
STAN-G-78-665

SCALD: Structured Computer-Aided Logic Design

. .

T.M. McWilliams and L.C. Widdoes, Jr.

-e

Technical Report No. 152

March 1978

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California 94305

SCALD: Structured Computer-Aided Logic Design

T. M. McWilliams and L. C. Widdoes, Jr.

Technical Report No. 152

March 1978

Digital Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
Stanford, California 94305

ABSTRACT

SCALD, a graphics-based hierarchical digital logic design system, is

described and an example of its use is given. SCALD provides a total

computer-aided design environment which inputs a high-level description

of a digital system, and produces output for computer-aided manufacture

of the system. SCALD has been used in the design of an operational, l5-

MIPS, 5500-chip ECL-1Ok processor.

INDEX TERMS: design automation, computer-aided design, Stanford-l

computer, structured logic design, SCALD system

TA,BLE OF CONTENTS

Section

I. Introduction . . .

2. System Overview . .

3. Graphics Editor . .

4. Macro Language . .
4.1 Signal Expressions
4.2 Signal Types . .
4.3 Versions . . .
4.4 High-Low Drivers
4.5 Macro Definition .
4.6 Macro Call . .
4.7 Terminal Component
4.8 Macro Expansion . .
4.9 Board Layout and Partitioning .
4. IO Text For-% of Macro Language .

5. Output Listings Generated . . .

6. Conclusions

7. Acknowledgements.

8. References

Appendix I: Sta.ndard Library Macros .

. . *

-.

. . .

. . .

. 6 .

. . .

. . .

* . 4

. . *

. . .

. . .

. . .

. . .

0 . *

. . .

. . .

. . .

. . .

. . .

. . .

Appendix 2: Syntax of Macro and Layout Languages.

. .

* .

. .

. .

. .

. .

. .
. *
t .
. .
. .
. .
* .
. .

. .

. .

. .

. .

. .

. .

.

.

.

4

.

.

.

.

.

.

.

.

.

.

.

i

Page

1

5

7

9
9

IO
II

II
II
12
12
13
13
I4

16

19

19

20

21

33

1. Introduction

SCALD (Structured Computer-Aided Logic Design) is a graphics-based design system which
allows digital systems to be designed in a hierarchical manner. SCALD’s main goal is to reduce
the amount of time required to design large digital systems, by allowing the designer to express
his design on the same level that he thinks about it, freeing him from the task of actually
drawing out all of the togic and creating a wire list. Designs expressed in this high-level
notation become much m o r e understandable, both for designers and for maintenance
engineers.

SCALD’s second important goal is to allow designs to be recompiled rapidly when new circuits
become available, allowing designs to repeatedly take maximal advantage of the exponential
rates of advance currently characterizing the semiconductor industry. This goal is achieved by
expressing a design in terms of high-level modules, which in the future may be implemented as
single ICs. In practice, considerable work may still be required to update a design to
incorporate recent technology advances, but the required effort is likely to be much less than if
the design were not expressed hierarchically.

SCALD has been used to design a very high-performance processor, the S-l, shown in Figure
I.-I, _ which i s _ZI I5 M I P S , 5500-chip ECL-IOK m a c h i n e . This design experience
has been very favorable; the entire processor was designed and implemented with two man-years
of effort.

T o prowde a vehicle for the presentation of SCALD, the design of a very simple processor
has been carried through the Design System. The top level of this design is represented in Figure
I.-2 and F i g u r e I .-3; The processor consists of a register fiie of 36-bits
by I6 words, a 4-input, 36-bit muitiplexer, a 36-bit arithmetic-logic function generator, and a 36-
bit accumulator. The microsequencer shown in Figure I.-3 controls t h e s i m p l e
processor; it consists of an &bit counter and a control store of 23 bits by 256 words.

1. Introduction

F i g u r e 1.-l
S- 1 Processor

36B
B

<6
:3

6>

/t
l

R
3

a

RE
G

ao

Ft
s6

:3
,

m
1

I
AL

U
 C

TL
a~

u
c
r~

<e
:6

>

m

/
n

Fi
gu

re
 I

 .-
2

Si
m

pl
e

Pr
oc

es
so

r
M

ac
ro

J
RL

L
J

Em
 ol

JTf
wT

<e>
aJT

Pu
r S

Iol
M

RE
G

 C
N

B
lF

m
!

C
E

-

OU
TP

UT

S

Io
(

p
t?

