KernighawPlau
unsophisticated [Comer 1 3

er [1976],
781.

the initial implementation is
Hevertheless, the preprocessing is

less costly than the FL/I compile, so the cverall results are
quite satisfactory. (The evaluation looks even better if one
ccmpares PL/I + T against PL/L + PL/I*s macro preprocessor.)
Host of the processor cost lies in basic I/O: by integrating the
macro processor with the language translator, this cost has been
minimi 2ea. rKantorowitz 19761 Huch of the tuo-@an-months spent
in irqleeentation were spent in understanding nooks and crannies
of PL/I.

53.51Ob (-03)
51.3109 (-03)
4bJ211 t-03)
40.6514 t-03)
33.763ri C-03)
2b.4901, L-03)
1u.4uou i-03)
11.3401 bO3)
3.635OubO3)

- 4.12944(-03)
- lLWL3 C-03)
- 19*?092 C-03)
- 27.5246 (-03)
- 35,3243 t-03)
- 43,117b t-03)
- 50,9Ob& t-03)
- 50.6641 i-03)
- bo,Ubj i - 0 3)
- 74.1973 i-03)
- bl.Y297 (-03)
- b4,b443 t-03)
- w.3401 i-03)
-1u5.010 L-W
-112.670 (-oj)
-1L0.302 C-03)
-lr?.kmI (-03)
-135.493 t-03)
-143.05ij (-133)

figure 2

5.35ldbE-02
5.13109bO2
4,6?2llc-02
4,06514E-02
3.37636E-02
2,6490UE-02
1 .U9dOdE-02
1,13461ii-02
3.635ObE-03

-4,12944L-03
-1 .ly123c-02
-1.9?OY2L-02-> J524Ub02
1;.53243E-02
-4,3117bi+O2
-S.OYOb~E-02
-5,bbb41z-02
-b.b446jE-02

-?.419'?jti-02
-a.1929%-02
-U,9b443L-02
-9.7j4OlC-OL
-1.05010~-01
-1.1Lb?oti-01
-1.20302~41
-1.27910L-01
-1.35493b01
-1,4305oc-01

T is n& intended to replace any existing langua
1
es. For

distributing Mthematical softuarc, Fortran rema ns the only
pram tical medium ; for character processing, something like PL/I
or SNOSOL should be used. still, for the bulk of scientific
coaput3tion, T ought to be the easiest to use, particularly since
it coexists comfortably with Portran and PL/Y. On the other
ha nl, cne can imagine ways that T right be iaproved, as well.
Features omitted for ease of impleaentaticn include:

- trimmed arrays, like X(2:U)
- Frocedure results of general type
- conditional boolean operators that dc not evaluate their

arguments when it is possible to avoid doing so
- a swap operator

Fcr other fe atares, no entirely satisfying design was apparent:
- strings
- more general procedure calls (such as indefinite number and

type of ar<Inments)
- a means of constructing arrays directly from components, as

10

c

a string constant constructs a string from in di’vidual characters
- a means of specffying the invocation graph of uho calls wham

Perhaps the most fundamental
unlike LISP, the lalrguage is not

thou bi;;t;oidable
4

flaw is that,
9 and therefore programs

cannot be trivially manipulated.

2.0 JUSTIFICATION FOF STILL AlOOTRER SET CF GRAPHICS PRIMITTIVES.
The next example of restyling is a simple hut reasonably complete
interface for noninterac+Sve device-independent graphics. In
addition to the basic line drawing primitives, higher level
procedures are provided for displayinq functfons of one or two
variables. This interface has been implemented as a library of
PL/X procedures which call the SLAC Uniffed Graphics package
written by Robert Reach [19781.

Vnified Graphics, with its emphasis on the ability to drive
displays like the XI3Pf 2250, is troublesome to use directly for
function plots and the like. Xn contrast, Top Drawer, another
graphics systere at SLAC, allows for function plots but little
elm. The collection described ia detail in Appendix G is meant
to strike a useful balance betveen these twc extremes, and
contains most of the features of DISSPLA important for scientific
computation.

2.1 ESTABLXSBING TtTE ENVIRORf¶ERT. The fcllowing excerpt from
the example program given in section 1.1 ahove illustrates
typical preparation for plotting:

STEUCTUBE: P F @ PLOT FILR
INTEGBR(500): WORK

REAI(2): LL, UB, I COBRERS 3F RECTAOGULAR DOHAII9
ORIGIN, 4 FOCAL POINT POR SURFACE PLOT
X0, SCALE t COORDIRBTE TRANSPORI'IATION PARMETERS

GOPEN('VEP12FF',PP)
GPICT(PP)
SCALE := 0.3333
x0 := -0,5/SCALE(i)
STRANl(XO,SCALE,PF)

The plot area PF is used tc remeaber various options and to
buffer low level plotter instructions. This uork area is
initialized by the GOPEH call, which specifies the output device.
(Tn the current implementation, no corresponding JCL changes are
Decessary.) The ease uith which devices ray be changed is very
useful in tuning a plot for publication.