 L
OR

O
 C

S
D

R
TA

*9
:2

2!
,

A 1 ,
I-

EX
T

R
E

S
T

I
E

x
T

L
o
u
o
c
s
L
E

L

Fi
gu

re
 l

.-3
Pr

oc
es

so
r

C
on

tro
l

M
ac

ro

-
-

I

5

2. System Overview

SCALD takes as input a high-level description of a digital system, and produces output for the
computer-aided manufacture of the system on wire wrap boards. Figure 2.-l shows
the three main modules in SCALD. Input to the system is through the Stanford University
Drawing System (SUDS) Graphics Editor [Heliiweli 19723, which allows drawings to be entered
directly on a graphics terminal.

Ail parts of SCALD except the SUDS Graphics Editor are written in PASCAL, and are
therefore highly transportable. The Macro Expander (M) reads the output of SUDS, along with
the hand-generated layout specification, expands the drawings into a connection list, and
generates a number of listings to aid the designer, The Wire Lister (W) inputs the connection list,
a chip definition file, a.nd an old board state, and produces a wrap/unwrap list, a run list,
describing each run (electrically connected net) in detail, a new board state, and a number of
summaries and statistics. Changes can be made to a constructed system by editing the source
drawings and then running the entire SCALD System again; the Wire Lister then reads the old
board state, which specifies how the system was constructed before the change, and outputs a new
board state and a wrap/unwrap list, the execution of which updates the system to correspond to
the new drawings.

I,

2.

tlodule Input

Graphics Editor

System Overview

output

Text description of drawings

Macro Expander Text description of drawings ttacro call structure
Hand layout Hacro d e f i n i t i o n lfsting

Signal cross reference
Connection list

W i r e Lirter Connection l ist
Chip definit ions
Old board state

Wrap/unwrap list
Run list
New board state
Summaries and statistics

Figure 2.- 1
Main Modules in SCALD

3

3. Graphics Editor

The hierarchical logic diagrams are entered into the SCALD system using the Stanford
University Drawing System (SUDS) Graphics Editor. Examples of logic diagrams drawn with
SUDS are shown in Figure l.-2 and Figure l.-3. The SUDS system is an interactive graphics
editor, written in assembly language, which -runs on a PDP-10 equipped with a refreshed
graphics terminal. The program is controlled with keyboard commands, and the cursor is
controlled either by a light pen, or by the keyboard.

The first step in using the SCALD Design System is to create a library of common body
definitions, such as those shown in Figure 3.-l. The user has complete control over
the appearance of a body. Once a library of bodies is created, drawings can use those bodies. A
body is positioned in a drawing by giving commands at the keyboard which place it at the
location specified by the cursor. After bodies have been thus positioned, commands are given
which connect the bodies with lines, and place text on the lines. In general, the user has complete

control of the positioning and intercorinection of bodies in a drawing. SUDS allows bused-through
lines, that is, lines which connect to a body and then pass invisibly under the body (horizontally
or vertically) to exit on another side, and this capability was found to be extremely useful in
decreasing the clutter in drawings. SUDS includes many commands which allow bodies and lines
to be easily moved, and has a macro facility which allows repetitive structures to be drawn very
quickly. Hard copy of drawings is available from either a Xerox Graphic Printer or a plotter.

Dominant resource utilization by the SUDS Graphics Editor during the design of the S-l
amounted to 30 hours of KL-10 compute time, and 1000 hours of graphics-terminal time spread
over a period of one year.

The SUDS Graphics Editor outputs the drawings represented in a text Macro Language. This
text Macro Language serves as input to the Macro Expander. It would be possible to use a
different Graphics Editor to supply input to the SCALD Design System if another program were
written to translate the drawings into the text Macro Language.

wo 1
WI

RE

D

OR

-
.

I

e

M
A

TC
H

CY
P

Y
e --iz2

l
⌧
l D¶@1
6B

T
X

1
0

m
JB

uE
w

‘
I

36
II

II

X

T
l

R
E

i
RE6EN

!

M
T

C
M

.3
6

B

D

Y
e1

73

T
X

1
s

NC
bT

CH
TC

16
JW

C

e 1 2 3 4 6 ’
1

B
IT

7
1

6
 M

(

B
X

9 re 11 12 13 14 12
ru

K

O
E

C
K

c

B
IT

G
EI

ER
R

TO
R

I

Fi
lS

TP
R

IO

REGaR r-
l

I
1
e1

ea

T

X

sN
1F

lE
R

I
4m

Dt

4
B

IT
 C

T
R

T
C

l-
1

6

I
I

I
T

X rml
T

0X

a
LE

1 2 3 4
3

6
 B

IT
6

1
2

 M
(

T
6

m
e
iw

m
e
le

e

PG
e

PG
Y

CM
+2

PG

2

C
W

R
’I

 L
O

O
K

 A
IE

m
 r

a
w

n
s

C
I

ru
ts

 n
e
w

s
 a

 a

S
IN

x

X PC

.
.

Fi
gu

re
 3

.-
1

B
od

y
L

ib
ra

ry

_
-

4. Macro Lanrruape

.

A design in SCALD consists of a set of macro definitions (macros), which are expanded, starting
from a distinguished top-level macro and continuing downward until no macro remains which
has a definition (ie., all remaining macros are available devices), to generate a wire list and all the
necessary associated documentation for the system being designed (the o&cl macAine). These
macro definitions are entered directly into the SCALD data base using the SUDS Graphics
Editor.

Macro calls within a macro definition are represented by appropriate bodies from the Body
Library, and may be passed various parameters, the values of which differ from call to call.
Connections between bodies are made with lines, which represent signal vectors and may be
named; identically named signals are implicitly connected. Signal vectors may be passed as
parameters to macros; the forma1 name of a signal-vector parameter passed to a macro is shown
on the macro body where the actual signal vector connects to the macro body.

A macro can be called one or more times from other macros, but cannot be called recursively,
since SCALD allows no conditional expansion. The ability to define once a function which is
used many times greatly reduces the overall design time for a large object machine; it reduces
redundancy and thereby facilitates verification and increases changeability.

The use of macros (rather than bodies representing available devices) in the definition of the data
path in an object machine results in a great reduction in the number of drawings required and in
the density of bodies on the drawings. The object machine’s non-repetitive (control) logic can be
then distributed throughout the data path, placing it near the logic it controls, thereby enhancing
the overall understandability of the logic.

On the macro level, SCALD does not distinguish between inputs and outputs of devices or
macros. It is not until after the macros are expanded that the SCALD System checks for runs
with an illegal number of inputs or outputs. In general, each run must have exactly one output,
unless permission is granted in the drawings (by the use of a Wire-Or Body) for multiple outputs.

‘4.1 Signal Expressions

- SCALD allows signals to be grouped together to form a signal vector, represented by a single
(possibly named) line in the drawings. For example, the signal vector named “A<0:15>” repres.ents
16 signals. The genera1 notation for the name of a signal vector is “NAME&J>“, where NAME
is a string and I and J are integers; by convention, I is the high-order bit number, while J is

the low-order bit number. Signal vectors can be concatenated by writing a colon between their
- names. A signal vector can be replicated by suffixing its name with an asterisk and a number;
: for example, the expression “A<0:3>*3” is equivalent to the expression “A<0:3>:A<0:3>:A<0:3>“.
Holes can be generated in a signal vector by use of the special signal “Z”, a one-bit signal
which is never connected in the hardware; in the ECL-IOK logic family used in the design of the
S-l processor, an open input is a logic zero.

Figure I.-2 contains an example of a complex signal expression: “EXT OUT<9:35> : C OUT /M
*3 : Z*6” represents a 36-bit vector, where the high-order $7 bits are “EXT OUT<9:35>“, the
next 3 bits are the local signal (see Section 4.2) “C OUT”, and the low-order 6 bits are
not connected.

SCALD also understands primitive merger 6odies. Figure l.-2 contains a two-merger and a three-

I

4.1 M acre Language 10

merger, which concatenate, respectively, two signal vectors and three signal vectors, forming larger
vectors. The two-merger is connected to the “1” input of the 4-input multiplexer, and the three-
merger is connected to the “M”, “S”, <and “CI” inputs of the “36 BIT ALU 10181”. Mergers are
used where concatena.tion is needed, but preservation of the explicit connectivity of the drawing is
desired.

4.2 Signal Types

Signals in a macro definition can be of three types: parameters, locals, and globals. Subject to
limitations of scope, signals of the sa.me name in any are implicitly connected throughout all macro
definitions.

A macro definition must always declare in a PARA METER declaration all of the signal
para.meters that will be passed to it, as shown in Figure l.-3. The parameter signals declared
must be the same as those shown in the body at the call site; they are checked for consistency.
Where a parameter signal is used, its name can optionally have the string “/P” following it at
each use, allowing the macro expander to check for consistency, and improving readability.
The scope of a parameter signal is the enclosing macro definition.

A signal name followed by “/M” is a local signal; the scope of a local signal is the enclosing macro
definition.

Global signals are those which have no “/M” or ‘l/P” suffix, and which are not contained in a
PA RA M ETER declaration. This syntax for specifying the type of global signals was found
through experimentation to be superior to the method of declaring all global signals, as all
variables are declared in ALGOL, first because signal names are commonly long, and also
because most signals are used infrequently, thus both the absolute and relative overhead involved
in maintaining the global declarations was found to be large. Undeclared global signals have
unlimited scope. The scope of global signals can be limited to a subtree in the dynamic call
structure by declaring them at the root of the desired subtree. In Figure I.-2, the signal
“OUTPUT SIGN” is declared, and therefore its scope is limited to its containing macro and to all
macros below it in the dynamic call structure.