Por compatibility with numerical procedures, REAL variables are
in full precision, not short. At the start of each nev picture,
which might be a screenful on a CRT or an 8.5 by 11" page on an
electrostatic plotter, GPXCT is called.

11

All plotting is done relative to a user cocrdinate system, which
is specified by calling

GTRAN(F, PP)
where P is the name of a procedure which, when called in the forrr

F(XI w. pp 1
uith

REAL(H): X N<=lO
REAL(2): u

will rap the point It in user coordinates into a point W in the
unit square [O, 13x1:0,1 1. Normally W(l) is thought of as
hcrizcntal and U(2) as vertical. By ertending PF, the user can
pass parameters to P. For amvenience, the default
transforaation maps

w := SCALE * (X - x0)

2.2 DRAWING, DIMENSZONING, AID FUNCTION GFAPHING. The basic
drawing commands are GJUE!P, GDRAW, and GTEXT for drawing lines
and ndding text. If a nonlinear coordinate system has been
specified, GCRAW produces a piecevise linear apFroriaatfon to the
implied curve.

A procedure GGPAPH is provided which automatically samples
functicn values, sets up an appropriate scaling, graphs the
function, and dimensions the graph using rcund numbers in a style
consistent with the format used by T, Figure 3, taken from Chan
[1978], is a typical plot.

The sche= for choosing round numbers is based on the algorithm
by Diaon+Kronmal f l%S], Experience and an informal survey of
vhat people would accept as being Qoand numbers" led to various
refinements. As in Unified Graphics, the choice is optimized
over a reasonable number of major tick marks. The total nom her
of tic marks, major acd minor, is not allowed to be either too
dense or too sparse. For a while, the number of minor tick marks
was chcsen so that each interval had length 10**k, but for input
data limits (2OJO) the resulting tick marks uere at
(-13@,0,100,200), so this rule had to be relaxed to "either
length lO**k or midpoint of major interval? If the difference
hetueen the data limit s is small compared tc the magnitude of the
limits themselves (as occurs for example in plotting a nearly
constant functi03),
large.

then the labels may tecoae unreasonablp
Special provision is made for this case,

Qther routines are available for scatter, surface, and contour
plots. The contour computation uses piecewise quadratic surface
fCtting to ensure smooth contours and proper representation of
critical points [?!arlov+Povell 19761. Figure 4 presents output
from the example program, which computes hill-cl iabing
tr3 jectories for a three-gaussian-peak terrain.

12

s
0
+ 0

co

0
-04

E
-G
Pi

0

0
CQ

0

Sch@me LF2Dl!?Z, E, = 0.01

- 2 0 2

Log; Ior

4 6

(i-00>

figure 3

13

. . .

.

’ .
..* ’

..a -
. .*.,

.

. .-
*. .

: : . . .

figure 4

14

I c

CCINCLUSXOIJ. with a level of effort comparable to writing a
Fortran preprocessorl ue have created, by compiling into Pt/f, a
language substantially better than Portran or its derivatives.
Since PI./1 problems cannot be altogether avoided by this
approach, further work on a language like T could be useful.
Perhaps the effort would be better spent cm making LISP a
practical language for scientific coapuation by building on the
research in symbolic computation.

Like PL/I, Unified Graphics is good for a wide range of
applications. But in practice, many people won't use either.
For lanquaqes, they stick to Portran: for graphics, they plot by
han3 or not at all. In both cases it has proven possible to
cheaply restyle the existing system, via a preprocessing phase or
driver routines, in order to create more agreeable tools.

ACKbl3WLEDGENEETS. Special thanks go to Bill Conqhran for
discussions of this report and help with l's realization in a
PL/I preconpiler. Helpful coarents were made by Petter B-jorstad,
Dan Boley, Tony Chan, Hector Garcia, Mike Heath, Randy Levequa,
and Bob Melville. Support uas provided by a National Science
Foundation graduate fellowship and grant DRXPO-IA-13292-H from
the US Army Research Office; computing was provided at the
Stanford Linear Accelerator Center by the Department of Rnergy.

BE3LLICGRAPHY.

Beach, Robert [Jun 1978)
The SLAC Unified Graphics System: programming ranual
Stanford Linear Accelerator Center CGTM 170

Chan, Tony F C [Apr 19781
Compwison of numerical methods for initial value problems
Stanford Ur,iv PhD thesis

Comer, Douglas 119781
PJOUSE4: an improved implenentatim of the RATFOR

preprocessor
Soft Pratt + Rxper 8, 35-N

Cook, A James + L J Schustek [Jun 19751
A user's guide to nORTRAM
Stanford Linear Accelerator Center CGTH 165

c

Dixon, U J + F A Kronval CApr 1965
The choice of origin and Isea e for graphs
J AC!3 12, 259-261

P3X, P A + A D Hall + N L Schryer [May 19771