4.3 Macro Language 11

4.3 Versions

In SCALD, there is a difference between a logical and a physical signal. A physical signal is
simply a run in the object machine, but a logical signal is a set of physical signals (versions) that
essentially always have the same value. Signals in drawings are logical signals. For example,
the logical signal “REG CK BUF /M” in Figure L-2 is driven by a 10110 gate, which has

r three identical outputs, thus three physical versions. Each output is a different physical signal;
loads will be distributed among the three outputs when the object machine is laid out.

4.4 High-Low Drivers

In the ECL logic families, many functions have both the true and complementary outputs
available. SCALD allows this functionality to be fully utilized. In the definition of a multiplexer
chip, for example, it is specified that the values of the select lines can be complemented without
affecting the function, if the inputs are permuted in a particular way. When a multiplexer chip is
laid out, it can be laid out in its reuerje form, and SCALD will automatically search to see if there
is an unused complementary output on the gate driving the select line. If so, SCALD will
automatically utilize it, permuting the inputs to the multiplexer as specified. In Figure L-2, for
example, the “368.10174” macro can be laid out with 18 bits being driven by the true output of
the gate on its select line, and the other 18 bits being driven by the complementary output.

This manner of representing high-low drivers , and similarly, the manner of allocating physical
versions, helps to minimize the amount of information in the drawings which is not related to the
togicnt design, thus making the logical operation of the object machine more apparent, and places
the ta.sk of specifying which parts are driven high and which parts are driven low in the layout
phase of the design where it belongs, since this determination may depend heavily on positions of
chips.

4.5 Macro Definition

There are two basic types of macro definitions. The first consists of a complete definition, such as
the “SIMPLE PROCESSOR” macro. The second is called an “XB” (X-Bit) macro, which
consists of the definition of a single bit or bit-slice of a bit-wise symmetrical function, and

- expands to a width given by a parameter in the macro call.

A macro definition may have formal signal parameters, through which are passed signal-vectors
from the call sites. All of the formal signal parameters of a macro must be explicitly declared in a

PARAMETER declaration, as shown in Figure L-3. These formal signal-vector parameter
. names must be the same as the signal names which are written on the macro body. The width of
. a signal-vector is shown in the PARAMETER declaration, and is checked on each call. All

signals with the same name within a given same scope, and all points connected together with a
line, are wired together. If more than one signal name is written on a line, then the signals are
synonyms, that is, all connections to each such signal will be wired together.

. Macro definitions can consist of one or more pages, where a multiple-page macro has the same
macro title on each page.

4.6 Macro Language 12

4.6 Macro Call

A macro call consists of a body which has:

I

- An arbitrary shape.

- Formal signal parameters for passing signal vectors to the macro definition.

- A macro name.

- A label.

A size parameter.

A times parameter.

To enhance the understandability of the drawings, different calls of the same macro can have
different shapes. For example, it is common to have two shapes for a macro, corresponding to its
positive and negative logic forms.

The formal signal parameters of a macro are drawn around the edges of the macro body; each
consists of a text string and a point for lines to attach to it. If a parameter is an active low
sign al, then the body generally contains a diamond at the point at which the lines connect,
and the formal parameter in the definition consists of the formal parameter shown in the call,
with ” L” appended to it, to indicate that it is an active low signal.

The macro name is a text string, which is normally placed in the middle of a macro shape; it
can be more than one line long, as shown in Figure I.-2 (“36 BIT ALU 10181”). The macro
name connects the macro call with the appropriate macro definition.

The label is a text string, also normally placed in the middle of a macro shape. The label varies
from call to call for a given macro body; the label associated with each macro call must be unique
within the enclosing macro definition. The labels in Figure I.-2 are “CTL”, “RI”, “R2”, “R3”, “A”,
“M “s “G 1”) “G2”, and “G 3”.

The size parameter is used only for calls on XB-type macro definitions; the value of this
parameter is of the form “nB”, where “n” is an integer representing the number of bits in this
particular macro call. Special syntax in the XB-type macro definition allows SCALD to create
signal names which have bit numbers included in them.

. The times parameter has a value of the form “na”, where “n” represents an integer. If a macro
call has a times parameter of “n***, then the macro will be automatically called n times, using the
same values of all parameters during each call, making each label unique (by suffixing), and
making all version designations within the called macro unique (also by suffixing). This facility
is used for calling functions which must have large fanout without obscuring the logic at the call
site.

4.7 Terminal Component

A terminal component call consists of a body which has:

An arbitrary shape.

4.7 M acre Language 13

- Pin names for connecting signals.

A component name.

- A label.

A terminal component corresponds to either all or part of a chip. It can have different shapes at
different call sites to enhance its understandability.

Signals connect to a terminal component only at pins, which have pin names which may be
different from the actual pin numbers on an IC.

The component name specifies the chip type.

The label is used to identify the component in the macro definition, and must be unique among
macro labels and terminal component labels within a macro definition.

4.8 Macro Expansion

The output of the macro expansion is a connection list., which shows all of the pins on terminal
components to which each signal connects. Each run on the list is given a unique name. A run
name is of the form “PATH-NAME :SIGNAL-NAME”.

SIGNAL-NAME is the name used in the macro definition to refer to the signal, except that the
name generated for parameter signals is the name of the signal which was passed when the macro
was called. If two or more signals are synonyms, then the name of the one which is declared
higher in the call structure is used, and if multiple signals within the same level are synonyms,
then the one which comes first in the alphabet is used.

For a signal which is global throughout the entire system, PATH-NAME is “TOP”. For local
and global signals which are declared in a macro, PATH-NAME is created by concatenating, in
order, the label in each macro call (with periods between them) in the expansion from the top-
level macro down’to the macro containing the signal of interest.

4.9 Board Layout aud Partitioning

During the macro-expansion process, each terminal component generated is assigned a terminal
I path name, which is generated by concatenating, in order, the labels of all the macro calls in the
I path down the expansion tree which generated the terminal component (separated by periods), as

well as the label on the terminal component. Since each label is unique within a macro definition,
all terminal path names are unique.

SCALD inputs a language which maps terminal path names to boards and to positions on boards.
A companion paper, The SCALD Physical Design Subsystem, describes in detail the language used
to construct the S-l processor (which was manually laid-out). In general, the mapping function
can be specified either totally manually, fully automatically, or by some combination of manual
and automatic techniques.

r

4.10 Macro Language

4.10 Text Form of Macro Language

The output of the SUDS editor is a text form of the Macro Language, which is input to the
Macro Expander. The text form of the Simple Processor Macro is shown in Figure
4.10-I. The text Macro Language contains exactly the information in the drawings,
but omits information about position and ‘shape. For each macro definition, it consists of
declarations which give the file name and macro name, followed by PARAMETER, DECLARE,
and SYNONYM declarations. Each body in the macro definition then has an entry which gives ’
either the macro or terminal component name, the logical location label, and the actual signals
passed to each signal parameter. SCALD automatically creates signal names for unnamed signals;
each such name includes a percent sign to make it different from names input by the designer.

4.10 Macro Language

MNRIIE = SIIIPLE PROCESSOR ;
FILE = .EXfMl I

OECLRRE t OUTPUT SIGN;

SYNONYM = EXT OUTPUT=OUTPUT SIGN;

f,ROCESSOR CONTROL(LOC=CTL) (Fl SEL=R SEL<B: l> /tl,REG ROR=REG RDR<8:3> /H
,RLU CTL=RLU CTL<B:S> /H,REG URITE L=REG WRITE L /H)J

SLWi(SIZE=35) (2=EXT OUTPUT<l:35>,1=EXT OUTPUT<B:35>);
2tlERGE0 (L=C OUT /H,H=EXT OUTPUT<l:35>,T=%lXT);
1816l(SIZE=2B,LOC=G2) (4~0 SEL<B: 1, /H,5=R SEL BUF<B: l> /H,12=,2=)j
16116V(LOC=G3) (6=CLOCK,3=REG CK BUF /fl,7=,5=);
REG 16176(SIZE=lB,LOC=Rl) (CKrREG CK BUF /H,T=C OUT /H,I=Rl%II;
REG 10176(SIZE=36B,LOC=R2)(CK=REG CK BUF /H,T=EXT OUTPUT<B:35>,It

1<0:35> /f-l,;
10185R(LOC=Gl)(S=REG WRITE L /H,4=CLOCK,2=61%2,3=);
161-1 RRM 10145R(LOC=R3,SIZE=36B) (CS L=,UE L=GlV,I=EXT OUTPUT<8:35>,Rr

REG ROR<O:3> /H,T=B<6:35> Al);
18174 (SIZE=36B,LOC=tl) (T=R<8:35> /tl,EN L=,O=EXT OUTPUT<8:35>,1=%l%T,2=

EXT OUTPUT<9:35> : C OUT /tl r3 : Ze6,3=EXT INPUT<6:35>,S=
R SEL BUF<B:l> /HI;

3MERGE0 (L=X2XL,H=X3Mtl,H=%4XH,T=RLU CTL<0:5> /II);
36 BIT RLU 10181(LOC=R) (CI=%2%L,S=%3%tl,B=B<0:35> /tl,R=R<8:35> /H,F=

I&:35> /tl,CO=R1XI,H=X4XH);

END;

15

Figure 4. IO- 1
Text Representation of Simple Processor Macro

I

4.10 Macro Language 16

5. Output Listings Generated

A number of output listings are generated to help in both the design and debugging of the
hardware. The Macro Expander outputs a directory of the macros used in a design, a listing
which shows ail of the places from which a given macro is called, one which shows ail of the
macros which use a global signal, and a list of ail of the macros and terminal components called
by each macro definition, as shown in Figure 5.-l and Figure 5.-z. In
order to aid in the partitioning and layout of a system, SCALD ‘provides an estimate of the
number and types of chips used by a given macro, generated using simple heuristics to account for .
the packing of multiple sections of a given type into a single chip.

HFICRO: PROCESSOR
FILES: .EXRHZ

Output Listings Generated

CONTROL 2.

CFlLLED 1 TIMES FROH: .EXRHl SIHPLE PROCESSOR Xl

PRRRHETER RLU CTL<O:S>(l), II SEL<e:l>(l), REG RDR<Or3>(1), REG URITE L(1)

LOCRL BRRNCH RLU(21, BRRNCH NEG(21, BR AOR<e:7>(2), HICRO INSTR<8:22>(8),
CIT<0:7>(2), G2%3(2), G2%5(2), G3%3<8:7>(2)

CLOCK (1) EXT
OUTPU TS ~GN (1)

LORD CS DRTfMJr22>(1), EXT LORD CS WE L(l), EXT RESET(l),

SYNONYH BR RDR<O:7> = HICRO INSTR<0:7>
BRRNCH RLU = HICRO INSTR<8>
BRANCH NEG = HICRO INSTR<S>

-=. REG fiDR<0:3> = HICRO INSTR<le:13>
REG WRITE L = HICRO INSTR<l4>
RLU CTL<BtS> = HICRO INSTR<15:20>
R SEL<B:l> = HICRO INSTR<21:22>

HFlCROS CClLLED

C 8 BIT CTR 16016 111 (CK I CLOCK, 1<6:7> I BR ADR<B:7>, PE L t
G2X3, R = EXT RESET, T<0:7> = C%T<0:7> 1

Cl elel04R X19 1 2 = G2X5, 4 = BRRNCH NET;, 5 = OUTPUT SIGN 1

62

63

tl0165R #2e (2 = , 3 = G2%3, 4 = BRRNCH RLU, 5 = G285 1

XB lellev #12(SIZE=8)
WT<0:7>, 7<x> = 1

5<X> = , 6<X> a

R XB 256U RRtl tlB7842 #18(SIZE=23) (R<8:7> I G3%3<8:7>, CS L t ,
I<X> = EXT LORD CS DRTR<e:22>, T<X> = HICRO lNSTR<8:22>, UE L I
EXT LORD CS WE L 1

CHIPS LOCRL SECS TYPE

23 8 tlB7042
2 8 10816
1 1 lel84R
1 1 16185R
8 : 0 18110

35

Figure 5.- 1
Summary Output Listing from Macro Expander

5.

CLOCK

Output Listings Generated 18

DEFINE/USING CROSS REFERENCE LIST

EXT INPUT<8:35>
--m.

EXT LORD CS DRTR<0:22>

EXT LORD CS WE L

EXT OUTPUT<0:35>

.

EXT RESET

OUTPUT SIGN

RUTODECL .EXFVll
USING .EXRtl2

.EXRHl

AUTODECL .EXRHl
USING .EXRHl

RUTODECL .EXRH2
USING .EXRHZ

RUTODECL
USING

.EXRtlZ

.EXRH2

RUTOOECL .EXfItll
USING .EXfVll

RUTODECL
USING

.EXRH2

.EXtVl2

DECLRRE .EXRtll
USING .EXRH2

.EXAHl

SIMPLE PROCESSOR I1
PROCESSOR CONTROL #2(l)
SIHPLE PROCESSOR #l(2)

SIHPL PROCESSOR Xl
SIHPLE PROCESSOR #l(l)

PROCESSOR CONTROL A2
PROCESSOR CONTROL #2(l)

PROCESSOR CONTROL AT
PROCESSOR CONTROL #2(l)

SIHPLE PROCESSOR Xl
SIHPLE PROCESSOR X1(8)

PROCESSOR CONTROL x2
PROCESSOR CONTROL #2(l)

SIHPtE PROCESSOR #l(O)
PROCESSOR CONTROL #2(l)
SIHPLE PROCESSOR Xl(l)

Figure 5.4
Cross Reference Output Listing from Macro Expander

6. Conclusions

19

SCALD has been used to design a 5500-chip ECL processor (the S-l), and in addition to basic
facilities for hierarchical design, it contains many features which have been found to be essential
either for the understandability of the design-or for the efficiency of the machine. Among such
features are the following:

- Language
vectors.

constructs for declaring and using local, parameter and global signal

- A mechanism for defining in a single drawing ail macros of identical structure
but different width.

- Mechanisms for
logical signal.

conveniently manipulating multiple physical versions of the same

- A mechanism which facilitates the use of both physical polarities of a given
logical signal.

- Language constructs for representing bit-wise symmetrical logic.

Structured logic design consists of extending to logic design the essential power of the concepts
and the tools which have been developed for simplifying the programming task; the savings in
human labor expended in digital systems design realizable by this advance are potentially as great
as those which the application of compilers has caused in the specification of complex arithmetic
and logical computations. Our experience has shown that the SCALD Design System has greatly
increased the understandability of the S-l Processor, thus reducing the design effort by a large
factor, enhancing design correctness, and facilitating the generation of final documentation. The
design itself serves as a major portion of the final documentation because it is so readily
understandable; thus, the need for expensive and relatively inaccurate ex post facto
documentation is greatly reduced. Furthermore, the SCALD Design System has increased the
changeability of the design; since macros are inherently isolated, changes in one macro definition
usually require minimal changes in other parts of the design. Finally, the imposition of structure
on’ythe design will facilitate machine verification; that is, it will support simulation of. the S-i at a
various levels above the chip level.

7. AcknowledPements

We wish to acknowledge crucial support for this research which has been received from the
office of Naval Research via. ONR Order Numbers N00014-76-F-0023 and NOOOl4-77-F-0023
to the University of California Lawrence Livermore Laboratory (where the authors are members
of the professional staff), from the Computations Group of the Stanford Linear Accelerator
Center supported by the Energy Research and Development Administration under contract EY-
76-C-03-051 5, and from the Stanford Artificial Intelligence Laboratory. We also wish to
gratefully acknowledge the support of our graduate studies which has been extended by the
Fannie and John Hertz Foundation. We greatly appreciate the constant encouragement and
support we have received from Forest Baskett, Lowell Wood, and Bill vanCleemput throughout
this work, and the support Sassan Hazeghi provided in writing and responsively maintaining an
excellent PASCAL compiler at the Stanford Linear Accelerator Center.

20

8. References

vancleemput, W. M. 1977. “A Hierarchical Language for the Structural Description of Digital
Systems,” Proceedings 14th Design Automation Conference, New Orleans, La, June 1977, pp. 378-
385.

Helliwell, D. 1972. “The Stanford University Drawing System”, Stanford Artifical Intelligence
Laboratory, Stanford University.

21

Al. Standard Library Macros

The following macros were used in the definition of the Simple Processor shown in Figure 1.4
and Figure 1.- 3, and are part of a larger set of standard macros tha.t were used in the design of
the S- 1 Processor.

8<
24

:2
7>

I

PG
S

PC
1

CM
+2

PG

?
PC

3
P

G
.

cm
2

PG

2
FG

.3

CH
UZ

Y
 L

oa
c
-

 ¶
er

w
1

.M
U

IR
R

I
Lo

cu

fu
uz

m
 a

*1
79

CI
M

C
N

+4
,

aa
+4

1
0

B

PC
PG

r

PG
S

+

PG
l

O
tt

2

PG
2

PG
3

P
m

F-
3

ot
e2

PG

Z
P

CI
IR

RY
 L

oo
u

cy
(E

IID

rm

w

-
t
-
b

Cm
zR

Y

LO
OK

 -
 1

81
79

C
a

6%
PG

6 +

co

S
-

l
P
R
O
J
E
C
T

3
6

 B
IT

 A
L
U

1
8
1
8
1

2
7
-
M
A
Y
-
7
7

8
6
:
3
8
/

3
6
B
1
8
1
C
S
T
D
,
L
C
W
l

D
R
A
W
N

B
Y
:

I

A
P
P
R
O
V
E
D

B
Y
:

I
P
R
O
J
E
C
T
:

I

N
U
M
B
E
R

R
E
V
.

ki

-

I--

%
4

B
IT

 C
TR

TC
I<

O
:

3,
1w

ra
1

T
.

T<
O:

3,

l

7<
4:

7>

o
(,.
R

P
E

C
E

Q
(

I
Y

”
R

I
I

S
-
l

P
R
O
J
E
C
T

I

8

B
I
T

C
T
R

1
8
0
1
6

/
2
9
-
N
O
V
-
7
7

2
3
:
1
8

8
C
T
R
C
S
T
D
,
L
C
W
l

D
R
A
W
N

B
Y
:

P
A
G
E

O
F

A
P
P
R
O
V
E
D

B
Y
:

P
R

O
J

E
C

T
:

N
U
M
B
E
R

R
E
V
.

E

ae

01

a2

03
TC

Q
PE

EL
O

P
E

lo
b1

6
C

E
L

M

T<
O

:3
?

TC
 L

S
-

l
4

 B
I

T
 C

T
R
T
C

2
0
@
1
6

j
1
3
-
A
P
i
b
-
7
7

1
0
:
1
6
i

P
R
O
J
E
C
T

I I
4
C
T
R
T
K
T
D
,
L
C
W
l

D
R
A
W
N

B
Y
:

A
P
P
R
O
V
E
D

B
Y
:

P
A
G
E

O
F

N
U
M
B
E
R

R
E
V
.

E
P
R
O
J
E
C
T
:

-
-
-

S
-
l

4
 B

I
T

 A
L
U

l
&
.
8
1

'
0
5
~
M
A
R
-
7
7

0
8
:
0
2

1
P
R
O
J
E
C
T

4
B
1
8
1
[
S
T
D
,
L
C
W
l

D
R
A
W
N

B
Y
:

P
A
G
E

I

O
F

N
U
M
B
E
R

R
E
V
.

E
A
P
P
R
O
V
E
D

B
Y
:

(
P
R
O
J
E
C
T
:

I
I

Pe

Go
P

l
C

l
C

m
2

P2
P3

63

18
17

9
01

11
-

M
O

M
4

3

oc
cr

X

P
G

16
2

1
I

I
I

I
I

s
-
1

P
R
O
J
E
C
T

'
D
R
A
W
N

B
Y
:

A
P
P
R
O
V
E
D

B
Y
:

C
A
R
R
Y

L
O
O
K

A
H
E
A
d

1
0
1
7
9

'
2
6
-
J
U
L
-
7
7

0
2
:
5
1
/

1
0
1
7
9
[
S
T
D
,
L
C
W
I

P
A
G
E

O
F

N
U
M
B
E
R

R
E
V
.

2
P
R
O
J
E
C
T
:

2t
xa

u

6t
X

)
U

.

S
-
l

X
B

1
0
1
1
0
V

2
3
-
S
E
P
-
7
7

0
2
:
2
5
/

P
R
O
J
E
C
T

.
X
B
l
l
B
V
~
S
T
D
,
L
C
W
l

.
D
R
A
W
N

B
Y
:

P
A
G
E

O
F

N
U
M
B
E
R

A
P
P
R
O
V
E
D

B
Y
:

P
R
O
J
E
C
T
:

I
R
E
V
-

x

L
s

a a

S
-
l

P
R
O
J
E
C
T

D
R
A
W
N

B
Y
:

A
.
P
P
R
O
V
E
D

BY
:

X
B

R
E
G

1
0
i
7
6

2
7
-
M
A
Y
-
7
7

0
6
:
1
7
[

X
B
1
7
6

I
S
T
D
,
L
C
W
l

P
A
G
E

O
F

N
U
M
B
E
R

RE
V.

w 0

P
R
O
J
E
C
T
:

S
-
l

.
X
B

16
11

RA
M

i-
01
45
A

'
2
7
-
M
A
Y
-
7
7

0
6
:
5
1

P
R
O
J
E
C
T

X
B
X
l
G
[
S
T
D
,
L
C
W
I

D
R
A
W
N

B
Y
:

P
A
G
E

O
F

N
U
M
B
E
R

R
E
V
.

K
A
P
P
R
O
V
E
D

B
Y
:

P
R
O
J
E
C
T
:

a
d
:7

;
M

C
S

L
IC

X
>

U
E

L

S
-

l
P
R
O
J
E
C
T

D
R
A
W
N

B
Y
:

A
P
P
R
O
V
E
D

B
Y
:

X
B

2
5
6
W

R
A
M

M
B
7
0
4
2

0
7
-
M
A
R
-
7
7

0
8
:
0
6
/

X
B
X
2
5
6
C
S
T
D
,
L
C
W
l

P
A
G
E

O
F

N
U
M
B
E
R

RE
V.

w tu

P
R
O
J
E
C
T
:

, 33 .

A2. Syntax of Macro and Layout Lanpuapes

The following syntax diagrams give a detailed definition of the syntax for the text form of the:
SCALD macro language. The output of the SUDS Graphics Editor is converted to this language,
and the SCALD Macro Expander and Wire Lister can be used directly without a Graphics
Editor by using this alterna,te text form of the macro language as the primary input.

34

Hardware description

Macro definition

Chip binding

35

Macro definition I

Name *

a-
,

Signal decleration

Macro call

Signal decleration

Signal vector

Synonym decleration

Signal expression

.

Signal expression

.

37

Macro call

t

Name
I

Property

Name Signal expression

38

Signal expression

Signal vector

-

Unsigned integer -

Signal vector

Name
A

39

